~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/pat/memtype.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
  4  *
  5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
  7  *
  8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
  9  *
 10  * Basic principles:
 11  *
 12  * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
 13  * the kernel to set one of a handful of 'caching type' attributes for physical
 14  * memory ranges: uncached, write-combining, write-through, write-protected,
 15  * and the most commonly used and default attribute: write-back caching.
 16  *
 17  * PAT support supersedes and augments MTRR support in a compatible fashion: MTRR is
 18  * a hardware interface to enumerate a limited number of physical memory ranges
 19  * and set their caching attributes explicitly, programmed into the CPU via MSRs.
 20  * Even modern CPUs have MTRRs enabled - but these are typically not touched
 21  * by the kernel or by user-space (such as the X server), we rely on PAT for any
 22  * additional cache attribute logic.
 23  *
 24  * PAT doesn't work via explicit memory ranges, but uses page table entries to add
 25  * cache attribute information to the mapped memory range: there's 3 bits used,
 26  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
 27  * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
 28  *
 29  * ( There's a metric ton of finer details, such as compatibility with CPU quirks
 30  *   that only support 4 types of PAT entries, and interaction with MTRRs, see
 31  *   below for details. )
 32  */
 33 
 34 #include <linux/seq_file.h>
 35 #include <linux/memblock.h>
 36 #include <linux/debugfs.h>
 37 #include <linux/ioport.h>
 38 #include <linux/kernel.h>
 39 #include <linux/pfn_t.h>
 40 #include <linux/slab.h>
 41 #include <linux/mm.h>
 42 #include <linux/highmem.h>
 43 #include <linux/fs.h>
 44 #include <linux/rbtree.h>
 45 
 46 #include <asm/cacheflush.h>
 47 #include <asm/cacheinfo.h>
 48 #include <asm/processor.h>
 49 #include <asm/tlbflush.h>
 50 #include <asm/x86_init.h>
 51 #include <asm/fcntl.h>
 52 #include <asm/e820/api.h>
 53 #include <asm/mtrr.h>
 54 #include <asm/page.h>
 55 #include <asm/msr.h>
 56 #include <asm/memtype.h>
 57 #include <asm/io.h>
 58 
 59 #include "memtype.h"
 60 #include "../mm_internal.h"
 61 
 62 #undef pr_fmt
 63 #define pr_fmt(fmt) "" fmt
 64 
 65 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
 66 static u64 __ro_after_init pat_msr_val;
 67 
 68 /*
 69  * PAT support is enabled by default, but can be disabled for
 70  * various user-requested or hardware-forced reasons:
 71  */
 72 static void __init pat_disable(const char *msg_reason)
 73 {
 74         if (pat_disabled)
 75                 return;
 76 
 77         pat_disabled = true;
 78         pr_info("x86/PAT: %s\n", msg_reason);
 79 
 80         memory_caching_control &= ~CACHE_PAT;
 81 }
 82 
 83 static int __init nopat(char *str)
 84 {
 85         pat_disable("PAT support disabled via boot option.");
 86         return 0;
 87 }
 88 early_param("nopat", nopat);
 89 
 90 bool pat_enabled(void)
 91 {
 92         return !pat_disabled;
 93 }
 94 EXPORT_SYMBOL_GPL(pat_enabled);
 95 
 96 int pat_debug_enable;
 97 
 98 static int __init pat_debug_setup(char *str)
 99 {
100         pat_debug_enable = 1;
101         return 1;
102 }
103 __setup("debugpat", pat_debug_setup);
104 
105 #ifdef CONFIG_X86_PAT
106 /*
107  * X86 PAT uses page flags arch_1 and uncached together to keep track of
108  * memory type of pages that have backing page struct.
109  *
110  * X86 PAT supports 4 different memory types:
111  *  - _PAGE_CACHE_MODE_WB
112  *  - _PAGE_CACHE_MODE_WC
113  *  - _PAGE_CACHE_MODE_UC_MINUS
114  *  - _PAGE_CACHE_MODE_WT
115  *
116  * _PAGE_CACHE_MODE_WB is the default type.
