1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 10 #define DISABLE_BRANCH_PROFILING 11 12 /* 13 * Since we're dealing with identity mappings, physical and virtual 14 * addresses are the same, so override these defines which are ultimately 15 * used by the headers in misc.h. 16 */ 17 #define __pa(x) ((unsigned long)(x)) 18 #define __va(x) ((void *)((unsigned long)(x))) 19 20 /* 21 * Special hack: we have to be careful, because no indirections are 22 * allowed here, and paravirt_ops is a kind of one. As it will only run in 23 * baremetal anyway, we just keep it from happening. (This list needs to 24 * be extended when new paravirt and debugging variants are added.) 25 */ 26 #undef CONFIG_PARAVIRT 27 #undef CONFIG_PARAVIRT_XXL 28 #undef CONFIG_PARAVIRT_SPINLOCKS 29 30 /* 31 * This code runs before CPU feature bits are set. By default, the 32 * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if 33 * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5 34 * is provided to handle this situation and, instead, use a variable that 35 * has been set by the early boot code. 36 */ 37 #define USE_EARLY_PGTABLE_L5 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/mem_encrypt.h> 42 #include <linux/cc_platform.h> 43 44 #include <asm/init.h> 45 #include <asm/setup.h> 46 #include <asm/sections.h> 47 #include <asm/coco.h> 48 #include <asm/sev.h> 49 50 #include "mm_internal.h" 51 52 #define PGD_FLAGS _KERNPG_TABLE_NOENC 53 #define P4D_FLAGS _KERNPG_TABLE_NOENC 54 #define PUD_FLAGS _KERNPG_TABLE_NOENC 55 #define PMD_FLAGS _KERNPG_TABLE_NOENC 56 57 #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) 58 59 #define PMD_FLAGS_DEC PMD_FLAGS_LARGE 60 #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \ 61 (_PAGE_PAT_LARGE | _PAGE_PWT)) 62 63 #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) 64 65 #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) 66 67 #define PTE_FLAGS_DEC PTE_FLAGS 68 #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ 69 (_PAGE_PAT | _PAGE_PWT)) 70 71 #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) 72 73 struct sme_populate_pgd_data { 74 void *pgtable_area; 75 pgd_t *pgd; 76 77 pmdval_t pmd_flags; 78 pteval_t pte_flags; 79 unsigned long paddr; 80 81 unsigned long vaddr; 82 unsigned long vaddr_end; 83 }; 84 85 /* 86 * This work area lives in the .init.scratch section, which lives outside of 87 * the kernel proper. It is sized to hold the intermediate copy buffer and 88 * more than enough pagetable pages. 89 * 90 * By using this section, the kernel can be encrypted in place and it 91 * avoids any possibility of boot parameters or initramfs images being 92 * placed such that the in-place encryption logic overwrites them. This 93 * section is 2MB aligned to allow for simple pagetable setup using only 94 * PMD entries (see vmlinux.lds.S). 95 */ 96 static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch"); 97 98 static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd) 99 { 100 unsigned long pgd_start, pgd_end, pgd_size; 101 pgd_t *pgd_p; 102 103 pgd_start = ppd->vaddr & PGDIR_MASK; 104 pgd_end = ppd->vaddr_end & PGDIR_MASK; 105 106 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); 107 108 pgd_p = ppd->pgd + pgd_index(ppd->vaddr); 109 110 memset(pgd_p, 0, pgd_size); 111 } 112 113 static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) 114 { 115 pgd_t *pgd; 116 p4d_t *p4d; 117 pud_t *pud; 118 pmd_t *pmd; 119 120 pgd = ppd->pgd + pgd_index(ppd->vaddr); 121 if (pgd_none(*pgd)) { 122 p4d = ppd->pgtable_area; 123 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); 124 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; 125 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); 126 } 127 128 p4d = p4d_offset(pgd, ppd->vaddr); 129 if (p4d_none(*p4d)) { 130 pud = ppd->pgtable_area; 131 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); 132 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; 133 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); 134 } 135 136 pud = pud_offset(p4d, ppd->vaddr); 137 if (pud_none(*pud)) { 138 pmd = ppd->pgtable_area; 139 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); 140 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; 141 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); 142 } 143 144 if (pud_leaf(*pud)) 145 return NULL; 146 147 return pud; 148 } 149 150 static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) 151 { 152 pud_t *pud; 153 pmd_t *pmd; 154 155 pud = sme_prepare_pgd(ppd); 156 if (!pud) 157 return; 158 