~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/numa.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /* Common code for 32 and 64-bit NUMA */
  3 #include <linux/acpi.h>
  4 #include <linux/kernel.h>
  5 #include <linux/mm.h>
  6 #include <linux/of.h>
  7 #include <linux/string.h>
  8 #include <linux/init.h>
  9 #include <linux/memblock.h>
 10 #include <linux/mmzone.h>
 11 #include <linux/ctype.h>
 12 #include <linux/nodemask.h>
 13 #include <linux/sched.h>
 14 #include <linux/topology.h>
 15 #include <linux/sort.h>
 16 
 17 #include <asm/e820/api.h>
 18 #include <asm/proto.h>
 19 #include <asm/dma.h>
 20 #include <asm/amd_nb.h>
 21 
 22 #include "numa_internal.h"
 23 
 24 int numa_off;
 25 nodemask_t numa_nodes_parsed __initdata;
 26 
 27 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 28 EXPORT_SYMBOL(node_data);
 29 
 30 static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
 31 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
 32 
 33 static int numa_distance_cnt;
 34 static u8 *numa_distance;
 35 
 36 static __init int numa_setup(char *opt)
 37 {
 38         if (!opt)
 39                 return -EINVAL;
 40         if (!strncmp(opt, "off", 3))
 41                 numa_off = 1;
 42         if (!strncmp(opt, "fake=", 5))
 43                 return numa_emu_cmdline(opt + 5);
 44         if (!strncmp(opt, "noacpi", 6))
 45                 disable_srat();
 46         if (!strncmp(opt, "nohmat", 6))
 47                 disable_hmat();
 48         return 0;
 49 }
 50 early_param("numa", numa_setup);
 51 
 52 /*
 53  * apicid, cpu, node mappings
 54  */
 55 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
 56         [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 57 };
 58 
 59 int numa_cpu_node(int cpu)
 60 {
 61         u32 apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
 62 
 63         if (apicid != BAD_APICID)
 64                 return __apicid_to_node[apicid];
 65         return NUMA_NO_NODE;
 66 }
 67 
 68 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
 69 EXPORT_SYMBOL(node_to_cpumask_map);
 70 
 71 /*
 72  * Map cpu index to node index
 73  */
 74 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
 75 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 76 
 77 void numa_set_node(int cpu, int node)
 78 {
 79         int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
 80 
 81         /* early setting, no percpu area yet */
 82         if (cpu_to_node_map) {
 83                 cpu_to_node_map[cpu] = node;
 84                 return;
 85         }
 86 
 87 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
 88         if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 89                 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
 90                 dump_stack();
 91                 return;
 92         }
 93 #endif
 94         per_cpu(x86_cpu_to_node_map, cpu) = node;
 95 
 96         set_cpu_numa_node(cpu, node);
 97 }
 98 
 99 void numa_clear_node(int cpu)
100 {
101         numa_set_node(cpu, NUMA_NO_NODE);
102 }
103 
104 /*
105  * Allocate node_to_cpumask_map based on number of available nodes
106  * Requires node_possible_map to be valid.
107  *
108  * Note: cpumask_of_node() is not valid until after this is done.
109  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
110  */
111 void __init setup_node_to_cpumask_map(void)
112 {
113         unsigned int node;
114 
115         /* setup nr_node_ids if not done yet */
116         if (nr_node_ids == MAX_NUMNODES)
117                 setup_nr_node_ids();
118 
119         /* allocate the map */
120         for (node = 0; node < nr_node_ids; node++)
121                 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
122 
123         /* cpumask_of_node() will now work */
124         pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
125 }
126 
127 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
128                                      struct numa_meminfo *mi)
129 {
130         /* ignore zero length blks */
131         if (start == end)
132                 return 0;
133 
134         /* whine about and ignore invalid blks */
135         if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
136                 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
137                         nid, start, end - 1);
138                 return 0;
139         }
140 
141         if (mi->nr_blks >= NR_NODE_MEMBLKS) {
142                 pr_err("too many memblk ranges\n");
143                 return -EINVAL;
144         }
145 
146         mi->blk[mi->nr_blks].start = start;
147         mi->blk[mi->nr_blks].end = end;
148         mi->blk[mi->nr_blks].nid = nid;
149         mi->nr_blks++;
150         return 0;
151 }
152 
153 /**
154  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
155  * @idx: Index of memblk to remove
156  * @mi: numa_meminfo to remove memblk from
157  *
158  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
159  * decrementing @mi->nr_blks.
