~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/math-emu/poly_sin.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*---------------------------------------------------------------------------+
  3  |  poly_sin.c                                                               |
  4  |                                                                           |
  5  |  Computation of an approximation of the sin function and the cosine       |
  6  |  function by a polynomial.                                                |
  7  |                                                                           |
  8  | Copyright (C) 1992,1993,1994,1997,1999                                    |
  9  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
 10  |                  E-mail   billm@melbpc.org.au                             |
 11  |                                                                           |
 12  |                                                                           |
 13  +---------------------------------------------------------------------------*/
 14 
 15 #include "exception.h"
 16 #include "reg_constant.h"
 17 #include "fpu_emu.h"
 18 #include "fpu_system.h"
 19 #include "control_w.h"
 20 #include "poly.h"
 21 
 22 #define N_COEFF_P       4
 23 #define N_COEFF_N       4
 24 
 25 static const unsigned long long pos_terms_l[N_COEFF_P] = {
 26         0xaaaaaaaaaaaaaaabLL,
 27         0x00d00d00d00cf906LL,
 28         0x000006b99159a8bbLL,
 29         0x000000000d7392e6LL
 30 };
 31 
 32 static const unsigned long long neg_terms_l[N_COEFF_N] = {
 33         0x2222222222222167LL,
 34         0x0002e3bc74aab624LL,
 35         0x0000000b09229062LL,
 36         0x00000000000c7973LL
 37 };
 38 
 39 #define N_COEFF_PH      4
 40 #define N_COEFF_NH      4
 41 static const unsigned long long pos_terms_h[N_COEFF_PH] = {
 42         0x0000000000000000LL,
 43         0x05b05b05b05b0406LL,
 44         0x000049f93edd91a9LL,
 45         0x00000000c9c9ed62LL
 46 };
 47 
 48 static const unsigned long long neg_terms_h[N_COEFF_NH] = {
 49         0xaaaaaaaaaaaaaa98LL,
 50         0x001a01a01a019064LL,
 51         0x0000008f76c68a77LL,
 52         0x0000000000d58f5eLL
 53 };
 54 
 55 /*--- poly_sine() -----------------------------------------------------------+
 56  |                                                                           |
 57  +---------------------------------------------------------------------------*/
 58 void poly_sine(FPU_REG *st0_ptr)
 59 {
 60         int exponent, echange;
 61         Xsig accumulator, argSqrd, argTo4;
 62         unsigned long fix_up, adj;
 63         unsigned long long fixed_arg;
 64         FPU_REG result;
 65 
 66         exponent = exponent(st0_ptr);
 67 
 68         accumulator.lsw = accumulator.midw = accumulator.msw = 0;
 69 
 70         /* Split into two ranges, for arguments below and above 1.0 */
 71         /* The boundary between upper and lower is approx 0.88309101259 */
 72         if ((exponent < -1)
 73             || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
 74                 /* The argument is <= 0.88309101259 */
 75 
 76                 argSqrd.msw = st0_ptr->sigh;
 77                 argSqrd.midw = st0_ptr->sigl;
 78                 argSqrd.lsw = 0;
 79                 mul64_Xsig(&argSqrd, &significand(st0_ptr));
 80                 shr_Xsig(&argSqrd, 2 * (-1 - exponent));
 81                 argTo4.msw = argSqrd.msw;
 82                 argTo4.midw = argSqrd.midw;
 83                 argTo4.lsw = argSqrd.lsw;
 84                 mul_Xsig_Xsig(&argTo4, &argTo4);
 85 
 86                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
 87                                 N_COEFF_N - 1);
 88                 mul_Xsig_Xsig(&accumulator, &argSqrd);
 89                 negate_Xsig(&accumulator);
 90 
 91                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
 92                                 N_COEFF_P - 1);
 93 
 94                 shr_Xsig(&accumulator, 2);      /* Divide by four */
 95                 accumulator.msw |= 0x80000000;  /* Add 1.0 */
 96 
 97                 mul64_Xsig(&accumulator, &significand(st0_ptr));
 98                 mul64_Xsig(&accumulator, &significand(st0_ptr));
 99                 mul64_Xsig(&accumulator, &significand(st0_ptr));
100 
101                 /* Divide by four, FPU_REG compatible, etc */
102                 exponent = 3 * exponent;
103 
104                 /* The minimum exponent difference is 3 */
105                 shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
106 
107                 negate_Xsig(&accumulator);
108                 XSIG_LL(accumulator) += significand(st0_ptr);
109 
110                 echange = round_Xsig(&accumulator);
111 
112                 setexponentpos(&result, exponent(st0_ptr) + echange);
113         } else {
114                 /* The argument is > 0.88309101259 */
115                 /* We use sin(st(0)) = cos(pi/2-st(0)) */
116 
117                 fixed_arg = significand(st0_ptr);
118 
119                 if (exponent == 0) {
120                         /* The argument is >= 1.0 */
121 
122                         /* Put the binary point at the left. */
123                         fixed_arg <<= 1;
124                 }
