1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NUMA emulation 4 */ 5 #include <linux/kernel.h> 6 #include <linux/errno.h> 7 #include <linux/topology.h> 8 #include <linux/memblock.h> 9 #include <asm/dma.h> 10 11 #include "numa_internal.h" 12 13 static int emu_nid_to_phys[MAX_NUMNODES]; 14 static char *emu_cmdline __initdata; 15 16 int __init numa_emu_cmdline(char *str) 17 { 18 emu_cmdline = str; 19 return 0; 20 } 21 22 static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi) 23 { 24 int i; 25 26 for (i = 0; i < mi->nr_blks; i++) 27 if (mi->blk[i].nid == nid) 28 return i; 29 return -ENOENT; 30 } 31 32 static u64 __init mem_hole_size(u64 start, u64 end) 33 { 34 unsigned long start_pfn = PFN_UP(start); 35 unsigned long end_pfn = PFN_DOWN(end); 36 37 if (start_pfn < end_pfn) 38 return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn)); 39 return 0; 40 } 41 42 /* 43 * Sets up nid to range from @start to @end. The return value is -errno if 44 * something went wrong, 0 otherwise. 45 */ 46 static int __init emu_setup_memblk(struct numa_meminfo *ei, 47 struct numa_meminfo *pi, 48 int nid, int phys_blk, u64 size) 49 { 50 struct numa_memblk *eb = &ei->blk[ei->nr_blks]; 51 struct numa_memblk *pb = &pi->blk[phys_blk]; 52 53 if (ei->nr_blks >= NR_NODE_MEMBLKS) { 54 pr_err("NUMA: Too many emulated memblks, failing emulation\n"); 55 return -EINVAL; 56 } 57 58 ei->nr_blks++; 59 eb->start = pb->start; 60 eb->end = pb->start + size; 61 eb->nid = nid; 62 63 if (emu_nid_to_phys[nid] == NUMA_NO_NODE) 64 emu_nid_to_phys[nid] = pb->nid; 65 66 pb->start += size; 67 if (pb->start >= pb->end) { 68 WARN_ON_ONCE(pb->start > pb->end); 69 numa_remove_memblk_from(phys_blk, pi); 70 } 71 72 printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n", 73 nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20); 74 return 0; 75 } 76 77 /* 78 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr 79 * to max_addr. 80 * 81 * Returns zero on success or negative on error. 82 */ 83 static int __init split_nodes_interleave(struct numa_meminfo *ei, 84 struct numa_meminfo *pi, 85 u64 addr, u64 max_addr, int nr_nodes) 86 { 87 nodemask_t physnode_mask = numa_nodes_parsed; 88 u64 size; 89 int big; 90 int nid = 0; 91 int i, ret; 92 93 if (nr_nodes <= 0) 94 return -1; 95 if (nr_nodes > MAX_NUMNODES) { 96 pr_info("numa=fake=%d too large, reducing to %d\n", 97 nr_nodes, MAX_NUMNODES); 98 nr_nodes = MAX_NUMNODES; 99 } 100 101 /* 102 * Calculate target node size. x86_32 freaks on __udivdi3() so do 103 * the division in ulong number of pages and convert back. 104 */ 105 size = max_addr - addr - mem_hole_size(addr, max_addr); 106 size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes); 107 108 /* 109 * Calculate the number of big nodes that can be allocated as a result 110 * of consolidating the remainder. 111 */ 112 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / 113 FAKE_NODE_MIN_SIZE; 114 115 size &= FAKE_NODE_MIN_HASH_MASK; 116 if (!size) { 117 pr_err("Not enough memory for each node. " 118 "NUMA emulation disabled.\n"); 119 return -1; 120 } 121 122 /* 123 * Continue to fill physical nodes with fake nodes until there is no 124 * memory left on any of them. 125 */ 126 while (!nodes_empty(physnode_mask)) { 127 for_each_node_mask(i, physnode_mask) { 128 u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); 129 u64 start, limit, end; 130 int phys_blk; 131 132 phys_blk = emu_find_memblk_by_nid(i, pi); 133 if (phys_blk < 0) { 134 node_clear(i, physnode_mask); 135 continue; 136 } 137 start = pi->blk[phys_blk].start; 138 limit = pi->blk[phys_blk].end; 139 end = start + size; 140 141 if (nid < big) 142 end += FAKE_NODE_MIN_SIZE; 143 144 /* 145 * Continue to add memory to this fake node if its 146 * non-reserved memory is less than the per-node size. 147 */ 148 while (end - start - mem_hole_size(start, end) < size) { 149 end += FAKE_NODE_MIN_SIZE; 150 if (end > limit) { 151 end = limit; 152 break; 153 } 154 } 155 156 /* 157 * If there won't be at least FAKE_NODE_MIN_SIZE of 158 * non-reserved memory in ZONE_DMA32 for the next node, 159 * this one must extend to the boundary. 