160  */
161 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
162 {
163         mi->nr_blks--;
164         memmove(&mi->blk[idx], &mi->blk[idx + 1],
165                 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
166 }
167 
168 /**
169  * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
170  * @dst: numa_meminfo to append block to
171  * @idx: Index of memblk to remove
172  * @src: numa_meminfo to remove memblk from
173  */
174 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
175                                          struct numa_meminfo *src)
176 {
177         dst->blk[dst->nr_blks++] = src->blk[idx];
178         numa_remove_memblk_from(idx, src);
179 }
180 
181 /**
182  * numa_add_memblk - Add one numa_memblk to numa_meminfo
183  * @nid: NUMA node ID of the new memblk
184  * @start: Start address of the new memblk
185  * @end: End address of the new memblk
186  *
187  * Add a new memblk to the default numa_meminfo.
188  *
189  * RETURNS:
190  * 0 on success, -errno on failure.
191  */
192 int __init numa_add_memblk(int nid, u64 start, u64 end)
193 {
194         return numa_add_memblk_to(nid, start, end, &numa_meminfo);
195 }
196 
197 /* Allocate NODE_DATA for a node on the local memory */
198 static void __init alloc_node_data(int nid)
199 {
200         const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
201         u64 nd_pa;
202         void *nd;
203         int tnid;
204 
205         /*
206          * Allocate node data.  Try node-local memory and then any node.
207          * Never allocate in DMA zone.
208          */
209         nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
210         if (!nd_pa) {
211                 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
212                        nd_size, nid);
213                 return;
214         }
215         nd = __va(nd_pa);
216 
217         /* report and initialize */
218         printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
219                nd_pa, nd_pa + nd_size - 1);
220         tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
221         if (tnid != nid)
222                 printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
223 
224         node_data[nid] = nd;
225         memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
226 
227         node_set_online(nid);
228 }
229 
230 /**
231  * numa_cleanup_meminfo - Cleanup a numa_meminfo
232  * @mi: numa_meminfo to clean up
233  *
234  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
235  * conflicts and clear unused memblks.
236  *
237  * RETURNS:
238  * 0 on success, -errno on failure.
239  */
240 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
241 {
242         const u64 low = 0;
243         const u64 high = PFN_PHYS(max_pfn);
244         int i, j, k;
245 
246         /* first, trim all entries */
247         for (i = 0; i < mi->nr_blks; i++) {
248                 struct numa_memblk *bi = &mi->blk[i];
249 
250                 /* move / save reserved memory ranges */
251                 if (!memblock_overlaps_region(&memblock.memory,
252                                         bi->start, bi->end - bi->start)) {
253                         numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
254                         continue;
255                 }
256 
257                 /* make sure all non-reserved blocks are inside the limits */
258                 bi->start = max(bi->start, low);
259 
260                 /* preserve info for non-RAM areas above 'max_pfn': */
261                 if (bi->end > high) {
262                         numa_add_memblk_to(bi->nid, high, bi->end,
263                                            &numa_reserved_meminfo);
264                         bi->end = high;
265                 }
266 
267                 /* and there's no empty block */
268                 if (bi->start >= bi->end)
269                         numa_remove_memblk_from(i--, mi);
270         }
271 
272         /* merge neighboring / overlapping entries */
273         for (i = 0; i < mi->nr_blks; i++) {
274                 struct numa_memblk *bi = &mi->blk[i];
275 
276                 for (j = i + 1; j < mi->nr_blks; j++) {
277                         struct numa_memblk *bj = &mi->blk[j];
278                         u64 start, end;
279 
280                         /*
281                          * See whether there are overlapping blocks.  Whine
282                          * about but allow overlaps of the same nid.  They
283                          * will be merged below.
