1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Core of Xen paravirt_ops implementation. 4 * 5 * This file contains the xen_paravirt_ops structure itself, and the 6 * implementations for: 7 * - privileged instructions 8 * - interrupt flags 9 * - segment operations 10 * - booting and setup 11 * 12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 13 */ 14 15 #include <linux/cpu.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/smp.h> 19 #include <linux/preempt.h> 20 #include <linux/hardirq.h> 21 #include <linux/percpu.h> 22 #include <linux/delay.h> 23 #include <linux/start_kernel.h> 24 #include <linux/sched.h> 25 #include <linux/kprobes.h> 26 #include <linux/kstrtox.h> 27 #include <linux/memblock.h> 28 #include <linux/export.h> 29 #include <linux/mm.h> 30 #include <linux/page-flags.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/edd.h> 34 #include <linux/reboot.h> 35 #include <linux/virtio_anchor.h> 36 #include <linux/stackprotector.h> 37 38 #include <xen/xen.h> 39 #include <xen/events.h> 40 #include <xen/interface/xen.h> 41 #include <xen/interface/version.h> 42 #include <xen/interface/physdev.h> 43 #include <xen/interface/vcpu.h> 44 #include <xen/interface/memory.h> 45 #include <xen/interface/nmi.h> 46 #include <xen/interface/xen-mca.h> 47 #include <xen/features.h> 48 #include <xen/page.h> 49 #include <xen/hvc-console.h> 50 #include <xen/acpi.h> 51 52 #include <asm/paravirt.h> 53 #include <asm/apic.h> 54 #include <asm/page.h> 55 #include <asm/xen/pci.h> 56 #include <asm/xen/hypercall.h> 57 #include <asm/xen/hypervisor.h> 58 #include <asm/xen/cpuid.h> 59 #include <asm/fixmap.h> 60 #include <asm/processor.h> 61 #include <asm/proto.h> 62 #include <asm/msr-index.h> 63 #include <asm/traps.h> 64 #include <asm/setup.h> 65 #include <asm/desc.h> 66 #include <asm/pgalloc.h> 67 #include <asm/tlbflush.h> 68 #include <asm/reboot.h> 69 #include <asm/hypervisor.h> 70 #include <asm/mach_traps.h> 71 #include <asm/mtrr.h> 72 #include <asm/mwait.h> 73 #include <asm/pci_x86.h> 74 #include <asm/cpu.h> 75 #ifdef CONFIG_X86_IOPL_IOPERM 76 #include <asm/io_bitmap.h> 77 #endif 78 79 #ifdef CONFIG_ACPI 80 #include <linux/acpi.h> 81 #include <asm/acpi.h> 82 #include <acpi/proc_cap_intel.h> 83 #include <acpi/processor.h> 84 #include <xen/interface/platform.h> 85 #endif 86 87 #include "xen-ops.h" 88 89 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */ 90 91 void *xen_initial_gdt; 92 93 static int xen_cpu_up_prepare_pv(unsigned int cpu); 94 static int xen_cpu_dead_pv(unsigned int cpu); 95 96 struct tls_descs { 97 struct desc_struct desc[3]; 98 }; 99 100 DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE; 101 DEFINE_PER_CPU(unsigned int, xen_lazy_nesting); 102 103 enum xen_lazy_mode xen_get_lazy_mode(void) 104 { 105 if (in_interrupt()) 106 return XEN_LAZY_NONE; 107 108 return this_cpu_read(xen_lazy_mode); 109 } 110 111 /* 112 * Updating the 3 TLS descriptors in the GDT on every task switch is 113 * surprisingly expensive so we avoid updating them if they haven't 114 * changed. Since Xen writes different descriptors than the one 115 * passed in the update_descriptor hypercall we keep shadow copies to 116 * compare against. 117 */ 118 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 119 120 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE); 121 122 static int __init parse_xen_msr_safe(char *str) 123 { 124 if (str) 125 return kstrtobool(str, &xen_msr_safe); 126 return -EINVAL; 127 } 128 early_param("xen_msr_safe", parse_xen_msr_safe); 129 130 /* Get MTRR settings from Xen and put them into mtrr_state. */ 131 static void __init xen_set_mtrr_data(void) 132 { 133 #ifdef CONFIG_MTRR 134 struct xen_platform_op op = { 135 .cmd = XENPF_read_memtype, 136 .interface_version = XENPF_INTERFACE_VERSION, 