~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/math-emu/poly_tan.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*---------------------------------------------------------------------------+
  3  |  poly_tan.c                                                               |
  4  |                                                                           |
  5  | Compute the tan of a FPU_REG, using a polynomial approximation.           |
  6  |                                                                           |
  7  | Copyright (C) 1992,1993,1994,1997,1999                                    |
  8  |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
  9  |                       Australia.  E-mail   billm@melbpc.org.au            |
 10  |                                                                           |
 11  |                                                                           |
 12  +---------------------------------------------------------------------------*/
 13 
 14 #include "exception.h"
 15 #include "reg_constant.h"
 16 #include "fpu_emu.h"
 17 #include "fpu_system.h"
 18 #include "control_w.h"
 19 #include "poly.h"
 20 
 21 #define HiPOWERop       3       /* odd poly, positive terms */
 22 static const unsigned long long oddplterm[HiPOWERop] = {
 23         0x0000000000000000LL,
 24         0x0051a1cf08fca228LL,
 25         0x0000000071284ff7LL
 26 };
 27 
 28 #define HiPOWERon       2       /* odd poly, negative terms */
 29 static const unsigned long long oddnegterm[HiPOWERon] = {
 30         0x1291a9a184244e80LL,
 31         0x0000583245819c21LL
 32 };
 33 
 34 #define HiPOWERep       2       /* even poly, positive terms */
 35 static const unsigned long long evenplterm[HiPOWERep] = {
 36         0x0e848884b539e888LL,
 37         0x00003c7f18b887daLL
 38 };
 39 
 40 #define HiPOWERen       2       /* even poly, negative terms */
 41 static const unsigned long long evennegterm[HiPOWERen] = {
 42         0xf1f0200fd51569ccLL,
 43         0x003afb46105c4432LL
 44 };
 45 
 46 static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
 47 
 48 /*--- poly_tan() ------------------------------------------------------------+
 49  |                                                                           |
 50  +---------------------------------------------------------------------------*/
 51 void poly_tan(FPU_REG *st0_ptr)
 52 {
 53         long int exponent;
 54         int invert;
 55         Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
 56             argSignif, fix_up;
 57         unsigned long adj;
 58 
 59         exponent = exponent(st0_ptr);
 60 
 61 #ifdef PARANOID
 62         if (signnegative(st0_ptr)) {    /* Can't hack a number < 0.0 */
 63                 arith_invalid(0);
 64                 return;
 65         }                       /* Need a positive number */
 66 #endif /* PARANOID */
 67 
 68         /* Split the problem into two domains, smaller and larger than pi/4 */
 69         if ((exponent == 0)
 70             || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
 71                 /* The argument is greater than (approx) pi/4 */
 72                 invert = 1;
 73                 accum.lsw = 0;
 74                 XSIG_LL(accum) = significand(st0_ptr);
 75 
 76                 if (exponent == 0) {
 77                         /* The argument is >= 1.0 */
 78                         /* Put the binary point at the left. */
 79                         XSIG_LL(accum) <<= 1;
 80                 }
 81                 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
 82                 XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
 83                 /* This is a special case which arises due to rounding. */
 84                 if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
 85                         FPU_settag0(TAG_Valid);
 86                         significand(st0_ptr) = 0x8a51e04daabda360LL;
 87                         setexponent16(st0_ptr,
 88                                       (0x41 + EXTENDED_Ebias) | SIGN_Negative);
 89                         return;
 90                 }
 91 
 92                 argSignif.lsw = accum.lsw;
 93                 XSIG_LL(argSignif) = XSIG_LL(accum);
 94                 exponent = -1 + norm_Xsig(&argSignif);
 95         } else {
 96                 invert = 0;
 97                 argSignif.lsw = 0;
 98                 XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
 99 
100                 if (exponent < -1) {
101                         /* shift the argument right by the required places */
102                         if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
103                             0x80000000U)
104                                 XSIG_LL(accum)++;       /* round up */
105                 }
106         }
107 
108         XSIG_LL(argSq) = XSIG_LL(accum);