284                          */
285                         if (bi->end > bj->start && bi->start < bj->end) {
286                                 if (bi->nid != bj->nid) {
287                                         pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
288                                                bi->nid, bi->start, bi->end - 1,
289                                                bj->nid, bj->start, bj->end - 1);
290                                         return -EINVAL;
291                                 }
292                                 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
293                                         bi->nid, bi->start, bi->end - 1,
294                                         bj->start, bj->end - 1);
295                         }
296 
297                         /*
298                          * Join together blocks on the same node, holes
299                          * between which don't overlap with memory on other
300                          * nodes.
301                          */
302                         if (bi->nid != bj->nid)
303                                 continue;
304                         start = min(bi->start, bj->start);
305                         end = max(bi->end, bj->end);
306                         for (k = 0; k < mi->nr_blks; k++) {
307                                 struct numa_memblk *bk = &mi->blk[k];
308 
309                                 if (bi->nid == bk->nid)
310                                         continue;
311                                 if (start < bk->end && end > bk->start)
312                                         break;
313                         }
314                         if (k < mi->nr_blks)
315                                 continue;
316                         printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
317                                bi->nid, bi->start, bi->end - 1, bj->start,
318                                bj->end - 1, start, end - 1);
319                         bi->start = start;
320                         bi->end = end;
321                         numa_remove_memblk_from(j--, mi);
322                 }
323         }
324 
325         /* clear unused ones */
326         for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
327                 mi->blk[i].start = mi->blk[i].end = 0;
328                 mi->blk[i].nid = NUMA_NO_NODE;
329         }
330 
331         return 0;
332 }
333 
334 /*
335  * Set nodes, which have memory in @mi, in *@nodemask.
336  */
337 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
338                                               const struct numa_meminfo *mi)
339 {
340         int i;
341 
342         for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
343                 if (mi->blk[i].start != mi->blk[i].end &&
344                     mi->blk[i].nid != NUMA_NO_NODE)
345                         node_set(mi->blk[i].nid, *nodemask);
346 }
347 
348 /**
349  * numa_reset_distance - Reset NUMA distance table
350  *
351  * The current table is freed.  The next numa_set_distance() call will
352  * create a new one.
353  */
354 void __init numa_reset_distance(void)
355 {
356         size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
357 
358         /* numa_distance could be 1LU marking allocation failure, test cnt */
359         if (numa_distance_cnt)
360                 memblock_free(numa_distance, size);
361         numa_distance_cnt = 0;
362         numa_distance = NULL;   /* enable table creation */
363 }
364 
365 static int __init numa_alloc_distance(void)
366 {
367         nodemask_t nodes_parsed;
368         size_t size;
369         int i, j, cnt = 0;
370         u64 phys;
371 
372         /* size the new table and allocate it */
373         nodes_parsed = numa_nodes_parsed;
374         numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
375 
376         for_each_node_mask(i, nodes_parsed)
377                 cnt = i;
378         cnt++;
379         size = cnt * cnt * sizeof(numa_distance[0]);
380 
381         phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0,
382                                          PFN_PHYS(max_pfn_mapped));
383         if (!phys) {
384                 pr_warn("Warning: can't allocate distance table!\n");
385                 /* don't retry until explicitly reset */
386                 numa_distance = (void *)1LU;
387                 return -ENOMEM;
388         }
389 
390         numa_distance = __va(phys);
391         numa_distance_cnt = cnt;
392 
393         /* fill with the default distances */
394         for (i = 0; i < cnt; i++)
395                 for (j = 0; j < cnt; j++)
396                         numa_distance[i * cnt + j] = i == j ?
