~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/init_64.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/arch/x86_64/mm/init.c
  4  *
  5  *  Copyright (C) 1995  Linus Torvalds
  6  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
  7  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  8  */
  9 
 10 #include <linux/signal.h>
 11 #include <linux/sched.h>
 12 #include <linux/kernel.h>
 13 #include <linux/errno.h>
 14 #include <linux/string.h>
 15 #include <linux/types.h>
 16 #include <linux/ptrace.h>
 17 #include <linux/mman.h>
 18 #include <linux/mm.h>
 19 #include <linux/swap.h>
 20 #include <linux/smp.h>
 21 #include <linux/init.h>
 22 #include <linux/initrd.h>
 23 #include <linux/pagemap.h>
 24 #include <linux/memblock.h>
 25 #include <linux/proc_fs.h>
 26 #include <linux/pci.h>
 27 #include <linux/pfn.h>
 28 #include <linux/poison.h>
 29 #include <linux/dma-mapping.h>
 30 #include <linux/memory.h>
 31 #include <linux/memory_hotplug.h>
 32 #include <linux/memremap.h>
 33 #include <linux/nmi.h>
 34 #include <linux/gfp.h>
 35 #include <linux/kcore.h>
 36 #include <linux/bootmem_info.h>
 37 
 38 #include <asm/processor.h>
 39 #include <asm/bios_ebda.h>
 40 #include <linux/uaccess.h>
 41 #include <asm/pgalloc.h>
 42 #include <asm/dma.h>
 43 #include <asm/fixmap.h>
 44 #include <asm/e820/api.h>
 45 #include <asm/apic.h>
 46 #include <asm/tlb.h>
 47 #include <asm/mmu_context.h>
 48 #include <asm/proto.h>
 49 #include <asm/smp.h>
 50 #include <asm/sections.h>
 51 #include <asm/kdebug.h>
 52 #include <asm/numa.h>
 53 #include <asm/set_memory.h>
 54 #include <asm/init.h>
 55 #include <asm/uv/uv.h>
 56 #include <asm/setup.h>
 57 #include <asm/ftrace.h>
 58 
 59 #include "mm_internal.h"
 60 
 61 #include "ident_map.c"
 62 
 63 #define DEFINE_POPULATE(fname, type1, type2, init)              \
 64 static inline void fname##_init(struct mm_struct *mm,           \
 65                 type1##_t *arg1, type2##_t *arg2, bool init)    \
 66 {                                                               \
 67         if (init)                                               \
 68                 fname##_safe(mm, arg1, arg2);                   \
 69         else                                                    \
 70                 fname(mm, arg1, arg2);                          \
 71 }
 72 
 73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
 74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
 75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
 76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
 77 
 78 #define DEFINE_ENTRY(type1, type2, init)                        \
 79 static inline void set_##type1##_init(type1##_t *arg1,          \
 80                         type2##_t arg2, bool init)              \
 81 {                                                               \
 82         if (init)                                               \
 83                 set_##type1##_safe(arg1, arg2);                 \
 84         else                                                    \
 85                 set_##type1(arg1, arg2);                        \
 86 }
 87 
 88 DEFINE_ENTRY(p4d, p4d, init)
 89 DEFINE_ENTRY(pud, pud, init)
 90 DEFINE_ENTRY(pmd, pmd, init)
 91 DEFINE_ENTRY(pte, pte, init)
 92 
 93 static inline pgprot_t prot_sethuge(pgprot_t prot)
 94 {
 95         WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
 96 
 97         return __pgprot(pgprot_val(prot) | _PAGE_PSE);
 98 }
 99 
100 /*
101  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102  * physical space so we can cache the place of the first one and move
103  * around without checking the pgd every time.
104  */
105 
106 /* Bits supported by the hardware: */
107 pteval_t __supported_pte_mask __read_mostly = ~0;
108 /* Bits allowed in normal kernel mappings: */
109 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110 EXPORT_SYMBOL_GPL(__supported_pte_mask);
111 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112 EXPORT_SYMBOL(__default_kernel_pte_mask);
113 
114 int force_personality32;
115 
116 /*
117  * noexec32=on|off
118  * Control non executable heap for 32bit processes.
119  *
120  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121  * off  PROT_READ implies PROT_EXEC
122  */
123 static int __init nonx32_setup(char *str)
124 {
125         if (!strcmp(str, "on"))
126                 force_personality32 &= ~READ_IMPLIES_EXEC;
127         else if (!strcmp(str, "off"))
128                 force_personality32 |= READ_IMPLIES_EXEC;
129         return 1;
130 }
131 __setup("noexec32=", nonx32_setup);
132 
133 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134 {
135         unsigned long addr;
136 
137         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138                 const pgd_t *pgd_ref = pgd_offset_k(addr);
139                 struct page *page;
140 
141                 /* Check for overflow */
142                 if (addr < start)
143                         break;
144 
145                 if (pgd_none(*pgd_ref))
146                         continue;
147 
148                 spin_lock(&pgd_lock);
149                 list_for_each_entry(page, &pgd_list, lru) {
150                         pgd_t *pgd;
151                         spinlock_t *pgt_lock;
152 
153                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154                         /* the pgt_lock only for Xen */
155                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156                         spin_lock(pgt_lock);
157 
158                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159                                 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160 
161                         if (pgd_none(*pgd))
162                                 set_pgd(pgd, *pgd_ref);
163 
164                         spin_unlock(pgt_lock);
165                 }
166                 spin_unlock(&pgd_lock);
167         }
168 }
169 
170 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171 {
172         unsigned long addr;
173 
174         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175                 pgd_t *pgd_ref = pgd_offset_k(addr);
176                 const p4d_t *p4d_ref;
177                 struct page *page;
178 
179                 /*
180                  * With folded p4d, pgd_none() is always false, we need to
181                  * handle synchronization on p4d level.
