~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/pat/set_memory.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright 2002 Andi Kleen, SuSE Labs.
  4  * Thanks to Ben LaHaise for precious feedback.
  5  */
  6 #include <linux/highmem.h>
  7 #include <linux/memblock.h>
  8 #include <linux/sched.h>
  9 #include <linux/mm.h>
 10 #include <linux/interrupt.h>
 11 #include <linux/seq_file.h>
 12 #include <linux/proc_fs.h>
 13 #include <linux/debugfs.h>
 14 #include <linux/pfn.h>
 15 #include <linux/percpu.h>
 16 #include <linux/gfp.h>
 17 #include <linux/pci.h>
 18 #include <linux/vmalloc.h>
 19 #include <linux/libnvdimm.h>
 20 #include <linux/vmstat.h>
 21 #include <linux/kernel.h>
 22 #include <linux/cc_platform.h>
 23 #include <linux/set_memory.h>
 24 #include <linux/memregion.h>
 25 
 26 #include <asm/e820/api.h>
 27 #include <asm/processor.h>
 28 #include <asm/tlbflush.h>
 29 #include <asm/sections.h>
 30 #include <asm/setup.h>
 31 #include <linux/uaccess.h>
 32 #include <asm/pgalloc.h>
 33 #include <asm/proto.h>
 34 #include <asm/memtype.h>
 35 #include <asm/hyperv-tlfs.h>
 36 #include <asm/mshyperv.h>
 37 
 38 #include "../mm_internal.h"
 39 
 40 /*
 41  * The current flushing context - we pass it instead of 5 arguments:
 42  */
 43 struct cpa_data {
 44         unsigned long   *vaddr;
 45         pgd_t           *pgd;
 46         pgprot_t        mask_set;
 47         pgprot_t        mask_clr;
 48         unsigned long   numpages;
 49         unsigned long   curpage;
 50         unsigned long   pfn;
 51         unsigned int    flags;
 52         unsigned int    force_split             : 1,
 53                         force_static_prot       : 1,
 54                         force_flush_all         : 1;
 55         struct page     **pages;
 56 };
 57 
 58 enum cpa_warn {
 59         CPA_CONFLICT,
 60         CPA_PROTECT,
 61         CPA_DETECT,
 62 };
 63 
 64 static const int cpa_warn_level = CPA_PROTECT;
 65 
 66 /*
 67  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
 68  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
 69  * entries change the page attribute in parallel to some other cpu
 70  * splitting a large page entry along with changing the attribute.
 71  */
 72 static DEFINE_SPINLOCK(cpa_lock);
 73 
 74 #define CPA_FLUSHTLB 1
 75 #define CPA_ARRAY 2
 76 #define CPA_PAGES_ARRAY 4
 77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
 78 
 79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
 80 {
 81         return __pgprot(cachemode2protval(pcm));
 82 }
 83 
 84 #ifdef CONFIG_PROC_FS
 85 static unsigned long direct_pages_count[PG_LEVEL_NUM];
 86 
 87 void update_page_count(int level, unsigned long pages)
 88 {
 89         /* Protect against CPA */
 90         spin_lock(&pgd_lock);
 91         direct_pages_count[level] += pages;
 92         spin_unlock(&pgd_lock);
 93 }
 94 
 95 static void split_page_count(int level)
 96 {
 97         if (direct_pages_count[level] == 0)
 98                 return;
 99 
100         direct_pages_count[level]--;
101         if (system_state == SYSTEM_RUNNING) {
102                 if (level == PG_LEVEL_2M)
103                         count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
104                 else if (level == PG_LEVEL_1G)
105                         count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
106         }
107         direct_pages_count[level - 1] += PTRS_PER_PTE;
108 }
109 
110 void arch_report_meminfo(struct seq_file *m)
111 {
112         seq_printf(m, "DirectMap4k:    %8lu kB\n",
113                         direct_pages_count[PG_LEVEL_4K] << 2);
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115         seq_printf(m, "DirectMap2M:    %8lu kB\n",
116                         direct_pages_count[PG_LEVEL_2M] << 11);
117 #else
118         seq_printf(m, "DirectMap4M:    %8lu kB\n",
119                         direct_pages_count[PG_LEVEL_2M] << 12);
120 #endif
121         if (direct_gbpages)
122                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
123                         direct_pages_count[PG_LEVEL_1G] << 20);
124 }
125 #else
126 static inline void split_page_count(int level) { }
127 #endif
128 
129 #ifdef CONFIG_X86_CPA_STATISTICS
130 
131 static unsigned long cpa_1g_checked;
132 static unsigned long cpa_1g_sameprot;
133 static unsigned long cpa_1g_preserved;
134 static unsigned long cpa_2m_checked;
135 static unsigned long cpa_2m_sameprot;
136 static unsigned long cpa_2m_preserved;
137 static unsigned long cpa_4k_install;
138 
139 static inline void cpa_inc_1g_checked(void)
140 {
141         cpa_1g_checked++;
142 }
143 
144 static inline void cpa_inc_2m_checked(void)
145 {
146         cpa_2m_checked++;
147 }
148 
149 static inline void cpa_inc_4k_install(void)
150 {
151         data_race(cpa_4k_install++);
152 }
153 
154 static inline void cpa_inc_lp_sameprot(int level)
155 {
156         if (level == PG_LEVEL_1G)
157                 cpa_1g_sameprot++;
158         else
159                 cpa_2m_sameprot++;
160 }
161 
162 static inline void cpa_inc_lp_preserved(int level)
163 {
164         if (level == PG_LEVEL_1G)
165                 cpa_1g_preserved++;
166         else
167                 cpa_2m_preserved++;
168 }
169 
170 static int cpastats_show(struct seq_file *m, void *p)
171 {
172         seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
173         seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
174         seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
175         seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
176         seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
177         seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
178         seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
179         return 0;
180 }
181 
182 static int cpastats_open(struct inode *inode, struct file *file)
183 {
184         return single_open(file, cpastats_show, NULL);
185 }
186 
187 static const struct file_operations cpastats_fops = {
188         .open           = cpastats_open,
189         .read           = seq_read,
190         .llseek         = seq_lseek,
191         .release        = single_release,
192 };
193 
194 static int __init cpa_stats_init(void)
195 {
196         debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
197                             &cpastats_fops);
198         return 0;
199 }
200 late_initcall(cpa_stats_init);
201 #else
202 static inline void cpa_inc_1g_checked(void) { }
203 static inline void cpa_inc_2m_checked(void) { }
204 static inline void cpa_inc_4k_install(void) { }
205 static inline void cpa_inc_lp_sameprot(int level) { }
206 static inline void cpa_inc_lp_preserved(int level) { }
207 #endif
208 
209 
210 static inline int
211 within(unsigned long addr, unsigned long start, unsigned long end)
212 {
213         return addr >= start && addr < end;
214 }
215 
216 static inline int
217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
218 {
219         return addr >= start && addr <= end;
220 }
221 
222 #ifdef CONFIG_X86_64
223 
224 /*
225  * The kernel image is mapped into two places in the virtual address space
226  * (addresses without KASLR, of course):
227  *
228  * 1. The kernel direct map (0xffff880000000000)
229  * 2. The "high kernel map" (0xffffffff81000000)
230  *
231  * We actually execute out of #2. If we get the address of a kernel symbol, it
232  * points to #2, but almost all physical-to-virtual translations point to #1.
233  *
234  * This is so that we can have both a directmap of all physical memory *and*
235  * take full advantage of the limited (s32) immediate addressing range (2G)
236  * of x86_64.
237  *
238  * See Documentation/arch/x86/x86_64/mm.rst for more detail.
239  */
240 
241 static inline unsigned long highmap_start_pfn(void)
242 {
243         return __pa_symbol(_text) >> PAGE_SHIFT;
244 }
245 
246 static inline unsigned long highmap_end_pfn(void)
247 {
248         /* Do not reference physical address outside the kernel. */
249         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
250 }
251 
252 static bool __cpa_pfn_in_highmap(unsigned long pfn)
253 {
254         /*
255          * Kernel text has an alias mapping at a high address, known
256          * here as "highmap".
257          */
258         return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
259 }
260 
261 #else
262 
263 static bool __cpa_pfn_in_highmap(unsigned long pfn)
264 {
265         /* There is no highmap on 32-bit */
266         return false;
267 }
268 
269 #endif
270 
271 /*
272  * See set_mce_nospec().
273  *
274  * Machine check recovery code needs to change cache mode of poisoned pages to
275  * UC to avoid speculative access logging another error. But passing the
276  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277  * speculative access. So we cheat and flip the top bit of the address. This
278  * works fine for the code that updates the page tables. But at the end of the
279  * process we need to flush the TLB and cache and the non-canonical address
280  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
281  *
282  * But in the common case we already have a canonical address. This code
283  * will fix the top bit if needed and is a no-op otherwise.
284  */
285 static inline unsigned long fix_addr(unsigned long addr)
286 {
287 #ifdef CONFIG_X86_64
288         return (long)(addr << 1) >> 1;
289 #else
290         return addr;
291 #endif
292 }
293 
294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
295 {
296         if (cpa->flags & CPA_PAGES_ARRAY) {
297                 struct page *page = cpa->pages[idx];
298 
299                 if (unlikely(PageHighMem(page)))
300                         return 0;
301 
302                 return (unsigned long)page_address(page);
303         }
304 
305         if (cpa->flags & CPA_ARRAY)
306                 return cpa->vaddr[idx];
307 
308         return *cpa->vaddr + idx * PAGE_SIZE;
309 }
310 
311 /*
312  * Flushing functions
313  */
314 
315 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
316 {
317         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
318         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
319         void *vend = vaddr + size;
320 
321         if (p >= vend)
322                 return;
323 
324         for (; p < vend; p += clflush_size)
325                 clflushopt(p);
326 }
327 
328 /**
329  * clflush_cache_range - flush a cache range with clflush
330  * @vaddr:      virtual start address
331  * @size:       number of bytes to flush
332  *
333  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334  * SFENCE to avoid ordering issues.