397                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
398         printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
399 
400         return 0;
401 }
402 
403 /**
404  * numa_set_distance - Set NUMA distance from one NUMA to another
405  * @from: the 'from' node to set distance
406  * @to: the 'to'  node to set distance
407  * @distance: NUMA distance
408  *
409  * Set the distance from node @from to @to to @distance.  If distance table
410  * doesn't exist, one which is large enough to accommodate all the currently
411  * known nodes will be created.
412  *
413  * If such table cannot be allocated, a warning is printed and further
414  * calls are ignored until the distance table is reset with
415  * numa_reset_distance().
416  *
417  * If @from or @to is higher than the highest known node or lower than zero
418  * at the time of table creation or @distance doesn't make sense, the call
419  * is ignored.
420  * This is to allow simplification of specific NUMA config implementations.
421  */
422 void __init numa_set_distance(int from, int to, int distance)
423 {
424         if (!numa_distance && numa_alloc_distance() < 0)
425                 return;
426 
427         if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
428                         from < 0 || to < 0) {
429                 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
430                              from, to, distance);
431                 return;
432         }
433 
434         if ((u8)distance != distance ||
435             (from == to && distance != LOCAL_DISTANCE)) {
436                 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
437                              from, to, distance);
438                 return;
439         }
440 
441         numa_distance[from * numa_distance_cnt + to] = distance;
442 }
443 
444 int __node_distance(int from, int to)
445 {
446         if (from >= numa_distance_cnt || to >= numa_distance_cnt)
447                 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
448         return numa_distance[from * numa_distance_cnt + to];
449 }
450 EXPORT_SYMBOL(__node_distance);
451 
452 /*
453  * Mark all currently memblock-reserved physical memory (which covers the
454  * kernel's own memory ranges) as hot-unswappable.
455  */
456 static void __init numa_clear_kernel_node_hotplug(void)
457 {
458         nodemask_t reserved_nodemask = NODE_MASK_NONE;
459         struct memblock_region *mb_region;
460         int i;
461 
462         /*
463          * We have to do some preprocessing of memblock regions, to
464          * make them suitable for reservation.
465          *
466          * At this time, all memory regions reserved by memblock are
467          * used by the kernel, but those regions are not split up
468          * along node boundaries yet, and don't necessarily have their
469          * node ID set yet either.
470          *
471          * So iterate over all memory known to the x86 architecture,
472          * and use those ranges to set the nid in memblock.reserved.
473          * This will split up the memblock regions along node
474          * boundaries and will set the node IDs as well.
475          */
476         for (i = 0; i < numa_meminfo.nr_blks; i++) {
477                 struct numa_memblk *mb = numa_meminfo.blk + i;
478                 int ret;
479 
480                 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
481                 WARN_ON_ONCE(ret);
482         }
483 
484         /*
485          * Now go over all reserved memblock regions, to construct a
486          * node mask of all kernel reserved memory areas.
487          *
488          * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
489          *   numa_meminfo might not include all memblock.reserved
490          *   memory ranges, because quirks such as trim_snb_memory()
491          *   reserve specific pages for Sandy Bridge graphics. ]
492          */
493         for_each_reserved_mem_region(mb_region) {
494                 int nid = memblock_get_region_node(mb_region);
495 
496                 if (nid != NUMA_NO_NODE)
497                         node_set(nid, reserved_nodemask);
498         }
499 
500         /*
501          * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
502          * belonging to the reserved node mask.
