1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SGI NMI support routines 4 * 5 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP 6 * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved. 7 * Copyright (c) Mike Travis 8 */ 9 10 #include <linux/cpu.h> 11 #include <linux/delay.h> 12 #include <linux/kdb.h> 13 #include <linux/kexec.h> 14 #include <linux/kgdb.h> 15 #include <linux/moduleparam.h> 16 #include <linux/nmi.h> 17 #include <linux/sched.h> 18 #include <linux/sched/debug.h> 19 #include <linux/slab.h> 20 #include <linux/string.h> 21 #include <linux/clocksource.h> 22 23 #include <asm/apic.h> 24 #include <asm/current.h> 25 #include <asm/kdebug.h> 26 #include <asm/local64.h> 27 #include <asm/nmi.h> 28 #include <asm/reboot.h> 29 #include <asm/traps.h> 30 #include <asm/uv/uv.h> 31 #include <asm/uv/uv_hub.h> 32 #include <asm/uv/uv_mmrs.h> 33 34 /* 35 * UV handler for NMI 36 * 37 * Handle system-wide NMI events generated by the global 'power nmi' command. 38 * 39 * Basic operation is to field the NMI interrupt on each CPU and wait 40 * until all CPU's have arrived into the nmi handler. If some CPU's do not 41 * make it into the handler, try and force them in with the IPI(NMI) signal. 42 * 43 * We also have to lessen UV Hub MMR accesses as much as possible as this 44 * disrupts the UV Hub's primary mission of directing NumaLink traffic and 45 * can cause system problems to occur. 46 * 47 * To do this we register our primary NMI notifier on the NMI_UNKNOWN 48 * chain. This reduces the number of false NMI calls when the perf 49 * tools are running which generate an enormous number of NMIs per 50 * second (~4M/s for 1024 CPU threads). Our secondary NMI handler is 51 * very short as it only checks that if it has been "pinged" with the 52 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR. 53 * 54 */ 55 56 static struct uv_hub_nmi_s **uv_hub_nmi_list; 57 58 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); 59 60 /* Newer SMM NMI handler, not present in all systems */ 61 static unsigned long uvh_nmi_mmrx; /* UVH_EVENT_OCCURRED0/1 */ 62 static unsigned long uvh_nmi_mmrx_clear; /* UVH_EVENT_OCCURRED0/1_ALIAS */ 63 static int uvh_nmi_mmrx_shift; /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */ 64 static char *uvh_nmi_mmrx_type; /* "EXTIO_INT0" */ 65 66 /* Non-zero indicates newer SMM NMI handler present */ 67 static unsigned long uvh_nmi_mmrx_supported; /* UVH_EXTIO_INT0_BROADCAST */ 68 69 /* Indicates to BIOS that we want to use the newer SMM NMI handler */ 70 static unsigned long uvh_nmi_mmrx_req; /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */ 71 static int uvh_nmi_mmrx_req_shift; /* 62 */ 72 73 /* UV hubless values */ 74 #define NMI_CONTROL_PORT 0x70 75 #define NMI_DUMMY_PORT 0x71 76 #define PAD_OWN_GPP_D_0 0x2c 77 #define GPI_NMI_STS_GPP_D_0 0x164 78 #define GPI_NMI_ENA_GPP_D_0 0x174 79 #define STS_GPP_D_0_MASK 0x1 80 #define PAD_CFG_DW0_GPP_D_0 0x4c0 81 #define GPIROUTNMI (1ul << 17) 82 #define PCH_PCR_GPIO_1_BASE 0xfdae0000ul 83 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset)) 84 85 static u64 *pch_base; 86 static unsigned long nmi_mmr; 87 static unsigned long nmi_mmr_clear; 88 static unsigned long nmi_mmr_pending; 89 90 static atomic_t uv_in_nmi; 91 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1); 92 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1); 93 static atomic_t uv_nmi_slave_continue; 94 static cpumask_var_t uv_nmi_cpu_mask; 95 96 static atomic_t uv_nmi_kexec_failed; 97 98 /* Values for uv_nmi_slave_continue */ 99 #define SLAVE_CLEAR 0 100 #define SLAVE_CONTINUE 1 101 #define SLAVE_EXIT 2 102 103 /* 104 * Default is all stack dumps go to the console and buffer. 105 * Lower level to send to log buffer only. 106 */ 107 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; 108 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644); 109 110 /* 111 * The following values show statistics on how perf events are affecting 112 * this system. 