~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/numa_emulation.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * NUMA emulation
  4  */
  5 #include <linux/kernel.h>
  6 #include <linux/errno.h>
  7 #include <linux/topology.h>
  8 #include <linux/memblock.h>
  9 #include <asm/dma.h>
 10 
 11 #include "numa_internal.h"
 12 
 13 static int emu_nid_to_phys[MAX_NUMNODES];
 14 static char *emu_cmdline __initdata;
 15 
 16 int __init numa_emu_cmdline(char *str)
 17 {
 18         emu_cmdline = str;
 19         return 0;
 20 }
 21 
 22 static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
 23 {
 24         int i;
 25 
 26         for (i = 0; i < mi->nr_blks; i++)
 27                 if (mi->blk[i].nid == nid)
 28                         return i;
 29         return -ENOENT;
 30 }
 31 
 32 static u64 __init mem_hole_size(u64 start, u64 end)
 33 {
 34         unsigned long start_pfn = PFN_UP(start);
 35         unsigned long end_pfn = PFN_DOWN(end);
 36 
 37         if (start_pfn < end_pfn)
 38                 return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
 39         return 0;
 40 }
 41 
 42 /*
 43  * Sets up nid to range from @start to @end.  The return value is -errno if
 44  * something went wrong, 0 otherwise.
 45  */
 46 static int __init emu_setup_memblk(struct numa_meminfo *ei,
 47                                    struct numa_meminfo *pi,
 48                                    int nid, int phys_blk, u64 size)
 49 {
 50         struct numa_memblk *eb = &ei->blk[ei->nr_blks];
 51         struct numa_memblk *pb = &pi->blk[phys_blk];
 52 
 53         if (ei->nr_blks >= NR_NODE_MEMBLKS) {
 54                 pr_err("NUMA: Too many emulated memblks, failing emulation\n");
 55                 return -EINVAL;
 56         }
 57 
 58         ei->nr_blks++;
 59         eb->start = pb->start;
 60         eb->end = pb->start + size;
 61         eb->nid = nid;
 62 
 63         if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
 64                 emu_nid_to_phys[nid] = pb->nid;
 65 
 66         pb->start += size;
 67         if (pb->start >= pb->end) {
 68                 WARN_ON_ONCE(pb->start > pb->end);
 69                 numa_remove_memblk_from(phys_blk, pi);
 70         }
 71 
 72         printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
 73                nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
 74         return 0;
 75 }
 76 
 77 /*
 78  * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
 79  * to max_addr.
 80  *
 81  * Returns zero on success or negative on error.
 82  */
 83 static int __init split_nodes_interleave(struct numa_meminfo *ei,
 84                                          struct numa_meminfo *pi,
 85                                          u64 addr, u64 max_addr, int nr_nodes)
 86 {
 87         nodemask_t physnode_mask = numa_nodes_parsed;
 88         u64 size;
 89         int big;
 90         int nid = 0;
 91         int i, ret;
 92 
 93         if (nr_nodes <= 0)
 94                 return -1;
 95         if (nr_nodes > MAX_NUMNODES) {
 96                 pr_info("numa=fake=%d too large, reducing to %d\n",
 97                         nr_nodes, MAX_NUMNODES);
 98                 nr_nodes = MAX_NUMNODES;
 99         }
100 
101         /*
102          * Calculate target node size.  x86_32 freaks on __udivdi3() so do
103          * the division in ulong number of pages and convert back.
104          */
105         size = max_addr - addr - mem_hole_size(addr, max_addr);
106         size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
107 
108         /*
109          * Calculate the number of big nodes that can be allocated as a result
110          * of consolidating the remainder.
111          */
112         big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
113                 FAKE_NODE_MIN_SIZE;
114 
115         size &= FAKE_NODE_MIN_HASH_MASK;
116         if (!size) {
117                 pr_err("Not enough memory for each node.  "
118                         "NUMA emulation disabled.\n");
119                 return -1;
120         }
121 
122         /*
123          * Continue to fill physical nodes with fake nodes until there is no
124          * memory left on any of them.
125          */
126         while (!nodes_empty(physnode_mask)) {
127                 for_each_node_mask(i, physnode_mask) {
128                         u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
129                         u64 start, limit, end;
130                         int phys_blk;
131 
132                         phys_blk = emu_find_memblk_by_nid(i, pi);
133                         if (phys_blk < 0) {
134                                 node_clear(i, physnode_mask);
135                                 continue;
136                         }
137                         start = pi->blk[phys_blk].start;
138                         limit = pi->blk[phys_blk].end;
139                         end = start + size;
140 
141                         if (nid < big)
142                                 end += FAKE_NODE_MIN_SIZE;
143 
144                         /*
145                          * Continue to add memory to this fake node if its
146                          * non-reserved memory is less than the per-node size.