503          *
504          * Note that this will include memory regions that reside
505          * on nodes that contain kernel memory - entire nodes
506          * become hot-unpluggable:
507          */
508         for (i = 0; i < numa_meminfo.nr_blks; i++) {
509                 struct numa_memblk *mb = numa_meminfo.blk + i;
510 
511                 if (!node_isset(mb->nid, reserved_nodemask))
512                         continue;
513 
514                 memblock_clear_hotplug(mb->start, mb->end - mb->start);
515         }
516 }
517 
518 static int __init numa_register_memblks(struct numa_meminfo *mi)
519 {
520         int i, nid;
521 
522         /* Account for nodes with cpus and no memory */
523         node_possible_map = numa_nodes_parsed;
524         numa_nodemask_from_meminfo(&node_possible_map, mi);
525         if (WARN_ON(nodes_empty(node_possible_map)))
526                 return -EINVAL;
527 
528         for (i = 0; i < mi->nr_blks; i++) {
529                 struct numa_memblk *mb = &mi->blk[i];
530                 memblock_set_node(mb->start, mb->end - mb->start,
531                                   &memblock.memory, mb->nid);
532         }
533 
534         /*
535          * At very early time, the kernel have to use some memory such as
536          * loading the kernel image. We cannot prevent this anyway. So any
537          * node the kernel resides in should be un-hotpluggable.
538          *
539          * And when we come here, alloc node data won't fail.
540          */
541         numa_clear_kernel_node_hotplug();
542 
543         /*
544          * If sections array is gonna be used for pfn -> nid mapping, check
545          * whether its granularity is fine enough.
546          */
547         if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
548                 unsigned long pfn_align = node_map_pfn_alignment();
549 
550                 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
551                         pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
552                                 PFN_PHYS(pfn_align) >> 20,
553                                 PFN_PHYS(PAGES_PER_SECTION) >> 20);
554                         return -EINVAL;
555                 }
556         }
557 
558         if (!memblock_validate_numa_coverage(SZ_1M))
559                 return -EINVAL;
560 
561         /* Finally register nodes. */
562         for_each_node_mask(nid, node_possible_map) {
563                 u64 start = PFN_PHYS(max_pfn);
564                 u64 end = 0;
565 
566                 for (i = 0; i < mi->nr_blks; i++) {
567                         if (nid != mi->blk[i].nid)
568                                 continue;
569                         start = min(mi->blk[i].start, start);
570                         end = max(mi->blk[i].end, end);
571                 }
572 
573                 if (start >= end)
574                         continue;
575 
576                 alloc_node_data(nid);
577         }
578 
579         /* Dump memblock with node info and return. */
580         memblock_dump_all();
581         return 0;
582 }
583 
584 /*
585  * There are unfortunately some poorly designed mainboards around that
586  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
587  * mapping. To avoid this fill in the mapping for all possible CPUs,
588  * as the number of CPUs is not known yet. We round robin the existing
589  * nodes.
590  */
591 static void __init numa_init_array(void)
592 {
593         int rr, i;
594 
595         rr = first_node(node_online_map);
596         for (i = 0; i < nr_cpu_ids; i++) {
597                 if (early_cpu_to_node(i) != NUMA_NO_NODE)
598                         continue;
599                 numa_set_node(i, rr);
600                 rr = next_node_in(rr, node_online_map);
601         }
602 }
603 
604 static int __init numa_init(int (*init_func)(void))
605 {
606         int i;
607         int ret;
608 
609         for (i = 0; i < MAX_LOCAL_APIC; i++)
610                 set_apicid_to_node(i, NUMA_NO_NODE);
611 
612         nodes_clear(numa_nodes_parsed);
613         nodes_clear(node_possible_map);
614         nodes_clear(node_online_map);
615         memset(&numa_meminfo, 0, sizeof(numa_meminfo));
616         WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
617                                   NUMA_NO_NODE));
618         WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
619                                   NUMA_NO_NODE));
620         /* In case that parsing SRAT failed. */
621         WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
622         numa_reset_distance();
623 
624         ret = init_func();
625         if (ret < 0)
626                 return ret;
627 
628         /*
629          * We reset memblock back to the top-down direction
630          * here because if we configured ACPI_NUMA, we have
631          * parsed SRAT in init_func(). It is ok to have the
632          * reset here even if we did't configure ACPI_NUMA
633          * or acpi numa init fails and fallbacks to dummy
634          * numa init.