109         argSq.lsw = accum.lsw;
110         mul_Xsig_Xsig(&argSq, &argSq);
111         XSIG_LL(argSqSq) = XSIG_LL(argSq);
112         argSqSq.lsw = argSq.lsw;
113         mul_Xsig_Xsig(&argSqSq, &argSqSq);
114 
115         /* Compute the negative terms for the numerator polynomial */
116         accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
117         polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
118                         HiPOWERon - 1);
119         mul_Xsig_Xsig(&accumulatoro, &argSq);
120         negate_Xsig(&accumulatoro);
121         /* Add the positive terms */
122         polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
123                         HiPOWERop - 1);
124 
125         /* Compute the positive terms for the denominator polynomial */
126         accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
127         polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
128                         HiPOWERep - 1);
129         mul_Xsig_Xsig(&accumulatore, &argSq);
130         negate_Xsig(&accumulatore);
131         /* Add the negative terms */
132         polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
133                         HiPOWERen - 1);
134         /* Multiply by arg^2 */
135         mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
136         mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
137         /* de-normalize and divide by 2 */
138         shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
139         negate_Xsig(&accumulatore);     /* This does 1 - accumulator */
140 
141         /* Now find the ratio. */
142         if (accumulatore.msw == 0) {
143                 /* accumulatoro must contain 1.0 here, (actually, 0) but it
144                    really doesn't matter what value we use because it will
145                    have negligible effect in later calculations
146                  */
147                 XSIG_LL(accum) = 0x8000000000000000LL;
148                 accum.lsw = 0;
149         } else {
150                 div_Xsig(&accumulatoro, &accumulatore, &accum);
151         }
152 
153         /* Multiply by 1/3 * arg^3 */
154         mul64_Xsig(&accum, &XSIG_LL(argSignif));
155         mul64_Xsig(&accum, &XSIG_LL(argSignif));
156         mul64_Xsig(&accum, &XSIG_LL(argSignif));
157         mul64_Xsig(&accum, &twothirds);
158         shr_Xsig(&accum, -2 * (exponent + 1));
159 
160         /* tan(arg) = arg + accum */
161         add_two_Xsig(&accum, &argSignif, &exponent);
162 
163         if (invert) {
164                 /* We now have the value of tan(pi_2 - arg) where pi_2 is an
165                    approximation for pi/2
166                  */
167                 /* The next step is to fix the answer to compensate for the
168                    error due to the approximation used for pi/2
169                  */
170 
171                 /* This is (approx) delta, the error in our approx for pi/2
172                    (see above). It has an exponent of -65
173                  */
174                 XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
175                 fix_up.lsw = 0;
176 
177                 if (exponent == 0)
178                         adj = 0xffffffff;       /* We want approx 1.0 here, but
179                                                    this is close enough. */
180                 else if (exponent > -30) {
181                         adj = accum.msw >> -(exponent + 1);     /* tan */
182                         adj = mul_32_32(adj, adj);      /* tan^2 */
183                 } else
184                         adj = 0;
185                 adj = mul_32_32(0x898cc517, adj);       /* delta * tan^2 */
186 
187                 fix_up.msw += adj;
188                 if (!(fix_up.msw & 0x80000000)) {       /* did fix_up overflow ? */
189                         /* Yes, we need to add an msb */
190                         shr_Xsig(&fix_up, 1);
191                         fix_up.msw |= 0x80000000;
192                         shr_Xsig(&fix_up, 64 + exponent);
193                 } else
194                         shr_Xsig(&fix_up, 65 + exponent);
195 
196                 add_two_Xsig(&accum, &fix_up, &exponent);
197 
198                 /* accum now contains tan(pi/2 - arg).
199                    Use tan(arg) = 1.0 / tan(pi/2 - arg)
200                  */
201                 accumulatoro.lsw = accumulatoro.midw = 0;
202                 accumulatoro.msw = 0x80000000;
203                 div_Xsig(&accumulatoro, &accum, &accum);
204                 exponent = -exponent - 1;
205         }
206 
207         /* Transfer the result */
208         round_Xsig(&accum);
209         FPU_settag0(TAG_Valid);
210         significand(st0_ptr) = XSIG_LL(accum);
211         setexponent16(st0_ptr, exponent + EXTENDED_Ebias);      /* Result is positive. */
212 
213 }
214 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php