147                          */
148                         while (end - start - mem_hole_size(start, end) < size) {
149                                 end += FAKE_NODE_MIN_SIZE;
150                                 if (end > limit) {
151                                         end = limit;
152                                         break;
153                                 }
154                         }
155 
156                         /*
157                          * If there won't be at least FAKE_NODE_MIN_SIZE of
158                          * non-reserved memory in ZONE_DMA32 for the next node,
159                          * this one must extend to the boundary.
160                          */
161                         if (end < dma32_end && dma32_end - end -
162                             mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
163                                 end = dma32_end;
164 
165                         /*
166                          * If there won't be enough non-reserved memory for the
167                          * next node, this one must extend to the end of the
168                          * physical node.
169                          */
170                         if (limit - end - mem_hole_size(end, limit) < size)
171                                 end = limit;
172 
173                         ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
174                                                phys_blk,
175                                                min(end, limit) - start);
176                         if (ret < 0)
177                                 return ret;
178                 }
179         }
180         return 0;
181 }
182 
183 /*
184  * Returns the end address of a node so that there is at least `size' amount of
185  * non-reserved memory or `max_addr' is reached.
186  */
187 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
188 {
189         u64 end = start + size;
190 
191         while (end - start - mem_hole_size(start, end) < size) {
192                 end += FAKE_NODE_MIN_SIZE;
193                 if (end > max_addr) {
194                         end = max_addr;
195                         break;
196                 }
197         }
198         return end;
199 }
200 
201 static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
202 {
203         unsigned long max_pfn = PHYS_PFN(max_addr);
204         unsigned long base_pfn = PHYS_PFN(base);
205         unsigned long hole_pfns = PHYS_PFN(hole);
206 
207         return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
208 }
209 
210 /*
211  * Sets up fake nodes of `size' interleaved over physical nodes ranging from
212  * `addr' to `max_addr'.
213  *
214  * Returns zero on success or negative on error.
215  */
216 static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
217                                               struct numa_meminfo *pi,
218                                               u64 addr, u64 max_addr, u64 size,
219                                               int nr_nodes, struct numa_memblk *pblk,
220                                               int nid)
221 {
222         nodemask_t physnode_mask = numa_nodes_parsed;
223         int i, ret, uniform = 0;
224         u64 min_size;
225 
226         if ((!size && !nr_nodes) || (nr_nodes && !pblk))
227                 return -1;
228 
229         /*
230          * In the 'uniform' case split the passed in physical node by
231          * nr_nodes, in the non-uniform case, ignore the passed in
232          * physical block and try to create nodes of at least size
233          * @size.
234          *
235          * In the uniform case, split the nodes strictly by physical
236          * capacity, i.e. ignore holes. In the non-uniform case account
237          * for holes and treat @size as a minimum floor.
238          */
239         if (!nr_nodes)
240                 nr_nodes = MAX_NUMNODES;
241         else {
242                 nodes_clear(physnode_mask);
243                 node_set(pblk->nid, physnode_mask);
244                 uniform = 1;
245         }
246 
247         if (uniform) {
248                 min_size = uniform_size(max_addr, addr, 0, nr_nodes);
249                 size = min_size;
250         } else {
251                 /*
252                  * The limit on emulated nodes is MAX_NUMNODES, so the
253                  * size per node is increased accordingly if the
254                  * requested size is too small.  This creates a uniform
255                  * distribution of node sizes across the entire machine
256                  * (but not necessarily over physical nodes).
257                  */
258                 min_size = uniform_size(max_addr, addr,
259                                 mem_hole_size(addr, max_addr), nr_nodes);
260         }
261         min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
262         if (size < min_size) {
263                 pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
264                         size >> 20, min_size >> 20);
265                 size = min_size;
266         }
267         size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
268 
269         /*
270          * Fill physical nodes with fake nodes of size until there is no memory
271          * left on any of them.
272          */
273         while (!nodes_empty(physnode_mask)) {
274                 for_each_node_mask(i, physnode_mask) {
275                         u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
276                         u64 start, limit, end;
277                         int phys_blk;
278 
279                         phys_blk = emu_find_memblk_by_nid(i, pi);
280                         if (phys_blk < 0) {
281                                 node_clear(i, physnode_mask);
282                                 continue;
283                         }
284 
285                         start = pi->blk[phys_blk].start;
286                         limit = pi->blk[phys_blk].end;
287 
288                         if (uniform)
289                                 end = start + size;
290                         else
291                                 end = find_end_of_node(start, limit, size);
292                         /*
293                          * If there won't be at least FAKE_NODE_MIN_SIZE of
294                          * non-reserved memory in ZONE_DMA32 for the next node,
295                          * this one must extend to the boundary.