635          */
636         memblock_set_bottom_up(false);
637 
638         ret = numa_cleanup_meminfo(&numa_meminfo);
639         if (ret < 0)
640                 return ret;
641 
642         numa_emulation(&numa_meminfo, numa_distance_cnt);
643 
644         ret = numa_register_memblks(&numa_meminfo);
645         if (ret < 0)
646                 return ret;
647 
648         for (i = 0; i < nr_cpu_ids; i++) {
649                 int nid = early_cpu_to_node(i);
650 
651                 if (nid == NUMA_NO_NODE)
652                         continue;
653                 if (!node_online(nid))
654                         numa_clear_node(i);
655         }
656         numa_init_array();
657 
658         return 0;
659 }
660 
661 /**
662  * dummy_numa_init - Fallback dummy NUMA init
663  *
664  * Used if there's no underlying NUMA architecture, NUMA initialization
665  * fails, or NUMA is disabled on the command line.
666  *
667  * Must online at least one node and add memory blocks that cover all
668  * allowed memory.  This function must not fail.
669  */
670 static int __init dummy_numa_init(void)
671 {
672         printk(KERN_INFO "%s\n",
673                numa_off ? "NUMA turned off" : "No NUMA configuration found");
674         printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
675                0LLU, PFN_PHYS(max_pfn) - 1);
676 
677         node_set(0, numa_nodes_parsed);
678         numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
679 
680         return 0;
681 }
682 
683 /**
684  * x86_numa_init - Initialize NUMA
685  *
686  * Try each configured NUMA initialization method until one succeeds.  The
687  * last fallback is dummy single node config encompassing whole memory and
688  * never fails.
689  */
690 void __init x86_numa_init(void)
691 {
692         if (!numa_off) {
693 #ifdef CONFIG_ACPI_NUMA
694                 if (!numa_init(x86_acpi_numa_init))
695                         return;
696 #endif
697 #ifdef CONFIG_AMD_NUMA
698                 if (!numa_init(amd_numa_init))
699                         return;
700 #endif
701                 if (acpi_disabled && !numa_init(of_numa_init))
702                         return;
703         }
704 
705         numa_init(dummy_numa_init);
706 }
707 
708 
709 /*
710  * A node may exist which has one or more Generic Initiators but no CPUs and no
711  * memory.
712  *
713  * This function must be called after init_cpu_to_node(), to ensure that any
714  * memoryless CPU nodes have already been brought online, and before the
715  * node_data[nid] is needed for zone list setup in build_all_zonelists().
716  *
717  * When this function is called, any nodes containing either memory and/or CPUs
718  * will already be online and there is no need to do anything extra, even if
719  * they also contain one or more Generic Initiators.
720  */
721 void __init init_gi_nodes(void)
722 {
723         int nid;
724 
725         /*
726          * Exclude this node from
727          * bringup_nonboot_cpus
728          *  cpu_up
729          *   __try_online_node
730          *    register_one_node
731          * because node_subsys is not initialized yet.
732          * TODO remove dependency on node_online
733          */
734         for_each_node_state(nid, N_GENERIC_INITIATOR)
735                 if (!node_online(nid))
736                         node_set_online(nid);
737 }
738 
739 /*
740  * Setup early cpu_to_node.
741  *
742  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
743  * and apicid_to_node[] tables have valid entries for a CPU.
744  * This means we skip cpu_to_node[] initialisation for NUMA
745  * emulation and faking node case (when running a kernel compiled
746  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
747  * is already initialized in a round robin manner at numa_init_array,
748  * prior to this call, and this initialization is good enough
749  * for the fake NUMA cases.
750  *
751  * Called before the per_cpu areas are setup.