137 }; 138 unsigned int reg; 139 unsigned long mask; 140 uint32_t eax, width; 141 static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata; 142 143 /* Get physical address width (only 64-bit cpus supported). */ 144 width = 36; 145 eax = cpuid_eax(0x80000000); 146 if ((eax >> 16) == 0x8000 && eax >= 0x80000008) { 147 eax = cpuid_eax(0x80000008); 148 width = eax & 0xff; 149 } 150 151 for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) { 152 op.u.read_memtype.reg = reg; 153 if (HYPERVISOR_platform_op(&op)) 154 break; 155 156 /* 157 * Only called in dom0, which has all RAM PFNs mapped at 158 * RAM MFNs, and all PCI space etc. is identity mapped. 159 * This means we can treat MFN == PFN regarding MTRR settings. 160 */ 161 var[reg].base_lo = op.u.read_memtype.type; 162 var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT; 163 var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT); 164 mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1); 165 mask &= (1UL << width) - 1; 166 if (mask) 167 mask |= MTRR_PHYSMASK_V; 168 var[reg].mask_lo = mask; 169 var[reg].mask_hi = mask >> 32; 170 } 171 172 /* Only overwrite MTRR state if any MTRR could be got from Xen. */ 173 if (reg) 174 mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE); 175 #endif 176 } 177 178 static void __init xen_pv_init_platform(void) 179 { 180 /* PV guests can't operate virtio devices without grants. */ 181 if (IS_ENABLED(CONFIG_XEN_VIRTIO)) 182 virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc); 183 184 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP)); 185 186 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info); 187 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 188 189 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */ 190 xen_vcpu_info_reset(0); 191 192 /* pvclock is in shared info area */ 193 xen_init_time_ops(); 194 195 if (xen_initial_domain()) 196 xen_set_mtrr_data(); 197 else 198 mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK); 199 200 /* Adjust nr_cpu_ids before "enumeration" happens */ 201 xen_smp_count_cpus(); 202 } 203 204 static void __init xen_pv_guest_late_init(void) 205 { 206 #ifndef CONFIG_SMP 207 /* Setup shared vcpu info for non-smp configurations */ 208 xen_setup_vcpu_info_placement(); 209 #endif 210 } 211 212 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 213 static __read_mostly unsigned int cpuid_leaf5_edx_val; 214 215 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 216 unsigned int *cx, unsigned int *dx) 217 { 218 unsigned int maskebx = ~0; 219 unsigned int or_ebx = 0; 220 221 /* 222 * Mask out inconvenient features, to try and disable as many 223 * unsupported kernel subsystems as possible. 224 */ 225 switch (*ax) { 226 case 0x1: 227 /* Replace initial APIC ID in bits 24-31 of EBX. */ 228 /* See xen_pv_smp_config() for related topology preparations. */ 229 maskebx = 0x00ffffff; 230 or_ebx = smp_processor_id() << 24; 231 break; 232 233 case CPUID_MWAIT_LEAF: 234 /* Synthesize the values.. */ 235 *ax = 0; 236 *bx = 0; 237 *cx = cpuid_leaf5_ecx_val; 238 *dx = cpuid_leaf5_edx_val; 239 return; 240 241 case 0xb: 242 /* Suppress extended topology stuff */ 243 maskebx = 0; 244 break; 245 } 246 247 asm(XEN_EMULATE_PREFIX "cpuid" 248 : "=a" (*ax), 249 "=b" (*bx), 250 "=c" (*cx), 251 "=d" (*dx) 252 : "" (*ax), "2" (*cx)); 253 254 *bx &= maskebx; 255 *bx |= or_ebx; 256 } 257 258 static bool __init xen_check_mwait(void) 259 { 260 #ifdef CONFIG_ACPI 261 struct xen_platform_op op = { 262 .cmd = XENPF_set_processor_pminfo, 263 .u.set_pminfo.id = -1, 264 .u.set_pminfo.type = XEN_PM_PDC, 265 }; 266 uint32_t buf[3]; 267 unsigned int ax, bx, cx, dx; 268 unsigned int mwait_mask; 269 270 /* We need to determine whether it is OK to expose the MWAIT 271 * capability to the kernel to harvest deeper than C3 states from ACPI 272 * _CST using the processor_harvest_xen.c module. For this to work, we 273 * need to gather the MWAIT_LEAF values (which the cstate.c code 274 * checks against). The hypervisor won't expose the MWAIT flag because 275 * it would break backwards compatibility; so we will find out directly 276 * from the hardware and hypercall. 