182                  */
183                 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184                 p4d_ref = p4d_offset(pgd_ref, addr);
185 
186                 if (p4d_none(*p4d_ref))
187                         continue;
188 
189                 spin_lock(&pgd_lock);
190                 list_for_each_entry(page, &pgd_list, lru) {
191                         pgd_t *pgd;
192                         p4d_t *p4d;
193                         spinlock_t *pgt_lock;
194 
195                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196                         p4d = p4d_offset(pgd, addr);
197                         /* the pgt_lock only for Xen */
198                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199                         spin_lock(pgt_lock);
200 
201                         if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202                                 BUG_ON(p4d_pgtable(*p4d)
203                                        != p4d_pgtable(*p4d_ref));
204 
205                         if (p4d_none(*p4d))
206                                 set_p4d(p4d, *p4d_ref);
207 
208                         spin_unlock(pgt_lock);
209                 }
210                 spin_unlock(&pgd_lock);
211         }
212 }
213 
214 /*
215  * When memory was added make sure all the processes MM have
216  * suitable PGD entries in the local PGD level page.
217  */
218 static void sync_global_pgds(unsigned long start, unsigned long end)
219 {
220         if (pgtable_l5_enabled())
221                 sync_global_pgds_l5(start, end);
222         else
223                 sync_global_pgds_l4(start, end);
224 }
225 
226 /*
227  * NOTE: This function is marked __ref because it calls __init function
228  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
229  */
230 static __ref void *spp_getpage(void)
231 {
232         void *ptr;
233 
234         if (after_bootmem)
235                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
236         else
237                 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
238 
239         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
240                 panic("set_pte_phys: cannot allocate page data %s\n",
241                         after_bootmem ? "after bootmem" : "");
242         }
243 
244         pr_debug("spp_getpage %p\n", ptr);
245 
246         return ptr;
247 }
248 
249 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
250 {
251         if (pgd_none(*pgd)) {
252                 p4d_t *p4d = (p4d_t *)spp_getpage();
253                 pgd_populate(&init_mm, pgd, p4d);
254                 if (p4d != p4d_offset(pgd, 0))
255                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
256                                p4d, p4d_offset(pgd, 0));
257         }
258         return p4d_offset(pgd, vaddr);
259 }
260 
261 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
262 {
263         if (p4d_none(*p4d)) {
264                 pud_t *pud = (pud_t *)spp_getpage();
265                 p4d_populate(&init_mm, p4d, pud);
266                 if (pud != pud_offset(p4d, 0))
267                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
268                                pud, pud_offset(p4d, 0));
269         }
270         return pud_offset(p4d, vaddr);
271 }
272 
273 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
274 {
275         if (pud_none(*pud)) {
276                 pmd_t *pmd = (pmd_t *) spp_getpage();
277                 pud_populate(&init_mm, pud, pmd);
278                 if (pmd != pmd_offset(pud, 0))
279                         printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
280                                pmd, pmd_offset(pud, 0));
281         }
282         return pmd_offset(pud, vaddr);
283 }
284 
285 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
286 {
287         if (pmd_none(*pmd)) {
288                 pte_t *pte = (pte_t *) spp_getpage();
289                 pmd_populate_kernel(&init_mm, pmd, pte);
290                 if (pte != pte_offset_kernel(pmd, 0))
291                         printk(KERN_ERR "PAGETABLE BUG #03!\n");
292         }
293         return pte_offset_kernel(pmd, vaddr);
294 }
295 
296 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
297 {
298         pmd_t *pmd = fill_pmd(pud, vaddr);
299         pte_t *pte = fill_pte(pmd, vaddr);
300 
301         set_pte(pte, new_pte);
302 
303         /*
304          * It's enough to flush this one mapping.
305          * (PGE mappings get flushed as well)
306          */
307         flush_tlb_one_kernel(vaddr);
308 }
309 
310 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
311 {
312         p4d_t *p4d = p4d_page + p4d_index(vaddr);
313         pud_t *pud = fill_pud(p4d, vaddr);
314 
315         __set_pte_vaddr(pud, vaddr, new_pte);
316 }
317 
318 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
319 {
320         pud_t *pud = pud_page + pud_index(vaddr);
321 
322         __set_pte_vaddr(pud, vaddr, new_pte);
323 }
324 
325 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
326 {
327         pgd_t *pgd;
328         p4d_t *p4d_page;
329 
330         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
331 
332         pgd = pgd_offset_k(vaddr);
333         if (pgd_none(*pgd)) {
334                 printk(KERN_ERR
335                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
336                 return;
337         }
338 
339         p4d_page = p4d_offset(pgd, 0);
340         set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
341 }
342 
343 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
344 {
345         pgd_t *pgd;
346         p4d_t *p4d;
347         pud_t *pud;
348 
349         pgd = pgd_offset_k(vaddr);
350         p4d = fill_p4d(pgd, vaddr);
351         pud = fill_pud(p4d, vaddr);
352         return fill_pmd(pud, vaddr);
353 }
354 
355 pte_t * __init populate_extra_pte(unsigned long vaddr)
356 {
357         pmd_t *pmd;
358 
359         pmd = populate_extra_pmd(vaddr);
360         return fill_pte(pmd, vaddr);
361 }
362 
363 /*
364  * Create large page table mappings for a range of physical addresses.
365  */
366 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
367                                         enum page_cache_mode cache)
368 {
369         pgd_t *pgd;
370         p4d_t *p4d;
371         pud_t *pud;
372         pmd_t *pmd;
373         pgprot_t prot;
374 
375         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
376                 protval_4k_2_large(cachemode2protval(cache));
377         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
378         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
379                 pgd = pgd_offset_k((unsigned long)__va(phys));
380                 if (pgd_none(*pgd)) {
381                         p4d = (p4d_t *) spp_getpage();
382                         set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
383                                                 _PAGE_USER));
384                 }
385                 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
386                 if (p4d_none(*p4d)) {
387                         pud = (pud_t *) spp_getpage();
388                         set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
389                                                 _PAGE_USER));
390                 }
391                 pud = pud_offset(p4d, (unsigned long)__va(phys));
392                 if (pud_none(*pud)) {
393                         pmd = (pmd_t *) spp_getpage();
394                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
395                                                 _PAGE_USER));
396                 }
397                 pmd = pmd_offset(pud, phys);
398                 BUG_ON(!pmd_none(*pmd));
399                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
400         }
401 }
402 
403 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
404 {
405         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
406 }
407 
408 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
409 {
410         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
411 }
412 
413 /*
414  * The head.S code sets up the kernel high mapping:
415  *
416  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
417  *
418  * phys_base holds the negative offset to the kernel, which is added
419  * to the compile time generated pmds. This results in invalid pmds up
420  * to the point where we hit the physaddr 0 mapping.