335  */
336 void clflush_cache_range(void *vaddr, unsigned int size)
337 {
338         mb();
339         clflush_cache_range_opt(vaddr, size);
340         mb();
341 }
342 EXPORT_SYMBOL_GPL(clflush_cache_range);
343 
344 #ifdef CONFIG_ARCH_HAS_PMEM_API
345 void arch_invalidate_pmem(void *addr, size_t size)
346 {
347         clflush_cache_range(addr, size);
348 }
349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
350 #endif
351 
352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
353 bool cpu_cache_has_invalidate_memregion(void)
354 {
355         return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
356 }
357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
358 
359 int cpu_cache_invalidate_memregion(int res_desc)
360 {
361         if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
362                 return -ENXIO;
363         wbinvd_on_all_cpus();
364         return 0;
365 }
366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
367 #endif
368 
369 static void __cpa_flush_all(void *arg)
370 {
371         unsigned long cache = (unsigned long)arg;
372 
373         /*
374          * Flush all to work around Errata in early athlons regarding
375          * large page flushing.
376          */
377         __flush_tlb_all();
378 
379         if (cache && boot_cpu_data.x86 >= 4)
380                 wbinvd();
381 }
382 
383 static void cpa_flush_all(unsigned long cache)
384 {
385         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
386 
387         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
388 }
389 
390 static void __cpa_flush_tlb(void *data)
391 {
392         struct cpa_data *cpa = data;
393         unsigned int i;
394 
395         for (i = 0; i < cpa->numpages; i++)
396                 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
397 }
398 
399 static void cpa_flush(struct cpa_data *data, int cache)
400 {
401         struct cpa_data *cpa = data;
402         unsigned int i;
403 
404         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
405 
406         if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
407                 cpa_flush_all(cache);
408                 return;
409         }
410 
411         if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
412                 flush_tlb_all();
413         else
414                 on_each_cpu(__cpa_flush_tlb, cpa, 1);
415 
416         if (!cache)
417                 return;
418 
419         mb();
420         for (i = 0; i < cpa->numpages; i++) {
421                 unsigned long addr = __cpa_addr(cpa, i);
422                 unsigned int level;
423 
424                 pte_t *pte = lookup_address(addr, &level);
425 
426                 /*
427                  * Only flush present addresses:
428                  */
429                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
430                         clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
431         }
432         mb();
433 }
434 
435 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
436                      unsigned long r2_start, unsigned long r2_end)
437 {
438         return (r1_start <= r2_end && r1_end >= r2_start) ||
439                 (r2_start <= r1_end && r2_end >= r1_start);
440 }
441 
442 #ifdef CONFIG_PCI_BIOS
443 /*
444  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445  * based config access (CONFIG_PCI_GOBIOS) support.
446  */
447 #define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
448 #define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
449 
450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
451 {
452         if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
453                 return _PAGE_NX;
454         return 0;
455 }
456 #else
457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
458 {
459         return 0;
460 }
461 #endif
462 
463 /*
464  * The .rodata section needs to be read-only. Using the pfn catches all
465  * aliases.  This also includes __ro_after_init, so do not enforce until
466  * kernel_set_to_readonly is true.
467  */
468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
469 {
470         unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
471 
472         /*
473          * Note: __end_rodata is at page aligned and not inclusive, so
474          * subtract 1 to get the last enforced PFN in the rodata area.
475          */
476         epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
477 
478         if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
479                 return _PAGE_RW;
480         return 0;
481 }
482 
483 /*
484  * Protect kernel text against becoming non executable by forbidding
485  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
486  * out of which the kernel actually executes.  Do not protect the low
487  * mapping.
488  *
489  * This does not cover __inittext since that is gone after boot.
490  */
491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
492 {
493         unsigned long t_end = (unsigned long)_etext - 1;
494         unsigned long t_start = (unsigned long)_text;
495 
496         if (overlaps(start, end, t_start, t_end))
497                 return _PAGE_NX;
498         return 0;
499 }
500 
501 #if defined(CONFIG_X86_64)
502 /*
503  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504  * kernel text mappings for the large page aligned text, rodata sections
505  * will be always read-only. For the kernel identity mappings covering the
506  * holes caused by this alignment can be anything that user asks.
507  *
508  * This will preserve the large page mappings for kernel text/data at no
509  * extra cost.
510  */
511 static pgprotval_t protect_kernel_text_ro(unsigned long start,
512                                           unsigned long end)
513 {
514         unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
515         unsigned long t_start = (unsigned long)_text;
516         unsigned int level;
517 
518         if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
519                 return 0;
520         /*
521          * Don't enforce the !RW mapping for the kernel text mapping, if
522          * the current mapping is already using small page mapping.  No
523          * need to work hard to preserve large page mappings in this case.
524          *
525          * This also fixes the Linux Xen paravirt guest boot failure caused
526          * by unexpected read-only mappings for kernel identity
527          * mappings. In this paravirt guest case, the kernel text mapping
528          * and the kernel identity mapping share the same page-table pages,
529          * so the protections for kernel text and identity mappings have to
530          * be the same.
531          */
532         if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
533                 return _PAGE_RW;
534         return 0;
535 }
536 #else
537 static pgprotval_t protect_kernel_text_ro(unsigned long start,
538                                           unsigned long end)
539 {
540         return 0;
541 }
542 #endif
543 
544 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
545 {
546         return (pgprot_val(prot) & ~val) != pgprot_val(prot);
547 }
548 
549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
550                                   unsigned long start, unsigned long end,
551                                   unsigned long pfn, const char *txt)
552 {
553         static const char *lvltxt[] = {
554                 [CPA_CONFLICT]  = "conflict",
555                 [CPA_PROTECT]   = "protect",
556                 [CPA_DETECT]    = "detect",
557         };
558 
559         if (warnlvl > cpa_warn_level || !conflicts(prot, val))
560                 return;
561 
562         pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563                 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
564                 (unsigned long long)val);
565 }
566 
567 /*
568  * Certain areas of memory on x86 require very specific protection flags,
569  * for example the BIOS area or kernel text. Callers don't always get this
570  * right (again, ioremap() on BIOS memory is not uncommon) so this function
571  * checks and fixes these known static required protection bits.
572  */
573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
574                                           unsigned long pfn, unsigned long npg,
575                                           unsigned long lpsize, int warnlvl)
576 {
577         pgprotval_t forbidden, res;
578         unsigned long end;
579 
580         /*
581          * There is no point in checking RW/NX conflicts when the requested
582          * mapping is setting the page !PRESENT.
583          */
584         if (!(pgprot_val(prot) & _PAGE_PRESENT))
585                 return prot;
586 
587         /* Operate on the virtual address */
588         end = start + npg * PAGE_SIZE - 1;
589 
590         res = protect_kernel_text(start, end);
591         check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
592         forbidden = res;
593 
594         /*
595          * Special case to preserve a large page. If the change spawns the
596          * full large page mapping then there is no point to split it
597          * up. Happens with ftrace and is going to be removed once ftrace
598          * switched to text_poke().
599          */
600         if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
601                 res = protect_kernel_text_ro(start, end);
602                 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
603                 forbidden |= res;
604         }
605 
606         /* Check the PFN directly */
607         res = protect_pci_bios(pfn, pfn + npg - 1);
608         check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
609         forbidden |= res;
610 
611         res = protect_rodata(pfn, pfn + npg - 1);
612         check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
613         forbidden |= res;
614 
615         return __pgprot(pgprot_val(prot) & ~forbidden);
616 }
617 
618 /*
619  * Validate strict W^X semantics.
620  */
621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
622                                   unsigned long pfn, unsigned long npg,
623                                   bool nx, bool rw)
624 {
625         unsigned long end;
626 
627         /*
628          * 32-bit has some unfixable W+X issues, like EFI code
629          * and writeable data being in the same page.  Disable
630          * detection and enforcement there.
631          */
632         if (IS_ENABLED(CONFIG_X86_32))
633                 return new;
634 
635         /* Only verify when NX is supported: */
636         if (!(__supported_pte_mask & _PAGE_NX))
637                 return new;
638 
639         if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
640                 return new;
641 
642         if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
643                 return new;
644 
645         /* Non-leaf translation entries can disable writing or execution. */
646         if (!rw || nx)
647                 return new;
648 
649         end = start + npg * PAGE_SIZE - 1;
650         WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
651                   (unsigned long long)pgprot_val(old),
652                   (unsigned long long)pgprot_val(new),
653                   start, end, pfn);
654 
655         /*
656          * For now, allow all permission change attempts by returning the
657          * attempted permissions.  This can 'return old' to actively
658          * refuse the permission change at a later time.
659          */
660         return new;
661 }
662 
663 /*
664  * Lookup the page table entry for a virtual address in a specific pgd.
665  * Return a pointer to the entry (or NULL if the entry does not exist),
666  * the level of the entry, and the effective NX and RW bits of all
667  * page table levels.
