~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/mem_encrypt_amd.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * AMD Memory Encryption Support
  4  *
  5  * Copyright (C) 2016-2024 Advanced Micro Devices, Inc.
  6  *
  7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
  8  */
  9 
 10 #define DISABLE_BRANCH_PROFILING
 11 
 12 #include <linux/linkage.h>
 13 #include <linux/init.h>
 14 #include <linux/mm.h>
 15 #include <linux/dma-direct.h>
 16 #include <linux/swiotlb.h>
 17 #include <linux/mem_encrypt.h>
 18 #include <linux/device.h>
 19 #include <linux/kernel.h>
 20 #include <linux/bitops.h>
 21 #include <linux/dma-mapping.h>
 22 #include <linux/cc_platform.h>
 23 
 24 #include <asm/tlbflush.h>
 25 #include <asm/fixmap.h>
 26 #include <asm/setup.h>
 27 #include <asm/mem_encrypt.h>
 28 #include <asm/bootparam.h>
 29 #include <asm/set_memory.h>
 30 #include <asm/cacheflush.h>
 31 #include <asm/processor-flags.h>
 32 #include <asm/msr.h>
 33 #include <asm/cmdline.h>
 34 #include <asm/sev.h>
 35 #include <asm/ia32.h>
 36 
 37 #include "mm_internal.h"
 38 
 39 /*
 40  * Since SME related variables are set early in the boot process they must
 41  * reside in the .data section so as not to be zeroed out when the .bss
 42  * section is later cleared.
 43  */
 44 u64 sme_me_mask __section(".data") = 0;
 45 u64 sev_status __section(".data") = 0;
 46 u64 sev_check_data __section(".data") = 0;
 47 EXPORT_SYMBOL(sme_me_mask);
 48 
 49 /* Buffer used for early in-place encryption by BSP, no locking needed */
 50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
 51 
 52 /*
 53  * SNP-specific routine which needs to additionally change the page state from
 54  * private to shared before copying the data from the source to destination and
 55  * restore after the copy.
 56  */
 57 static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
 58                                      unsigned long paddr, bool decrypt)
 59 {
 60         unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 61 
 62         if (decrypt) {
 63                 /*
 64                  * @paddr needs to be accessed decrypted, mark the page shared in
 65                  * the RMP table before copying it.
 66                  */
 67                 early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
 68 
 69                 memcpy(dst, src, sz);
 70 
 71                 /* Restore the page state after the memcpy. */
 72                 early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
 73         } else {
 74                 /*
 75                  * @paddr need to be accessed encrypted, no need for the page state
 76                  * change.
 77                  */
 78                 memcpy(dst, src, sz);
 79         }
 80 }
 81 
 82 /*
 83  * This routine does not change the underlying encryption setting of the
 84  * page(s) that map this memory. It assumes that eventually the memory is
 85  * meant to be accessed as either encrypted or decrypted but the contents
 86  * are currently not in the desired state.
 87  *
 88  * This routine follows the steps outlined in the AMD64 Architecture
 89  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
 90  */
 91 static void __init __sme_early_enc_dec(resource_size_t paddr,
 92                                        unsigned long size, bool enc)
 93 {
 94         void *src, *dst;
 95         size_t len;
 96 
 97         if (!sme_me_mask)
 98                 return;
 99 
100         wbinvd();
101 
102         /*
103          * There are limited number of early mapping slots, so map (at most)
104          * one page at time.
105          */
106         while (size) {
107                 len = min_t(size_t, sizeof(sme_early_buffer), size);
108 
109                 /*
110                  * Create mappings for the current and desired format of
111                  * the memory. Use a write-protected mapping for the source.
112                  */
113                 src = enc ? early_memremap_decrypted_wp(paddr, len) :
114                             early_memremap_encrypted_wp(paddr, len);
115 
116                 dst = enc ? early_memremap_encrypted(paddr, len) :
117                             early_memremap_decrypted(paddr, len);
118 
119                 /*
120                  * If a mapping can't be obtained to perform the operation,
121                  * then eventual access of that area in the desired mode
122                  * will cause a crash.
123                  */
124                 BUG_ON(!src || !dst);
125 
126                 /*
127                  * Use a temporary buffer, of cache-line multiple size, to
128                  * avoid data corruption as documented in the APM.