159 pmd = pmd_offset(pud, ppd->vaddr); 160 if (pmd_leaf(*pmd)) 161 return; 162 163 set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); 164 } 165 166 static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd) 167 { 168 pud_t *pud; 169 pmd_t *pmd; 170 pte_t *pte; 171 172 pud = sme_prepare_pgd(ppd); 173 if (!pud) 174 return; 175 176 pmd = pmd_offset(pud, ppd->vaddr); 177 if (pmd_none(*pmd)) { 178 pte = ppd->pgtable_area; 179 memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); 180 ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; 181 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); 182 } 183 184 if (pmd_leaf(*pmd)) 185 return; 186 187 pte = pte_offset_kernel(pmd, ppd->vaddr); 188 if (pte_none(*pte)) 189 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); 190 } 191 192 static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) 193 { 194 while (ppd->vaddr < ppd->vaddr_end) { 195 sme_populate_pgd_large(ppd); 196 197 ppd->vaddr += PMD_SIZE; 198 ppd->paddr += PMD_SIZE; 199 } 200 } 201 202 static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd) 203 { 204 while (ppd->vaddr < ppd->vaddr_end) { 205 sme_populate_pgd(ppd); 206 207 ppd->vaddr += PAGE_SIZE; 208 ppd->paddr += PAGE_SIZE; 209 } 210 } 211 212 static void __head __sme_map_range(struct sme_populate_pgd_data *ppd, 213 pmdval_t pmd_flags, pteval_t pte_flags) 214 { 215 unsigned long vaddr_end; 216 217 ppd->pmd_flags = pmd_flags; 218 ppd->pte_flags = pte_flags; 219 220 /* Save original end value since we modify the struct value */ 221 vaddr_end = ppd->vaddr_end; 222 223 /* If start is not 2MB aligned, create PTE entries */ 224 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE); 225 __sme_map_range_pte(ppd); 226 227 /* Create PMD entries */ 228 ppd->vaddr_end = vaddr_end & PMD_MASK; 229 __sme_map_range_pmd(ppd); 230 231 /* If end is not 2MB aligned, create PTE entries */ 232 ppd->vaddr_end = vaddr_end; 233 __sme_map_range_pte(ppd); 234 } 235 236 static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) 237 { 238 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); 239 } 240 241 static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) 242 { 243 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); 244 } 245 246 static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) 247 { 248 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); 249 } 250 251 static unsigned long __head sme_pgtable_calc(unsigned long len) 252 { 253 unsigned long entries = 0, tables = 0; 254 255 /* 256 * Perform a relatively simplistic calculation of the pagetable 257 * entries that are needed. Those mappings will be covered mostly 258 * by 2MB PMD entries so we can conservatively calculate the required 259 * number of P4D, PUD and PMD structures needed to perform the 260 * mappings. For mappings that are not 2MB aligned, PTE mappings 261 * would be needed for the start and end portion of the address range 262 * that fall outside of the 2MB alignment. This results in, at most, 263 * two extra pages to hold PTE entries for each range that is mapped. 264 * Incrementing the count for each covers the case where the addresses 265 * cross entries. 266 */ 267 268 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ 269 if (PTRS_PER_P4D > 1) 270 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; 271 entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; 272 entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; 273 entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; 274 275 /* 276 * Now calculate the added pagetable structures needed to populate 277 * the new pagetables. 278 */ 279 280 if (PTRS_PER_P4D > 1) 281 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; 282 tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; 283 tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; 284 285 return entries + tables; 286 } 287 288 void __head sme_encrypt_kernel(struct boot_params *bp) 289 { 290 unsigned long workarea_start, workarea_end, workarea_len; 291 unsigned long execute_start, execute_end, execute_len; 292 unsigned long kernel_start, kernel_end, kernel_len; 293 unsigned long initrd_start, initrd_end, initrd_len; 294 struct sme_populate_pgd_data ppd; 295 unsigned long pgtable_area_len; 296 unsigned long decrypted_base; 297 298 /* 299 * This is early code, use an open coded check for SME instead of 300 * using cc_platform_has(). This eliminates worries about removing 301 * instrumentation or checking boot_cpu_data in the cc_platform_has() 302 * function. 