113 */ 114 static int param_get_local64(char *buffer, const struct kernel_param *kp) 115 { 116 return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg)); 117 } 118 119 static int param_set_local64(const char *val, const struct kernel_param *kp) 120 { 121 /* Clear on any write */ 122 local64_set((local64_t *)kp->arg, 0); 123 return 0; 124 } 125 126 static const struct kernel_param_ops param_ops_local64 = { 127 .get = param_get_local64, 128 .set = param_set_local64, 129 }; 130 #define param_check_local64(name, p) __param_check(name, p, local64_t) 131 132 static local64_t uv_nmi_count; 133 module_param_named(nmi_count, uv_nmi_count, local64, 0644); 134 135 static local64_t uv_nmi_misses; 136 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644); 137 138 static local64_t uv_nmi_ping_count; 139 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644); 140 141 static local64_t uv_nmi_ping_misses; 142 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644); 143 144 /* 145 * Following values allow tuning for large systems under heavy loading 146 */ 147 static int uv_nmi_initial_delay = 100; 148 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644); 149 150 static int uv_nmi_slave_delay = 100; 151 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644); 152 153 static int uv_nmi_loop_delay = 100; 154 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644); 155 156 static int uv_nmi_trigger_delay = 10000; 157 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644); 158 159 static int uv_nmi_wait_count = 100; 160 module_param_named(wait_count, uv_nmi_wait_count, int, 0644); 161 162 static int uv_nmi_retry_count = 500; 163 module_param_named(retry_count, uv_nmi_retry_count, int, 0644); 164 165 static bool uv_pch_intr_enable = true; 166 static bool uv_pch_intr_now_enabled; 167 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644); 168 169 static bool uv_pch_init_enable = true; 170 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644); 171 172 static int uv_nmi_debug; 173 module_param_named(debug, uv_nmi_debug, int, 0644); 174 175 #define nmi_debug(fmt, ...) \ 176 do { \ 177 if (uv_nmi_debug) \ 178 pr_info(fmt, ##__VA_ARGS__); \ 179 } while (0) 180 181 /* Valid NMI Actions */ 182 enum action_t { 183 nmi_act_kdump, 184 nmi_act_dump, 185 nmi_act_ips, 186 nmi_act_kdb, 187 nmi_act_kgdb, 188 nmi_act_health, 189 nmi_act_max 190 }; 191 192 static const char * const actions[nmi_act_max] = { 193 [nmi_act_kdump] = "kdump", 194 [nmi_act_dump] = "dump", 195 [nmi_act_ips] = "ips", 196 [nmi_act_kdb] = "kdb", 197 [nmi_act_kgdb] = "kgdb", 198 [nmi_act_health] = "health", 199 }; 200 201 static const char * const actions_desc[nmi_act_max] = { 202 [nmi_act_kdump] = "do kernel crash dump", 203 [nmi_act_dump] = "dump process stack for each cpu", 204 [nmi_act_ips] = "dump Inst Ptr info for each cpu", 205 [nmi_act_kdb] = "enter KDB (needs kgdboc= assignment)", 206 [nmi_act_kgdb] = "enter KGDB (needs gdb target remote)", 207 [nmi_act_health] = "check if CPUs respond to NMI", 208 }; 209 210 static enum action_t uv_nmi_action = nmi_act_dump; 211 212 static int param_get_action(char *buffer, const struct kernel_param *kp) 213 { 214 return sprintf(buffer, "%s\n", actions[uv_nmi_action]); 215 } 216 217 static int param_set_action(const char *val, const struct kernel_param *kp) 218 { 219 int i, n = ARRAY_SIZE(actions); 220 221 i = sysfs_match_string(actions, val); 222 if (i >= 0) { 223 uv_nmi_action = i; 224 pr_info("UV: New NMI action:%s\n", actions[i]); 225 return 0; 226 } 227 228 pr_err("UV: Invalid NMI action. Valid actions are:\n"); 229 for (i = 0; i < n; i++) 230 pr_err("UV: %-8s - %s\n", actions[i], actions_desc[i]); 231 232 return -EINVAL; 233 } 234 235 static const struct kernel_param_ops param_ops_action = { 236 .get = param_get_action, 237 .set = param_set_action, 238 }; 239 #define param_check_action(name, p) __param_check(name, p, enum action_t) 240 241 module_param_named(action, uv_nmi_action, action, 0644); 242 243 /* Setup which NMI support is present in system */ 244 static void uv_nmi_setup_mmrs(void) 245 { 246 bool