160 */ 161 if (end < dma32_end && dma32_end - end - 162 mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) 163 end = dma32_end; 164 165 /* 166 * If there won't be enough non-reserved memory for the 167 * next node, this one must extend to the end of the 168 * physical node. 169 */ 170 if (limit - end - mem_hole_size(end, limit) < size) 171 end = limit; 172 173 ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes, 174 phys_blk, 175 min(end, limit) - start); 176 if (ret < 0) 177 return ret; 178 } 179 } 180 return 0; 181 } 182 183 /* 184 * Returns the end address of a node so that there is at least `size' amount of 185 * non-reserved memory or `max_addr' is reached. 186 */ 187 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) 188 { 189 u64 end = start + size; 190 191 while (end - start - mem_hole_size(start, end) < size) { 192 end += FAKE_NODE_MIN_SIZE; 193 if (end > max_addr) { 194 end = max_addr; 195 break; 196 } 197 } 198 return end; 199 } 200 201 static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes) 202 { 203 unsigned long max_pfn = PHYS_PFN(max_addr); 204 unsigned long base_pfn = PHYS_PFN(base); 205 unsigned long hole_pfns = PHYS_PFN(hole); 206 207 return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes); 208 } 209 210 /* 211 * Sets up fake nodes of `size' interleaved over physical nodes ranging from 212 * `addr' to `max_addr'. 213 * 214 * Returns zero on success or negative on error. 215 */ 216 static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei, 217 struct numa_meminfo *pi, 218 u64 addr, u64 max_addr, u64 size, 219 int nr_nodes, struct numa_memblk *pblk, 220 int nid) 221 { 222 nodemask_t physnode_mask = numa_nodes_parsed; 223 int i, ret, uniform = 0; 224 u64 min_size; 225 226 if ((!size && !nr_nodes) || (nr_nodes && !pblk)) 227 return -1; 228 229 /* 230 * In the 'uniform' case split the passed in physical node by 231 * nr_nodes, in the non-uniform case, ignore the passed in 232 * physical block and try to create nodes of at least size 233 * @size. 234 * 235 * In the uniform case, split the nodes strictly by physical 236 * capacity, i.e. ignore holes. In the non-uniform case account 237 * for holes and treat @size as a minimum floor. 238 */ 239 if (!nr_nodes) 240 nr_nodes = MAX_NUMNODES; 241 else { 242 nodes_clear(physnode_mask); 243 node_set(pblk->nid, physnode_mask); 244 uniform = 1; 245 } 246 247 if (uniform) { 248 min_size = uniform_size(max_addr, addr, 0, nr_nodes); 249 size = min_size; 250 } else { 251 /* 252 * The limit on emulated nodes is MAX_NUMNODES, so the 253 * size per node is increased accordingly if the 254 * requested size is too small. This creates a uniform 255 * distribution of node sizes across the entire machine 256 * (but not necessarily over physical nodes). 257 */ 258 min_size = uniform_size(max_addr, addr, 259 mem_hole_size(addr, max_addr), nr_nodes); 260 } 261 min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE); 262 if (size < min_size) { 263 pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", 264 size >> 20, min_size >> 20); 265 size = min_size; 266 } 267 size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE); 268 269 /* 270 * Fill physical nodes with fake nodes of size until there is no memory 271 * left on any of them. 272 */ 273 while (!nodes_empty(physnode_mask)) { 274 for_each_node_mask(i, physnode_mask) { 275 u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); 276 u64 start, limit, end; 277 int phys_blk; 278 279 phys_blk = emu_find_memblk_by_nid(i, pi); 280 if (phys_blk < 0) { 281 node_clear(i, physnode_mask); 282 continue; 283 } 284 285 start = pi->blk[phys_blk].start; 286 limit = pi->blk[phys_blk].end; 287 288 if (uniform) 289 end = start + size; 290 else 291 end = find_end_of_node(start, limit, size); 292 /* 293 * If there won't be at least FAKE_NODE_MIN_SIZE of 294 * non-reserved memory in ZONE_DMA32 for the next node, 295 * this one must extend to the boundary. 