117  */
118 
119 #define _PGMT_WB                0
120 #define _PGMT_WC                (1UL << PG_arch_1)
121 #define _PGMT_UC_MINUS          (1UL << PG_uncached)
122 #define _PGMT_WT                (1UL << PG_uncached | 1UL << PG_arch_1)
123 #define _PGMT_MASK              (1UL << PG_uncached | 1UL << PG_arch_1)
124 #define _PGMT_CLEAR_MASK        (~_PGMT_MASK)
125 
126 static inline enum page_cache_mode get_page_memtype(struct page *pg)
127 {
128         unsigned long pg_flags = pg->flags & _PGMT_MASK;
129 
130         if (pg_flags == _PGMT_WB)
131                 return _PAGE_CACHE_MODE_WB;
132         else if (pg_flags == _PGMT_WC)
133                 return _PAGE_CACHE_MODE_WC;
134         else if (pg_flags == _PGMT_UC_MINUS)
135                 return _PAGE_CACHE_MODE_UC_MINUS;
136         else
137                 return _PAGE_CACHE_MODE_WT;
138 }
139 
140 static inline void set_page_memtype(struct page *pg,
141                                     enum page_cache_mode memtype)
142 {
143         unsigned long memtype_flags;
144         unsigned long old_flags;
145         unsigned long new_flags;
146 
147         switch (memtype) {
148         case _PAGE_CACHE_MODE_WC:
149                 memtype_flags = _PGMT_WC;
150                 break;
151         case _PAGE_CACHE_MODE_UC_MINUS:
152                 memtype_flags = _PGMT_UC_MINUS;
153                 break;
154         case _PAGE_CACHE_MODE_WT:
155                 memtype_flags = _PGMT_WT;
156                 break;
157         case _PAGE_CACHE_MODE_WB:
158         default:
159                 memtype_flags = _PGMT_WB;
160                 break;
161         }
162 
163         old_flags = READ_ONCE(pg->flags);
164         do {
165                 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
166         } while (!try_cmpxchg(&pg->flags, &old_flags, new_flags));
167 }
168 #else
169 static inline enum page_cache_mode get_page_memtype(struct page *pg)
170 {
171         return -1;
172 }
173 static inline void set_page_memtype(struct page *pg,
174                                     enum page_cache_mode memtype)
175 {
176 }
177 #endif
178 
179 enum {
180         PAT_UC = 0,             /* uncached */
181         PAT_WC = 1,             /* Write combining */
182         PAT_WT = 4,             /* Write Through */
183         PAT_WP = 5,             /* Write Protected */
184         PAT_WB = 6,             /* Write Back (default) */
185         PAT_UC_MINUS = 7,       /* UC, but can be overridden by MTRR */
186 };
187 
188 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
189 
190 static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val,
191                                                       char *msg)
192 {
193         enum page_cache_mode cache;
194         char *cache_mode;
195 
196         switch (pat_val) {
197         case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
198         case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
199         case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
200         case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
201         case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
202         case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
203         default:           cache = CM(WB);       cache_mode = "WB  "; break;
204         }
205 
206         memcpy(msg, cache_mode, 4);
207 
208         return cache;
209 }
210 
211 #undef CM
212 
213 /*
214  * Update the cache mode to pgprot translation tables according to PAT
215  * configuration.
216  * Using lower indices is preferred, so we start with highest index.
217  */
218 static void __init init_cache_modes(u64 pat)
219 {
220         enum page_cache_mode cache;
221         char pat_msg[33];
222         int i;
223 
224         pat_msg[32] = 0;
225         for (i = 7; i >= 0; i--) {
226                 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
227                                            pat_msg + 4 * i);
228                 update_cache_mode_entry(i, cache);
229         }
230         pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
231 }
232 
233 void pat_cpu_init(void)
234 {
235         if (!boot_cpu_has(X86_FEATURE_PAT)) {
236                 /*
237                  * If this happens we are on a secondary CPU, but switched to
238                  * PAT on the boot CPU. We have no way to undo PAT.
239                  */
240                 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
241         }
242 
243         wrmsrl(MSR_IA32_CR_PAT, pat_msr_val);
244 
245         __flush_tlb_all();
246 }
247 
248 /**
249  * pat_bp_init - Initialize the PAT MSR value and PAT table
250  *
251  * This function initializes PAT MSR value and PAT table with an OS-defined
252  * value to enable additional cache attributes, WC, WT and WP.
253  *
254  * This function prepares the calls of pat_cpu_init() via cache_cpu_init()
255  * on all CPUs.
256  */
257 void __init pat_bp_init(void)
258 {
259         struct cpuinfo_x86 *c = &boot_cpu_data;
260 #define PAT(p0, p1, p2, p3, p4, p5, p6, p7)                     \
261         (((u64)PAT_ ## p0) | ((u64)PAT_ ## p1 << 8) |           \
262         ((u64)PAT_ ## p2 << 16) | ((u64)PAT_ ## p3 << 24) |     \
263         ((u64)PAT_ ## p4 << 32) | ((u64)PAT_ ## p5 << 40) |     \
264         ((u64)PAT_ ## p6 << 48) | ((u64)PAT_ ## p7 << 56))
265 
266 
267         if (!IS_ENABLED(CONFIG_X86_PAT))
268                 pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
269 
270         if (!cpu_feature_enabled(X86_FEATURE_PAT))
271                 pat_disable("PAT not supported by the CPU.");
272         else
273                 rdmsrl(MSR_IA32_CR_PAT, pat_msr_val);
274 
275         if (!pat_msr_val) {
276                 pat_disable("PAT support disabled by the firmware.");
277 
278                 /*
279                  * No PAT. Emulate the PAT table that corresponds to the two
280                  * cache bits, PWT (Write Through) and PCD (Cache Disable).
281                  * This setup is also the same as the BIOS default setup.