668  */
669 pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address,
670                                   unsigned int *level, bool *nx, bool *rw)
671 {
672         p4d_t *p4d;
673         pud_t *pud;
674         pmd_t *pmd;
675 
676         *level = PG_LEVEL_256T;
677         *nx = false;
678         *rw = true;
679 
680         if (pgd_none(*pgd))
681                 return NULL;
682 
683         *level = PG_LEVEL_512G;
684         *nx |= pgd_flags(*pgd) & _PAGE_NX;
685         *rw &= pgd_flags(*pgd) & _PAGE_RW;
686 
687         p4d = p4d_offset(pgd, address);
688         if (p4d_none(*p4d))
689                 return NULL;
690 
691         if (p4d_leaf(*p4d) || !p4d_present(*p4d))
692                 return (pte_t *)p4d;
693 
694         *level = PG_LEVEL_1G;
695         *nx |= p4d_flags(*p4d) & _PAGE_NX;
696         *rw &= p4d_flags(*p4d) & _PAGE_RW;
697 
698         pud = pud_offset(p4d, address);
699         if (pud_none(*pud))
700                 return NULL;
701 
702         if (pud_leaf(*pud) || !pud_present(*pud))
703                 return (pte_t *)pud;
704 
705         *level = PG_LEVEL_2M;
706         *nx |= pud_flags(*pud) & _PAGE_NX;
707         *rw &= pud_flags(*pud) & _PAGE_RW;
708 
709         pmd = pmd_offset(pud, address);
710         if (pmd_none(*pmd))
711                 return NULL;
712 
713         if (pmd_leaf(*pmd) || !pmd_present(*pmd))
714                 return (pte_t *)pmd;
715 
716         *level = PG_LEVEL_4K;
717         *nx |= pmd_flags(*pmd) & _PAGE_NX;
718         *rw &= pmd_flags(*pmd) & _PAGE_RW;
719 
720         return pte_offset_kernel(pmd, address);
721 }
722 
723 /*
724  * Lookup the page table entry for a virtual address in a specific pgd.
725  * Return a pointer to the entry and the level of the mapping.
726  */
727 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
728                              unsigned int *level)
729 {
730         bool nx, rw;
731 
732         return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw);
733 }
734 
735 /*
736  * Lookup the page table entry for a virtual address. Return a pointer
737  * to the entry and the level of the mapping.
738  *
739  * Note: the function returns p4d, pud or pmd either when the entry is marked
740  * large or when the present bit is not set. Otherwise it returns NULL.
741  */
742 pte_t *lookup_address(unsigned long address, unsigned int *level)
743 {
744         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
745 }
746 EXPORT_SYMBOL_GPL(lookup_address);
747 
748 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
749                                   unsigned int *level, bool *nx, bool *rw)
750 {
751         pgd_t *pgd;
752 
753         if (!cpa->pgd)
754                 pgd = pgd_offset_k(address);
755         else
756                 pgd = cpa->pgd + pgd_index(address);
757 
758         return lookup_address_in_pgd_attr(pgd, address, level, nx, rw);
759 }
760 
761 /*
762  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
763  * or NULL if not present.
764  */
765 pmd_t *lookup_pmd_address(unsigned long address)
766 {
767         pgd_t *pgd;
768         p4d_t *p4d;
769         pud_t *pud;
770 
771         pgd = pgd_offset_k(address);
772         if (pgd_none(*pgd))
773                 return NULL;
774 
775         p4d = p4d_offset(pgd, address);
776         if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d))
777                 return NULL;
778 
779         pud = pud_offset(p4d, address);
780         if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud))
781                 return NULL;
782 
783         return pmd_offset(pud, address);
784 }
785 
786 /*
787  * This is necessary because __pa() does not work on some
788  * kinds of memory, like vmalloc() or the alloc_remap()
789  * areas on 32-bit NUMA systems.  The percpu areas can
790  * end up in this kind of memory, for instance.
791  *
792  * Note that as long as the PTEs are well-formed with correct PFNs, this
793  * works without checking the PRESENT bit in the leaf PTE.  This is unlike
794  * the similar vmalloc_to_page() and derivatives.  Callers may depend on
795  * this behavior.
796  *
797  * This could be optimized, but it is only used in paths that are not perf
798  * sensitive, and keeping it unoptimized should increase the testing coverage
799  * for the more obscure platforms.
800  */
801 phys_addr_t slow_virt_to_phys(void *__virt_addr)
802 {
803         unsigned long virt_addr = (unsigned long)__virt_addr;
804         phys_addr_t phys_addr;
805         unsigned long offset;
806         enum pg_level level;
807         pte_t *pte;
808 
809         pte = lookup_address(virt_addr, &level);
810         BUG_ON(!pte);
811 
812         /*
813          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
814          * before being left-shifted PAGE_SHIFT bits -- this trick is to
815          * make 32-PAE kernel work correctly.
816          */
817         switch (level) {
818         case PG_LEVEL_1G:
819                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
820                 offset = virt_addr & ~PUD_MASK;
821                 break;
822         case PG_LEVEL_2M:
823                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
824                 offset = virt_addr & ~PMD_MASK;
825                 break;
826         default:
827                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
828                 offset = virt_addr & ~PAGE_MASK;
829         }
830 
831         return (phys_addr_t)(phys_addr | offset);
832 }
833 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
834 
835 /*
836  * Set the new pmd in all the pgds we know about:
837  */
838 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
839 {
840         /* change init_mm */
841         set_pte_atomic(kpte, pte);
842 #ifdef CONFIG_X86_32
843         if (!SHARED_KERNEL_PMD) {
844                 struct page *page;
845 
846                 list_for_each_entry(page, &pgd_list, lru) {
847                         pgd_t *pgd;
848                         p4d_t *p4d;
849                         pud_t *pud;
850                         pmd_t *pmd;
851 
852                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
853                         p4d = p4d_offset(pgd, address);
854                         pud = pud_offset(p4d, address);
855                         pmd = pmd_offset(pud, address);
856                         set_pte_atomic((pte_t *)pmd, pte);
857                 }
858         }
859 #endif
860 }
861 
862 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
863 {
864         /*
865          * _PAGE_GLOBAL means "global page" for present PTEs.
866          * But, it is also used to indicate _PAGE_PROTNONE
867          * for non-present PTEs.
868          *
869          * This ensures that a _PAGE_GLOBAL PTE going from
870          * present to non-present is not confused as
871          * _PAGE_PROTNONE.
872          */
873         if (!(pgprot_val(prot) & _PAGE_PRESENT))
874                 pgprot_val(prot) &= ~_PAGE_GLOBAL;
875 
876         return prot;
877 }
878 
879 static int __should_split_large_page(pte_t *kpte, unsigned long address,
880                                      struct cpa_data *cpa)
881 {
882         unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
883         pgprot_t old_prot, new_prot, req_prot, chk_prot;
884         pte_t new_pte, *tmp;
885         enum pg_level level;
886         bool nx, rw;
887 
888         /*
889          * Check for races, another CPU might have split this page
890          * up already:
891          */
892         tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
893         if (tmp != kpte)
894                 return 1;
895 
896         switch (level) {
897         case PG_LEVEL_2M:
898                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
899                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
900                 cpa_inc_2m_checked();
901                 break;
902         case PG_LEVEL_1G:
903                 old_prot = pud_pgprot(*(pud_t *)kpte);
904                 old_pfn = pud_pfn(*(pud_t *)kpte);
905                 cpa_inc_1g_checked();
906                 break;
907         default:
908                 return -EINVAL;
909         }
910 
911         psize = page_level_size(level);
912         pmask = page_level_mask(level);
913 
914         /*
915          * Calculate the number of pages, which fit into this large
916          * page starting at address:
917          */
918         lpaddr = (address + psize) & pmask;
919         numpages = (lpaddr - address) >> PAGE_SHIFT;
920         if (numpages < cpa->numpages)
921                 cpa->numpages = numpages;
922 
923         /*
924          * We are safe now. Check whether the new pgprot is the same:
925          * Convert protection attributes to 4k-format, as cpa->mask* are set
926          * up accordingly.
927          */
928 
929         /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
930         req_prot = pgprot_large_2_4k(old_prot);
931 
932         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
933         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
934 
935         /*
936          * req_prot is in format of 4k pages. It must be converted to large
937          * page format: the caching mode includes the PAT bit located at
938          * different bit positions in the two formats.
939          */
940         req_prot = pgprot_4k_2_large(req_prot);
941         req_prot = pgprot_clear_protnone_bits(req_prot);
942         if (pgprot_val(req_prot) & _PAGE_PRESENT)
943                 pgprot_val(req_prot) |= _PAGE_PSE;
944 
945         /*
946          * old_pfn points to the large page base pfn. So we need to add the
947          * offset of the virtual address:
948          */
949         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
950         cpa->pfn = pfn;
951 
952         /*
953          * Calculate the large page base address and the number of 4K pages
954          * in the large page
955          */
956         lpaddr = address & pmask;
957         numpages = psize >> PAGE_SHIFT;
958 
959         /*
960          * Sanity check that the existing mapping is correct versus the static
961          * protections. static_protections() guards against !PRESENT, so no
962          * extra conditional required here.
963          */
964         chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
965                                       psize, CPA_CONFLICT);
966 
967         if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
968                 /*
969                  * Split the large page and tell the split code to
970                  * enforce static protections.