125                 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
126                 fixed_arg = 0x921fb54442d18469LL - fixed_arg;
127                 /* There is a special case which arises due to rounding, to fix here. */
128                 if (fixed_arg == 0xffffffffffffffffLL)
129                         fixed_arg = 0;
130 
131                 XSIG_LL(argSqrd) = fixed_arg;
132                 argSqrd.lsw = 0;
133                 mul64_Xsig(&argSqrd, &fixed_arg);
134 
135                 XSIG_LL(argTo4) = XSIG_LL(argSqrd);
136                 argTo4.lsw = argSqrd.lsw;
137                 mul_Xsig_Xsig(&argTo4, &argTo4);
138 
139                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
140                                 N_COEFF_NH - 1);
141                 mul_Xsig_Xsig(&accumulator, &argSqrd);
142                 negate_Xsig(&accumulator);
143 
144                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
145                                 N_COEFF_PH - 1);
146                 negate_Xsig(&accumulator);
147 
148                 mul64_Xsig(&accumulator, &fixed_arg);
149                 mul64_Xsig(&accumulator, &fixed_arg);
150 
151                 shr_Xsig(&accumulator, 3);
152                 negate_Xsig(&accumulator);
153 
154                 add_Xsig_Xsig(&accumulator, &argSqrd);
155 
156                 shr_Xsig(&accumulator, 1);
157 
158                 accumulator.lsw |= 1;   /* A zero accumulator here would cause problems */
159                 negate_Xsig(&accumulator);
160 
161                 /* The basic computation is complete. Now fix the answer to
162                    compensate for the error due to the approximation used for
163                    pi/2
164                  */
165 
166                 /* This has an exponent of -65 */
167                 fix_up = 0x898cc517;
168                 /* The fix-up needs to be improved for larger args */
169                 if (argSqrd.msw & 0xffc00000) {
170                         /* Get about 32 bit precision in these: */
171                         fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
172                 }
173                 fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
174 
175                 adj = accumulator.lsw;  /* temp save */
176                 accumulator.lsw -= fix_up;
177                 if (accumulator.lsw > adj)
178                         XSIG_LL(accumulator)--;
179 
180                 echange = round_Xsig(&accumulator);
181 
182                 setexponentpos(&result, echange - 1);
183         }
184 
185         significand(&result) = XSIG_LL(accumulator);
186         setsign(&result, getsign(st0_ptr));
187         FPU_copy_to_reg0(&result, TAG_Valid);
188 
189 #ifdef PARANOID
190         if ((exponent(&result) >= 0)
191             && (significand(&result) > 0x8000000000000000LL)) {
192                 EXCEPTION(EX_INTERNAL | 0x150);
193         }
194 #endif /* PARANOID */
195 
196 }
197 
198 /*--- poly_cos() ------------------------------------------------------------+
199  |                                                                           |
200  +---------------------------------------------------------------------------*/
201 void poly_cos(FPU_REG *st0_ptr)
202 {
203         FPU_REG result;
204         long int exponent, exp2, echange;
205         Xsig accumulator, argSqrd, fix_up, argTo4;
206         unsigned long long fixed_arg;
207 
208 #ifdef PARANOID
209         if ((exponent(st0_ptr) > 0)
210             || ((exponent(st0_ptr) == 0)
211                 && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
212                 EXCEPTION(EX_Invalid);
213                 FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
214                 return;
215         }
216 #endif /* PARANOID */
217 
218         exponent = exponent(st0_ptr);
219 
220         accumulator.lsw = accumulator.midw = accumulator.msw = 0;
221 
222         if ((exponent < -1)
223             || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
224                 /* arg is < 0.687705 */
225 
226                 argSqrd.msw = st0_ptr->sigh;
227                 argSqrd.midw = st0_ptr->sigl;
228                 argSqrd.lsw = 0;
229                 mul64_Xsig(&argSqrd, &significand(st0_ptr));
230 
231                 if (exponent < -1) {
232                         /* shift the argument right by the required places */
233                         shr_Xsig(&argSqrd, 2 * (-1 - exponent));
234                 }
235 
236                 argTo4.msw = argSqrd.msw;
237                 argTo4.midw = argSqrd.midw;
238                 argTo4.lsw = argSqrd.lsw;
239                 mul_Xsig_Xsig(&argTo4, &argTo4);
240 
241                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
242                                 N_COEFF_NH - 1);
243                 mul_Xsig_Xsig(&accumulator, &argSqrd);
244                 negate_Xsig(&accumulator);
245 
246                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
247                                 N_COEFF_PH - 1);
248                 negate_Xsig(&accumulator);
249 
250                 mul64_Xsig(&accumulator, &significand(st0_ptr));
251                 mul64_Xsig(&accumulator, &significand(st0_ptr));
252                 shr_Xsig(&accumulator, -2 * (1 + exponent));