282                  *
283                  * PTE encoding:
284                  *
285                  *       PCD
286                  *       |PWT  PAT
287                  *       ||    slot
288                  *       00    0    WB : _PAGE_CACHE_MODE_WB
289                  *       01    1    WT : _PAGE_CACHE_MODE_WT
290                  *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
291                  *       11    3    UC : _PAGE_CACHE_MODE_UC
292                  *
293                  * NOTE: When WC or WP is used, it is redirected to UC- per
294                  * the default setup in __cachemode2pte_tbl[].
295                  */
296                 pat_msr_val = PAT(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC);
297         }
298 
299         /*
300          * Xen PV doesn't allow to set PAT MSR, but all cache modes are
301          * supported.
302          */
303         if (pat_disabled || cpu_feature_enabled(X86_FEATURE_XENPV)) {
304                 init_cache_modes(pat_msr_val);
305                 return;
306         }
307 
308         if ((c->x86_vendor == X86_VENDOR_INTEL) &&
309             (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
310              ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
311                 /*
312                  * PAT support with the lower four entries. Intel Pentium 2,
313                  * 3, M, and 4 are affected by PAT errata, which makes the
314                  * upper four entries unusable. To be on the safe side, we don't
315                  * use those.
316                  *
317                  *  PTE encoding:
318                  *      PAT
319                  *      |PCD
320                  *      ||PWT  PAT
321                  *      |||    slot
322                  *      000    0    WB : _PAGE_CACHE_MODE_WB
323                  *      001    1    WC : _PAGE_CACHE_MODE_WC
324                  *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
325                  *      011    3    UC : _PAGE_CACHE_MODE_UC
326                  * PAT bit unused
327                  *
328                  * NOTE: When WT or WP is used, it is redirected to UC- per
329                  * the default setup in __cachemode2pte_tbl[].
330                  */
331                 pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC);
332         } else {
333                 /*
334                  * Full PAT support.  We put WT in slot 7 to improve
335                  * robustness in the presence of errata that might cause
336                  * the high PAT bit to be ignored.  This way, a buggy slot 7
337                  * access will hit slot 3, and slot 3 is UC, so at worst
338                  * we lose performance without causing a correctness issue.
339                  * Pentium 4 erratum N46 is an example for such an erratum,
340                  * although we try not to use PAT at all on affected CPUs.
341                  *
342                  *  PTE encoding:
343                  *      PAT
344                  *      |PCD
345                  *      ||PWT  PAT
346                  *      |||    slot
347                  *      000    0    WB : _PAGE_CACHE_MODE_WB
348                  *      001    1    WC : _PAGE_CACHE_MODE_WC
349                  *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
350                  *      011    3    UC : _PAGE_CACHE_MODE_UC
351                  *      100    4    WB : Reserved
352                  *      101    5    WP : _PAGE_CACHE_MODE_WP
353                  *      110    6    UC-: Reserved
354                  *      111    7    WT : _PAGE_CACHE_MODE_WT
355                  *
356                  * The reserved slots are unused, but mapped to their
357                  * corresponding types in the presence of PAT errata.
358                  */
359                 pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT);
360         }
361 
362         memory_caching_control |= CACHE_PAT;
363 
364         init_cache_modes(pat_msr_val);
365 #undef PAT
366 }
367 
368 static DEFINE_SPINLOCK(memtype_lock);   /* protects memtype accesses */
369 
370 /*
371  * Does intersection of PAT memory type and MTRR memory type and returns
372  * the resulting memory type as PAT understands it.
373  * (Type in pat and mtrr will not have same value)
374  * The intersection is based on "Effective Memory Type" tables in IA-32
375  * SDM vol 3a
376  */
377 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
378                                      enum page_cache_mode req_type)
379 {
380         /*
381          * Look for MTRR hint to get the effective type in case where PAT
382          * request is for WB.
383          */
384         if (req_type == _PAGE_CACHE_MODE_WB) {
385                 u8 mtrr_type, uniform;
386 
387                 mtrr_type = mtrr_type_lookup(start, end, &uniform);
388                 if (mtrr_type != MTRR_TYPE_WRBACK)
389                         return _PAGE_CACHE_MODE_UC_MINUS;
390 
391                 return _PAGE_CACHE_MODE_WB;
392         }
393 
394         return req_type;
395 }
396 
397 struct pagerange_state {
398         unsigned long           cur_pfn;
399         int                     ram;
400         int                     not_ram;
401 };
402 
403 static int
404 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
405 {
406         struct pagerange_state *state = arg;
407 
408         state->not_ram  |= initial_pfn > state->cur_pfn;
409         state->ram      |= total_nr_pages > 0;
410         state->cur_pfn   = initial_pfn + total_nr_pages;
411 
412         return state->ram && state->not_ram;
413 }
414 
415 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
416 {
417         int ret = 0;
418         unsigned long start_pfn = start >> PAGE_SHIFT;
419         unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
420         struct pagerange_state state = {start_pfn, 0, 0};
421 
422         /*
423          * For legacy reasons, physical address range in the legacy ISA
424          * region is tracked as non-RAM. This will allow users of
425          * /dev/mem to map portions of legacy ISA region, even when
426          * some of those portions are listed(or not even listed) with
427          * different e820 types(RAM/reserved/..)