421  *
422  * We limit the mappings to the region from _text to _brk_end.  _brk_end
423  * is rounded up to the 2MB boundary. This catches the invalid pmds as
424  * well, as they are located before _text:
425  */
426 void __init cleanup_highmap(void)
427 {
428         unsigned long vaddr = __START_KERNEL_map;
429         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
430         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
431         pmd_t *pmd = level2_kernel_pgt;
432 
433         /*
434          * Native path, max_pfn_mapped is not set yet.
435          * Xen has valid max_pfn_mapped set in
436          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
437          */
438         if (max_pfn_mapped)
439                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
440 
441         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
442                 if (pmd_none(*pmd))
443                         continue;
444                 if (vaddr < (unsigned long) _text || vaddr > end)
445                         set_pmd(pmd, __pmd(0));
446         }
447 }
448 
449 /*
450  * Create PTE level page table mapping for physical addresses.
451  * It returns the last physical address mapped.
452  */
453 static unsigned long __meminit
454 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
455               pgprot_t prot, bool init)
456 {
457         unsigned long pages = 0, paddr_next;
458         unsigned long paddr_last = paddr_end;
459         pte_t *pte;
460         int i;
461 
462         pte = pte_page + pte_index(paddr);
463         i = pte_index(paddr);
464 
465         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
466                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
467                 if (paddr >= paddr_end) {
468                         if (!after_bootmem &&
469                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
470                                              E820_TYPE_RAM) &&
471                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
472                                              E820_TYPE_RESERVED_KERN) &&
473                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
474                                              E820_TYPE_ACPI))
475                                 set_pte_init(pte, __pte(0), init);
476                         continue;
477                 }
478 
479                 /*
480                  * We will re-use the existing mapping.
481                  * Xen for example has some special requirements, like mapping
482                  * pagetable pages as RO. So assume someone who pre-setup
483                  * these mappings are more intelligent.
484                  */
485                 if (!pte_none(*pte)) {
486                         if (!after_bootmem)
487                                 pages++;
488                         continue;
489                 }
490 
491                 if (0)
492                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
493                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
494                 pages++;
495                 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
496                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
497         }
498 
499         update_page_count(PG_LEVEL_4K, pages);
500 
501         return paddr_last;
502 }
503 
504 /*
505  * Create PMD level page table mapping for physical addresses. The virtual
506  * and physical address have to be aligned at this level.
507  * It returns the last physical address mapped.
508  */
509 static unsigned long __meminit
510 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
511               unsigned long page_size_mask, pgprot_t prot, bool init)
512 {
513         unsigned long pages = 0, paddr_next;
514         unsigned long paddr_last = paddr_end;
515 
516         int i = pmd_index(paddr);
517 
518         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
519                 pmd_t *pmd = pmd_page + pmd_index(paddr);
520                 pte_t *pte;
521                 pgprot_t new_prot = prot;
522 
523                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
524                 if (paddr >= paddr_end) {
525                         if (!after_bootmem &&
526                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
527                                              E820_TYPE_RAM) &&
528                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
529                                              E820_TYPE_RESERVED_KERN) &&
530                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
531                                              E820_TYPE_ACPI))
532                                 set_pmd_init(pmd, __pmd(0), init);
533                         continue;
534                 }
535 
536                 if (!pmd_none(*pmd)) {
537                         if (!pmd_leaf(*pmd)) {
538                                 spin_lock(&init_mm.page_table_lock);
539                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
540                                 paddr_last = phys_pte_init(pte, paddr,
541                                                            paddr_end, prot,
542                                                            init);
543                                 spin_unlock(&init_mm.page_table_lock);
544                                 continue;
545                         }
546                         /*
547                          * If we are ok with PG_LEVEL_2M mapping, then we will
548                          * use the existing mapping,
549                          *
550                          * Otherwise, we will split the large page mapping but
551                          * use the same existing protection bits except for
552                          * large page, so that we don't violate Intel's TLB
553                          * Application note (317080) which says, while changing
554                          * the page sizes, new and old translations should
555                          * not differ with respect to page frame and
556                          * attributes.
557                          */
558                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
559                                 if (!after_bootmem)
560                                         pages++;
561                                 paddr_last = paddr_next;
562                                 continue;
563                         }
564                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
565                 }
566 
567                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
568                         pages++;
569                         spin_lock(&init_mm.page_table_lock);
570                         set_pmd_init(pmd,
571                                      pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
572                                      init);
573                         spin_unlock(&init_mm.page_table_lock);
574                         paddr_last = paddr_next;
575                         continue;
576                 }
577 
578                 pte = alloc_low_page();
579                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
580 
581                 spin_lock(&init_mm.page_table_lock);
582                 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
583                 spin_unlock(&init_mm.page_table_lock);
584         }
585         update_page_count(PG_LEVEL_2M, pages);
586         return paddr_last;
587 }
588 
589 /*
590  * Create PUD level page table mapping for physical addresses. The virtual
591  * and physical address do not have to be aligned at this level. KASLR can
592  * randomize virtual addresses up to this level.
593  * It returns the last physical address mapped.
594  */
595 static unsigned long __meminit
596 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
597               unsigned long page_size_mask, pgprot_t _prot, bool init)
598 {
599         unsigned long pages = 0, paddr_next;
600         unsigned long paddr_last = paddr_end;
601         unsigned long vaddr = (unsigned long)__va(paddr);
602         int i = pud_index(vaddr);
603 
604         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
605                 pud_t *pud;
606                 pmd_t *pmd;
607                 pgprot_t prot = _prot;
608 
609                 vaddr = (unsigned long)__va(paddr);
610                 pud = pud_page + pud_index(vaddr);
611                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
612 
613                 if (paddr >= paddr_end) {
614                         if (!after_bootmem &&
615                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
616                                              E820_TYPE_RAM) &&
617                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
618                                              E820_TYPE_RESERVED_KERN) &&
619                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
620                                              E820_TYPE_ACPI))
621                                 set_pud_init(pud, __pud(0), init);
622                         continue;
623                 }
624 
625                 if (!pud_none(*pud)) {
626                         if (!pud_leaf(*pud)) {
627                                 pmd = pmd_offset(pud, 0);
628                                 paddr_last = phys_pmd_init(pmd, paddr,
629                                                            paddr_end,
630                                                            page_size_mask,
631                                                            prot, init);
632                                 continue;
633                         }
634                         /*
635                          * If we are ok with PG_LEVEL_1G mapping, then we will
636                          * use the existing mapping.