new_nmi_method_only = false; 247 248 /* First determine arch specific MMRs to handshake with BIOS */ 249 if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) { /* UV2,3,4 setup */ 250 uvh_nmi_mmrx = UVH_EVENT_OCCURRED0; 251 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS; 252 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT; 253 uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0"; 254 255 uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST; 256 uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2; 257 uvh_nmi_mmrx_req_shift = 62; 258 259 } else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */ 260 uvh_nmi_mmrx = UVH_EVENT_OCCURRED1; 261 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS; 262 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT; 263 uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0"; 264 265 new_nmi_method_only = true; /* Newer nmi always valid on UV5+ */ 266 uvh_nmi_mmrx_req = 0; /* no request bit to clear */ 267 268 } else { 269 pr_err("UV:%s:NMI support not available on this system\n", __func__); 270 return; 271 } 272 273 /* Then find out if new NMI is supported */ 274 if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) { 275 if (uvh_nmi_mmrx_req) 276 uv_write_local_mmr(uvh_nmi_mmrx_req, 277 1UL << uvh_nmi_mmrx_req_shift); 278 nmi_mmr = uvh_nmi_mmrx; 279 nmi_mmr_clear = uvh_nmi_mmrx_clear; 280 nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift; 281 pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type); 282 } else { 283 nmi_mmr = UVH_NMI_MMR; 284 nmi_mmr_clear = UVH_NMI_MMR_CLEAR; 285 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT; 286 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE); 287 } 288 } 289 290 /* Read NMI MMR and check if NMI flag was set by BMC. */ 291 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi) 292 { 293 hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr); 294 atomic_inc(&hub_nmi->read_mmr_count); 295 return !!(hub_nmi->nmi_value & nmi_mmr_pending); 296 } 297 298 static inline void uv_local_mmr_clear_nmi(void) 299 { 300 uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending); 301 } 302 303 /* 304 * UV hubless NMI handler functions 305 */ 306 static inline void uv_reassert_nmi(void) 307 { 308 /* (from arch/x86/include/asm/mach_traps.h) */ 309 outb(0x8f, NMI_CONTROL_PORT); 310 inb(NMI_DUMMY_PORT); /* dummy read */ 311 outb(0x0f, NMI_CONTROL_PORT); 312 inb(NMI_DUMMY_PORT); /* dummy read */ 313 } 314 315 static void uv_init_hubless_pch_io(int offset, int mask, int data) 316 { 317 int *addr = PCH_PCR_GPIO_ADDRESS(offset); 318 int readd = readl(addr); 319 320 if (mask) { /* OR in new data */ 321 int writed = (readd & ~mask) | data; 322 323 nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n", 324 addr, readd, ~mask, data, writed); 325 writel(writed, addr); 326 } else if (readd & data) { /* clear status bit */ 327 nmi_debug("UV:PCH: %p = %x\n", addr, data); 328 writel(data, addr); 329 } 330 331 (void)readl(addr); /* flush write data */ 332 } 333 334 static void uv_nmi_setup_hubless_intr(void) 335 { 336 uv_pch_intr_now_enabled = uv_pch_intr_enable; 337 338 uv_init_hubless_pch_io( 339 PAD_CFG_DW0_GPP_D_0, GPIROUTNMI, 340 uv_pch_intr_now_enabled ? GPIROUTNMI : 0); 341 342 nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n", 343 uv_pch_intr_now_enabled ? "enabled" : "disabled"); 344 } 345 346 static struct init_nmi { 347 unsigned int offset; 348 unsigned int mask; 349 unsigned int data; 350 } init_nmi[] = { 351 { /* HOSTSW_OWN_GPP_D_0 */ 352 .offset = 0x84, 353 .mask = 0x1, 354 .data = 0x0, /* ACPI Mode */ 355 }, 356 357 /* Clear status: */ 358 { /* GPI_INT_STS_GPP_D_0 */ 359 .offset = 0x104, 360 .mask = 0x0, 361 .data = 0x1, /* Clear Status */ 362 }, 363 { /* GPI_GPE_STS_GPP_D_0 */ 364 .offset = 0x124, 365 .mask = 0x0, 366 .data = 0x1, /* Clear Status */ 367 }, 368 { /* GPI_SMI_STS_GPP_D_0 */ 369 .offset = 0x144, 370 .mask = 0x0, 371 .data = 0x1, /* Clear Status */ 372 }, 373 { /* GPI_NMI_STS_GPP_D_0 */ 374 .offset = 0x164, 375 .mask = 0x0, 376 .data = 0x1, /* Clear Status */ 377 }, 378 379 /* Disable interrupts: */ 380 { /* GPI_INT_EN_GPP_D_0 */ 381 .offset = 0x114, 382 .mask = 0x1, 383 .data = 0x0, /* Disable interrupt generation */ 384 }, 385 { /* GPI_GPE_EN_GPP_D_0 */ 386 .offset = 0x134, 387 .mask = 0x1, 388 .data = 0x0, /* Disable interrupt generation */ 389 }, 390 { /* GPI_SMI_EN_GPP_D_0 */ 391 .offset = 0x154, 392 .mask = 0x1, 393 .data = 0x0, /* Disable interrupt generation */ 394 }, 395 { /* GPI_NMI_EN_GPP_D_0 */ 396 .offset = 0x174, 397 .mask = 0x1, 398 .data = 0x0, /* Disable interrupt generation */ 399 }, 400 401 /* Setup GPP_D_0 Pad Config: */ 402 { /* PAD_CFG_DW0_GPP_D_0 */ 403 .offset = 0x4c0, 404 .mask = 0xffffffff, 405 .data = 0x82020100, 406 /* 407 * 31:30 Pad Reset Config (PADRSTCFG): = 2h # PLTRST# (default) 408 * 409 * 29 RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly 410 * from RX buffer (default) 411 * 412 * 28 RX Raw Override to '1' (RXRAW1): = 0 # No Override 413 * 414 * 26:25 RX Level/Edge Configuration (RXEVCFG): 415 * = 0h # Level 416 * = 1h # Edge 417 * 418 * 23 RX Invert (RXINV): = 0 # No Inversion (signal active high) 419 * 420 * 20 GPIO Input Route IOxAPIC (GPIROUTIOXAPIC): 421 * = 0 # Routing does not cause peripheral IRQ... 422 * # (we want an NMI not an IRQ) 423 * 424 * 19 GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI. 425 * 18 GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI. 426 * 17 GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI. 427 * 428 * 11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad. 429 * 9 GPIO RX Disable (GPIORXDIS): 430 * = 0 # Enable the input buffer (active low enable) 431 * 432 * 8 GPIO TX Disable (GPIOTXDIS): 433 * = 1 # Disable the output buffer; i.e. Hi-Z 434 * 435 * 1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state.. 436 * 0 GPIO TX State (GPIOTXSTATE): 437 * = 0 # (Leave at default) 438 */ 439 }, 440 441 /* Pad Config DW1 */ 442 { /* PAD_CFG_DW1_GPP_D_0 */ 443 .offset = 0x4c4, 444 .mask = 0x3c00, 445 .data = 0, /* Termination = none (default) */ 446 }, 447 }; 448 449 static void uv_init_hubless_pch_d0(void) 450 { 451 int i, read; 452 453 read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0); 454 if (read != 0) { 455 pr_info("UV: Hubless NMI already configured\n"); 456 return; 457 } 458 459 nmi_debug("UV: Initializing UV Hubless NMI on PCH\n"); 460 for (i = 0; i < ARRAY_SIZE(init_nmi); i++) { 461 uv_init_hubless_pch_io(init_nmi[i].offset, 462 init_nmi[i].mask, 463 init_nmi[i].data); 464 } 465 } 466 467 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi) 468 { 469 int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0); 470 int status = *pstat; 471 472 hub_nmi->nmi_value = status; 473 atomic_inc(&hub_nmi->read_mmr_count); 474 475 if (!(status & STS_GPP_D_0_MASK)) /* Not a UV external NMI */ 476 return 0; 477 478 *pstat = STS_GPP_D_0_MASK; /* Is a UV NMI: clear GPP_D_0 status */ 479 (void)*pstat; /* Flush write */ 480 481 return 1; 482 } 483 484 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi) 485 { 486 if (hub_nmi->hub_present) 487 return uv_nmi_test_mmr(hub_nmi); 488 489 if (hub_nmi->pch_owner) /* Only PCH owner can check status */ 490 return uv_nmi_test_hubless(hub_nmi); 491 492 return -1; 493 } 494 495 /* 496 * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and 497 * return true. If first CPU in on the system, set global "in_nmi" flag. 498 */ 499 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi) 500 { 501 int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1); 502 503 if (first) { 504 atomic_set(&hub_nmi->cpu_owner, cpu); 505 if (atomic_add_unless(&uv_in_nmi, 1, 1)) 506 atomic_set(&uv_nmi_cpu, cpu); 507 508 atomic_inc(&hub_nmi->nmi_count); 509 } 510 return first; 511 } 512 513 /* Check if this is a system NMI event */ 514 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi) 515 { 516 int cpu = smp_processor_id(); 517 int nmi = 0; 518 int nmi_detected = 0; 519 520 local64_inc(&uv_nmi_count); 521 this_cpu_inc(uv_cpu_nmi.queries); 522 