428          */
429         if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
430                 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
431 
432         if (start_pfn < end_pfn) {
433                 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
434                                 &state, pagerange_is_ram_callback);
435         }
436 
437         return (ret > 0) ? -1 : (state.ram ? 1 : 0);
438 }
439 
440 /*
441  * For RAM pages, we use page flags to mark the pages with appropriate type.
442  * The page flags are limited to four types, WB (default), WC, WT and UC-.
443  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
444  * a new memory type is only allowed for a page mapped with the default WB
445  * type.
446  *
447  * Here we do two passes:
448  * - Find the memtype of all the pages in the range, look for any conflicts.
449  * - In case of no conflicts, set the new memtype for pages in the range.
450  */
451 static int reserve_ram_pages_type(u64 start, u64 end,
452                                   enum page_cache_mode req_type,
453                                   enum page_cache_mode *new_type)
454 {
455         struct page *page;
456         u64 pfn;
457 
458         if (req_type == _PAGE_CACHE_MODE_WP) {
459                 if (new_type)
460                         *new_type = _PAGE_CACHE_MODE_UC_MINUS;
461                 return -EINVAL;
462         }
463 
464         if (req_type == _PAGE_CACHE_MODE_UC) {
465                 /* We do not support strong UC */
466                 WARN_ON_ONCE(1);
467                 req_type = _PAGE_CACHE_MODE_UC_MINUS;
468         }
469 
470         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
471                 enum page_cache_mode type;
472 
473                 page = pfn_to_page(pfn);
474                 type = get_page_memtype(page);
475                 if (type != _PAGE_CACHE_MODE_WB) {
476                         pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
477                                 start, end - 1, type, req_type);
478                         if (new_type)
479                                 *new_type = type;
480 
481                         return -EBUSY;
482                 }
483         }
484 
485         if (new_type)
486                 *new_type = req_type;
487 
488         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
489                 page = pfn_to_page(pfn);
490                 set_page_memtype(page, req_type);
491         }
492         return 0;
493 }
494 
495 static int free_ram_pages_type(u64 start, u64 end)
496 {
497         struct page *page;
498         u64 pfn;
499 
500         for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
501                 page = pfn_to_page(pfn);
502                 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
503         }
504         return 0;
505 }
506 
507 static u64 sanitize_phys(u64 address)
508 {
509         /*
510          * When changing the memtype for pages containing poison allow
511          * for a "decoy" virtual address (bit 63 clear) passed to
512          * set_memory_X(). __pa() on a "decoy" address results in a
513          * physical address with bit 63 set.
514          *
515          * Decoy addresses are not present for 32-bit builds, see
516          * set_mce_nospec().
517          */
518         if (IS_ENABLED(CONFIG_X86_64))
519                 return address & __PHYSICAL_MASK;
520         return address;
521 }
522 
523 /*
524  * req_type typically has one of the:
525  * - _PAGE_CACHE_MODE_WB
526  * - _PAGE_CACHE_MODE_WC
527  * - _PAGE_CACHE_MODE_UC_MINUS
528  * - _PAGE_CACHE_MODE_UC
529  * - _PAGE_CACHE_MODE_WT
530  *
531  * If new_type is NULL, function will return an error if it cannot reserve the
532  * region with req_type. If new_type is non-NULL, function will return
533  * available type in new_type in case of no error. In case of any error
534  * it will return a negative return value.
535  */
536 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
537                     enum page_cache_mode *new_type)
538 {
539         struct memtype *entry_new;
540         enum page_cache_mode actual_type;
541         int is_range_ram;
542         int err = 0;
543 
544         start = sanitize_phys(start);
545 
546         /*
547          * The end address passed into this function is exclusive, but
548          * sanitize_phys() expects an inclusive address.
549          */
550         end = sanitize_phys(end - 1) + 1;
551         if (start >= end) {
552                 WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
553                                 start, end - 1, cattr_name(req_type));
554                 return -EINVAL;
555         }
556 
557         if (!pat_enabled()) {
558                 /* This is identical to page table setting without PAT */
559                 if (new_type)
560                         *new_type = req_type;
561                 return 0;
562         }
563 
564         /* Low ISA region is always mapped WB in page table. No need to track */
565         if (x86_platform.is_untracked_pat_range(start, end)) {
566                 if (new_type)
567                         *new_type = _PAGE_CACHE_MODE_WB;
568                 return 0;
569         }
570 
571         /*
572          * Call mtrr_lookup to get the type hint. This is an
573          * optimization for /dev/mem mmap'ers into WB memory (BIOS
574          * tools and ACPI tools). Use WB request for WB memory and use
575          * UC_MINUS otherwise.