129                  */
130                 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
131                         snp_memcpy(sme_early_buffer, src, len, paddr, enc);
132                         snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
133                 } else {
134                         memcpy(sme_early_buffer, src, len);
135                         memcpy(dst, sme_early_buffer, len);
136                 }
137 
138                 early_memunmap(dst, len);
139                 early_memunmap(src, len);
140 
141                 paddr += len;
142                 size -= len;
143         }
144 }
145 
146 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
147 {
148         __sme_early_enc_dec(paddr, size, true);
149 }
150 
151 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
152 {
153         __sme_early_enc_dec(paddr, size, false);
154 }
155 
156 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
157                                              bool map)
158 {
159         unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
160         pmdval_t pmd_flags, pmd;
161 
162         /* Use early_pmd_flags but remove the encryption mask */
163         pmd_flags = __sme_clr(early_pmd_flags);
164 
165         do {
166                 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
167                 __early_make_pgtable((unsigned long)vaddr, pmd);
168 
169                 vaddr += PMD_SIZE;
170                 paddr += PMD_SIZE;
171                 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
172         } while (size);
173 
174         flush_tlb_local();
175 }
176 
177 void __init sme_unmap_bootdata(char *real_mode_data)
178 {
179         struct boot_params *boot_data;
180         unsigned long cmdline_paddr;
181 
182         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
183                 return;
184 
185         /* Get the command line address before unmapping the real_mode_data */
186         boot_data = (struct boot_params *)real_mode_data;
187         cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
188 
189         __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
190 
191         if (!cmdline_paddr)
192                 return;
193 
194         __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
195 }
196 
197 void __init sme_map_bootdata(char *real_mode_data)
198 {
199         struct boot_params *boot_data;
200         unsigned long cmdline_paddr;
201 
202         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
203                 return;
204 
205         __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
206 
207         /* Get the command line address after mapping the real_mode_data */
208         boot_data = (struct boot_params *)real_mode_data;
209         cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
210 
211         if (!cmdline_paddr)
212                 return;
213 
214         __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
215 }
216 
217 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
218 {
219         unsigned long pfn = 0;
220         pgprot_t prot;
221 
222         switch (level) {
223         case PG_LEVEL_4K:
224                 pfn = pte_pfn(*kpte);
225                 prot = pte_pgprot(*kpte);
226                 break;
227         case PG_LEVEL_2M:
228                 pfn = pmd_pfn(*(pmd_t *)kpte);
229                 prot = pmd_pgprot(*(pmd_t *)kpte);
230                 break;
231         case PG_LEVEL_1G:
232                 pfn = pud_pfn(*(pud_t *)kpte);
233                 prot = pud_pgprot(*(pud_t *)kpte);
234                 break;
235         default:
236                 WARN_ONCE(1, "Invalid level for kpte\n");
237                 return 0;
238         }
239 
240         if (ret_prot)
241                 *ret_prot = prot;
242 
243         return pfn;
244 }
245 
246 static bool amd_enc_tlb_flush_required(bool enc)
247 {
248         return true;
249 }
250 
251 static bool amd_enc_cache_flush_required(void)
252 {
253         return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
254 }
255 
256 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
257 {
258 #ifdef CONFIG_PARAVIRT
259         unsigned long vaddr_end = vaddr + size;
260 
261         while (vaddr < vaddr_end) {
262                 int psize, pmask, level;
263                 unsigned long pfn;
264                 pte_t *kpte;
265 
266                 kpte = lookup_address(vaddr, &level);
267                 if (!kpte || pte_none(*kpte)) {
268                         WARN_ONCE(1, "kpte lookup for vaddr\n");
269                         return;
270                 }
271 
272                 pfn = pg_level_to_pfn(level, kpte, NULL);
273                 if (!pfn)
274                         continue;
275 
276                 psize = page_level_size(level);
277                 pmask = page_level_mask(level);
278 
279                 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
280 
281                 vaddr = (vaddr & pmask) + psize;
282         }
283 #endif
284 }
285 
286 static int amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
287 {
288         /*
289          * To maintain the security guarantees of SEV-SNP guests, make sure
290          * to invalidate the memory before encryption attribute is cleared.