523 do { 524 nmi = atomic_read(&hub_nmi->in_nmi); 525 if (nmi) 526 break; 527 528 if (raw_spin_trylock(&hub_nmi->nmi_lock)) { 529 nmi_detected = uv_test_nmi(hub_nmi); 530 531 /* Check flag for UV external NMI */ 532 if (nmi_detected > 0) { 533 uv_set_in_nmi(cpu, hub_nmi); 534 nmi = 1; 535 break; 536 } 537 538 /* A non-PCH node in a hubless system waits for NMI */ 539 else if (nmi_detected < 0) 540 goto slave_wait; 541 542 /* MMR/PCH NMI flag is clear */ 543 raw_spin_unlock(&hub_nmi->nmi_lock); 544 545 } else { 546 547 /* Wait a moment for the HUB NMI locker to set flag */ 548 slave_wait: cpu_relax(); 549 udelay(uv_nmi_slave_delay); 550 551 /* Re-check hub in_nmi flag */ 552 nmi = atomic_read(&hub_nmi->in_nmi); 553 if (nmi) 554 break; 555 } 556 557 /* 558 * Check if this BMC missed setting the MMR NMI flag (or) 559 * UV hubless system where only PCH owner can check flag 560 */ 561 if (!nmi) { 562 nmi = atomic_read(&uv_in_nmi); 563 if (nmi) 564 uv_set_in_nmi(cpu, hub_nmi); 565 } 566 567 /* If we're holding the hub lock, release it now */ 568 if (nmi_detected < 0) 569 raw_spin_unlock(&hub_nmi->nmi_lock); 570 571 } while (0); 572 573 if (!nmi) 574 local64_inc(&uv_nmi_misses); 575 576 return nmi; 577 } 578 579 /* Need to reset the NMI MMR register, but only once per hub. */ 580 static inline void uv_clear_nmi(int cpu) 581 { 582 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi; 583 584 if (cpu == atomic_read(&hub_nmi->cpu_owner)) { 585 atomic_set(&hub_nmi->cpu_owner, -1); 586 atomic_set(&hub_nmi->in_nmi, 0); 587 if (hub_nmi->hub_present) 588 uv_local_mmr_clear_nmi(); 589 else 590 uv_reassert_nmi(); 591 raw_spin_unlock(&hub_nmi->nmi_lock); 592 } 593 } 594 595 /* Ping non-responding CPU's attempting to force them into the NMI handler */ 596 static void uv_nmi_nr_cpus_ping(void) 597 { 598 int cpu; 599 600 for_each_cpu(cpu, uv_nmi_cpu_mask) 601 uv_cpu_nmi_per(cpu).pinging = 1; 602 603 __apic_send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI); 604 } 605 606 /* Clean up flags for CPU's that ignored both NMI and ping */ 607 static void uv_nmi_cleanup_mask(void) 608 { 609 int cpu; 610 611 for_each_cpu(cpu, uv_nmi_cpu_mask) { 612 uv_cpu_nmi_per(cpu).pinging = 0; 613 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT; 614 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask); 615 } 616 } 617 618 /* Loop waiting as CPU's enter NMI handler */ 619 static int uv_nmi_wait_cpus(int first) 620 { 621 int i, j, k, n = num_online_cpus(); 622 int last_k = 0, waiting = 0; 623 int cpu = smp_processor_id(); 624 625 if (first) { 626 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask); 627 k = 0; 628 } else { 629 k = n - cpumask_weight(uv_nmi_cpu_mask); 630 } 631 632 /* PCH NMI causes only one CPU to respond */ 633 if (first && uv_pch_intr_now_enabled) { 634 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask); 635 return n - k - 1; 636 } 637 638 udelay(uv_nmi_initial_delay); 639 for (i = 0; i < uv_nmi_retry_count; i++) { 640 int loop_delay = uv_nmi_loop_delay; 641 642 for_each_cpu(j, uv_nmi_cpu_mask) { 643 if (uv_cpu_nmi_per(j).state) { 644 cpumask_clear_cpu(j, uv_nmi_cpu_mask); 645 if (++k >= n) 646 break; 647 } 648 } 649 if (k >= n) { /* all in? */ 650 k = n; 651 break; 652 } 653 if (last_k != k) { /* abort if no new CPU's coming in */ 654 last_k = k; 655 waiting = 0; 656 } else if (++waiting > uv_nmi_wait_count) 657 break; 658 659 /* Extend delay if waiting only for CPU 0: */ 660 if (waiting && (n - k) == 1 && 661 cpumask_test_cpu(0, uv_nmi_cpu_mask)) 662 loop_delay *= 100; 663 664 udelay(loop_delay); 665 } 666 atomic_set(&uv_nmi_cpus_in_nmi, k); 667 return n - k; 668 } 669 670 /* Wait until all slave CPU's have entered UV NMI handler */ 671 static void uv_nmi_wait(int master) 672 { 673 /* Indicate this CPU is in: */ 674 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN); 675 676 /* If not the first CPU in (the master), then we are a slave CPU */ 677 if (!master) 678 return; 679 680 do { 681 /* Wait for all other CPU's to gather here */ 682 if (!uv_nmi_wait_cpus(1)) 683 break; 684 685 /* If not all made it in, send IPI NMI to them */ 686 pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n", 687 cpumask_weight(uv_nmi_cpu_mask), 688 cpumask_pr_args(uv_nmi_cpu_mask)); 689 690 uv_nmi_nr_cpus_ping(); 691 692 /* If all CPU's are in, then done */ 693 if (!uv_nmi_wait_cpus(0)) 694 break; 695 696 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n", 697 cpumask_weight(uv_nmi_cpu_mask), 698 cpumask_pr_args(uv_nmi_cpu_mask)); 699 } while (0); 700 701 pr_alert("UV: %d of %d CPUs in NMI\n", 702 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus()); 703 } 704 705 /* Dump Instruction Pointer header */ 706 static void uv_nmi_dump_cpu_ip_hdr(void) 707 { 708 pr_info("\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n", 709 "CPU", "PID", "COMMAND", "IP"); 710 } 711 712 /* Dump Instruction Pointer info */ 713 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs) 714 { 715 pr_info("UV: %4d %6d %-32.32s %pS", 716 cpu, current->pid, current->comm, (void *)regs->ip); 717 } 718 719 /* 720 * Dump this CPU's state. If action was set to "kdump" and the crash_kexec 721 * failed, then we provide "dump" as an alternate action. Action "dump" now 722 * also includes the show "ips" (instruction pointers) action whereas the 723 * action "ips" only displays instruction pointers for the non-idle CPU's. 724 * This is an abbreviated form of the "ps" command. 725 */ 726 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs) 727 { 728 const char *dots = " ................................. "; 729 730 if (cpu == 0) 731 uv_nmi_dump_cpu_ip_hdr(); 732 733 if (current->pid != 0 || uv_nmi_action != nmi_act_ips) 734 uv_nmi_dump_cpu_ip(cpu, regs); 735 736 if (uv_nmi_action == nmi_act_dump) { 737 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu); 738 show_regs(regs); 739 } 740 741 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE); 742 } 743 744 /* Trigger a slave CPU to dump its state */ 745 static void uv_nmi_trigger_dump(int cpu) 746 { 747 int retry = uv_nmi_trigger_delay; 748 749 if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN) 750 return; 751 752 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP; 753 do { 754 cpu_relax(); 755 udelay(10); 756 if (uv_cpu_nmi_per(cpu).state 757 != UV_NMI_STATE_DUMP) 758 return; 759 } while (--retry > 0); 760 761 pr_crit("UV: CPU %d stuck in process dump function\n", cpu); 762 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE; 763 } 764 765 /* Wait until all CPU's ready to exit */ 766 static void uv_nmi_sync_exit(int master) 767 { 768 atomic_dec(&uv_nmi_cpus_in_nmi); 769 if (master) { 770 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0) 771 cpu_relax(); 772 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR); 773 } else { 774 while (atomic_read(&uv_nmi_slave_continue)) 775 cpu_relax(); 776 } 777 } 778 779 /* Current "health" check is to check which CPU's are responsive */ 780 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master) 781 { 782 if (master) { 783 int in = atomic_read(&uv_nmi_cpus_in_nmi); 784 int out = num_online_cpus() - in; 785 786 pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out); 787 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); 788 } else { 789 while (!atomic_read(&uv_nmi_slave_continue)) 790 cpu_relax(); 791 } 792 uv_nmi_sync_exit(master); 793 } 794 795 /* Walk through CPU list and dump state of each */ 796 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master) 797 { 798 if (master) { 799 int tcpu; 800 int ignored = 0; 801 int saved_console_loglevel = console_loglevel; 802 803 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n", 804 uv_nmi_action == nmi_act_ips ? "IPs" : "processes", 805 atomic_read(&uv_nmi_cpus_in_nmi), cpu); 806 807 console_loglevel = uv_nmi_loglevel; 808 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); 809 for_each_online_cpu(tcpu) { 810 if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask)) 811 ignored++; 812 else if (tcpu == cpu) 813 uv_nmi_dump_state_cpu(tcpu, regs); 814 