576          */
577         actual_type = pat_x_mtrr_type(start, end, req_type);
578 
579         if (new_type)
580                 *new_type = actual_type;
581 
582         is_range_ram = pat_pagerange_is_ram(start, end);
583         if (is_range_ram == 1) {
584 
585                 err = reserve_ram_pages_type(start, end, req_type, new_type);
586 
587                 return err;
588         } else if (is_range_ram < 0) {
589                 return -EINVAL;
590         }
591 
592         entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
593         if (!entry_new)
594                 return -ENOMEM;
595 
596         entry_new->start = start;
597         entry_new->end   = end;
598         entry_new->type  = actual_type;
599 
600         spin_lock(&memtype_lock);
601 
602         err = memtype_check_insert(entry_new, new_type);
603         if (err) {
604                 pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
605                         start, end - 1,
606                         cattr_name(entry_new->type), cattr_name(req_type));
607                 kfree(entry_new);
608                 spin_unlock(&memtype_lock);
609 
610                 return err;
611         }
612 
613         spin_unlock(&memtype_lock);
614 
615         dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
616                 start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
617                 new_type ? cattr_name(*new_type) : "-");
618 
619         return err;
620 }
621 
622 int memtype_free(u64 start, u64 end)
623 {
624         int is_range_ram;
625         struct memtype *entry_old;
626 
627         if (!pat_enabled())
628                 return 0;
629 
630         start = sanitize_phys(start);
631         end = sanitize_phys(end);
632 
633         /* Low ISA region is always mapped WB. No need to track */
634         if (x86_platform.is_untracked_pat_range(start, end))
635                 return 0;
636 
637         is_range_ram = pat_pagerange_is_ram(start, end);
638         if (is_range_ram == 1)
639                 return free_ram_pages_type(start, end);
640         if (is_range_ram < 0)
641                 return -EINVAL;
642 
643         spin_lock(&memtype_lock);
644         entry_old = memtype_erase(start, end);
645         spin_unlock(&memtype_lock);
646 
647         if (IS_ERR(entry_old)) {
648                 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
649                         current->comm, current->pid, start, end - 1);
650                 return -EINVAL;
651         }
652 
653         kfree(entry_old);
654 
655         dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
656 
657         return 0;
658 }
659 
660 
661 /**
662  * lookup_memtype - Looks up the memory type for a physical address
663  * @paddr: physical address of which memory type needs to be looked up
664  *
665  * Only to be called when PAT is enabled
666  *
667  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
668  * or _PAGE_CACHE_MODE_WT.
669  */
670 static enum page_cache_mode lookup_memtype(u64 paddr)
671 {
672         enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
673         struct memtype *entry;
674 
675         if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
676                 return rettype;
677 
678         if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
679                 struct page *page;
680 
681                 page = pfn_to_page(paddr >> PAGE_SHIFT);
682                 return get_page_memtype(page);
683         }
684 
685         spin_lock(&memtype_lock);
686 
687         entry = memtype_lookup(paddr);
688         if (entry != NULL)
689                 rettype = entry->type;
690         else
691                 rettype = _PAGE_CACHE_MODE_UC_MINUS;
692 
693         spin_unlock(&memtype_lock);
694 
695         return rettype;
696 }
697 
698 /**
699  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
700  * of @pfn cannot be overridden by UC MTRR memory type.
701  *
702  * Only to be called when PAT is enabled.
703  *
704  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
705  * Returns false in other cases.
706  */
707 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
708 {
709         enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
710 
711         return cm == _PAGE_CACHE_MODE_UC ||
712                cm == _PAGE_CACHE_MODE_UC_MINUS ||
713                cm == _PAGE_CACHE_MODE_WC;
714 }
715 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
716 
717 /**
718  * memtype_reserve_io - Request a memory type mapping for a region of memory
719  * @start: start (physical address) of the region
720  * @end: end (physical address) of the region
721  * @type: A pointer to memtype, with requested type. On success, requested
722  * or any other compatible type that was available for the region is returned
723  *
724  * On success, returns 0
725  * On failure, returns non-zero
726  */
727 int memtype_reserve_io(resource_size_t start, resource_size_t end,
728                         enum page_cache_mode *type)
729 {
730         resource_size_t size = end - start;
731         enum page_cache_mode req_type = *type;
732         enum page_cache_mode new_type;
733         int ret;
734 
735         WARN_ON_ONCE(iomem_map_sanity_check(start, size));
736 
737         ret = memtype_reserve(start, end, req_type, &new_type);
738         if (ret)
739                 goto out_err;
740 
741         if (!is_new_memtype_allowed(start, size, req_type, new_type))
742                 goto out_free;
743 
744         if (memtype_kernel_map_sync(start, size, new_type) < 0)
745                 goto out_free;
746 
747         *type = new_type;
748         return 0;
749 
750 out_free:
751         memtype_free(start, end);
752         ret = -EBUSY;
753 out_err:
754         return ret;
755 }
756 
757 /**
758  * memtype_free_io - Release a memory type mapping for a region of memory
759  * @start: start (physical address) of the region
760  * @end: end (physical address) of the region
761  */
762 void memtype_free_io(resource_size_t start, resource_size_t end)
763 {
764         memtype_free(start, end);
765 }
766 
767 #ifdef CONFIG_X86_PAT
768 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
769 {
770         enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
771 