277 */ 278 if (!xen_initial_domain()) 279 return false; 280 281 /* 282 * When running under platform earlier than Xen4.2, do not expose 283 * mwait, to avoid the risk of loading native acpi pad driver 284 */ 285 if (!xen_running_on_version_or_later(4, 2)) 286 return false; 287 288 ax = 1; 289 cx = 0; 290 291 native_cpuid(&ax, &bx, &cx, &dx); 292 293 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 294 (1 << (X86_FEATURE_MWAIT % 32)); 295 296 if ((cx & mwait_mask) != mwait_mask) 297 return false; 298 299 /* We need to emulate the MWAIT_LEAF and for that we need both 300 * ecx and edx. The hypercall provides only partial information. 301 */ 302 303 ax = CPUID_MWAIT_LEAF; 304 bx = 0; 305 cx = 0; 306 dx = 0; 307 308 native_cpuid(&ax, &bx, &cx, &dx); 309 310 /* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so, 311 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 312 */ 313 buf[0] = ACPI_PDC_REVISION_ID; 314 buf[1] = 1; 315 buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP); 316 317 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 318 319 if ((HYPERVISOR_platform_op(&op) == 0) && 320 (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) { 321 cpuid_leaf5_ecx_val = cx; 322 cpuid_leaf5_edx_val = dx; 323 } 324 return true; 325 #else 326 return false; 327 #endif 328 } 329 330 static bool __init xen_check_xsave(void) 331 { 332 unsigned int cx, xsave_mask; 333 334 cx = cpuid_ecx(1); 335 336 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) | 337 (1 << (X86_FEATURE_OSXSAVE % 32)); 338 339 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 340 return (cx & xsave_mask) == xsave_mask; 341 } 342 343 static void __init xen_init_capabilities(void) 344 { 345 setup_force_cpu_cap(X86_FEATURE_XENPV); 346 setup_clear_cpu_cap(X86_FEATURE_DCA); 347 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF); 348 setup_clear_cpu_cap(X86_FEATURE_MTRR); 349 setup_clear_cpu_cap(X86_FEATURE_ACC); 350 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 351 setup_clear_cpu_cap(X86_FEATURE_SME); 352 setup_clear_cpu_cap(X86_FEATURE_LKGS); 353 354 /* 355 * Xen PV would need some work to support PCID: CR3 handling as well 356 * as xen_flush_tlb_others() would need updating. 357 */ 358 setup_clear_cpu_cap(X86_FEATURE_PCID); 359 360 if (!xen_initial_domain()) 361 setup_clear_cpu_cap(X86_FEATURE_ACPI); 362 363 if (xen_check_mwait()) 364 setup_force_cpu_cap(X86_FEATURE_MWAIT); 365 else 366 setup_clear_cpu_cap(X86_FEATURE_MWAIT); 367 368 if (!xen_check_xsave()) { 369 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 370 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE); 371 } 372 } 373 374 static noinstr void xen_set_debugreg(int reg, unsigned long val) 375 { 376 HYPERVISOR_set_debugreg(reg, val); 377 } 378 379 static noinstr unsigned long xen_get_debugreg(int reg) 380 { 381 return HYPERVISOR_get_debugreg(reg); 382 } 383 384 static void xen_start_context_switch(struct task_struct *prev) 385 { 386 BUG_ON(preemptible()); 387 388 if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) { 389 arch_leave_lazy_mmu_mode(); 390 set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES); 391 } 392 enter_lazy(XEN_LAZY_CPU); 393 } 394 395 static void xen_end_context_switch(struct task_struct *next) 396 { 397 BUG_ON(preemptible()); 398 399 xen_mc_flush(); 400 leave_lazy(XEN_LAZY_CPU); 401 if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES)) 402 arch_enter_lazy_mmu_mode(); 403 } 404 405 static unsigned long xen_store_tr(void) 406 { 407 return 0; 408 } 409 410 /* 411 * Set the page permissions for a particular virtual address. If the 412 * address is a vmalloc mapping (or other non-linear mapping), then 413 * find the linear mapping of the page and also set its protections to 414 * match. 