752  */
753 void __init init_cpu_to_node(void)
754 {
755         int cpu;
756         u32 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
757 
758         BUG_ON(cpu_to_apicid == NULL);
759 
760         for_each_possible_cpu(cpu) {
761                 int node = numa_cpu_node(cpu);
762 
763                 if (node == NUMA_NO_NODE)
764                         continue;
765 
766                 /*
767                  * Exclude this node from
768                  * bringup_nonboot_cpus
769                  *  cpu_up
770                  *   __try_online_node
771                  *    register_one_node
772                  * because node_subsys is not initialized yet.
773                  * TODO remove dependency on node_online
774                  */
775                 if (!node_online(node))
776                         node_set_online(node);
777 
778                 numa_set_node(cpu, node);
779         }
780 }
781 
782 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
783 
784 # ifndef CONFIG_NUMA_EMU
785 void numa_add_cpu(int cpu)
786 {
787         cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
788 }
789 
790 void numa_remove_cpu(int cpu)
791 {
792         cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
793 }
794 # endif /* !CONFIG_NUMA_EMU */
795 
796 #else   /* !CONFIG_DEBUG_PER_CPU_MAPS */
797 
798 int __cpu_to_node(int cpu)
799 {
800         if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
801                 printk(KERN_WARNING
802                         "cpu_to_node(%d): usage too early!\n", cpu);
803                 dump_stack();
804                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
805         }
806         return per_cpu(x86_cpu_to_node_map, cpu);
807 }
808 EXPORT_SYMBOL(__cpu_to_node);
809 
810 /*
811  * Same function as cpu_to_node() but used if called before the
812  * per_cpu areas are setup.
813  */
814 int early_cpu_to_node(int cpu)
815 {
816         if (early_per_cpu_ptr(x86_cpu_to_node_map))
817                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
818 
819         if (!cpu_possible(cpu)) {
820                 printk(KERN_WARNING
821                         "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
822                 dump_stack();
823                 return NUMA_NO_NODE;
824         }
825         return per_cpu(x86_cpu_to_node_map, cpu);
826 }
827 
828 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
829 {
830         struct cpumask *mask;
831 
832         if (node == NUMA_NO_NODE) {
833                 /* early_cpu_to_node() already emits a warning and trace */
834                 return;
835         }
836         mask = node_to_cpumask_map[node];
837         if (!cpumask_available(mask)) {
838                 pr_err("node_to_cpumask_map[%i] NULL\n", node);
839                 dump_stack();
840                 return;
841         }
842 
843         if (enable)
844                 cpumask_set_cpu(cpu, mask);
845         else
846                 cpumask_clear_cpu(cpu, mask);
847 
848         printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
849                 enable ? "numa_add_cpu" : "numa_remove_cpu",
850                 cpu, node, cpumask_pr_args(mask));
851         return;
852 }
853 
854 # ifndef CONFIG_NUMA_EMU
855 static void numa_set_cpumask(int cpu, bool enable)
856 {
857         debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
858 }
859 
860 void numa_add_cpu(int cpu)
861 {
862         numa_set_cpumask(cpu, true);
863 }
864 
865 void numa_remove_cpu(int cpu)
866 {
867         numa_set_cpumask(cpu, false);
868 }
869 # endif /* !CONFIG_NUMA_EMU */
870 
871 /*
872  * Returns a pointer to the bitmask of CPUs on Node 'node'.