253 
254                 shr_Xsig(&accumulator, 3);
255                 negate_Xsig(&accumulator);
256 
257                 add_Xsig_Xsig(&accumulator, &argSqrd);
258 
259                 shr_Xsig(&accumulator, 1);
260 
261                 /* It doesn't matter if accumulator is all zero here, the
262                    following code will work ok */
263                 negate_Xsig(&accumulator);
264 
265                 if (accumulator.lsw & 0x80000000)
266                         XSIG_LL(accumulator)++;
267                 if (accumulator.msw == 0) {
268                         /* The result is 1.0 */
269                         FPU_copy_to_reg0(&CONST_1, TAG_Valid);
270                         return;
271                 } else {
272                         significand(&result) = XSIG_LL(accumulator);
273 
274                         /* will be a valid positive nr with expon = -1 */
275                         setexponentpos(&result, -1);
276                 }
277         } else {
278                 fixed_arg = significand(st0_ptr);
279 
280                 if (exponent == 0) {
281                         /* The argument is >= 1.0 */
282 
283                         /* Put the binary point at the left. */
284                         fixed_arg <<= 1;
285                 }
286                 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
287                 fixed_arg = 0x921fb54442d18469LL - fixed_arg;
288                 /* There is a special case which arises due to rounding, to fix here. */
289                 if (fixed_arg == 0xffffffffffffffffLL)
290                         fixed_arg = 0;
291 
292                 exponent = -1;
293                 exp2 = -1;
294 
295                 /* A shift is needed here only for a narrow range of arguments,
296                    i.e. for fixed_arg approx 2^-32, but we pick up more... */
297                 if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
298                         fixed_arg <<= 16;
299                         exponent -= 16;
300                         exp2 -= 16;
301                 }
302 
303                 XSIG_LL(argSqrd) = fixed_arg;
304                 argSqrd.lsw = 0;
305                 mul64_Xsig(&argSqrd, &fixed_arg);
306 
307                 if (exponent < -1) {
308                         /* shift the argument right by the required places */
309                         shr_Xsig(&argSqrd, 2 * (-1 - exponent));
310                 }
311 
312                 argTo4.msw = argSqrd.msw;
313                 argTo4.midw = argSqrd.midw;
314                 argTo4.lsw = argSqrd.lsw;
315                 mul_Xsig_Xsig(&argTo4, &argTo4);
316 
317                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
318                                 N_COEFF_N - 1);
319                 mul_Xsig_Xsig(&accumulator, &argSqrd);
320                 negate_Xsig(&accumulator);
321 
322                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
323                                 N_COEFF_P - 1);
324 
325                 shr_Xsig(&accumulator, 2);      /* Divide by four */
326                 accumulator.msw |= 0x80000000;  /* Add 1.0 */
327 
328                 mul64_Xsig(&accumulator, &fixed_arg);
329                 mul64_Xsig(&accumulator, &fixed_arg);
330                 mul64_Xsig(&accumulator, &fixed_arg);
331 
332                 /* Divide by four, FPU_REG compatible, etc */
333                 exponent = 3 * exponent;
334 
335                 /* The minimum exponent difference is 3 */
336                 shr_Xsig(&accumulator, exp2 - exponent);
337 
338                 negate_Xsig(&accumulator);
339                 XSIG_LL(accumulator) += fixed_arg;
340 
341                 /* The basic computation is complete. Now fix the answer to
342                    compensate for the error due to the approximation used for
343                    pi/2
344                  */
345 
346                 /* This has an exponent of -65 */
347                 XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
348                 fix_up.lsw = 0;
349 
350                 /* The fix-up needs to be improved for larger args */
351                 if (argSqrd.msw & 0xffc00000) {
352                         /* Get about 32 bit precision in these: */
353                         fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
354                         fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
355                 }
356 
357                 exp2 += norm_Xsig(&accumulator);
358                 shr_Xsig(&accumulator, 1);      /* Prevent overflow */
359                 exp2++;
360                 shr_Xsig(&fix_up, 65 + exp2);
361 
362                 add_Xsig_Xsig(&accumulator, &fix_up);
363 
364                 echange = round_Xsig(&accumulator);
365 
366                 setexponentpos(&result, exp2 + echange);
367                 significand(&result) = XSIG_LL(accumulator);
368         }
369 
370         FPU_copy_to_reg0(&result, TAG_Valid);
371 
372 #ifdef PARANOID
373         if ((exponent(&result) >= 0)
374             && (significand(&result) > 0x8000000000000000LL)) {
375                 EXCEPTION(EX_INTERNAL | 0x151);
376         }
377 #endif /* PARANOID */
378 
379 }
380 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php