415 */ 416 static void set_aliased_prot(void *v, pgprot_t prot) 417 { 418 int level; 419 pte_t *ptep; 420 pte_t pte; 421 unsigned long pfn; 422 unsigned char dummy; 423 void *va; 424 425 ptep = lookup_address((unsigned long)v, &level); 426 BUG_ON(ptep == NULL); 427 428 pfn = pte_pfn(*ptep); 429 pte = pfn_pte(pfn, prot); 430 431 /* 432 * Careful: update_va_mapping() will fail if the virtual address 433 * we're poking isn't populated in the page tables. We don't 434 * need to worry about the direct map (that's always in the page 435 * tables), but we need to be careful about vmap space. In 436 * particular, the top level page table can lazily propagate 437 * entries between processes, so if we've switched mms since we 438 * vmapped the target in the first place, we might not have the 439 * top-level page table entry populated. 440 * 441 * We disable preemption because we want the same mm active when 442 * we probe the target and when we issue the hypercall. We'll 443 * have the same nominal mm, but if we're a kernel thread, lazy 444 * mm dropping could change our pgd. 445 * 446 * Out of an abundance of caution, this uses __get_user() to fault 447 * in the target address just in case there's some obscure case 448 * in which the target address isn't readable. 449 */ 450 451 preempt_disable(); 452 453 copy_from_kernel_nofault(&dummy, v, 1); 454 455 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 456 BUG(); 457 458 va = __va(PFN_PHYS(pfn)); 459 460 if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 461 BUG(); 462 463 preempt_enable(); 464 } 465 466 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 467 { 468 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 469 int i; 470 471 /* 472 * We need to mark the all aliases of the LDT pages RO. We 473 * don't need to call vm_flush_aliases(), though, since that's 474 * only responsible for flushing aliases out the TLBs, not the 475 * page tables, and Xen will flush the TLB for us if needed. 476 * 477 * To avoid confusing future readers: none of this is necessary 478 * to load the LDT. The hypervisor only checks this when the 479 * LDT is faulted in due to subsequent descriptor access. 480 */ 481 482 for (i = 0; i < entries; i += entries_per_page) 483 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 484 } 485 486 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 487 { 488 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 489 int i; 490 491 for (i = 0; i < entries; i += entries_per_page) 492 set_aliased_prot(ldt + i, PAGE_KERNEL); 493 } 494 495 static void xen_set_ldt(const void *addr, unsigned entries) 496 { 497 struct mmuext_op *op; 498 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 499 500 trace_xen_cpu_set_ldt(addr, entries); 501 502 op = mcs.args; 503 op->cmd = MMUEXT_SET_LDT; 504 op->arg1.linear_addr = (unsigned long)addr; 505 op->arg2.nr_ents = entries; 506 507 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 508 509 xen_mc_issue(XEN_LAZY_CPU); 510 } 511 512 static void xen_load_gdt(const struct desc_ptr *dtr) 513 { 514 unsigned long va = dtr->address; 515 unsigned int size = dtr->size + 1; 516 unsigned long pfn, mfn; 517 int level; 518 pte_t *ptep; 519 void *virt; 520 521 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 522 BUG_ON(size > PAGE_SIZE); 523 BUG_ON(va & ~PAGE_MASK); 524 525 /* 526 * The GDT is