else 815 uv_nmi_trigger_dump(tcpu); 816 } 817 if (ignored) 818 pr_alert("UV: %d CPUs ignored NMI\n", ignored); 819 820 console_loglevel = saved_console_loglevel; 821 pr_alert("UV: process trace complete\n"); 822 } else { 823 while (!atomic_read(&uv_nmi_slave_continue)) 824 cpu_relax(); 825 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP) 826 cpu_relax(); 827 uv_nmi_dump_state_cpu(cpu, regs); 828 } 829 uv_nmi_sync_exit(master); 830 } 831 832 static void uv_nmi_touch_watchdogs(void) 833 { 834 touch_softlockup_watchdog_sync(); 835 clocksource_touch_watchdog(); 836 rcu_cpu_stall_reset(); 837 touch_nmi_watchdog(); 838 } 839 840 static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs) 841 { 842 /* Check if kdump kernel loaded for both main and secondary CPUs */ 843 if (!kexec_crash_image) { 844 if (main) 845 pr_err("UV: NMI error: kdump kernel not loaded\n"); 846 return; 847 } 848 849 /* Call crash to dump system state */ 850 if (main) { 851 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu); 852 crash_kexec(regs); 853 854 pr_emerg("UV: crash_kexec unexpectedly returned\n"); 855 atomic_set(&uv_nmi_kexec_failed, 1); 856 857 } else { /* secondary */ 858 859 /* If kdump kernel fails, secondaries will exit this loop */ 860 while (atomic_read(&uv_nmi_kexec_failed) == 0) { 861 862 /* Once shootdown cpus starts, they do not return */ 863 run_crash_ipi_callback(regs); 864 865 mdelay(10); 866 } 867 } 868 } 869 870 #ifdef CONFIG_KGDB 871 #ifdef CONFIG_KGDB_KDB 872 static inline int uv_nmi_kdb_reason(void) 873 { 874 return KDB_REASON_SYSTEM_NMI; 875 } 876 #else /* !CONFIG_KGDB_KDB */ 877 static inline int uv_nmi_kdb_reason(void) 878 { 879 /* Ensure user is expecting to attach gdb remote */ 880 if (uv_nmi_action == nmi_act_kgdb) 881 return 0; 882 883 pr_err("UV: NMI error: KDB is not enabled in this kernel\n"); 884 return -1; 885 } 886 #endif /* CONFIG_KGDB_KDB */ 887 888 /* 889 * Call KGDB/KDB from NMI handler 890 * 891 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or 892 * 'kdb' has no affect on which is used. See the KGDB documentation for further 893 * information. 894 */ 895 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master) 896 { 897 if (master) { 898 int reason = uv_nmi_kdb_reason(); 899 int ret; 900 901 if (reason < 0) 902 return; 903 904 /* Call KGDB NMI handler as MASTER */ 905 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason, 906 &uv_nmi_slave_continue); 907 if (ret) { 908 pr_alert("KGDB returned error, is kgdboc set?\n"); 909 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT); 910 } 911 } else { 912 /* Wait for KGDB signal that it's ready for slaves to enter */ 913 int sig; 914 915 do { 916 cpu_relax(); 917 sig = atomic_read(&uv_nmi_slave_continue); 918 } while (!sig); 919 920 /* Call KGDB as slave */ 921 if (sig == SLAVE_CONTINUE) 922 kgdb_nmicallback(cpu, regs); 923 } 924 uv_nmi_sync_exit(master); 925 } 926 927 #else /* !CONFIG_KGDB */ 928 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master) 929 { 930 pr_err("UV: NMI error: KGDB is not enabled in this kernel\n"); 931 } 932 #endif /* !CONFIG_KGDB */ 933 934 /* 935 * UV NMI handler 936 */ 937 static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs) 938 { 939 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi; 940 int cpu = smp_processor_id(); 941 int master = 0; 942 unsigned long flags; 943 944 local_irq_save(flags); 945 946 /* If not a UV System NMI, ignore */ 947 if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) { 948 local_irq_restore(flags); 949 return NMI_DONE; 950 } 951 952 /* Indicate we are the first CPU into the NMI handler */ 953 master = (atomic_read(&uv_nmi_cpu) == cpu); 954 955 /* If NMI action is "kdump", then attempt to do it */ 956 if (uv_nmi_action == nmi_act_kdump) { 957 uv_nmi_kdump(cpu, master, regs); 958 959 /* Unexpected return, revert action to "dump" */ 960 if (master) 961 uv_nmi_action = nmi_act_dump; 962 } 963 964 /* Pause as all CPU's enter the NMI handler */ 965 uv_nmi_wait(master); 966 967 /* Process actions other