971                  */
972                 cpa->force_static_prot = 1;
973                 return 1;
974         }
975 
976         /*
977          * Optimization: If the requested pgprot is the same as the current
978          * pgprot, then the large page can be preserved and no updates are
979          * required independent of alignment and length of the requested
980          * range. The above already established that the current pgprot is
981          * correct, which in consequence makes the requested pgprot correct
982          * as well if it is the same. The static protection scan below will
983          * not come to a different conclusion.
984          */
985         if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
986                 cpa_inc_lp_sameprot(level);
987                 return 0;
988         }
989 
990         /*
991          * If the requested range does not cover the full page, split it up
992          */
993         if (address != lpaddr || cpa->numpages != numpages)
994                 return 1;
995 
996         /*
997          * Check whether the requested pgprot is conflicting with a static
998          * protection requirement in the large page.
999          */
1000         new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
1001                                       psize, CPA_DETECT);
1002 
1003         new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages,
1004                               nx, rw);
1005 
1006         /*
1007          * If there is a conflict, split the large page.
1008          *
1009          * There used to be a 4k wise evaluation trying really hard to
1010          * preserve the large pages, but experimentation has shown, that this
1011          * does not help at all. There might be corner cases which would
1012          * preserve one large page occasionally, but it's really not worth the
1013          * extra code and cycles for the common case.
1014          */
1015         if (pgprot_val(req_prot) != pgprot_val(new_prot))
1016                 return 1;
1017 
1018         /* All checks passed. Update the large page mapping. */
1019         new_pte = pfn_pte(old_pfn, new_prot);
1020         __set_pmd_pte(kpte, address, new_pte);
1021         cpa->flags |= CPA_FLUSHTLB;
1022         cpa_inc_lp_preserved(level);
1023         return 0;
1024 }
1025 
1026 static int should_split_large_page(pte_t *kpte, unsigned long address,
1027                                    struct cpa_data *cpa)
1028 {
1029         int do_split;
1030 
1031         if (cpa->force_split)
1032                 return 1;
1033 
1034         spin_lock(&pgd_lock);
1035         do_split = __should_split_large_page(kpte, address, cpa);
1036         spin_unlock(&pgd_lock);
1037 
1038         return do_split;
1039 }
1040 
1041 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1042                           pgprot_t ref_prot, unsigned long address,
1043                           unsigned long size)
1044 {
1045         unsigned int npg = PFN_DOWN(size);
1046         pgprot_t prot;
1047 
1048         /*
1049          * If should_split_large_page() discovered an inconsistent mapping,
1050          * remove the invalid protection in the split mapping.
1051          */
1052         if (!cpa->force_static_prot)
1053                 goto set;
1054 
1055         /* Hand in lpsize = 0 to enforce the protection mechanism */
1056         prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1057 
1058         if (pgprot_val(prot) == pgprot_val(ref_prot))
1059                 goto set;
1060 
1061         /*
1062          * If this is splitting a PMD, fix it up. PUD splits cannot be
1063          * fixed trivially as that would require to rescan the newly
1064          * installed PMD mappings after returning from split_large_page()
1065          * so an eventual further split can allocate the necessary PTE
1066          * pages. Warn for now and revisit it in case this actually
1067          * happens.
1068          */
1069         if (size == PAGE_SIZE)
1070                 ref_prot = prot;
1071         else
1072                 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1073 set:
1074         set_pte(pte, pfn_pte(pfn, ref_prot));
1075 }
1076 
1077 static int
1078 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1079                    struct page *base)
1080 {
1081         unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1082         pte_t *pbase = (pte_t *)page_address(base);
1083         unsigned int i, level;
1084         pgprot_t ref_prot;
1085         bool nx, rw;
1086         pte_t *tmp;
1087 
1088         spin_lock(&pgd_lock);
1089         /*
1090          * Check for races, another CPU might have split this page
1091          * up for us already:
1092          */
1093         tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1094         if (tmp != kpte) {
1095                 spin_unlock(&pgd_lock);
1096                 return 1;
1097         }
1098 
1099         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1100 
1101         switch (level) {
1102         case PG_LEVEL_2M:
1103                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1104                 /*
1105                  * Clear PSE (aka _PAGE_PAT) and move
1106                  * PAT bit to correct position.
1107                  */
1108                 ref_prot = pgprot_large_2_4k(ref_prot);
1109                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1110                 lpaddr = address & PMD_MASK;
1111                 lpinc = PAGE_SIZE;
1112                 break;
1113 
1114         case PG_LEVEL_1G:
1115                 ref_prot = pud_pgprot(*(pud_t *)kpte);
1116                 ref_pfn = pud_pfn(*(pud_t *)kpte);
1117                 pfninc = PMD_SIZE >> PAGE_SHIFT;
1118                 lpaddr = address & PUD_MASK;
1119                 lpinc = PMD_SIZE;
1120                 /*
1121                  * Clear the PSE flags if the PRESENT flag is not set
1122                  * otherwise pmd_present() will return true even on a non
1123                  * present pmd.
1124                  */
1125                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1126                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
1127                 break;
1128 
1129         default:
1130                 spin_unlock(&pgd_lock);
1131                 return 1;
1132         }
1133 
1134         ref_prot = pgprot_clear_protnone_bits(ref_prot);
1135 
1136         /*
1137          * Get the target pfn from the original entry:
1138          */
1139         pfn = ref_pfn;
1140         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1141                 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1142 
1143         if (virt_addr_valid(address)) {
1144                 unsigned long pfn = PFN_DOWN(__pa(address));
1145 
1146                 if (pfn_range_is_mapped(pfn, pfn + 1))
1147                         split_page_count(level);
1148         }
1149 
1150         /*
1151          * Install the new, split up pagetable.
1152          *
1153          * We use the standard kernel pagetable protections for the new
1154          * pagetable protections, the actual ptes set above control the
1155          * primary protection behavior:
1156          */
1157         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1158 
1159         /*
1160          * Do a global flush tlb after splitting the large page
1161          * and before we do the actual change page attribute in the PTE.
1162          *
1163          * Without this, we violate the TLB application note, that says:
1164          * "The TLBs may contain both ordinary and large-page
1165          *  translations for a 4-KByte range of linear addresses. This
1166          *  may occur if software modifies the paging structures so that
1167          *  the page size used for the address range changes. If the two
1168          *  translations differ with respect to page frame or attributes
1169          *  (e.g., permissions), processor behavior is undefined and may
1170          *  be implementation-specific."
1171          *
1172          * We do this global tlb flush inside the cpa_lock, so that we
1173          * don't allow any other cpu, with stale tlb entries change the
1174          * page attribute in parallel, that also falls into the
1175          * just split large page entry.
1176          */
1177         flush_tlb_all();
1178         spin_unlock(&pgd_lock);
1179 
1180         return 0;
1181 }
1182 
1183 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1184                             unsigned long address)
1185 {
1186         struct page *base;
1187 
1188         if (!debug_pagealloc_enabled())
1189                 spin_unlock(&cpa_lock);
1190         base = alloc_pages(GFP_KERNEL, 0);
1191         if (!debug_pagealloc_enabled())
1192                 spin_lock(&cpa_lock);
1193         if (!base)
1194                 return -ENOMEM;
1195 
1196         if (__split_large_page(cpa, kpte, address, base))
1197                 __free_page(base);
1198 
1199         return 0;
1200 }
1201 
1202 static bool try_to_free_pte_page(pte_t *pte)
1203 {
1204         int i;
1205 
1206         for (i = 0; i < PTRS_PER_PTE; i++)
1207                 if (!pte_none(pte[i]))
1208                         return false;
1209 
1210         free_page((unsigned long)pte);
1211         return true;
1212 }
1213 
1214 static bool try_to_free_pmd_page(pmd_t *pmd)
1215 {
1216         int i;
1217 
1218         for (i = 0; i < PTRS_PER_PMD; i++)
1219                 if (!pmd_none(pmd[i]))
1220                         return false;
1221 
1222         free_page((unsigned long)pmd);
1223         return true;
1224 }
1225 
1226 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1227 {
1228         pte_t *pte = pte_offset_kernel(pmd, start);
1229 
1230         while (start < end) {
1231                 set_pte(pte, __pte(0));
1232 
1233                 start += PAGE_SIZE;
1234                 pte++;
1235         }
1236 
1237         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1238                 pmd_clear(pmd);
1239                 return true;
1240         }
1241         return false;
1242 }
1243 
1244 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1245                               unsigned long start, unsigned long end)
1246 {
1247         if (unmap_pte_range(pmd, start, end))
1248                 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1249                         pud_clear(pud);
1250 }
1251 
1252 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1253 {
1254         pmd_t *pmd = pmd_offset(pud, start);
1255 
1256         /*
1257          * Not on a 2MB page boundary?
1258          */
1259         if (start & (PMD_SIZE - 1)) {
1260                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1261                 unsigned long pre_end = min_t(unsigned long, end, next_page);
1262 
1263                 __unmap_pmd_range(pud, pmd, start, pre_end);
1264 
1265                 start = pre_end;
1266                 pmd++;
1267         }
1268 
1269         /*
1270          * Try to unmap in 2M chunks.
1271          */
1272         while (end - start >= PMD_SIZE) {
1273                 if (pmd_leaf(*pmd))
1274                         pmd_clear(pmd);
1275                 else
1276                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1277 
1278                 start += PMD_SIZE;
1279                 pmd++;
1280         }
1281 
1282         /*
1283          * 4K leftovers?