per-cpu and is in the percpu data area. 527 * That can be virtually mapped, so we need to do a 528 * page-walk to get the underlying MFN for the 529 * hypercall. The page can also be in the kernel's 530 * linear range, so we need to RO that mapping too. 531 */ 532 ptep = lookup_address(va, &level); 533 BUG_ON(ptep == NULL); 534 535 pfn = pte_pfn(*ptep); 536 mfn = pfn_to_mfn(pfn); 537 virt = __va(PFN_PHYS(pfn)); 538 539 make_lowmem_page_readonly((void *)va); 540 make_lowmem_page_readonly(virt); 541 542 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 543 BUG(); 544 } 545 546 /* 547 * load_gdt for early boot, when the gdt is only mapped once 548 */ 549 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 550 { 551 unsigned long va = dtr->address; 552 unsigned int size = dtr->size + 1; 553 unsigned long pfn, mfn; 554 pte_t pte; 555 556 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */ 557 BUG_ON(size > PAGE_SIZE); 558 BUG_ON(va & ~PAGE_MASK); 559 560 pfn = virt_to_pfn((void *)va); 561 mfn = pfn_to_mfn(pfn); 562 563 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 564 565 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 566 BUG(); 567 568 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct))) 569 BUG(); 570 } 571 572 static inline bool desc_equal(const struct desc_struct *d1, 573 const struct desc_struct *d2) 574 { 575 return !memcmp(d1, d2, sizeof(*d1)); 576 } 577 578 static void load_TLS_descriptor(struct thread_struct *t, 579 unsigned int cpu, unsigned int i) 580 { 581 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 582 struct desc_struct *gdt; 583 xmaddr_t maddr; 584 struct multicall_space mc; 585 586 if (desc_equal(shadow, &t->tls_array[i])) 587 return; 588 589 *shadow = t->tls_array[i]; 590 591 gdt = get_cpu_gdt_rw(cpu); 592 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 593 mc = __xen_mc_entry(0); 594 595 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 596 } 597 598 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 599 { 600 /* 601 * In lazy mode we need to zero %fs, otherwise we may get an 602 * exception between the new %fs descriptor being loaded and 603 * %fs being effectively cleared at __switch_to(). 604 */ 605 if (xen_get_lazy_mode() == XEN_LAZY_CPU) 606 loadsegment(fs, 0); 607 608 xen_mc_batch(); 609 610 load_TLS_descriptor(t, cpu, 0); 611 load_TLS_descriptor(t, cpu, 1); 612 load_TLS_descriptor(t, cpu, 2); 613 614 xen_mc_issue(XEN_LAZY_CPU); 615 } 616 617 static void xen_load_gs_index(unsigned int idx) 618 { 619 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 620 BUG(); 621 } 622 623 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 624 const void *ptr) 625 { 626 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 627 u64 entry = *(u64 *)ptr; 628 629 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 630 631 preempt_disable(); 632 633 xen_mc_flush(); 634 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 635 BUG(); 636 637 preempt_enable(); 638 } 639 640 void noist_exc_debug(struct pt_regs *regs); 641 642 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi) 643 { 644 /* On Xen PV, NMI doesn't use IST. The C part is the same as native. */ 645 exc_nmi(regs); 646 } 647 648 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault) 649 { 650 /* On Xen PV, DF doesn't use IST. The C part is the same as native. */ 651 exc_double_fault(regs, error_code); 652 } 653 654 DEFINE_IDTENTRY_RAW(xenpv_exc_debug) 655 { 656 /* 657 * There's no IST on Xen PV, but we still need to dispatch 658 * to the correct handler. 