than "kdump": */ 968 switch (uv_nmi_action) { 969 case nmi_act_health: 970 uv_nmi_action_health(cpu, regs, master); 971 break; 972 case nmi_act_ips: 973 case nmi_act_dump: 974 uv_nmi_dump_state(cpu, regs, master); 975 break; 976 case nmi_act_kdb: 977 case nmi_act_kgdb: 978 uv_call_kgdb_kdb(cpu, regs, master); 979 break; 980 default: 981 if (master) 982 pr_alert("UV: unknown NMI action: %d\n", uv_nmi_action); 983 uv_nmi_sync_exit(master); 984 break; 985 } 986 987 /* Clear per_cpu "in_nmi" flag */ 988 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT); 989 990 /* Clear MMR NMI flag on each hub */ 991 uv_clear_nmi(cpu); 992 993 /* Clear global flags */ 994 if (master) { 995 if (!cpumask_empty(uv_nmi_cpu_mask)) 996 uv_nmi_cleanup_mask(); 997 atomic_set(&uv_nmi_cpus_in_nmi, -1); 998 atomic_set(&uv_nmi_cpu, -1); 999 atomic_set(&uv_in_nmi, 0); 1000 atomic_set(&uv_nmi_kexec_failed, 0); 1001 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR); 1002 } 1003 1004 uv_nmi_touch_watchdogs(); 1005 local_irq_restore(flags); 1006 1007 return NMI_HANDLED; 1008 } 1009 1010 /* 1011 * NMI handler for pulling in CPU's when perf events are grabbing our NMI 1012 */ 1013 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs) 1014 { 1015 int ret; 1016 1017 this_cpu_inc(uv_cpu_nmi.queries); 1018 if (!this_cpu_read(uv_cpu_nmi.pinging)) { 1019 local64_inc(&uv_nmi_ping_misses); 1020 return NMI_DONE; 1021 } 1022 1023 this_cpu_inc(uv_cpu_nmi.pings); 1024 local64_inc(&uv_nmi_ping_count); 1025 ret = uv_handle_nmi(reason, regs); 1026 this_cpu_write(uv_cpu_nmi.pinging, 0); 1027 return ret; 1028 } 1029 1030 static void uv_register_nmi_notifier(void) 1031 { 1032 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv")) 1033 pr_warn("UV: NMI handler failed to register\n"); 1034 1035 if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping")) 1036 pr_warn("UV: PING NMI handler failed to register\n"); 1037 } 1038 1039 void uv_nmi_init(void) 1040 { 1041 unsigned int value; 1042 1043 /* 1044 * Unmask NMI on all CPU's 1045 */ 1046 value = apic_read(APIC_LVT1) | APIC_DM_NMI; 1047 value &= ~APIC_LVT_MASKED; 1048 apic_write(APIC_LVT1, value); 1049 } 1050 1051 /* Setup HUB NMI info */ 1052 static void __init uv_nmi_setup_common(bool hubbed) 1053 { 1054 int size = sizeof(void *) * (1 << NODES_SHIFT); 1055 int cpu; 1056 1057 uv_hub_nmi_list = kzalloc(size, GFP_KERNEL); 1058 nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size); 1059 BUG_ON(!uv_hub_nmi_list); 1060 size = sizeof(struct uv_hub_nmi_s); 1061 for_each_present_cpu(cpu) { 1062 int nid = cpu_to_node(cpu); 1063 if (uv_hub_nmi_list[nid] == NULL) { 1064 uv_hub_nmi_list[nid] = kzalloc_node(size, 1065 GFP_KERNEL, nid); 1066 BUG_ON(!uv_hub_nmi_list[nid]); 1067 raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock)); 1068 atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1); 1069 uv_hub_nmi_list[nid]->hub_present = hubbed; 1070 uv_hub_nmi_list[nid]->pch_owner = (nid == 0); 1071 } 1072 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid]; 1073 } 1074 BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL)); 1075 } 1076 1077 /* Setup for UV Hub systems */ 1078 void __init uv_nmi_setup(void) 1079 { 1080 uv_nmi_setup_mmrs(); 1081 uv_nmi_setup_common(true); 1082 uv_register_nmi_notifier(); 1083 pr_info("UV: Hub NMI enabled\n"); 1084 } 1085 1086 /* Setup for UV Hubless systems */ 1087 void __init uv_nmi_setup_hubless(void) 1088 { 1089 uv_nmi_setup_common(false); 1090 pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE); 1091 nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n", 1092 pch_base, PCH_PCR_GPIO_1_BASE); 1093 if (uv_pch_init_enable) 1094 uv_init_hubless_pch_d0(); 1095 uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0, 1096 STS_GPP_D_0_MASK, STS_GPP_D_0_MASK); 1097 uv_nmi_setup_hubless_intr(); 1098 /* Ensure NMI enabled in Processor Interface Reg: */ 1099 uv_reassert_nmi(); 1100 uv_register_nmi_notifier(); 1101 pr_info("UV: PCH NMI enabled\n"); 1102 } 1103
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.