873  */
874 const struct cpumask *cpumask_of_node(int node)
875 {
876         if ((unsigned)node >= nr_node_ids) {
877                 printk(KERN_WARNING
878                         "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
879                         node, nr_node_ids);
880                 dump_stack();
881                 return cpu_none_mask;
882         }
883         if (!cpumask_available(node_to_cpumask_map[node])) {
884                 printk(KERN_WARNING
885                         "cpumask_of_node(%d): no node_to_cpumask_map!\n",
886                         node);
887                 dump_stack();
888                 return cpu_online_mask;
889         }
890         return node_to_cpumask_map[node];
891 }
892 EXPORT_SYMBOL(cpumask_of_node);
893 
894 #endif  /* !CONFIG_DEBUG_PER_CPU_MAPS */
895 
896 #ifdef CONFIG_NUMA_KEEP_MEMINFO
897 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
898 {
899         int i;
900 
901         for (i = 0; i < mi->nr_blks; i++)
902                 if (mi->blk[i].start <= start && mi->blk[i].end > start)
903                         return mi->blk[i].nid;
904         return NUMA_NO_NODE;
905 }
906 
907 int phys_to_target_node(phys_addr_t start)
908 {
909         int nid = meminfo_to_nid(&numa_meminfo, start);
910 
911         /*
912          * Prefer online nodes, but if reserved memory might be
913          * hot-added continue the search with reserved ranges.
914          */
915         if (nid != NUMA_NO_NODE)
916                 return nid;
917 
918         return meminfo_to_nid(&numa_reserved_meminfo, start);
919 }
920 EXPORT_SYMBOL_GPL(phys_to_target_node);
921 
922 int memory_add_physaddr_to_nid(u64 start)
923 {
924         int nid = meminfo_to_nid(&numa_meminfo, start);
925 
926         if (nid == NUMA_NO_NODE)
927                 nid = numa_meminfo.blk[0].nid;
928         return nid;
929 }
930 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
931 
932 #endif
933 
934 static int __init cmp_memblk(const void *a, const void *b)
935 {
936         const struct numa_memblk *ma = *(const struct numa_memblk **)a;
937         const struct numa_memblk *mb = *(const struct numa_memblk **)b;
938 
939         return (ma->start > mb->start) - (ma->start < mb->start);
940 }
941 
942 static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;
943 
944 /**
945  * numa_fill_memblks - Fill gaps in numa_meminfo memblks
946  * @start: address to begin fill
947  * @end: address to end fill
948  *
949  * Find and extend numa_meminfo memblks to cover the physical
950  * address range @start-@end
951  *
952  * RETURNS:
953  * 0              : Success
954  * NUMA_NO_MEMBLK : No memblks exist in address range @start-@end
955  */
956 
957 int __init numa_fill_memblks(u64 start, u64 end)
958 {
959         struct numa_memblk **blk = &numa_memblk_list[0];
960         struct numa_meminfo *mi = &numa_meminfo;
961         int count = 0;
962         u64 prev_end;
963 
964         /*
965          * Create a list of pointers to numa_meminfo memblks that
966          * overlap start, end. The list is used to make in-place
967          * changes that fill out the numa_meminfo memblks.
968          */
969         for (int i = 0; i < mi->nr_blks; i++) {
970                 struct numa_memblk *bi = &mi->blk[i];
971 
972                 if (memblock_addrs_overlap(start, end - start, bi->start,
973                                            bi->end - bi->start)) {
974                         blk[count] = &mi->blk[i];
975                         count++;
976                 }
977         }
978         if (!count)
979                 return NUMA_NO_MEMBLK;
980 
981         /* Sort the list of pointers in memblk->start order */
982         sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);
983 
984         /* Make sure the first/last memblks include start/end */
985         blk[0]->start = min(blk[0]->start, start);
986         blk[count - 1]->end = max(blk[count - 1]->end, end);
987 
988         /*
989          * Fill any gaps by tracking the previous memblks
990          * end address and backfilling to it if needed.
991          */
992         prev_end = blk[0]->end;
993         for (int i = 1; i < count; i++) {
994                 struct numa_memblk *curr = blk[i];
995 
996                 if (prev_end >= curr->start) {
997                         if (prev_end < curr->end)
998                                 prev_end = curr->end;
999                 } else {
1000                         curr->start = prev_end;
1001                         prev_end = curr->end;
1002                 }
1003         }
1004         return 0;
1005 }
1006 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php