637                          *
638                          * Otherwise, we will split the gbpage mapping but use
639                          * the same existing protection  bits except for large
640                          * page, so that we don't violate Intel's TLB
641                          * Application note (317080) which says, while changing
642                          * the page sizes, new and old translations should
643                          * not differ with respect to page frame and
644                          * attributes.
645                          */
646                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
647                                 if (!after_bootmem)
648                                         pages++;
649                                 paddr_last = paddr_next;
650                                 continue;
651                         }
652                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
653                 }
654 
655                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
656                         pages++;
657                         spin_lock(&init_mm.page_table_lock);
658                         set_pud_init(pud,
659                                      pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
660                                      init);
661                         spin_unlock(&init_mm.page_table_lock);
662                         paddr_last = paddr_next;
663                         continue;
664                 }
665 
666                 pmd = alloc_low_page();
667                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
668                                            page_size_mask, prot, init);
669 
670                 spin_lock(&init_mm.page_table_lock);
671                 pud_populate_init(&init_mm, pud, pmd, init);
672                 spin_unlock(&init_mm.page_table_lock);
673         }
674 
675         update_page_count(PG_LEVEL_1G, pages);
676 
677         return paddr_last;
678 }
679 
680 static unsigned long __meminit
681 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
682               unsigned long page_size_mask, pgprot_t prot, bool init)
683 {
684         unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
685 
686         paddr_last = paddr_end;
687         vaddr = (unsigned long)__va(paddr);
688         vaddr_end = (unsigned long)__va(paddr_end);
689 
690         if (!pgtable_l5_enabled())
691                 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
692                                      page_size_mask, prot, init);
693 
694         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
695                 p4d_t *p4d = p4d_page + p4d_index(vaddr);
696                 pud_t *pud;
697 
698                 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
699                 paddr = __pa(vaddr);
700 
701                 if (paddr >= paddr_end) {
702                         paddr_next = __pa(vaddr_next);
703                         if (!after_bootmem &&
704                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
705                                              E820_TYPE_RAM) &&
706                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
707                                              E820_TYPE_RESERVED_KERN) &&
708                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
709                                              E820_TYPE_ACPI))
710                                 set_p4d_init(p4d, __p4d(0), init);
711                         continue;
712                 }
713 
714                 if (!p4d_none(*p4d)) {
715                         pud = pud_offset(p4d, 0);
716                         paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
717                                         page_size_mask, prot, init);
718                         continue;
719                 }
720 
721                 pud = alloc_low_page();
722                 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
723                                            page_size_mask, prot, init);
724 
725                 spin_lock(&init_mm.page_table_lock);
726                 p4d_populate_init(&init_mm, p4d, pud, init);
727                 spin_unlock(&init_mm.page_table_lock);
728         }
729 
730         return paddr_last;
731 }
732 
733 static unsigned long __meminit
734 __kernel_physical_mapping_init(unsigned long paddr_start,
735                                unsigned long paddr_end,
736                                unsigned long page_size_mask,
737                                pgprot_t prot, bool init)
738 {
739         bool pgd_changed = false;
740         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
741 
742         paddr_last = paddr_end;
743         vaddr = (unsigned long)__va(paddr_start);
744         vaddr_end = (unsigned long)__va(paddr_end);
745         vaddr_start = vaddr;
746 
747         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
748                 pgd_t *pgd = pgd_offset_k(vaddr);
749                 p4d_t *p4d;
750 
751                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
752 
753                 if (pgd_val(*pgd)) {
754                         p4d = (p4d_t *)pgd_page_vaddr(*pgd);
755                         paddr_last = phys_p4d_init(p4d, __pa(vaddr),
756                                                    __pa(vaddr_end),
757                                                    page_size_mask,
758                                                    prot, init);
759                         continue;
760                 }
761 
762                 p4d = alloc_low_page();
763                 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
764                                            page_size_mask, prot, init);
765 
766                 spin_lock(&init_mm.page_table_lock);
767                 if (pgtable_l5_enabled())
768                         pgd_populate_init(&init_mm, pgd, p4d, init);
769                 else
770                         p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
771                                           (pud_t *) p4d, init);
772 
773                 spin_unlock(&init_mm.page_table_lock);
774                 pgd_changed = true;
775         }
776 
777         if (pgd_changed)
778                 sync_global_pgds(vaddr_start, vaddr_end - 1);
779 
780         return paddr_last;
781 }
782 
783 
784 /*
785  * Create page table mapping for the physical memory for specific physical
786  * addresses. Note that it can only be used to populate non-present entries.
787  * The virtual and physical addresses have to be aligned on PMD level
788  * down. It returns the last physical address mapped.
789  */
790 unsigned long __meminit
791 kernel_physical_mapping_init(unsigned long paddr_start,
792                              unsigned long paddr_end,
793                              unsigned long page_size_mask, pgprot_t prot)
794 {
795         return __kernel_physical_mapping_init(paddr_start, paddr_end,
796                                               page_size_mask, prot, true);
797 }
798 
799 /*
800  * This function is similar to kernel_physical_mapping_init() above with the
801  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
802  * when updating the mapping. The caller is responsible to flush the TLBs after
803  * the function returns.
804  */
805 unsigned long __meminit
806 kernel_physical_mapping_change(unsigned long paddr_start,
807                                unsigned long paddr_end,
808                                unsigned long page_size_mask)
809 {
810         return __kernel_physical_mapping_init(paddr_start, paddr_end,
811                                               page_size_mask, PAGE_KERNEL,
812                                               false);
813 }
814 
815 #ifndef CONFIG_NUMA
816 void __init initmem_init(void)
817 {
818         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
819 }
820 #endif
821 
822 void __init paging_init(void)
823 {
824         sparse_init();
825 
826         /*
827          * clear the default setting with node 0
828          * note: don't use nodes_clear here, that is really clearing when
829          *       numa support is not compiled in, and later node_set_state
830          *       will not set it back.