291          */
292         if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
293                 snp_set_memory_shared(vaddr, npages);
294 
295         return 0;
296 }
297 
298 /* Return true unconditionally: return value doesn't matter for the SEV side */
299 static int amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
300 {
301         /*
302          * After memory is mapped encrypted in the page table, validate it
303          * so that it is consistent with the page table updates.
304          */
305         if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
306                 snp_set_memory_private(vaddr, npages);
307 
308         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
309                 enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
310 
311         return 0;
312 }
313 
314 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
315 {
316         pgprot_t old_prot, new_prot;
317         unsigned long pfn, pa, size;
318         pte_t new_pte;
319 
320         pfn = pg_level_to_pfn(level, kpte, &old_prot);
321         if (!pfn)
322                 return;
323 
324         new_prot = old_prot;
325         if (enc)
326                 pgprot_val(new_prot) |= _PAGE_ENC;
327         else
328                 pgprot_val(new_prot) &= ~_PAGE_ENC;
329 
330         /* If prot is same then do nothing. */
331         if (pgprot_val(old_prot) == pgprot_val(new_prot))
332                 return;
333 
334         pa = pfn << PAGE_SHIFT;
335         size = page_level_size(level);
336 
337         /*
338          * We are going to perform in-place en-/decryption and change the
339          * physical page attribute from C=1 to C=0 or vice versa. Flush the
340          * caches to ensure that data gets accessed with the correct C-bit.
341          */
342         clflush_cache_range(__va(pa), size);
343 
344         /* Encrypt/decrypt the contents in-place */
345         if (enc) {
346                 sme_early_encrypt(pa, size);
347         } else {
348                 sme_early_decrypt(pa, size);
349 
350                 /*
351                  * ON SNP, the page state in the RMP table must happen
352                  * before the page table updates.
353                  */
354                 early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
355         }
356 
357         /* Change the page encryption mask. */
358         new_pte = pfn_pte(pfn, new_prot);
359         set_pte_atomic(kpte, new_pte);
360 
361         /*
362          * If page is set encrypted in the page table, then update the RMP table to
363          * add this page as private.
364          */
365         if (enc)
366                 early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
367 }
368 
369 static int __init early_set_memory_enc_dec(unsigned long vaddr,
370                                            unsigned long size, bool enc)
371 {
372         unsigned long vaddr_end, vaddr_next, start;
373         unsigned long psize, pmask;
374         int split_page_size_mask;
375         int level, ret;
376         pte_t *kpte;
377 
378         start = vaddr;
379         vaddr_next = vaddr;
380         vaddr_end = vaddr + size;
381 
382         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
383                 kpte = lookup_address(vaddr, &level);
384                 if (!kpte || pte_none(*kpte)) {
385                         ret = 1;
386                         goto out;
387                 }
388 
389                 if (level == PG_LEVEL_4K) {
390                         __set_clr_pte_enc(kpte, level, enc);
391                         vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
392                         continue;
393                 }
394 
395                 psize = page_level_size(level);
396                 pmask = page_level_mask(level);
397 
398                 /*
399                  * Check whether we can change the large page in one go.
400                  * We request a split when the address is not aligned and
401                  * the number of pages to set/clear encryption bit is smaller
402                  * than the number of pages in the large page.
403                  */
404                 if (vaddr == (vaddr & pmask) &&
405                     ((vaddr_end - vaddr) >= psize)) {
406                         __set_clr_pte_enc(kpte, level, enc);
407                         vaddr_next = (vaddr & pmask) + psize;
408                         continue;
409                 }
410 
411                 /*
412                  * The virtual address is part of a larger page, create the next
413                  * level page table mapping (4K or 2M). If it is part of a 2M
414                  * page then we request a split of the large page into 4K
415                  * chunks. A 1GB large page is split into 2M pages, resp.
416                  */
417                 if (level == PG_LEVEL_2M)
418                         split_page_size_mask = 0;
419                 else
420                         split_page_size_mask = 1 << PG_LEVEL_2M;
421 
422                 /*
423                  * kernel_physical_mapping_change() does not flush the TLBs, so
424                  * a TLB flush is required after we exit from the for loop.