303 */ 304 if (!sme_get_me_mask() || 305 RIP_REL_REF(sev_status) & MSR_AMD64_SEV_ENABLED) 306 return; 307 308 /* 309 * Prepare for encrypting the kernel and initrd by building new 310 * pagetables with the necessary attributes needed to encrypt the 311 * kernel in place. 312 * 313 * One range of virtual addresses will map the memory occupied 314 * by the kernel and initrd as encrypted. 315 * 316 * Another range of virtual addresses will map the memory occupied 317 * by the kernel and initrd as decrypted and write-protected. 318 * 319 * The use of write-protect attribute will prevent any of the 320 * memory from being cached. 321 */ 322 323 kernel_start = (unsigned long)RIP_REL_REF(_text); 324 kernel_end = ALIGN((unsigned long)RIP_REL_REF(_end), PMD_SIZE); 325 kernel_len = kernel_end - kernel_start; 326 327 initrd_start = 0; 328 initrd_end = 0; 329 initrd_len = 0; 330 #ifdef CONFIG_BLK_DEV_INITRD 331 initrd_len = (unsigned long)bp->hdr.ramdisk_size | 332 ((unsigned long)bp->ext_ramdisk_size << 32); 333 if (initrd_len) { 334 initrd_start = (unsigned long)bp->hdr.ramdisk_image | 335 ((unsigned long)bp->ext_ramdisk_image << 32); 336 initrd_end = PAGE_ALIGN(initrd_start + initrd_len); 337 initrd_len = initrd_end - initrd_start; 338 } 339 #endif 340 341 /* 342 * Calculate required number of workarea bytes needed: 343 * executable encryption area size: 344 * stack page (PAGE_SIZE) 345 * encryption routine page (PAGE_SIZE) 346 * intermediate copy buffer (PMD_SIZE) 347 * pagetable structures for the encryption of the kernel 348 * pagetable structures for workarea (in case not currently mapped) 349 */ 350 execute_start = workarea_start = (unsigned long)RIP_REL_REF(sme_workarea); 351 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE; 352 execute_len = execute_end - execute_start; 353 354 /* 355 * One PGD for both encrypted and decrypted mappings and a set of 356 * PUDs and PMDs for each of the encrypted and decrypted mappings. 357 */ 358 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; 359 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; 360 if (initrd_len) 361 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; 362 363 /* PUDs and PMDs needed in the current pagetables for the workarea */ 364 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); 365 366 /* 367 * The total workarea includes the executable encryption area and 368 * the pagetable area. The start of the workarea is already 2MB 369 * aligned, align the end of the workarea on a 2MB boundary so that 370 * we don't try to create/allocate PTE entries from the workarea 371 * before it is mapped. 372 */ 373 workarea_len = execute_len + pgtable_area_len; 374 workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE); 375 376 /* 377 * Set the address to the start of where newly created pagetable 378 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable 379 * structures are created when the workarea is added to the current 380 * pagetables and when the new encrypted and decrypted kernel 381 * mappings are populated. 382 */ 383 ppd.pgtable_area = (void *)execute_end; 384 385 /* 386 * Make sure the current pagetable structure has entries for 387 * addressing the workarea. 388 */ 389 ppd.pgd = (pgd_t *)native_read_cr3_pa(); 390 ppd.paddr = workarea_start; 391 ppd.vaddr = workarea_start; 392 ppd.vaddr_end = workarea_end; 393 sme_map_range_decrypted(&ppd); 394 395 /* Flush the TLB - no globals so cr3 is enough */ 396 native_write_cr3(__native_read_cr3()); 397 398 /* 399 * A new pagetable structure is being built to allow for the kernel 400 * and initrd to be encrypted. It starts with an empty PGD that will 401 * then be populated with new PUDs and PMDs as the encrypted and 402 * decrypted kernel mappings are created. 403 */ 404 ppd.pgd = ppd.pgtable_area; 405 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); 406 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; 407 408 /* 409 * A different PGD index/entry must be used to get different 410 * pagetable entries for the decrypted mapping. Choose the next 411 * PGD index and convert it to a virtual address to be used as 412 * the base of the mapping. 