831          */
832         node_clear_state(0, N_MEMORY);
833         node_clear_state(0, N_NORMAL_MEMORY);
834 
835         zone_sizes_init();
836 }
837 
838 #ifdef CONFIG_SPARSEMEM_VMEMMAP
839 #define PAGE_UNUSED 0xFD
840 
841 /*
842  * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
843  * from unused_pmd_start to next PMD_SIZE boundary.
844  */
845 static unsigned long unused_pmd_start __meminitdata;
846 
847 static void __meminit vmemmap_flush_unused_pmd(void)
848 {
849         if (!unused_pmd_start)
850                 return;
851         /*
852          * Clears (unused_pmd_start, PMD_END]
853          */
854         memset((void *)unused_pmd_start, PAGE_UNUSED,
855                ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
856         unused_pmd_start = 0;
857 }
858 
859 #ifdef CONFIG_MEMORY_HOTPLUG
860 /* Returns true if the PMD is completely unused and thus it can be freed */
861 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
862 {
863         unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
864 
865         /*
866          * Flush the unused range cache to ensure that memchr_inv() will work
867          * for the whole range.
868          */
869         vmemmap_flush_unused_pmd();
870         memset((void *)addr, PAGE_UNUSED, end - addr);
871 
872         return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
873 }
874 #endif
875 
876 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
877 {
878         /*
879          * As we expect to add in the same granularity as we remove, it's
880          * sufficient to mark only some piece used to block the memmap page from
881          * getting removed when removing some other adjacent memmap (just in
882          * case the first memmap never gets initialized e.g., because the memory
883          * block never gets onlined).
884          */
885         memset((void *)start, 0, sizeof(struct page));
886 }
887 
888 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
889 {
890         /*
891          * We only optimize if the new used range directly follows the
892          * previously unused range (esp., when populating consecutive sections).
893          */
894         if (unused_pmd_start == start) {
895                 if (likely(IS_ALIGNED(end, PMD_SIZE)))
896                         unused_pmd_start = 0;
897                 else
898                         unused_pmd_start = end;
899                 return;
900         }
901 
902         /*
903          * If the range does not contiguously follows previous one, make sure
904          * to mark the unused range of the previous one so it can be removed.
905          */
906         vmemmap_flush_unused_pmd();
907         __vmemmap_use_sub_pmd(start);
908 }
909 
910 
911 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
912 {
913         const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
914 
915         vmemmap_flush_unused_pmd();
916 
917         /*
918          * Could be our memmap page is filled with PAGE_UNUSED already from a
919          * previous remove. Make sure to reset it.
920          */
921         __vmemmap_use_sub_pmd(start);
922 
923         /*
924          * Mark with PAGE_UNUSED the unused parts of the new memmap range
925          */
926         if (!IS_ALIGNED(start, PMD_SIZE))
927                 memset((void *)page, PAGE_UNUSED, start - page);
928 
929         /*
930          * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
931          * consecutive sections. Remember for the last added PMD where the
932          * unused range begins.
933          */
934         if (!IS_ALIGNED(end, PMD_SIZE))
935                 unused_pmd_start = end;
936 }
937 #endif
938 
939 /*
940  * Memory hotplug specific functions
941  */
942 #ifdef CONFIG_MEMORY_HOTPLUG
943 /*
944  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
945  * updating.
946  */
947 static void update_end_of_memory_vars(u64 start, u64 size)
948 {
949         unsigned long end_pfn = PFN_UP(start + size);
950 
951         if (end_pfn > max_pfn) {
952                 max_pfn = end_pfn;
953                 max_low_pfn = end_pfn;
954                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
955         }
956 }
957 
958 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
959               struct mhp_params *params)
960 {
961         unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1;
962         int ret;
963 
964         if (WARN_ON_ONCE(end > PHYSMEM_END))
965                 return -ERANGE;
966 
967         ret = __add_pages(nid, start_pfn, nr_pages, params);
968         WARN_ON_ONCE(ret);
969 
970         /* update max_pfn, max_low_pfn and high_memory */
971         update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
972                                   nr_pages << PAGE_SHIFT);
973 
974         return ret;
975 }
976 
977 int arch_add_memory(int nid, u64 start, u64 size,
978                     struct mhp_params *params)
979 {
980         unsigned long start_pfn = start >> PAGE_SHIFT;
981         unsigned long nr_pages = size >> PAGE_SHIFT;
982 
983         init_memory_mapping(start, start + size, params->pgprot);
984 
985         return add_pages(nid, start_pfn, nr_pages, params);
986 }
987 
988 static void __meminit free_pagetable(struct page *page, int order)
989 {
990         unsigned long magic;
991         unsigned int nr_pages = 1 << order;
992 
993         /* bootmem page has reserved flag */
994         if (PageReserved(page)) {
995                 magic = page->index;
996                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
997                         while (nr_pages--)
998                                 put_page_bootmem(page++);
999                 } else
1000                         while (nr_pages--)
1001                                 free_reserved_page(page++);
1002         } else
1003                 free_pages((unsigned long)page_address(page), order);
1004 }
1005 
1006 static void __meminit free_hugepage_table(struct page *page,
1007                 struct vmem_altmap *altmap)
1008 {
1009         if (altmap)
1010                 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1011         else
1012                 free_pagetable(page, get_order(PMD_SIZE));
1013 }
1014 
1015 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1016 {
1017         pte_t *pte;
1018         int i;
1019 
1020         for (i = 0; i < PTRS_PER_PTE; i++) {
1021                 pte = pte_start + i;
1022                 if (!pte_none(*pte))
1023                         return;
1024         }
1025 
1026         /* free a pte table */
1027         free_pagetable(pmd_page(*pmd), 0);
1028         spin_lock(&init_mm.page_table_lock);
1029         pmd_clear(pmd);
1030         spin_unlock(&init_mm.page_table_lock);
1031 }
1032 
1033 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1034 {
1035         pmd_t *pmd;
1036         int i;
1037 
1038         for (i = 0; i < PTRS_PER_PMD; i++) {
1039                 pmd = pmd_start + i;
1040                 if (!pmd_none(*pmd))
1041                         return;
1042         }
1043 
1044         /* free a pmd table */
1045         free_pagetable(pud_page(*pud), 0);
1046         spin_lock(&init_mm.page_table_lock);
1047         pud_clear(pud);
1048         spin_unlock(&init_mm.page_table_lock);
1049 }
1050 
1051 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1052 {
1053         pud_t *pud;
1054         int i;
1055 
1056         for (i = 0; i < PTRS_PER_PUD; i++) {
1057                 pud = pud_start + i;
1058                 if (!pud_none(*pud))
1059                         return;
1060         }
1061 
1062         /* free a pud table */
1063         free_pagetable(p4d_page(*p4d), 0);
1064         spin_lock(&init_mm.page_table_lock);
1065         p4d_clear(p4d);
1066         spin_unlock(&init_mm.page_table_lock);
1067 }
1068 
1069 static void __meminit
1070 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1071                  bool direct)
1072 {
1073         unsigned long next, pages = 0;
1074         pte_t *pte;
1075         phys_addr_t phys_addr;
1076 
1077         pte = pte_start + pte_index(addr);
1078         for (; addr < end; addr = next, pte++) {
1079                 next = (addr + PAGE_SIZE) & PAGE_MASK;
1080                 if (next > end)
1081                         next = end;
1082 
1083                 if (!pte_present(*pte))
1084                         continue;
1085 
1086                 /*
1087                  * We mapped [0,1G) memory as identity mapping when
1088                  * initializing, in arch/x86/kernel/head_64.S. These
1089                  * pagetables cannot be removed.