772         return memtype_reserve_io(start, start + size, &type);
773 }
774 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
775 
776 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
777 {
778         memtype_free_io(start, start + size);
779 }
780 EXPORT_SYMBOL(arch_io_free_memtype_wc);
781 #endif
782 
783 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
784                                 unsigned long size, pgprot_t vma_prot)
785 {
786         if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
787                 vma_prot = pgprot_decrypted(vma_prot);
788 
789         return vma_prot;
790 }
791 
792 #ifdef CONFIG_STRICT_DEVMEM
793 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
794 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
795 {
796         return 1;
797 }
798 #else
799 /* This check is needed to avoid cache aliasing when PAT is enabled */
800 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
801 {
802         u64 from = ((u64)pfn) << PAGE_SHIFT;
803         u64 to = from + size;
804         u64 cursor = from;
805 
806         if (!pat_enabled())
807                 return 1;
808 
809         while (cursor < to) {
810                 if (!devmem_is_allowed(pfn))
811                         return 0;
812                 cursor += PAGE_SIZE;
813                 pfn++;
814         }
815         return 1;
816 }
817 #endif /* CONFIG_STRICT_DEVMEM */
818 
819 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
820                                 unsigned long size, pgprot_t *vma_prot)
821 {
822         enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
823 
824         if (!range_is_allowed(pfn, size))
825                 return 0;
826 
827         if (file->f_flags & O_DSYNC)
828                 pcm = _PAGE_CACHE_MODE_UC_MINUS;
829 
830         *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
831                              cachemode2protval(pcm));
832         return 1;
833 }
834 
835 /*
836  * Change the memory type for the physical address range in kernel identity
837  * mapping space if that range is a part of identity map.
838  */
839 int memtype_kernel_map_sync(u64 base, unsigned long size,
840                             enum page_cache_mode pcm)
841 {
842         unsigned long id_sz;
843 
844         if (base > __pa(high_memory-1))
845                 return 0;
846 
847         /*
848          * Some areas in the middle of the kernel identity range
849          * are not mapped, for example the PCI space.
850          */
851         if (!page_is_ram(base >> PAGE_SHIFT))
852                 return 0;
853 
854         id_sz = (__pa(high_memory-1) <= base + size) ?
855                                 __pa(high_memory) - base : size;
856 
857         if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
858                 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
859                         current->comm, current->pid,
860                         cattr_name(pcm),
861                         base, (unsigned long long)(base + size-1));
862                 return -EINVAL;
863         }
864         return 0;
865 }
866 
867 /*
868  * Internal interface to reserve a range of physical memory with prot.
869  * Reserved non RAM regions only and after successful memtype_reserve,
870  * this func also keeps identity mapping (if any) in sync with this new prot.
871  */
872 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
873                                 int strict_prot)
874 {
875         int is_ram = 0;
876         int ret;
877         enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
878         enum page_cache_mode pcm = want_pcm;
879 
880         is_ram = pat_pagerange_is_ram(paddr, paddr + size);
881 
882         /*
883          * reserve_pfn_range() for RAM pages. We do not refcount to keep
884          * track of number of mappings of RAM pages. We can assert that
885          * the type requested matches the type of first page in the range.
886          */
887         if (is_ram) {
888                 if (!pat_enabled())
889                         return 0;
890 
891                 pcm = lookup_memtype(paddr);
892                 if (want_pcm != pcm) {
893                         pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
894                                 current->comm, current->pid,
895                                 cattr_name(want_pcm),
896                                 (unsigned long long)paddr,
897                                 (unsigned long long)(paddr + size - 1),
898                                 cattr_name(pcm));
899                         *vma_prot = __pgprot((pgprot_val(*vma_prot) &
900                                              (~_PAGE_CACHE_MASK)) |
901                                              cachemode2protval(pcm));
902                 }
903                 return 0;
904         }
905 
906         ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
907         if (ret)
908                 return ret;
909 
910         if (pcm != want_pcm) {
911                 if (strict_prot ||
912                     !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
913                         memtype_free(paddr, paddr + size);
914                         pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
915                                current->comm, current->pid,
916                                cattr_name(want_pcm),
917                                (unsigned long long)paddr,
918                                (unsigned long long)(paddr + size - 1),
919                                cattr_name(pcm));
920                         return -EINVAL;
921                 }
922                 /*
923                  * We allow returning different type than the one requested in
924                  * non strict case.
925                  */
926                 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
927                                       (~_PAGE_CACHE_MASK)) |
928                                      cachemode2protval(pcm));
929         }
930 
931         if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
932                 memtype_free(paddr, paddr + size);
933                 return -EINVAL;
934         }
935         return 0;
936 }
937 
938 /*
939  * Internal interface to free a range of physical memory.