296                          */
297                         if (end < dma32_end && dma32_end - end -
298                             mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
299                                 end = dma32_end;
300 
301                         /*
302                          * If there won't be enough non-reserved memory for the
303                          * next node, this one must extend to the end of the
304                          * physical node.
305                          */
306                         if ((limit - end - mem_hole_size(end, limit) < size)
307                                         && !uniform)
308                                 end = limit;
309 
310                         ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
311                                                phys_blk,
312                                                min(end, limit) - start);
313                         if (ret < 0)
314                                 return ret;
315                 }
316         }
317         return nid;
318 }
319 
320 static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
321                                               struct numa_meminfo *pi,
322                                               u64 addr, u64 max_addr, u64 size)
323 {
324         return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
325                         0, NULL, 0);
326 }
327 
328 static int __init setup_emu2phys_nid(int *dfl_phys_nid)
329 {
330         int i, max_emu_nid = 0;
331 
332         *dfl_phys_nid = NUMA_NO_NODE;
333         for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
334                 if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
335                         max_emu_nid = i;
336                         if (*dfl_phys_nid == NUMA_NO_NODE)
337                                 *dfl_phys_nid = emu_nid_to_phys[i];
338                 }
339         }
340 
341         return max_emu_nid;
342 }
343 
344 /**
345  * numa_emulation - Emulate NUMA nodes
346  * @numa_meminfo: NUMA configuration to massage
347  * @numa_dist_cnt: The size of the physical NUMA distance table
348  *
349  * Emulate NUMA nodes according to the numa=fake kernel parameter.
350  * @numa_meminfo contains the physical memory configuration and is modified
351  * to reflect the emulated configuration on success.  @numa_dist_cnt is
352  * used to determine the size of the physical distance table.
353  *
354  * On success, the following modifications are made.
355  *
356  * - @numa_meminfo is updated to reflect the emulated nodes.
357  *
358  * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
359  *   emulated nodes.
360  *
361  * - NUMA distance table is rebuilt to represent distances between emulated
362  *   nodes.  The distances are determined considering how emulated nodes
363  *   are mapped to physical nodes and match the actual distances.
364  *
365  * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
366  *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
367  *
368  * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
369  * identity mapping and no other modification is made.
370  */
371 void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
372 {
373         static struct numa_meminfo ei __initdata;
374         static struct numa_meminfo pi __initdata;
375         const u64 max_addr = PFN_PHYS(max_pfn);
376         u8 *phys_dist = NULL;
377         size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
378         int max_emu_nid, dfl_phys_nid;
379         int i, j, ret;
380 
381         if (!emu_cmdline)
382                 goto no_emu;
383 
384         memset(&ei, 0, sizeof(ei));
385         pi = *numa_meminfo;
386 
387         for (i = 0; i < MAX_NUMNODES; i++)
388                 emu_nid_to_phys[i] = NUMA_NO_NODE;
389 
390         /*
391          * If the numa=fake command-line contains a 'M' or 'G', it represents
392          * the fixed node size.  Otherwise, if it is just a single number N,
393          * split the system RAM into N fake nodes.
394          */
395         if (strchr(emu_cmdline, 'U')) {
396                 nodemask_t physnode_mask = numa_nodes_parsed;
397                 unsigned long n;
398                 int nid = 0;
399 
400                 n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
401                 ret = -1;
402                 for_each_node_mask(i, physnode_mask) {
403                         /*
404                          * The reason we pass in blk[0] is due to
405                          * numa_remove_memblk_from() called by
406                          * emu_setup_memblk() will delete entry 0
407                          * and then move everything else up in the pi.blk
408                          * array. Therefore we should always be looking
409                          * at blk[0].