1090                  */
1091                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1092                 if (phys_addr < (phys_addr_t)0x40000000)
1093                         return;
1094 
1095                 if (!direct)
1096                         free_pagetable(pte_page(*pte), 0);
1097 
1098                 spin_lock(&init_mm.page_table_lock);
1099                 pte_clear(&init_mm, addr, pte);
1100                 spin_unlock(&init_mm.page_table_lock);
1101 
1102                 /* For non-direct mapping, pages means nothing. */
1103                 pages++;
1104         }
1105 
1106         /* Call free_pte_table() in remove_pmd_table(). */
1107         flush_tlb_all();
1108         if (direct)
1109                 update_page_count(PG_LEVEL_4K, -pages);
1110 }
1111 
1112 static void __meminit
1113 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1114                  bool direct, struct vmem_altmap *altmap)
1115 {
1116         unsigned long next, pages = 0;
1117         pte_t *pte_base;
1118         pmd_t *pmd;
1119 
1120         pmd = pmd_start + pmd_index(addr);
1121         for (; addr < end; addr = next, pmd++) {
1122                 next = pmd_addr_end(addr, end);
1123 
1124                 if (!pmd_present(*pmd))
1125                         continue;
1126 
1127                 if (pmd_leaf(*pmd)) {
1128                         if (IS_ALIGNED(addr, PMD_SIZE) &&
1129                             IS_ALIGNED(next, PMD_SIZE)) {
1130                                 if (!direct)
1131                                         free_hugepage_table(pmd_page(*pmd),
1132                                                             altmap);
1133 
1134                                 spin_lock(&init_mm.page_table_lock);
1135                                 pmd_clear(pmd);
1136                                 spin_unlock(&init_mm.page_table_lock);
1137                                 pages++;
1138                         }
1139 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1140                         else if (vmemmap_pmd_is_unused(addr, next)) {
1141                                         free_hugepage_table(pmd_page(*pmd),
1142                                                             altmap);
1143                                         spin_lock(&init_mm.page_table_lock);
1144                                         pmd_clear(pmd);
1145                                         spin_unlock(&init_mm.page_table_lock);
1146                         }
1147 #endif
1148                         continue;
1149                 }
1150 
1151                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1152                 remove_pte_table(pte_base, addr, next, direct);
1153                 free_pte_table(pte_base, pmd);
1154         }
1155 
1156         /* Call free_pmd_table() in remove_pud_table(). */
1157         if (direct)
1158                 update_page_count(PG_LEVEL_2M, -pages);
1159 }
1160 
1161 static void __meminit
1162 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1163                  struct vmem_altmap *altmap, bool direct)
1164 {
1165         unsigned long next, pages = 0;
1166         pmd_t *pmd_base;
1167         pud_t *pud;
1168 
1169         pud = pud_start + pud_index(addr);
1170         for (; addr < end; addr = next, pud++) {
1171                 next = pud_addr_end(addr, end);
1172 
1173                 if (!pud_present(*pud))
1174                         continue;
1175 
1176                 if (pud_leaf(*pud) &&
1177                     IS_ALIGNED(addr, PUD_SIZE) &&
1178                     IS_ALIGNED(next, PUD_SIZE)) {
1179                         spin_lock(&init_mm.page_table_lock);
1180                         pud_clear(pud);
1181                         spin_unlock(&init_mm.page_table_lock);
1182                         pages++;
1183                         continue;
1184                 }
1185 
1186                 pmd_base = pmd_offset(pud, 0);
1187                 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1188                 free_pmd_table(pmd_base, pud);
1189         }
1190 
1191         if (direct)
1192                 update_page_count(PG_LEVEL_1G, -pages);
1193 }
1194 
1195 static void __meminit
1196 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1197                  struct vmem_altmap *altmap, bool direct)
1198 {
1199         unsigned long next, pages = 0;
1200         pud_t *pud_base;
1201         p4d_t *p4d;
1202 
1203         p4d = p4d_start + p4d_index(addr);
1204         for (; addr < end; addr = next, p4d++) {
1205                 next = p4d_addr_end(addr, end);
1206 
1207                 if (!p4d_present(*p4d))
1208                         continue;
1209 
1210                 BUILD_BUG_ON(p4d_leaf(*p4d));
1211 
1212                 pud_base = pud_offset(p4d, 0);
1213                 remove_pud_table(pud_base, addr, next, altmap, direct);
1214                 /*
1215                  * For 4-level page tables we do not want to free PUDs, but in the
1216                  * 5-level case we should free them. This code will have to change
1217                  * to adapt for boot-time switching between 4 and 5 level page tables.