296 */ 297 if (end < dma32_end && dma32_end - end - 298 mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) 299 end = dma32_end; 300 301 /* 302 * If there won't be enough non-reserved memory for the 303 * next node, this one must extend to the end of the 304 * physical node. 305 */ 306 if ((limit - end - mem_hole_size(end, limit) < size) 307 && !uniform) 308 end = limit; 309 310 ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES, 311 phys_blk, 312 min(end, limit) - start); 313 if (ret < 0) 314 return ret; 315 } 316 } 317 return nid; 318 } 319 320 static int __init split_nodes_size_interleave(struct numa_meminfo *ei, 321 struct numa_meminfo *pi, 322 u64 addr, u64 max_addr, u64 size) 323 { 324 return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size, 325 0, NULL, 0); 326 } 327 328 static int __init setup_emu2phys_nid(int *dfl_phys_nid) 329 { 330 int i, max_emu_nid = 0; 331 332 *dfl_phys_nid = NUMA_NO_NODE; 333 for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) { 334 if (emu_nid_to_phys[i] != NUMA_NO_NODE) { 335 max_emu_nid = i; 336 if (*dfl_phys_nid == NUMA_NO_NODE) 337 *dfl_phys_nid = emu_nid_to_phys[i]; 338 } 339 } 340 341 return max_emu_nid; 342 } 343 344 /** 345 * numa_emulation - Emulate NUMA nodes 346 * @numa_meminfo: NUMA configuration to massage 347 * @numa_dist_cnt: The size of the physical NUMA distance table 348 * 349 * Emulate NUMA nodes according to the numa=fake kernel parameter. 350 * @numa_meminfo contains the physical memory configuration and is modified 351 * to reflect the emulated configuration on success. @numa_dist_cnt is 352 * used to determine the size of the physical distance table. 353 * 354 * On success, the following modifications are made. 355 * 356 * - @numa_meminfo is updated to reflect the emulated nodes. 357 * 358 * - __apicid_to_node[] is updated such that APIC IDs are mapped to the 359 * emulated nodes. 360 * 361 * - NUMA distance table is rebuilt to represent distances between emulated 362 * nodes. The distances are determined considering how emulated nodes 363 * are mapped to physical nodes and match the actual distances. 364 * 365 * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical 366 * nodes. This is used by numa_add_cpu() and numa_remove_cpu(). 367 * 368 * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with 369 * identity mapping and no other modification is made. 370 */ 371 void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt) 372 { 373 static struct numa_meminfo ei __initdata; 374 static struct numa_meminfo pi __initdata; 375 const u64 max_addr = PFN_PHYS(max_pfn); 376 u8 *phys_dist = NULL; 377 size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]); 378 int max_emu_nid, dfl_phys_nid; 379 int i, j, ret; 380 381 if (!emu_cmdline) 382 goto no_emu; 383 384 memset(&ei, 0, sizeof(ei)); 385 pi = *numa_meminfo; 386 387 for (i = 0; i < MAX_NUMNODES; i++) 388 emu_nid_to_phys[i] = NUMA_NO_NODE; 389 390 /* 391 * If the numa=fake command-line contains a 'M' or 'G', it represents 392 * the fixed node size. Otherwise, if it is just a single number N, 393 * split the system RAM into N fake nodes. 394 */ 395 if (strchr(emu_cmdline, 'U')) { 396 nodemask_t physnode_mask = numa_nodes_parsed; 397 unsigned long n; 398 int nid = 0; 399 400 n = simple_strtoul(emu_cmdline, &emu_cmdline, 0); 401 ret = -1; 402 for_each_node_mask(i, physnode_mask) { 403 /* 404 * The reason we pass in blk[0] is due to 405 * numa_remove_memblk_from() called by 406 * emu_setup_memblk() will delete entry 0 407 * and then move everything else up in the pi.blk 408 * array. Therefore we should always be looking 409 * at blk[0]. 410 */ 411 ret = split_nodes_size_interleave_uniform(&ei, &pi, 412 pi.blk[0].start, pi.blk[0].end, 0, 413 n, &pi.blk[0], nid); 414 if (ret < 0) 415 break; 416 if (ret < n) { 417 pr_info("%s: phys: %d only got %d of %ld nodes, failing\n", 418 __func__, i, ret, n); 419 ret = -1; 420 break; 421 } 422 nid = ret; 423 } 424 } else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) { 425 u64 size; 426 427 size = memparse(emu_cmdline, &emu_cmdline); 428 ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size); 429 } else { 430 unsigned long n; 431 432 n = simple_strtoul(emu_cmdline, &emu_cmdline, 0); 433 ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n); 434 } 435 if (*emu_cmdline == ':') 436 emu_cmdline++; 437 438 if (ret < 0) 439 goto no_emu; 440 441 if (numa_cleanup_meminfo(&ei) < 0) { 442 pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n"); 443 goto no_emu; 444 } 445 446 /* copy the physical distance table */ 447 if (numa_dist_cnt) { 448 u64 phys; 449 450 phys = memblock_phys_alloc_range(phys_size, PAGE_SIZE, 0, 451 PFN_PHYS(max_pfn_mapped)); 452 if (!phys) { 453 pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n"); 454 goto no_emu; 455 } 456 phys_dist = __va(phys); 457 458 for (i = 0; i < numa_dist_cnt; i++) 459 for (j = 0; j < numa_dist_cnt; j++) 460 phys_dist[i * numa_dist_cnt + j] = 461 node_distance(i, j); 462 } 463 464 /* 465 * Determine the max emulated nid and the default phys nid to use 466 * for unmapped nodes. 467 */ 468 max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid); 469 470 /* commit */ 471 *numa_meminfo = ei; 472 473 /* Make sure numa_nodes_parsed only contains emulated nodes */ 474 nodes_clear(numa_nodes_parsed); 475 for (i = 0; i < ARRAY_SIZE(ei.blk); i++) 476 if (ei.blk[i].start != ei.blk[i].end && 477 ei.blk[i].nid != NUMA_NO_NODE) 478 node_set(ei.blk[i].nid, numa_nodes_parsed); 479 480 /* 481 * Transform __apicid_to_node table to use emulated nids by 482 * reverse-mapping phys_nid. The maps should always exist but fall 483 * back to zero just in case. 484 */ 485 for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) { 486 if (__apicid_to_node[i] == NUMA_NO_NODE) 487 continue; 488 for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++) 489 if (__apicid_to_node[i] == emu_nid_to_phys[j]) 490 break; 491 __apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0; 492 } 493 494 /* make sure all emulated nodes are mapped to a physical node */ 495 for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) 496 if (emu_nid_to_phys[i] == NUMA_NO_NODE) 497 emu_nid_to_phys[i] = dfl_phys_nid; 498 499 /* transform distance table */ 500 numa_reset_distance(); 501 for (i = 0; i < max_emu_nid + 1; i++) { 502 for (j = 0; j < max_emu_nid + 1; j++) { 503 int physi = emu_nid_to_phys[i]; 504 int physj = emu_nid_to_phys[j]; 505 int dist; 506 507 if (get_option(&emu_cmdline, &dist) == 2) 508 ; 509 else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt) 510 dist = physi == physj ? 511 LOCAL_DISTANCE : REMOTE_DISTANCE; 512 else 513 dist = phys_dist[physi * numa_dist_cnt + physj]; 514 515 numa_set_distance(i, j, dist); 516 } 517 } 518 519 /* free the copied physical distance table */ 520 memblock_free(phys_dist, phys_size); 521 return; 522 523 no_emu: 524 /* No emulation. Build identity emu_nid_to_phys[] for numa_add_cpu() */ 525 for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) 526 emu_nid_to_phys[i] = i; 527 } 528 529 #ifndef CONFIG_DEBUG_PER_CPU_MAPS 530 void numa_add_cpu(int cpu) 531 { 532 int physnid, nid; 533 534 nid = early_cpu_to_node(cpu); 535 BUG_ON(nid == NUMA_NO_NODE || !node_online(nid)); 536 537 physnid = emu_nid_to_phys[nid]; 538 539 /* 540 * Map the cpu to each emulated node that is allocated on the physical 541 * node of the cpu's apic id. 542 */ 543 for_each_online_node(nid) 544 if (emu_nid_to_phys[nid] == physnid) 545 cpumask_set_cpu(cpu, node_to_cpumask_map[nid]); 546 } 547 548 void numa_remove_cpu(int cpu) 549 { 550 int i; 551 552 for_each_online_node(i) 553 cpumask_clear_cpu(cpu, node_to_cpumask_map[i]); 554 } 555 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ 556 static void numa_set_cpumask(int cpu, bool enable) 557 { 558 int nid, physnid; 559 560 nid = early_cpu_to_node(cpu); 561 if (nid == NUMA_NO_NODE) { 562 /* early_cpu_to_node() already emits a warning and trace */ 563 return; 564 } 565 566 physnid = emu_nid_to_phys[nid]; 567 568 for_each_online_node(nid) { 569 if (emu_nid_to_phys[nid] != physnid) 570 continue; 571 572 debug_cpumask_set_cpu(cpu, nid, enable); 573 } 574 } 575 576 void numa_add_cpu(int cpu) 577 { 578 numa_set_cpumask(cpu, true); 579 } 580 581 void numa_remove_cpu(int cpu) 582 { 583 numa_set_cpumask(cpu, false); 584 } 585 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ 586
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.