1284          */
1285         if (start < end)
1286                 return __unmap_pmd_range(pud, pmd, start, end);
1287 
1288         /*
1289          * Try again to free the PMD page if haven't succeeded above.
1290          */
1291         if (!pud_none(*pud))
1292                 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1293                         pud_clear(pud);
1294 }
1295 
1296 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1297 {
1298         pud_t *pud = pud_offset(p4d, start);
1299 
1300         /*
1301          * Not on a GB page boundary?
1302          */
1303         if (start & (PUD_SIZE - 1)) {
1304                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1305                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
1306 
1307                 unmap_pmd_range(pud, start, pre_end);
1308 
1309                 start = pre_end;
1310                 pud++;
1311         }
1312 
1313         /*
1314          * Try to unmap in 1G chunks?
1315          */
1316         while (end - start >= PUD_SIZE) {
1317 
1318                 if (pud_leaf(*pud))
1319                         pud_clear(pud);
1320                 else
1321                         unmap_pmd_range(pud, start, start + PUD_SIZE);
1322 
1323                 start += PUD_SIZE;
1324                 pud++;
1325         }
1326 
1327         /*
1328          * 2M leftovers?
1329          */
1330         if (start < end)
1331                 unmap_pmd_range(pud, start, end);
1332 
1333         /*
1334          * No need to try to free the PUD page because we'll free it in
1335          * populate_pgd's error path
1336          */
1337 }
1338 
1339 static int alloc_pte_page(pmd_t *pmd)
1340 {
1341         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1342         if (!pte)
1343                 return -1;
1344 
1345         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1346         return 0;
1347 }
1348 
1349 static int alloc_pmd_page(pud_t *pud)
1350 {
1351         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1352         if (!pmd)
1353                 return -1;
1354 
1355         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1356         return 0;
1357 }
1358 
1359 static void populate_pte(struct cpa_data *cpa,
1360                          unsigned long start, unsigned long end,
1361                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1362 {
1363         pte_t *pte;
1364 
1365         pte = pte_offset_kernel(pmd, start);
1366 
1367         pgprot = pgprot_clear_protnone_bits(pgprot);
1368 
1369         while (num_pages-- && start < end) {
1370                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1371 
1372                 start    += PAGE_SIZE;
1373                 cpa->pfn++;
1374                 pte++;
1375         }
1376 }
1377 
1378 static long populate_pmd(struct cpa_data *cpa,
1379                          unsigned long start, unsigned long end,
1380                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1381 {
1382         long cur_pages = 0;
1383         pmd_t *pmd;
1384         pgprot_t pmd_pgprot;
1385 
1386         /*
1387          * Not on a 2M boundary?
1388          */
1389         if (start & (PMD_SIZE - 1)) {
1390                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1391                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1392 
1393                 pre_end   = min_t(unsigned long, pre_end, next_page);
1394                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1395                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1396 
1397                 /*
1398                  * Need a PTE page?
1399                  */
1400                 pmd = pmd_offset(pud, start);
1401                 if (pmd_none(*pmd))
1402                         if (alloc_pte_page(pmd))
1403                                 return -1;
1404 
1405                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1406 
1407                 start = pre_end;
1408         }
1409 
1410         /*
1411          * We mapped them all?
1412          */
1413         if (num_pages == cur_pages)
1414                 return cur_pages;
1415 
1416         pmd_pgprot = pgprot_4k_2_large(pgprot);
1417 
1418         while (end - start >= PMD_SIZE) {
1419 
1420                 /*
1421                  * We cannot use a 1G page so allocate a PMD page if needed.
1422                  */
1423                 if (pud_none(*pud))
1424                         if (alloc_pmd_page(pud))
1425                                 return -1;
1426 
1427                 pmd = pmd_offset(pud, start);
1428 
1429                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1430                                         canon_pgprot(pmd_pgprot))));
1431 
1432                 start     += PMD_SIZE;
1433                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1434                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1435         }
1436 
1437         /*
1438          * Map trailing 4K pages.
1439          */
1440         if (start < end) {
1441                 pmd = pmd_offset(pud, start);
1442                 if (pmd_none(*pmd))
1443                         if (alloc_pte_page(pmd))
1444                                 return -1;
1445 
1446                 populate_pte(cpa, start, end, num_pages - cur_pages,
1447                              pmd, pgprot);
1448         }
1449         return num_pages;
1450 }
1451 
1452 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1453                         pgprot_t pgprot)
1454 {
1455         pud_t *pud;
1456         unsigned long end;
1457         long cur_pages = 0;
1458         pgprot_t pud_pgprot;
1459 
1460         end = start + (cpa->numpages << PAGE_SHIFT);
1461 
1462         /*
1463          * Not on a Gb page boundary? => map everything up to it with
1464          * smaller pages.
1465          */
1466         if (start & (PUD_SIZE - 1)) {
1467                 unsigned long pre_end;
1468                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1469 
1470                 pre_end   = min_t(unsigned long, end, next_page);
1471                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1472                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1473 
1474                 pud = pud_offset(p4d, start);
1475 
1476                 /*
1477                  * Need a PMD page?
1478                  */
1479                 if (pud_none(*pud))
1480                         if (alloc_pmd_page(pud))
1481                                 return -1;
1482 
1483                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1484                                          pud, pgprot);
1485                 if (cur_pages < 0)
1486                         return cur_pages;
1487 
1488                 start = pre_end;
1489         }
1490 
1491         /* We mapped them all? */
1492         if (cpa->numpages == cur_pages)
1493                 return cur_pages;
1494 
1495         pud = pud_offset(p4d, start);
1496         pud_pgprot = pgprot_4k_2_large(pgprot);
1497 
1498         /*
1499          * Map everything starting from the Gb boundary, possibly with 1G pages
1500          */
1501         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1502                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1503                                    canon_pgprot(pud_pgprot))));
1504 
1505                 start     += PUD_SIZE;
1506                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1507                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1508                 pud++;
1509         }
1510 
1511         /* Map trailing leftover */
1512         if (start < end) {
1513                 long tmp;
1514 
1515                 pud = pud_offset(p4d, start);
1516                 if (pud_none(*pud))
1517                         if (alloc_pmd_page(pud))
1518                                 return -1;
1519 
1520                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1521                                    pud, pgprot);
1522                 if (tmp < 0)
1523                         return cur_pages;
1524 
1525                 cur_pages += tmp;
1526         }
1527         return cur_pages;
1528 }
1529 
1530 /*
1531  * Restrictions for kernel page table do not necessarily apply when mapping in
1532  * an alternate PGD.
1533  */
1534 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1535 {
1536         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1537         pud_t *pud = NULL;      /* shut up gcc */
1538         p4d_t *p4d;
1539         pgd_t *pgd_entry;
1540         long ret;
1541 
1542         pgd_entry = cpa->pgd + pgd_index(addr);
1543 
1544         if (pgd_none(*pgd_entry)) {
1545                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1546                 if (!p4d)
1547                         return -1;
1548 
1549                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1550         }
1551 
1552         /*
1553          * Allocate a PUD page and hand it down for mapping.
1554          */
1555         p4d = p4d_offset(pgd_entry, addr);
1556         if (p4d_none(*p4d)) {
1557                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1558                 if (!pud)
1559                         return -1;
1560 
1561                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1562         }
1563 
1564         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1565         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1566 
1567         ret = populate_pud(cpa, addr, p4d, pgprot);
1568         if (ret < 0) {
1569                 /*
1570                  * Leave the PUD page in place in case some other CPU or thread
1571                  * already found it, but remove any useless entries we just
1572                  * added to it.
1573                  */
1574                 unmap_pud_range(p4d, addr,
1575                                 addr + (cpa->numpages << PAGE_SHIFT));
1576                 return ret;
1577         }
1578 
1579         cpa->numpages = ret;
1580         return 0;
1581 }
1582 
1583 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1584                                int primary)
1585 {
1586         if (cpa->pgd) {
1587                 /*
1588                  * Right now, we only execute this code path when mapping
1589                  * the EFI virtual memory map regions, no other users
1590                  * provide a ->pgd value. This may change in the future.
1591                  */
1592                 return populate_pgd(cpa, vaddr);
1593         }
1594 
1595         /*
1596          * Ignore all non primary paths.
1597          */
1598         if (!primary) {
1599                 cpa->numpages = 1;
1600                 return 0;
1601         }
1602 
1603         /*
1604          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1605          * to have holes.
1606          * Also set numpages to '1' indicating that we processed cpa req for
1607          * one virtual address page and its pfn. TBD: numpages can be set based
1608          * on the initial value and the level returned by lookup_address().