1218                  */
1219                 if (pgtable_l5_enabled())
1220                         free_pud_table(pud_base, p4d);
1221         }
1222 
1223         if (direct)
1224                 update_page_count(PG_LEVEL_512G, -pages);
1225 }
1226 
1227 /* start and end are both virtual address. */
1228 static void __meminit
1229 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1230                 struct vmem_altmap *altmap)
1231 {
1232         unsigned long next;
1233         unsigned long addr;
1234         pgd_t *pgd;
1235         p4d_t *p4d;
1236 
1237         for (addr = start; addr < end; addr = next) {
1238                 next = pgd_addr_end(addr, end);
1239 
1240                 pgd = pgd_offset_k(addr);
1241                 if (!pgd_present(*pgd))
1242                         continue;
1243 
1244                 p4d = p4d_offset(pgd, 0);
1245                 remove_p4d_table(p4d, addr, next, altmap, direct);
1246         }
1247 
1248         flush_tlb_all();
1249 }
1250 
1251 void __ref vmemmap_free(unsigned long start, unsigned long end,
1252                 struct vmem_altmap *altmap)
1253 {
1254         VM_BUG_ON(!PAGE_ALIGNED(start));
1255         VM_BUG_ON(!PAGE_ALIGNED(end));
1256 
1257         remove_pagetable(start, end, false, altmap);
1258 }
1259 
1260 static void __meminit
1261 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1262 {
1263         start = (unsigned long)__va(start);
1264         end = (unsigned long)__va(end);
1265 
1266         remove_pagetable(start, end, true, NULL);
1267 }
1268 
1269 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1270 {
1271         unsigned long start_pfn = start >> PAGE_SHIFT;
1272         unsigned long nr_pages = size >> PAGE_SHIFT;
1273 
1274         __remove_pages(start_pfn, nr_pages, altmap);
1275         kernel_physical_mapping_remove(start, start + size);
1276 }
1277 #endif /* CONFIG_MEMORY_HOTPLUG */
1278 
1279 static struct kcore_list kcore_vsyscall;
1280 
1281 static void __init register_page_bootmem_info(void)
1282 {
1283 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1284         int i;
1285 
1286         for_each_online_node(i)
1287                 register_page_bootmem_info_node(NODE_DATA(i));
1288 #endif
1289 }
1290 
1291 /*
1292  * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1293  * Only the level which needs to be synchronized between all page-tables is
1294  * allocated because the synchronization can be expensive.
1295  */
1296 static void __init preallocate_vmalloc_pages(void)
1297 {
1298         unsigned long addr;
1299         const char *lvl;
1300 
1301         for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1302                 pgd_t *pgd = pgd_offset_k(addr);
1303                 p4d_t *p4d;
1304                 pud_t *pud;
1305 
1306                 lvl = "p4d";
1307                 p4d = p4d_alloc(&init_mm, pgd, addr);
1308                 if (!p4d)
1309                         goto failed;
1310 
1311                 if (pgtable_l5_enabled())
1312                         continue;
1313 
1314                 /*
1315                  * The goal here is to allocate all possibly required
1316                  * hardware page tables pointed to by the top hardware
1317                  * level.
1318                  *
1319                  * On 4-level systems, the P4D layer is folded away and
1320                  * the above code does no preallocation.  Below, go down
1321                  * to the pud _software_ level to ensure the second
1322                  * hardware level is allocated on 4-level systems too.
1323                  */
1324                 lvl = "pud";
1325                 pud = pud_alloc(&init_mm, p4d, addr);
1326                 if (!pud)
1327                         goto failed;
1328         }
1329 
1330         return;
1331 
1332 failed:
1333 
1334         /*
1335          * The pages have to be there now or they will be missing in
1336          * process page-tables later.
1337          */
1338         panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1339 }
1340 
1341 void __init mem_init(void)
1342 {
1343         pci_iommu_alloc();
1344 
1345         /* clear_bss() already clear the empty_zero_page */
1346 
1347         /* this will put all memory onto the freelists */
1348         memblock_free_all();
1349         after_bootmem = 1;
1350         x86_init.hyper.init_after_bootmem();
1351 
1352         /*
1353          * Must be done after boot memory is put on freelist, because here we
1354          * might set fields in deferred struct pages that have not yet been
1355          * initialized, and memblock_free_all() initializes all the reserved
1356          * deferred pages for us.
1357          */
1358         register_page_bootmem_info();
1359 
1360         /* Register memory areas for /proc/kcore */
1361         if (get_gate_vma(&init_mm))
1362                 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1363 
1364         preallocate_vmalloc_pages();
1365 }
1366 
1367 int kernel_set_to_readonly;
1368 
1369 void mark_rodata_ro(void)
1370 {
1371         unsigned long start = PFN_ALIGN(_text);
1372         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1373         unsigned long end = (unsigned long)__end_rodata_hpage_align;
1374         unsigned long text_end = PFN_ALIGN(_etext);
1375         unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1376         unsigned long all_end;
1377 
1378         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1379                (end - start) >> 10);
1380         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1381 
1382         kernel_set_to_readonly = 1;
1383 
1384         /*
1385          * The rodata/data/bss/brk section (but not the kernel text!)
1386          * should also be not-executable.
1387          *
1388          * We align all_end to PMD_SIZE because the existing mapping
1389          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1390          * split the PMD and the reminder between _brk_end and the end
1391          * of the PMD will remain mapped executable.
1392          *
1393          * Any PMD which was setup after the one which covers _brk_end
1394          * has been zapped already via cleanup_highmem().
1395          */
1396         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1397         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1398 
1399         set_ftrace_ops_ro();
1400 
1401 #ifdef CONFIG_CPA_DEBUG
1402         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1403         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1404 
1405         printk(KERN_INFO "Testing CPA: again\n");
1406         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1407 #endif
1408 
1409         free_kernel_image_pages("unused kernel image (text/rodata gap)",
1410                                 (void *)text_end, (void *)rodata_start);
1411         free_kernel_image_pages("unused kernel image (rodata/data gap)",
1412                                 (void *)rodata_end, (void *)_sdata);
1413 }
1414 
1415 /*
1416  * Block size is the minimum amount of memory which can be hotplugged or
1417  * hotremoved. It must be power of two and must be equal or larger than
1418  * MIN_MEMORY_BLOCK_SIZE.