940  * Frees non RAM regions only.
941  */
942 static void free_pfn_range(u64 paddr, unsigned long size)
943 {
944         int is_ram;
945 
946         is_ram = pat_pagerange_is_ram(paddr, paddr + size);
947         if (is_ram == 0)
948                 memtype_free(paddr, paddr + size);
949 }
950 
951 static int follow_phys(struct vm_area_struct *vma, unsigned long *prot,
952                 resource_size_t *phys)
953 {
954         pte_t *ptep, pte;
955         spinlock_t *ptl;
956 
957         if (follow_pte(vma, vma->vm_start, &ptep, &ptl))
958                 return -EINVAL;
959 
960         pte = ptep_get(ptep);
961 
962         /* Never return PFNs of anon folios in COW mappings. */
963         if (vm_normal_folio(vma, vma->vm_start, pte)) {
964                 pte_unmap_unlock(ptep, ptl);
965                 return -EINVAL;
966         }
967 
968         *prot = pgprot_val(pte_pgprot(pte));
969         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
970         pte_unmap_unlock(ptep, ptl);
971         return 0;
972 }
973 
974 static int get_pat_info(struct vm_area_struct *vma, resource_size_t *paddr,
975                 pgprot_t *pgprot)
976 {
977         unsigned long prot;
978 
979         VM_WARN_ON_ONCE(!(vma->vm_flags & VM_PAT));
980 
981         /*
982          * We need the starting PFN and cachemode used for track_pfn_remap()
983          * that covered the whole VMA. For most mappings, we can obtain that
984          * information from the page tables. For COW mappings, we might now
985          * suddenly have anon folios mapped and follow_phys() will fail.
986          *
987          * Fallback to using vma->vm_pgoff, see remap_pfn_range_notrack(), to
988          * detect the PFN. If we need the cachemode as well, we're out of luck
989          * for now and have to fail fork().
990          */
991         if (!follow_phys(vma, &prot, paddr)) {
992                 if (pgprot)
993                         *pgprot = __pgprot(prot);
994                 return 0;
995         }
996         if (is_cow_mapping(vma->vm_flags)) {
997                 if (pgprot)
998                         return -EINVAL;
999                 *paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
1000                 return 0;
1001         }
1002         WARN_ON_ONCE(1);
1003         return -EINVAL;
1004 }
1005 
1006 /*
1007  * track_pfn_copy is called when vma that is covering the pfnmap gets
1008  * copied through copy_page_range().
1009  *
1010  * If the vma has a linear pfn mapping for the entire range, we get the prot
1011  * from pte and reserve the entire vma range with single reserve_pfn_range call.
1012  */
1013 int track_pfn_copy(struct vm_area_struct *vma)
1014 {
1015         resource_size_t paddr;
1016         unsigned long vma_size = vma->vm_end - vma->vm_start;
1017         pgprot_t pgprot;
1018 
1019         if (vma->vm_flags & VM_PAT) {
1020                 if (get_pat_info(vma, &paddr, &pgprot))
1021                         return -EINVAL;
1022                 /* reserve the whole chunk covered by vma. */
1023                 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1024         }
1025 
1026         return 0;
1027 }
1028 
1029 /*
1030  * prot is passed in as a parameter for the new mapping. If the vma has
1031  * a linear pfn mapping for the entire range, or no vma is provided,
1032  * reserve the entire pfn + size range with single reserve_pfn_range
1033  * call.
1034  */
1035 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1036                     unsigned long pfn, unsigned long addr, unsigned long size)
1037 {
1038         resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1039         enum page_cache_mode pcm;
1040 
1041         /* reserve the whole chunk starting from paddr */
1042         if (!vma || (addr == vma->vm_start
1043                                 && size == (vma->vm_end - vma->vm_start))) {
1044                 int ret;
1045 
1046                 ret = reserve_pfn_range(paddr, size, prot, 0);
1047                 if (ret == 0 && vma)
1048                         vm_flags_set(vma, VM_PAT);
1049                 return ret;
1050         }
1051 
1052         if (!pat_enabled())
1053                 return 0;
1054 
1055         /*
1056          * For anything smaller than the vma size we set prot based on the
1057          * lookup.
1058          */
1059         pcm = lookup_memtype(paddr);
1060 
1061         /* Check memtype for the remaining pages */
1062         while (size > PAGE_SIZE) {
1063                 size -= PAGE_SIZE;
1064                 paddr += PAGE_SIZE;
1065                 if (pcm != lookup_memtype(paddr))
1066                         return -EINVAL;
1067         }
1068 
1069         *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1070                          cachemode2protval(pcm));
1071 
1072         return 0;
1073 }
1074 
1075 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1076 {
1077         enum page_cache_mode pcm;
1078 
1079         if (!pat_enabled())
1080                 return;
1081 
1082         /* Set prot based on lookup */
1083         pcm = lookup_memtype(pfn_t_to_phys(pfn));
1084         *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1085                          cachemode2protval(pcm));
1086 }
1087 
1088 /*
1089  * untrack_pfn is called while unmapping a pfnmap for a region.