1609          */
1610         if (within(vaddr, PAGE_OFFSET,
1611                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1612                 cpa->numpages = 1;
1613                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1614                 return 0;
1615 
1616         } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1617                 /* Faults in the highmap are OK, so do not warn: */
1618                 return -EFAULT;
1619         } else {
1620                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1621                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1622                         *cpa->vaddr);
1623 
1624                 return -EFAULT;
1625         }
1626 }
1627 
1628 static int __change_page_attr(struct cpa_data *cpa, int primary)
1629 {
1630         unsigned long address;
1631         int do_split, err;
1632         unsigned int level;
1633         pte_t *kpte, old_pte;
1634         bool nx, rw;
1635 
1636         address = __cpa_addr(cpa, cpa->curpage);
1637 repeat:
1638         kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1639         if (!kpte)
1640                 return __cpa_process_fault(cpa, address, primary);
1641 
1642         old_pte = *kpte;
1643         if (pte_none(old_pte))
1644                 return __cpa_process_fault(cpa, address, primary);
1645 
1646         if (level == PG_LEVEL_4K) {
1647                 pte_t new_pte;
1648                 pgprot_t old_prot = pte_pgprot(old_pte);
1649                 pgprot_t new_prot = pte_pgprot(old_pte);
1650                 unsigned long pfn = pte_pfn(old_pte);
1651 
1652                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1653                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1654 
1655                 cpa_inc_4k_install();
1656                 /* Hand in lpsize = 0 to enforce the protection mechanism */
1657                 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1658                                               CPA_PROTECT);
1659 
1660                 new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1,
1661                                       nx, rw);
1662 
1663                 new_prot = pgprot_clear_protnone_bits(new_prot);
1664 
1665                 /*
1666                  * We need to keep the pfn from the existing PTE,
1667                  * after all we're only going to change its attributes
1668                  * not the memory it points to
1669                  */
1670                 new_pte = pfn_pte(pfn, new_prot);
1671                 cpa->pfn = pfn;
1672                 /*
1673                  * Do we really change anything ?
1674                  */
1675                 if (pte_val(old_pte) != pte_val(new_pte)) {
1676                         set_pte_atomic(kpte, new_pte);
1677                         cpa->flags |= CPA_FLUSHTLB;
1678                 }
1679                 cpa->numpages = 1;
1680                 return 0;
1681         }
1682 
1683         /*
1684          * Check, whether we can keep the large page intact
1685          * and just change the pte:
1686          */
1687         do_split = should_split_large_page(kpte, address, cpa);
1688         /*
1689          * When the range fits into the existing large page,
1690          * return. cp->numpages and cpa->tlbflush have been updated in
1691          * try_large_page:
1692          */
1693         if (do_split <= 0)
1694                 return do_split;
1695 
1696         /*
1697          * We have to split the large page:
1698          */
1699         err = split_large_page(cpa, kpte, address);
1700         if (!err)
1701                 goto repeat;
1702 
1703         return err;
1704 }
1705 
1706 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1707 
1708 /*
1709  * Check the directmap and "high kernel map" 'aliases'.
1710  */
1711 static int cpa_process_alias(struct cpa_data *cpa)
1712 {
1713         struct cpa_data alias_cpa;
1714         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1715         unsigned long vaddr;
1716         int ret;
1717 
1718         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1719                 return 0;
1720 
1721         /*
1722          * No need to redo, when the primary call touched the direct
1723          * mapping already:
1724          */
1725         vaddr = __cpa_addr(cpa, cpa->curpage);
1726         if (!(within(vaddr, PAGE_OFFSET,
1727                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1728 
1729                 alias_cpa = *cpa;
1730                 alias_cpa.vaddr = &laddr;
1731                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1732                 alias_cpa.curpage = 0;
1733 
1734                 /* Directmap always has NX set, do not modify. */
1735                 if (__supported_pte_mask & _PAGE_NX) {
1736                         alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1737                         alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1738                 }
1739 
1740                 cpa->force_flush_all = 1;
1741 
1742                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1743                 if (ret)
1744                         return ret;
1745         }
1746 
1747 #ifdef CONFIG_X86_64
1748         /*
1749          * If the primary call didn't touch the high mapping already
1750          * and the physical address is inside the kernel map, we need
1751          * to touch the high mapped kernel as well:
1752          */
1753         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1754             __cpa_pfn_in_highmap(cpa->pfn)) {
1755                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1756                                                __START_KERNEL_map - phys_base;
1757                 alias_cpa = *cpa;
1758                 alias_cpa.vaddr = &temp_cpa_vaddr;
1759                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1760                 alias_cpa.curpage = 0;
1761 
1762                 /*
1763                  * [_text, _brk_end) also covers data, do not modify NX except
1764                  * in cases where the highmap is the primary target.
1765                  */
1766                 if (__supported_pte_mask & _PAGE_NX) {
1767                         alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1768                         alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1769                 }
1770 
1771                 cpa->force_flush_all = 1;
1772                 /*
1773                  * The high mapping range is imprecise, so ignore the
1774                  * return value.
1775                  */
1776                 __change_page_attr_set_clr(&alias_cpa, 0);
1777         }
1778 #endif
1779 
1780         return 0;
1781 }
1782 
1783 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1784 {
1785         unsigned long numpages = cpa->numpages;
1786         unsigned long rempages = numpages;
1787         int ret = 0;
1788 
1789         /*
1790          * No changes, easy!
1791          */
1792         if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1793             !cpa->force_split)
1794                 return ret;
1795 
1796         while (rempages) {
1797                 /*
1798                  * Store the remaining nr of pages for the large page
1799                  * preservation check.
1800                  */
1801                 cpa->numpages = rempages;
1802                 /* for array changes, we can't use large page */
1803                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1804                         cpa->numpages = 1;
1805 
1806                 if (!debug_pagealloc_enabled())
1807                         spin_lock(&cpa_lock);
1808                 ret = __change_page_attr(cpa, primary);
1809                 if (!debug_pagealloc_enabled())
1810                         spin_unlock(&cpa_lock);
1811                 if (ret)
1812                         goto out;
1813 
1814                 if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1815                         ret = cpa_process_alias(cpa);
1816                         if (ret)
1817                                 goto out;
1818                 }
1819 
1820                 /*
1821                  * Adjust the number of pages with the result of the
1822                  * CPA operation. Either a large page has been
1823                  * preserved or a single page update happened.
1824                  */
1825                 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1826                 rempages -= cpa->numpages;
1827                 cpa->curpage += cpa->numpages;
1828         }
1829 
1830 out:
1831         /* Restore the original numpages */
1832         cpa->numpages = numpages;
1833         return ret;
1834 }
1835 
1836 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1837                                     pgprot_t mask_set, pgprot_t mask_clr,
1838                                     int force_split, int in_flag,
1839                                     struct page **pages)
1840 {
1841         struct cpa_data cpa;
1842         int ret, cache;
1843 
1844         memset(&cpa, 0, sizeof(cpa));
1845 
1846         /*
1847          * Check, if we are requested to set a not supported
1848          * feature.  Clearing non-supported features is OK.
1849          */
1850         mask_set = canon_pgprot(mask_set);
1851 
1852         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1853                 return 0;
1854 
1855         /* Ensure we are PAGE_SIZE aligned */
1856         if (in_flag & CPA_ARRAY) {
1857                 int i;
1858                 for (i = 0; i < numpages; i++) {
1859                         if (addr[i] & ~PAGE_MASK) {
1860                                 addr[i] &= PAGE_MASK;
1861                                 WARN_ON_ONCE(1);
1862                         }
1863                 }
1864         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1865                 /*
1866                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1867                  * No need to check in that case
1868                  */
1869                 if (*addr & ~PAGE_MASK) {
1870                         *addr &= PAGE_MASK;
1871                         /*
1872                          * People should not be passing in unaligned addresses:
1873                          */
1874                         WARN_ON_ONCE(1);
1875                 }
1876         }
1877 
1878         /* Must avoid aliasing mappings in the highmem code */
1879         kmap_flush_unused();
1880 
1881         vm_unmap_aliases();
1882 
1883         cpa.vaddr = addr;
1884         cpa.pages = pages;
1885         cpa.numpages = numpages;
1886         cpa.mask_set = mask_set;
1887         cpa.mask_clr = mask_clr;
1888         cpa.flags = in_flag;
1889         cpa.curpage = 0;
1890         cpa.force_split = force_split;
1891 
1892         ret = __change_page_attr_set_clr(&cpa, 1);
1893 
1894         /*
1895          * Check whether we really changed something:
1896          */
1897         if (!(cpa.flags & CPA_FLUSHTLB))
1898                 goto out;
1899 
1900         /*
1901          * No need to flush, when we did not set any of the caching
1902          * attributes:
1903          */
1904         cache = !!pgprot2cachemode(mask_set);
1905 
1906         /*
1907          * On error; flush everything to be sure.
1908          */
1909         if (ret) {
1910                 cpa_flush_all(cache);
1911                 goto out;
1912         }
1913 
1914         cpa_flush(&cpa, cache);
1915 out:
1916         return ret;
1917 }
1918 
1919 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1920                                        pgprot_t mask, int array)
1921 {
1922         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1923                 (array ? CPA_ARRAY : 0), NULL);
1924 }
1925 
1926 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1927                                          pgprot_t mask, int array)
1928 {
1929         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1930                 (array ? CPA_ARRAY : 0), NULL);
1931 }
1932 
1933 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1934                                        pgprot_t mask)
1935 {
1936         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1937                 CPA_PAGES_ARRAY, pages);
1938 }
1939 
1940 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1941                                          pgprot_t mask)
1942 {
1943         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1944                 CPA_PAGES_ARRAY, pages);
1945 }
1946 
1947 /*
1948  * __set_memory_prot is an internal helper for callers that have been passed
1949  * a pgprot_t value from upper layers and a reservation has already been taken.
1950  * If you want to set the pgprot to a specific page protocol, use the
1951  * set_memory_xx() functions.
1952  */
1953 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1954 {
1955         return change_page_attr_set_clr(&addr, numpages, prot,
1956                                         __pgprot(~pgprot_val(prot)), 0, 0,
1957                                         NULL);
1958 }
1959 
1960 int _set_memory_uc(unsigned long addr, int numpages)
1961 {
1962         /*
1963          * for now UC MINUS. see comments in ioremap()
1964          * If you really need strong UC use ioremap_uc(), but note
1965          * that you cannot override IO areas with set_memory_*() as
1966          * these helpers cannot work with IO memory.