413 */ 414 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); 415 if (initrd_len) { 416 unsigned long check_base; 417 418 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); 419 decrypted_base = max(decrypted_base, check_base); 420 } 421 decrypted_base <<= PGDIR_SHIFT; 422 423 /* Add encrypted kernel (identity) mappings */ 424 ppd.paddr = kernel_start; 425 ppd.vaddr = kernel_start; 426 ppd.vaddr_end = kernel_end; 427 sme_map_range_encrypted(&ppd); 428 429 /* Add decrypted, write-protected kernel (non-identity) mappings */ 430 ppd.paddr = kernel_start; 431 ppd.vaddr = kernel_start + decrypted_base; 432 ppd.vaddr_end = kernel_end + decrypted_base; 433 sme_map_range_decrypted_wp(&ppd); 434 435 if (initrd_len) { 436 /* Add encrypted initrd (identity) mappings */ 437 ppd.paddr = initrd_start; 438 ppd.vaddr = initrd_start; 439 ppd.vaddr_end = initrd_end; 440 sme_map_range_encrypted(&ppd); 441 /* 442 * Add decrypted, write-protected initrd (non-identity) mappings 443 */ 444 ppd.paddr = initrd_start; 445 ppd.vaddr = initrd_start + decrypted_base; 446 ppd.vaddr_end = initrd_end + decrypted_base; 447 sme_map_range_decrypted_wp(&ppd); 448 } 449 450 /* Add decrypted workarea mappings to both kernel mappings */ 451 ppd.paddr = workarea_start; 452 ppd.vaddr = workarea_start; 453 ppd.vaddr_end = workarea_end; 454 sme_map_range_decrypted(&ppd); 455 456 ppd.paddr = workarea_start; 457 ppd.vaddr = workarea_start + decrypted_base; 458 ppd.vaddr_end = workarea_end + decrypted_base; 459 sme_map_range_decrypted(&ppd); 460 461 /* Perform the encryption */ 462 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, 463 kernel_len, workarea_start, (unsigned long)ppd.pgd); 464 465 if (initrd_len) 466 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, 467 initrd_len, workarea_start, 468 (unsigned long)ppd.pgd); 469 470 /* 471 * At this point we are running encrypted. Remove the mappings for 472 * the decrypted areas - all that is needed for this is to remove 473 * the PGD entry/entries. 474 */ 475 ppd.vaddr = kernel_start + decrypted_base; 476 ppd.vaddr_end = kernel_end + decrypted_base; 477 sme_clear_pgd(&ppd); 478 479 if (initrd_len) { 480 ppd.vaddr = initrd_start + decrypted_base; 481 ppd.vaddr_end = initrd_end + decrypted_base; 482 sme_clear_pgd(&ppd); 483 } 484 485 ppd.vaddr = workarea_start + decrypted_base; 486 ppd.vaddr_end = workarea_end + decrypted_base; 487 sme_clear_pgd(&ppd); 488 489 /* Flush the TLB - no globals so cr3 is enough */ 490 native_write_cr3(__native_read_cr3()); 491 } 492 493 void __head sme_enable(struct boot_params *bp) 494 { 495 unsigned int eax, ebx, ecx, edx; 496 unsigned long feature_mask; 497 unsigned long me_mask; 498 bool snp; 499 u64 msr; 500 501 snp = snp_init(bp); 502 503 /* Check for the SME/SEV support leaf */ 504 eax = 0x80000000; 505 ecx = 0; 506 native_cpuid(&eax, &ebx, &ecx, &edx); 507 if (eax < 0x8000001f) 508 return; 509 510 #define AMD_SME_BIT BIT(0) 511 #define AMD_SEV_BIT BIT(1) 512 513 /* 514 * Check for the SME/SEV feature: 515 * CPUID Fn8000_001F[EAX] 516 * - Bit 0 - Secure Memory Encryption support 517 * - Bit 1 - Secure Encrypted Virtualization support 518 * CPUID Fn8000_001F[EBX] 519 * - Bits 5:0 - Pagetable bit position used to indicate encryption 520 */ 521 eax = 0x8000001f; 522 ecx = 0; 523 native_cpuid(&eax, &ebx, &ecx, &edx); 524 /* Check whether SEV or SME is supported */ 525 if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT))) 526 return; 527 528 me_mask = 1UL << (ebx & 0x3f); 529 530 /* Check the SEV MSR whether SEV or SME is enabled */ 531 RIP_REL_REF(sev_status) = msr = __rdmsr(MSR_AMD64_SEV); 532 feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT; 533 534 /* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */ 535 if (snp && !(msr & MSR_AMD64_SEV_SNP_ENABLED)) 536 snp_abort(); 537 538 /* Check if memory encryption is enabled */ 539 if (feature_mask == AMD_SME_BIT) { 540 if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION)) 541 return; 542 543 /* 544 * No SME if Hypervisor bit is set. This check is here to 545 * prevent a guest from trying to enable SME. For running as a 546 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there 547 * might be other hypervisors which emulate that MSR as non-zero 548 * or even pass it through to the guest. 549 * A malicious hypervisor can still trick a guest into this 550 * path, but there is no way to protect against that. 551 */ 552 eax = 1; 553 ecx = 0; 554 native_cpuid(&eax, &ebx, &ecx, &edx); 555 if (ecx & BIT(31)) 556 return; 557 558 /* For SME, check the SYSCFG MSR */ 559 msr = __rdmsr(MSR_AMD64_SYSCFG); 560 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 561 return; 562 } 563 564 RIP_REL_REF(sme_me_mask) = me_mask; 565 physical_mask &= ~me_mask; 566 cc_vendor = CC_VENDOR_AMD; 567 cc_set_mask(me_mask); 568 } 569
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.