425                  */
426                 kernel_physical_mapping_change(__pa(vaddr & pmask),
427                                                __pa((vaddr_end & pmask) + psize),
428                                                split_page_size_mask);
429         }
430 
431         ret = 0;
432 
433         early_set_mem_enc_dec_hypercall(start, size, enc);
434 out:
435         __flush_tlb_all();
436         return ret;
437 }
438 
439 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
440 {
441         return early_set_memory_enc_dec(vaddr, size, false);
442 }
443 
444 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
445 {
446         return early_set_memory_enc_dec(vaddr, size, true);
447 }
448 
449 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
450 {
451         enc_dec_hypercall(vaddr, size, enc);
452 }
453 
454 void __init sme_early_init(void)
455 {
456         if (!sme_me_mask)
457                 return;
458 
459         early_pmd_flags = __sme_set(early_pmd_flags);
460 
461         __supported_pte_mask = __sme_set(__supported_pte_mask);
462 
463         /* Update the protection map with memory encryption mask */
464         add_encrypt_protection_map();
465 
466         x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
467         x86_platform.guest.enc_status_change_finish  = amd_enc_status_change_finish;
468         x86_platform.guest.enc_tlb_flush_required    = amd_enc_tlb_flush_required;
469         x86_platform.guest.enc_cache_flush_required  = amd_enc_cache_flush_required;
470 
471         /*
472          * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the
473          * parallel bringup low level code. That raises #VC which cannot be
474          * handled there.
475          * It does not provide a RDMSR GHCB protocol so the early startup
476          * code cannot directly communicate with the secure firmware. The
477          * alternative solution to retrieve the APIC ID via CPUID(0xb),
478          * which is covered by the GHCB protocol, is not viable either
479          * because there is no enforcement of the CPUID(0xb) provided
480          * "initial" APIC ID to be the same as the real APIC ID.
481          * Disable parallel bootup.
482          */
483         if (sev_status & MSR_AMD64_SEV_ES_ENABLED)
484                 x86_cpuinit.parallel_bringup = false;
485 
486         /*
487          * The VMM is capable of injecting interrupt 0x80 and triggering the
488          * compatibility syscall path.
489          *
490          * By default, the 32-bit emulation is disabled in order to ensure
491          * the safety of the VM.
492          */
493         if (sev_status & MSR_AMD64_SEV_ENABLED)
494                 ia32_disable();
495 
496         /*
497          * Override init functions that scan the ROM region in SEV-SNP guests,
498          * as this memory is not pre-validated and would thus cause a crash.
499          */
500         if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
501                 x86_init.mpparse.find_mptable = x86_init_noop;
502                 x86_init.pci.init_irq = x86_init_noop;
503                 x86_init.resources.probe_roms = x86_init_noop;
504 
505                 /*
506                  * DMI setup behavior for SEV-SNP guests depends on
507                  * efi_enabled(EFI_CONFIG_TABLES), which hasn't been
508                  * parsed yet. snp_dmi_setup() will run after that
509                  * parsing has happened.
510                  */
511                 x86_init.resources.dmi_setup = snp_dmi_setup;
512         }
513 
514         /*
515          * Switch the SVSM CA mapping (if active) from identity mapped to
516          * kernel mapped.
517          */
518         snp_update_svsm_ca();
519 }
520 
521 void __init mem_encrypt_free_decrypted_mem(void)
522 {
523         unsigned long vaddr, vaddr_end, npages;
524         int r;
525 
526         vaddr = (unsigned long)__start_bss_decrypted_unused;
527         vaddr_end = (unsigned long)__end_bss_decrypted;
528         npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
529 
530         /*
531          * If the unused memory range was mapped decrypted, change the encryption
532          * attribute from decrypted to encrypted before freeing it. Base the
533          * re-encryption on the same condition used for the decryption in
534          * sme_postprocess_startup(). Higher level abstractions, such as
535          * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
536          * using vTOM, where sme_me_mask is always zero.
537          */
538         if (sme_me_mask) {
539                 r = set_memory_encrypted(vaddr, npages);
540                 if (r) {
541                         pr_warn("failed to free unused decrypted pages\n");
542                         return;
543                 }
544         }
545 
546         free_init_pages("unused decrypted", vaddr, vaddr_end);
547 }
548 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php