1967          */
1968         return change_page_attr_set(&addr, numpages,
1969                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1970                                     0);
1971 }
1972 
1973 int set_memory_uc(unsigned long addr, int numpages)
1974 {
1975         int ret;
1976 
1977         /*
1978          * for now UC MINUS. see comments in ioremap()
1979          */
1980         ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1981                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1982         if (ret)
1983                 goto out_err;
1984 
1985         ret = _set_memory_uc(addr, numpages);
1986         if (ret)
1987                 goto out_free;
1988 
1989         return 0;
1990 
1991 out_free:
1992         memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1993 out_err:
1994         return ret;
1995 }
1996 EXPORT_SYMBOL(set_memory_uc);
1997 
1998 int _set_memory_wc(unsigned long addr, int numpages)
1999 {
2000         int ret;
2001 
2002         ret = change_page_attr_set(&addr, numpages,
2003                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2004                                    0);
2005         if (!ret) {
2006                 ret = change_page_attr_set_clr(&addr, numpages,
2007                                                cachemode2pgprot(_PAGE_CACHE_MODE_WC),
2008                                                __pgprot(_PAGE_CACHE_MASK),
2009                                                0, 0, NULL);
2010         }
2011         return ret;
2012 }
2013 
2014 int set_memory_wc(unsigned long addr, int numpages)
2015 {
2016         int ret;
2017 
2018         ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2019                 _PAGE_CACHE_MODE_WC, NULL);
2020         if (ret)
2021                 return ret;
2022 
2023         ret = _set_memory_wc(addr, numpages);
2024         if (ret)
2025                 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2026 
2027         return ret;
2028 }
2029 EXPORT_SYMBOL(set_memory_wc);
2030 
2031 int _set_memory_wt(unsigned long addr, int numpages)
2032 {
2033         return change_page_attr_set(&addr, numpages,
2034                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
2035 }
2036 
2037 int _set_memory_wb(unsigned long addr, int numpages)
2038 {
2039         /* WB cache mode is hard wired to all cache attribute bits being 0 */
2040         return change_page_attr_clear(&addr, numpages,
2041                                       __pgprot(_PAGE_CACHE_MASK), 0);
2042 }
2043 
2044 int set_memory_wb(unsigned long addr, int numpages)
2045 {
2046         int ret;
2047 
2048         ret = _set_memory_wb(addr, numpages);
2049         if (ret)
2050                 return ret;
2051 
2052         memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2053         return 0;
2054 }
2055 EXPORT_SYMBOL(set_memory_wb);
2056 
2057 /* Prevent speculative access to a page by marking it not-present */
2058 #ifdef CONFIG_X86_64
2059 int set_mce_nospec(unsigned long pfn)
2060 {
2061         unsigned long decoy_addr;
2062         int rc;
2063 
2064         /* SGX pages are not in the 1:1 map */
2065         if (arch_is_platform_page(pfn << PAGE_SHIFT))
2066                 return 0;
2067         /*
2068          * We would like to just call:
2069          *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2070          * but doing that would radically increase the odds of a
2071          * speculative access to the poison page because we'd have
2072          * the virtual address of the kernel 1:1 mapping sitting
2073          * around in registers.
2074          * Instead we get tricky.  We create a non-canonical address
2075          * that looks just like the one we want, but has bit 63 flipped.
2076          * This relies on set_memory_XX() properly sanitizing any __pa()
2077          * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2078          */
2079         decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2080 
2081         rc = set_memory_np(decoy_addr, 1);
2082         if (rc)
2083                 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2084         return rc;
2085 }
2086 
2087 /* Restore full speculative operation to the pfn. */
2088 int clear_mce_nospec(unsigned long pfn)
2089 {
2090         unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2091 
2092         return set_memory_p(addr, 1);
2093 }
2094 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2095 #endif /* CONFIG_X86_64 */
2096 
2097 int set_memory_x(unsigned long addr, int numpages)
2098 {
2099         if (!(__supported_pte_mask & _PAGE_NX))
2100                 return 0;
2101 
2102         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2103 }
2104 
2105 int set_memory_nx(unsigned long addr, int numpages)
2106 {
2107         if (!(__supported_pte_mask & _PAGE_NX))
2108                 return 0;
2109 
2110         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2111 }
2112 
2113 int set_memory_ro(unsigned long addr, int numpages)
2114 {
2115         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2116 }
2117 
2118 int set_memory_rox(unsigned long addr, int numpages)
2119 {
2120         pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2121 
2122         if (__supported_pte_mask & _PAGE_NX)
2123                 clr.pgprot |= _PAGE_NX;
2124 
2125         return change_page_attr_clear(&addr, numpages, clr, 0);
2126 }
2127 
2128 int set_memory_rw(unsigned long addr, int numpages)
2129 {
2130         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2131 }
2132 
2133 int set_memory_np(unsigned long addr, int numpages)
2134 {
2135         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2136 }
2137 
2138 int set_memory_np_noalias(unsigned long addr, int numpages)
2139 {
2140         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2141                                         __pgprot(_PAGE_PRESENT), 0,
2142                                         CPA_NO_CHECK_ALIAS, NULL);
2143 }
2144 
2145 int set_memory_p(unsigned long addr, int numpages)
2146 {
2147         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2148 }
2149 
2150 int set_memory_4k(unsigned long addr, int numpages)
2151 {
2152         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2153                                         __pgprot(0), 1, 0, NULL);
2154 }
2155 
2156 int set_memory_nonglobal(unsigned long addr, int numpages)
2157 {
2158         return change_page_attr_clear(&addr, numpages,
2159                                       __pgprot(_PAGE_GLOBAL), 0);
2160 }
2161 
2162 int set_memory_global(unsigned long addr, int numpages)
2163 {
2164         return change_page_attr_set(&addr, numpages,
2165                                     __pgprot(_PAGE_GLOBAL), 0);
2166 }
2167 
2168 /*
2169  * __set_memory_enc_pgtable() is used for the hypervisors that get
2170  * informed about "encryption" status via page tables.
2171  */
2172 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2173 {
2174         pgprot_t empty = __pgprot(0);
2175         struct cpa_data cpa;
2176         int ret;
2177 
2178         /* Should not be working on unaligned addresses */
2179         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2180                 addr &= PAGE_MASK;
2181 
2182         memset(&cpa, 0, sizeof(cpa));
2183         cpa.vaddr = &addr;
2184         cpa.numpages = numpages;
2185         cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2186         cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2187         cpa.pgd = init_mm.pgd;
2188 
2189         /* Must avoid aliasing mappings in the highmem code */
2190         kmap_flush_unused();
2191         vm_unmap_aliases();
2192 
2193         /* Flush the caches as needed before changing the encryption attribute. */
2194         if (x86_platform.guest.enc_tlb_flush_required(enc))
2195                 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2196 
2197         /* Notify hypervisor that we are about to set/clr encryption attribute. */
2198         ret = x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
2199         if (ret)
2200                 goto vmm_fail;
2201 
2202         ret = __change_page_attr_set_clr(&cpa, 1);
2203 
2204         /*
2205          * After changing the encryption attribute, we need to flush TLBs again
2206          * in case any speculative TLB caching occurred (but no need to flush
2207          * caches again).  We could just use cpa_flush_all(), but in case TLB
2208          * flushing gets optimized in the cpa_flush() path use the same logic
2209          * as above.
2210          */
2211         cpa_flush(&cpa, 0);
2212 
2213         if (ret)
2214                 return ret;
2215 
2216         /* Notify hypervisor that we have successfully set/clr encryption attribute. */
2217         ret = x86_platform.guest.enc_status_change_finish(addr, numpages, enc);
2218         if (ret)
2219                 goto vmm_fail;
2220 
2221         return 0;
2222 
2223 vmm_fail:
2224         WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s: %d\n",
2225                   (void *)addr, numpages, enc ? "private" : "shared", ret);
2226 
2227         return ret;
2228 }
2229 
2230 /*
2231  * The lock serializes conversions between private and shared memory.
2232  *
2233  * It is taken for read on conversion. A write lock guarantees that no
2234  * concurrent conversions are in progress.
2235  */
2236 static DECLARE_RWSEM(mem_enc_lock);
2237 
2238 /*
2239  * Stop new private<->shared conversions.
2240  *
2241  * Taking the exclusive mem_enc_lock waits for in-flight conversions to complete.
2242  * The lock is not released to prevent new conversions from being started.
2243  */
2244 bool set_memory_enc_stop_conversion(void)
2245 {
2246         /*
2247          * In a crash scenario, sleep is not allowed. Try to take the lock.
2248          * Failure indicates that there is a race with the conversion.