1419  */
1420 #define MAX_BLOCK_SIZE (2UL << 30)
1421 
1422 /* Amount of ram needed to start using large blocks */
1423 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1424 
1425 /* Adjustable memory block size */
1426 static unsigned long set_memory_block_size;
1427 int __init set_memory_block_size_order(unsigned int order)
1428 {
1429         unsigned long size = 1UL << order;
1430 
1431         if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1432                 return -EINVAL;
1433 
1434         set_memory_block_size = size;
1435         return 0;
1436 }
1437 
1438 static unsigned long probe_memory_block_size(void)
1439 {
1440         unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1441         unsigned long bz;
1442 
1443         /* If memory block size has been set, then use it */
1444         bz = set_memory_block_size;
1445         if (bz)
1446                 goto done;
1447 
1448         /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1449         if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1450                 bz = MIN_MEMORY_BLOCK_SIZE;
1451                 goto done;
1452         }
1453 
1454         /*
1455          * Use max block size to minimize overhead on bare metal, where
1456          * alignment for memory hotplug isn't a concern.
1457          */
1458         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1459                 bz = MAX_BLOCK_SIZE;
1460                 goto done;
1461         }
1462 
1463         /* Find the largest allowed block size that aligns to memory end */
1464         for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1465                 if (IS_ALIGNED(boot_mem_end, bz))
1466                         break;
1467         }
1468 done:
1469         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1470 
1471         return bz;
1472 }
1473 
1474 static unsigned long memory_block_size_probed;
1475 unsigned long memory_block_size_bytes(void)
1476 {
1477         if (!memory_block_size_probed)
1478                 memory_block_size_probed = probe_memory_block_size();
1479 
1480         return memory_block_size_probed;
1481 }
1482 
1483 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1484 /*
1485  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1486  */
1487 static long __meminitdata addr_start, addr_end;
1488 static void __meminitdata *p_start, *p_end;
1489 static int __meminitdata node_start;
1490 
1491 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1492                                unsigned long addr, unsigned long next)
1493 {
1494         pte_t entry;
1495 
1496         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1497                         PAGE_KERNEL_LARGE);
1498         set_pmd(pmd, __pmd(pte_val(entry)));
1499 
1500         /* check to see if we have contiguous blocks */
1501         if (p_end != p || node_start != node) {
1502                 if (p_start)
1503                         pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1504                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
1505                 addr_start = addr;
1506                 node_start = node;
1507                 p_start = p;
1508         }
1509 
1510         addr_end = addr + PMD_SIZE;
1511         p_end = p + PMD_SIZE;
1512 
1513         if (!IS_ALIGNED(addr, PMD_SIZE) ||
1514                 !IS_ALIGNED(next, PMD_SIZE))
1515                 vmemmap_use_new_sub_pmd(addr, next);
1516 }
1517 
1518 int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1519                                 unsigned long addr, unsigned long next)
1520 {
1521         int large = pmd_leaf(*pmd);
1522 
1523         if (pmd_leaf(*pmd)) {
1524                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1525                 vmemmap_use_sub_pmd(addr, next);
1526         }
1527 
1528         return large;
1529 }
1530 
1531 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1532                 struct vmem_altmap *altmap)
1533 {
1534         int err;
1535 
1536         VM_BUG_ON(!PAGE_ALIGNED(start));
1537         VM_BUG_ON(!PAGE_ALIGNED(end));
1538 
1539         if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1540                 err = vmemmap_populate_basepages(start, end, node, NULL);
1541         else if (boot_cpu_has(X86_FEATURE_PSE))
1542                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1543         else if (altmap) {
1544                 pr_err_once("%s: no cpu support for altmap allocations\n",
1545                                 __func__);
1546                 err = -ENOMEM;
1547         } else
1548                 err = vmemmap_populate_basepages(start, end, node, NULL);
1549         if (!err)
1550                 sync_global_pgds(start, end - 1);
1551         return err;
1552 }
1553 
1554 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1555 void register_page_bootmem_memmap(unsigned long section_nr,
1556                                   struct page *start_page, unsigned long nr_pages)
1557 {
1558         unsigned long addr = (unsigned long)start_page;
1559         unsigned long end = (unsigned long)(start_page + nr_pages);
1560         unsigned long next;
1561         pgd_t *pgd;
1562         p4d_t *p4d;
1563         pud_t *pud;
1564         pmd_t *pmd;
1565         unsigned int nr_pmd_pages;
1566         struct page *page;
1567 
1568         for (; addr < end; addr = next) {
1569                 pte_t *pte = NULL;
1570 
1571                 pgd = pgd_offset_k(addr);
1572                 if (pgd_none(*pgd)) {
1573                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1574                         continue;
1575                 }
1576                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1577 
1578                 p4d = p4d_offset(pgd, addr);
1579                 if (p4d_none(*p4d)) {
1580                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1581                         continue;
1582                 }
1583                 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1584 
1585                 pud = pud_offset(p4d, addr);
1586                 if (pud_none(*pud)) {
1587                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1588                         continue;
1589                 }
1590                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1591 
1592                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1593                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1594                         pmd = pmd_offset(pud, addr);
1595                         if (pmd_none(*pmd))
1596                                 continue;
1597                         get_page_bootmem(section_nr, pmd_page(*pmd),
1598                                          MIX_SECTION_INFO);
1599 
1600                         pte = pte_offset_kernel(pmd, addr);
1601                         if (pte_none(*pte))
1602                                 continue;
1603                         get_page_bootmem(section_nr, pte_page(*pte),
1604                                          SECTION_INFO);
1605                 } else {
1606                         next = pmd_addr_end(addr, end);
1607 
1608                         pmd = pmd_offset(pud, addr);
1609                         if (pmd_none(*pmd))
1610                                 continue;
1611 
1612                         nr_pmd_pages = 1 << get_order(PMD_SIZE);
1613                         page = pmd_page(*pmd);
1614                         while (nr_pmd_pages--)
1615                                 get_page_bootmem(section_nr, page++,
1616                                                  SECTION_INFO);
1617                 }
1618         }
1619 }
1620 #endif
1621 
1622 void __meminit vmemmap_populate_print_last(void)
1623 {
1624         if (p_start) {
1625                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1626                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1627                 p_start = NULL;
1628                 p_end = NULL;
1629                 node_start = 0;
1630         }
1631 }
1632 #endif
1633 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php