1090  * untrack can be called for a specific region indicated by pfn and size or
1091  * can be for the entire vma (in which case pfn, size are zero).
1092  */
1093 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1094                  unsigned long size, bool mm_wr_locked)
1095 {
1096         resource_size_t paddr;
1097 
1098         if (vma && !(vma->vm_flags & VM_PAT))
1099                 return;
1100 
1101         /* free the chunk starting from pfn or the whole chunk */
1102         paddr = (resource_size_t)pfn << PAGE_SHIFT;
1103         if (!paddr && !size) {
1104                 if (get_pat_info(vma, &paddr, NULL))
1105                         return;
1106                 size = vma->vm_end - vma->vm_start;
1107         }
1108         free_pfn_range(paddr, size);
1109         if (vma) {
1110                 if (mm_wr_locked)
1111                         vm_flags_clear(vma, VM_PAT);
1112                 else
1113                         __vm_flags_mod(vma, 0, VM_PAT);
1114         }
1115 }
1116 
1117 /*
1118  * untrack_pfn_clear is called if the following situation fits:
1119  *
1120  * 1) while mremapping a pfnmap for a new region,  with the old vma after
1121  * its pfnmap page table has been removed.  The new vma has a new pfnmap
1122  * to the same pfn & cache type with VM_PAT set.
1123  * 2) while duplicating vm area, the new vma fails to copy the pgtable from
1124  * old vma.
1125  */
1126 void untrack_pfn_clear(struct vm_area_struct *vma)
1127 {
1128         vm_flags_clear(vma, VM_PAT);
1129 }
1130 
1131 pgprot_t pgprot_writecombine(pgprot_t prot)
1132 {
1133         return __pgprot(pgprot_val(prot) |
1134                                 cachemode2protval(_PAGE_CACHE_MODE_WC));
1135 }
1136 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1137 
1138 pgprot_t pgprot_writethrough(pgprot_t prot)
1139 {
1140         return __pgprot(pgprot_val(prot) |
1141                                 cachemode2protval(_PAGE_CACHE_MODE_WT));
1142 }
1143 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1144 
1145 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1146 
1147 /*
1148  * We are allocating a temporary printout-entry to be passed
1149  * between seq_start()/next() and seq_show():
1150  */
1151 static struct memtype *memtype_get_idx(loff_t pos)
1152 {
1153         struct memtype *entry_print;
1154         int ret;
1155 
1156         entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1157         if (!entry_print)
1158                 return NULL;
1159 
1160         spin_lock(&memtype_lock);
1161         ret = memtype_copy_nth_element(entry_print, pos);
1162         spin_unlock(&memtype_lock);
1163 
1164         /* Free it on error: */
1165         if (ret) {
1166                 kfree(entry_print);
1167                 return NULL;
1168         }
1169 
1170         return entry_print;
1171 }
1172 
1173 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1174 {
1175         if (*pos == 0) {
1176                 ++*pos;
1177                 seq_puts(seq, "PAT memtype list:\n");
1178         }
1179 
1180         return memtype_get_idx(*pos);
1181 }
1182 
1183 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1184 {
1185         kfree(v);
1186         ++*pos;
1187         return memtype_get_idx(*pos);
1188 }
1189 
1190 static void memtype_seq_stop(struct seq_file *seq, void *v)
1191 {
1192         kfree(v);
1193 }
1194 
1195 static int memtype_seq_show(struct seq_file *seq, void *v)
1196 {
1197         struct memtype *entry_print = (struct memtype *)v;
1198 
1199         seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1200                         entry_print->start,
1201                         entry_print->end,
1202                         cattr_name(entry_print->type));
1203 
1204         return 0;
1205 }
1206 
1207 static const struct seq_operations memtype_seq_ops = {
1208         .start = memtype_seq_start,
1209         .next  = memtype_seq_next,
1210         .stop  = memtype_seq_stop,
1211         .show  = memtype_seq_show,
1212 };
1213 
1214 static int memtype_seq_open(struct inode *inode, struct file *file)
1215 {
1216         return seq_open(file, &memtype_seq_ops);
1217 }
1218 
1219 static const struct file_operations memtype_fops = {
1220         .open    = memtype_seq_open,
1221         .read    = seq_read,
1222         .llseek  = seq_lseek,
1223         .release = seq_release,
1224 };
1225 
1226 static int __init pat_memtype_list_init(void)
1227 {
1228         if (pat_enabled()) {
1229                 debugfs_create_file("pat_memtype_list", S_IRUSR,
1230                                     arch_debugfs_dir, NULL, &memtype_fops);
1231         }
1232         return 0;
1233 }
1234 late_initcall(pat_memtype_list_init);
1235 
1236 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1237 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php