2249          */
2250         if (oops_in_progress)
2251                 return down_write_trylock(&mem_enc_lock);
2252 
2253         down_write(&mem_enc_lock);
2254 
2255         return true;
2256 }
2257 
2258 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2259 {
2260         int ret = 0;
2261 
2262         if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
2263                 if (!down_read_trylock(&mem_enc_lock))
2264                         return -EBUSY;
2265 
2266                 ret = __set_memory_enc_pgtable(addr, numpages, enc);
2267 
2268                 up_read(&mem_enc_lock);
2269         }
2270 
2271         return ret;
2272 }
2273 
2274 int set_memory_encrypted(unsigned long addr, int numpages)
2275 {
2276         return __set_memory_enc_dec(addr, numpages, true);
2277 }
2278 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2279 
2280 int set_memory_decrypted(unsigned long addr, int numpages)
2281 {
2282         return __set_memory_enc_dec(addr, numpages, false);
2283 }
2284 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2285 
2286 int set_pages_uc(struct page *page, int numpages)
2287 {
2288         unsigned long addr = (unsigned long)page_address(page);
2289 
2290         return set_memory_uc(addr, numpages);
2291 }
2292 EXPORT_SYMBOL(set_pages_uc);
2293 
2294 static int _set_pages_array(struct page **pages, int numpages,
2295                 enum page_cache_mode new_type)
2296 {
2297         unsigned long start;
2298         unsigned long end;
2299         enum page_cache_mode set_type;
2300         int i;
2301         int free_idx;
2302         int ret;
2303 
2304         for (i = 0; i < numpages; i++) {
2305                 if (PageHighMem(pages[i]))
2306                         continue;
2307                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2308                 end = start + PAGE_SIZE;
2309                 if (memtype_reserve(start, end, new_type, NULL))
2310                         goto err_out;
2311         }
2312 
2313         /* If WC, set to UC- first and then WC */
2314         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2315                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2316 
2317         ret = cpa_set_pages_array(pages, numpages,
2318                                   cachemode2pgprot(set_type));
2319         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2320                 ret = change_page_attr_set_clr(NULL, numpages,
2321                                                cachemode2pgprot(
2322                                                 _PAGE_CACHE_MODE_WC),
2323                                                __pgprot(_PAGE_CACHE_MASK),
2324                                                0, CPA_PAGES_ARRAY, pages);
2325         if (ret)
2326                 goto err_out;
2327         return 0; /* Success */
2328 err_out:
2329         free_idx = i;
2330         for (i = 0; i < free_idx; i++) {
2331                 if (PageHighMem(pages[i]))
2332                         continue;
2333                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2334                 end = start + PAGE_SIZE;
2335                 memtype_free(start, end);
2336         }
2337         return -EINVAL;
2338 }
2339 
2340 int set_pages_array_uc(struct page **pages, int numpages)
2341 {
2342         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2343 }
2344 EXPORT_SYMBOL(set_pages_array_uc);
2345 
2346 int set_pages_array_wc(struct page **pages, int numpages)
2347 {
2348         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2349 }
2350 EXPORT_SYMBOL(set_pages_array_wc);
2351 
2352 int set_pages_wb(struct page *page, int numpages)
2353 {
2354         unsigned long addr = (unsigned long)page_address(page);
2355 
2356         return set_memory_wb(addr, numpages);
2357 }
2358 EXPORT_SYMBOL(set_pages_wb);
2359 
2360 int set_pages_array_wb(struct page **pages, int numpages)
2361 {
2362         int retval;
2363         unsigned long start;
2364         unsigned long end;
2365         int i;
2366 
2367         /* WB cache mode is hard wired to all cache attribute bits being 0 */
2368         retval = cpa_clear_pages_array(pages, numpages,
2369                         __pgprot(_PAGE_CACHE_MASK));
2370         if (retval)
2371                 return retval;
2372 
2373         for (i = 0; i < numpages; i++) {
2374                 if (PageHighMem(pages[i]))
2375                         continue;
2376                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2377                 end = start + PAGE_SIZE;
2378                 memtype_free(start, end);
2379         }
2380 
2381         return 0;
2382 }
2383 EXPORT_SYMBOL(set_pages_array_wb);
2384 
2385 int set_pages_ro(struct page *page, int numpages)
2386 {
2387         unsigned long addr = (unsigned long)page_address(page);
2388 
2389         return set_memory_ro(addr, numpages);
2390 }
2391 
2392 int set_pages_rw(struct page *page, int numpages)
2393 {
2394         unsigned long addr = (unsigned long)page_address(page);
2395 
2396         return set_memory_rw(addr, numpages);
2397 }
2398 
2399 static int __set_pages_p(struct page *page, int numpages)
2400 {
2401         unsigned long tempaddr = (unsigned long) page_address(page);
2402         struct cpa_data cpa = { .vaddr = &tempaddr,
2403                                 .pgd = NULL,
2404                                 .numpages = numpages,
2405                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2406                                 .mask_clr = __pgprot(0),
2407                                 .flags = CPA_NO_CHECK_ALIAS };
2408 
2409         /*
2410          * No alias checking needed for setting present flag. otherwise,
2411          * we may need to break large pages for 64-bit kernel text
2412          * mappings (this adds to complexity if we want to do this from
2413          * atomic context especially). Let's keep it simple!
2414          */
2415         return __change_page_attr_set_clr(&cpa, 1);
2416 }
2417 
2418 static int __set_pages_np(struct page *page, int numpages)
2419 {
2420         unsigned long tempaddr = (unsigned long) page_address(page);
2421         struct cpa_data cpa = { .vaddr = &tempaddr,
2422                                 .pgd = NULL,
2423                                 .numpages = numpages,
2424                                 .mask_set = __pgprot(0),
2425                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2426                                 .flags = CPA_NO_CHECK_ALIAS };
2427 
2428         /*
2429          * No alias checking needed for setting not present flag. otherwise,
2430          * we may need to break large pages for 64-bit kernel text
2431          * mappings (this adds to complexity if we want to do this from
2432          * atomic context especially). Let's keep it simple!
2433          */
2434         return __change_page_attr_set_clr(&cpa, 1);
2435 }
2436 
2437 int set_direct_map_invalid_noflush(struct page *page)
2438 {
2439         return __set_pages_np(page, 1);
2440 }
2441 
2442 int set_direct_map_default_noflush(struct page *page)
2443 {
2444         return __set_pages_p(page, 1);
2445 }
2446 
2447 #ifdef CONFIG_DEBUG_PAGEALLOC
2448 void __kernel_map_pages(struct page *page, int numpages, int enable)
2449 {
2450         if (PageHighMem(page))
2451                 return;
2452         if (!enable) {
2453                 debug_check_no_locks_freed(page_address(page),
2454                                            numpages * PAGE_SIZE);
2455         }
2456 
2457         /*
2458          * The return value is ignored as the calls cannot fail.
2459          * Large pages for identity mappings are not used at boot time
2460          * and hence no memory allocations during large page split.
2461          */
2462         if (enable)
2463                 __set_pages_p(page, numpages);
2464         else
2465                 __set_pages_np(page, numpages);
2466 
2467         /*
2468          * We should perform an IPI and flush all tlbs,
2469          * but that can deadlock->flush only current cpu.
2470          * Preemption needs to be disabled around __flush_tlb_all() due to
2471          * CR3 reload in __native_flush_tlb().
2472          */
2473         preempt_disable();
2474         __flush_tlb_all();
2475         preempt_enable();
2476 
2477         arch_flush_lazy_mmu_mode();
2478 }
2479 #endif /* CONFIG_DEBUG_PAGEALLOC */
2480 
2481 bool kernel_page_present(struct page *page)
2482 {
2483         unsigned int level;
2484         pte_t *pte;
2485 
2486         if (PageHighMem(page))
2487                 return false;
2488 
2489         pte = lookup_address((unsigned long)page_address(page), &level);
2490         return (pte_val(*pte) & _PAGE_PRESENT);
2491 }
2492 
2493 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2494                                    unsigned numpages, unsigned long page_flags)
2495 {
2496         int retval = -EINVAL;
2497 
2498         struct cpa_data cpa = {
2499                 .vaddr = &address,
2500                 .pfn = pfn,
2501                 .pgd = pgd,
2502                 .numpages = numpages,
2503                 .mask_set = __pgprot(0),
2504                 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2505                 .flags = CPA_NO_CHECK_ALIAS,
2506         };
2507 
2508         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2509 
2510         if (!(__supported_pte_mask & _PAGE_NX))
2511                 goto out;
2512 
2513         if (!(page_flags & _PAGE_ENC))
2514                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2515 
2516         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2517 
2518         retval = __change_page_attr_set_clr(&cpa, 1);
2519         __flush_tlb_all();
2520 
2521 out:
2522         return retval;
2523 }
2524 
2525 /*
2526  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2527  * function shouldn't be used in an SMP environment. Presently, it's used only
2528  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2529  */
2530 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2531                                      unsigned long numpages)
2532 {
2533         int retval;
2534 
2535         /*
2536          * The typical sequence for unmapping is to find a pte through
2537          * lookup_address_in_pgd() (ideally, it should never return NULL because
2538          * the address is already mapped) and change its protections. As pfn is
2539          * the *target* of a mapping, it's not useful while unmapping.
2540          */
2541         struct cpa_data cpa = {
2542                 .vaddr          = &address,
2543                 .pfn            = 0,
2544                 .pgd            = pgd,
2545                 .numpages       = numpages,
2546                 .mask_set       = __pgprot(0),
2547                 .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2548                 .flags          = CPA_NO_CHECK_ALIAS,
2549         };
2550 
2551         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2552 
2553         retval = __change_page_attr_set_clr(&cpa, 1);
2554         __flush_tlb_all();
2555 
2556         return retval;
2557 }
2558 
2559 /*
2560  * The testcases use internal knowledge of the implementation that shouldn't
2561  * be exposed to the rest of the kernel. Include these directly here.
2562  */
2563 #ifdef CONFIG_CPA_DEBUG
2564 #include "cpa-test.c"
2565 #endif
2566 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php