410                          */
411                         ret = split_nodes_size_interleave_uniform(&ei, &pi,
412                                         pi.blk[0].start, pi.blk[0].end, 0,
413                                         n, &pi.blk[0], nid);
414                         if (ret < 0)
415                                 break;
416                         if (ret < n) {
417                                 pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
418                                                 __func__, i, ret, n);
419                                 ret = -1;
420                                 break;
421                         }
422                         nid = ret;
423                 }
424         } else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
425                 u64 size;
426 
427                 size = memparse(emu_cmdline, &emu_cmdline);
428                 ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
429         } else {
430                 unsigned long n;
431 
432                 n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
433                 ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
434         }
435         if (*emu_cmdline == ':')
436                 emu_cmdline++;
437 
438         if (ret < 0)
439                 goto no_emu;
440 
441         if (numa_cleanup_meminfo(&ei) < 0) {
442                 pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
443                 goto no_emu;
444         }
445 
446         /* copy the physical distance table */
447         if (numa_dist_cnt) {
448                 u64 phys;
449 
450                 phys = memblock_phys_alloc_range(phys_size, PAGE_SIZE, 0,
451                                                  PFN_PHYS(max_pfn_mapped));
452                 if (!phys) {
453                         pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
454                         goto no_emu;
455                 }
456                 phys_dist = __va(phys);
457 
458                 for (i = 0; i < numa_dist_cnt; i++)
459                         for (j = 0; j < numa_dist_cnt; j++)
460                                 phys_dist[i * numa_dist_cnt + j] =
461                                         node_distance(i, j);
462         }
463 
464         /*
465          * Determine the max emulated nid and the default phys nid to use
466          * for unmapped nodes.
467          */
468         max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
469 
470         /* commit */
471         *numa_meminfo = ei;
472 
473         /* Make sure numa_nodes_parsed only contains emulated nodes */
474         nodes_clear(numa_nodes_parsed);
475         for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
476                 if (ei.blk[i].start != ei.blk[i].end &&
477                     ei.blk[i].nid != NUMA_NO_NODE)
478                         node_set(ei.blk[i].nid, numa_nodes_parsed);
479 
480         /*
481          * Transform __apicid_to_node table to use emulated nids by
482          * reverse-mapping phys_nid.  The maps should always exist but fall
483          * back to zero just in case.
484          */
485         for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
486                 if (__apicid_to_node[i] == NUMA_NO_NODE)
487                         continue;
488                 for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
489                         if (__apicid_to_node[i] == emu_nid_to_phys[j])
490                                 break;
491                 __apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
492         }
493 
494         /* make sure all emulated nodes are mapped to a physical node */
495         for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
496                 if (emu_nid_to_phys[i] == NUMA_NO_NODE)
497                         emu_nid_to_phys[i] = dfl_phys_nid;
498 
499         /* transform distance table */
500         numa_reset_distance();
501         for (i = 0; i < max_emu_nid + 1; i++) {
502                 for (j = 0; j < max_emu_nid + 1; j++) {
503                         int physi = emu_nid_to_phys[i];
504                         int physj = emu_nid_to_phys[j];
505                         int dist;
506 
507                         if (get_option(&emu_cmdline, &dist) == 2)
508                                 ;
509                         else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
510                                 dist = physi == physj ?
511                                         LOCAL_DISTANCE : REMOTE_DISTANCE;
512                         else
513                                 dist = phys_dist[physi * numa_dist_cnt + physj];
514 
515                         numa_set_distance(i, j, dist);
516                 }
517         }
518 
519         /* free the copied physical distance table */
520         memblock_free(phys_dist, phys_size);
521         return;
522 
523 no_emu:
524         /* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
525         for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
526                 emu_nid_to_phys[i] = i;
527 }
528 
529 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
530 void numa_add_cpu(int cpu)
531 {
532         int physnid, nid;
533 
534         nid = early_cpu_to_node(cpu);
535         BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
536 
537         physnid = emu_nid_to_phys[nid];
538 
539         /*
540          * Map the cpu to each emulated node that is allocated on the physical
541          * node of the cpu's apic id.
542          */
543         for_each_online_node(nid)
544                 if (emu_nid_to_phys[nid] == physnid)
545                         cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
546 }
547 
548 void numa_remove_cpu(int cpu)
549 {
550         int i;
551 
552         for_each_online_node(i)
553                 cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
554 }
555 #else   /* !CONFIG_DEBUG_PER_CPU_MAPS */
556 static void numa_set_cpumask(int cpu, bool enable)
557 {
558         int nid, physnid;
559 
560         nid = early_cpu_to_node(cpu);
561         if (nid == NUMA_NO_NODE) {
562                 /* early_cpu_to_node() already emits a warning and trace */
563                 return;
564         }
565 
566         physnid = emu_nid_to_phys[nid];
567 
568         for_each_online_node(nid) {
569                 if (emu_nid_to_phys[nid] != physnid)
570                         continue;
571 
572                 debug_cpumask_set_cpu(cpu, nid, enable);
573         }
574 }
575 
576 void numa_add_cpu(int cpu)
577 {
578         numa_set_cpumask(cpu, true);
579 }
580 
581 void numa_remove_cpu(int cpu)
582 {
583         numa_set_cpumask(cpu, false);
584 }
585 #endif  /* !CONFIG_DEBUG_PER_CPU_MAPS */
586 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php