659 */ 660 if (user_mode(regs)) 661 noist_exc_debug(regs); 662 else 663 exc_debug(regs); 664 } 665 666 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap) 667 { 668 /* This should never happen and there is no way to handle it. */ 669 instrumentation_begin(); 670 pr_err("Unknown trap in Xen PV mode."); 671 BUG(); 672 instrumentation_end(); 673 } 674 675 #ifdef CONFIG_X86_MCE 676 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check) 677 { 678 /* 679 * There's no IST on Xen PV, but we still need to dispatch 680 * to the correct handler. 681 */ 682 if (user_mode(regs)) 683 noist_exc_machine_check(regs); 684 else 685 exc_machine_check(regs); 686 } 687 #endif 688 689 struct trap_array_entry { 690 void (*orig)(void); 691 void (*xen)(void); 692 bool ist_okay; 693 }; 694 695 #define TRAP_ENTRY(func, ist_ok) { \ 696 .orig = asm_##func, \ 697 .xen = xen_asm_##func, \ 698 .ist_okay = ist_ok } 699 700 #define TRAP_ENTRY_REDIR(func, ist_ok) { \ 701 .orig = asm_##func, \ 702 .xen = xen_asm_xenpv_##func, \ 703 .ist_okay = ist_ok } 704 705 static struct trap_array_entry trap_array[] = { 706 TRAP_ENTRY_REDIR(exc_debug, true ), 707 TRAP_ENTRY_REDIR(exc_double_fault, true ), 708 #ifdef CONFIG_X86_MCE 709 TRAP_ENTRY_REDIR(exc_machine_check, true ), 710 #endif 711 TRAP_ENTRY_REDIR(exc_nmi, true ), 712 TRAP_ENTRY(exc_int3, false ), 713 TRAP_ENTRY(exc_overflow, false ), 714 #ifdef CONFIG_IA32_EMULATION 715 TRAP_ENTRY(int80_emulation, false ), 716 #endif 717 TRAP_ENTRY(exc_page_fault, false ), 718 TRAP_ENTRY(exc_divide_error, false ), 719 TRAP_ENTRY(exc_bounds, false ), 720 TRAP_ENTRY(exc_invalid_op, false ), 721 TRAP_ENTRY(exc_device_not_available, false ), 722 TRAP_ENTRY(exc_coproc_segment_overrun, false ), 723 TRAP_ENTRY(exc_invalid_tss, false ), 724 TRAP_ENTRY(exc_segment_not_present, false ), 725 TRAP_ENTRY(exc_stack_segment, false ), 726 TRAP_ENTRY(exc_general_protection, false ), 727 TRAP_ENTRY(exc_spurious_interrupt_bug, false ), 728 TRAP_ENTRY(exc_coprocessor_error, false ), 729 TRAP_ENTRY(exc_alignment_check, false ), 730 TRAP_ENTRY(exc_simd_coprocessor_error, false ), 731 #ifdef CONFIG_X86_CET 732 TRAP_ENTRY(exc_control_protection, false ), 733 #endif 734 }; 735 736 static bool __ref get_trap_addr(void **addr, unsigned int ist) 737 { 738 unsigned int nr; 739 bool ist_okay = false; 740 bool found = false; 741 742 /* 743 * Replace trap handler addresses by Xen specific ones. 744 * Check for known traps using IST and whitelist them. 745 * The debugger ones are the only ones we care about. 746 * Xen will handle faults like double_fault, so we should never see 747 * them. Warn if there's an unexpected IST-using fault handler. 748 */ 749 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) { 750 struct trap_array_entry *entry = trap_array + nr; 751 752 if (*addr == entry->orig) { 753 *addr = entry->xen; 754 ist_okay = entry->ist_okay; 755 found = true; 756 break; 757 } 758 } 759 760 if (nr == ARRAY_SIZE(trap_array) && 761 *addr >= (void *)early_idt_handler_array[0] && 762 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) { 763 nr = (*addr - (void *)early_idt_handler_array[0]) / 764 EARLY_IDT_HANDLER_SIZE; 765 *addr = (void *)xen_early_idt_handler_array[nr]; 766 found = true; 767 } 768 769 if (!found) 770 *addr = (void *)xen_asm_exc_xen_unknown_trap; 771 772 if (WARN_ON(found && ist != 0 && !ist_okay)) 773 return false; 774 775 return true; 776 } 777 778 static int cvt_gate_to_trap(int vector, const gate_desc *val, 779 struct trap_info *info) 780 { 781 unsigned long addr; 782 783 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT) 784 return 0; 785 786 info->vector = vector; 787 788 addr = gate_offset(val); 789 if (!get_trap_addr((void **)&addr, val->bits.ist)) 790 return 0; 791 info->address = addr; 792 793 info->cs = gate_segment(val); 794 info->flags = val->bits.dpl; 795 /* interrupt gates clear IF */ 796 if (val->bits.type == GATE_INTERRUPT) 797 info->flags |= 1 << 2; 798 799 return 1; 800 } 801 802 /* Locations of each CPU's IDT */ 803 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 804 805 /* Set an IDT entry. If the entry is part of the current IDT, then 806 also update Xen. */ 807 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 808 { 809 unsigned long p = (unsigned long)&dt[entrynum]; 810 unsigned long start, end; 811 812 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 813 814 preempt_disable(); 815 816 start = __this_cpu_read(idt_desc.address); 817 end = start + __this_cpu_read(idt_desc.size) + 1; 818 819 xen_mc_flush(); 820 821 native_write_idt_entry(dt, entrynum, g); 822 823 if (p >= start && (p + 8) <= end) { 824 struct trap_info info[2]; 825 826 info[1].address = 0; 827 828 if (cvt_gate_to_trap(entrynum, g, &info[0])) 829 if (HYPERVISOR_set_trap_table(info)) 830 BUG(); 831 } 832 833 preempt_enable(); 834 } 835 836 static unsigned xen_convert_trap_info(const struct desc_ptr *desc, 837 struct trap_info *traps, bool full) 838 { 839 unsigned in, out, count; 840 841 count = (desc->size+1) / sizeof(gate_desc); 842 BUG_ON(count > 256); 843 844 for (in = out = 0; in < count; in++) { 845 gate_desc *entry = (gate_desc *)(desc->address) + in; 846 847 if (cvt_gate_to_trap(in, entry, &traps[out]) || full) 848 out++; 849 } 850 851 return out; 852 } 853 854 void xen_copy_trap_info(struct trap_info *traps) 855 { 856 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); 857 858 xen_convert_trap_info(desc, traps, true); 859 } 860 861 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 862 hold a spinlock to protect the static traps[] array (static because 863 it avoids allocation, and saves stack space). */ 864 static void xen_load_idt(const struct desc_ptr *desc) 865 { 866 static DEFINE_SPINLOCK(lock); 867 static struct trap_info traps[257]; 868 static const struct trap_info zero = { }; 869 unsigned out; 870 871 trace_xen_cpu_load_idt(desc); 872 873 spin_lock(&lock); 874 875 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); 876 877 out = xen_convert_trap_info(desc, traps, false); 878 traps[out] = zero; 879 880 xen_mc_flush(); 881 if (HYPERVISOR_set_trap_table(traps)) 882 BUG(); 883 884 spin_unlock(&lock); 885 } 886 887 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 888 they're handled differently. */ 889 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 890 const void *desc, int type) 891 { 892 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 893 894 preempt_disable(); 895 896 switch (type) { 897 case DESC_LDT: 898 case DESC_TSS: 899 /* ignore */ 900 break; 901 902 default: { 903 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 904 905 xen_mc_flush(); 906 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 907 BUG(); 908 } 909 910 } 911 912 preempt_enable(); 913 } 914 915 /* 916 * Version of write_gdt_entry for use at early boot-time needed to 917 * update an entry as simply as possible. 918 */ 919 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 920 const void *desc, int type) 921 { 922 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 923 924 switch (type) { 925 case DESC_LDT: 926 case DESC_TSS: 927 /* ignore */ 928 break; 929 930 default: { 931 xmaddr_t maddr = virt_to_machine(&dt[entry]); 932 933 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 934 dt[entry] = *(struct desc_struct *)desc; 935 } 936 937 } 938 } 939 940 static void xen_load_sp0(unsigned long sp0) 941 { 942 struct multicall_space mcs; 943 944 mcs = xen_mc_entry(0); 945 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0); 946 xen_mc_issue(XEN_LAZY_CPU); 947 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 948 } 949 950 #ifdef CONFIG_X86_IOPL_IOPERM 951 static void xen_invalidate_io_bitmap(void) 952 { 953 struct physdev_set_iobitmap iobitmap = { 954 .bitmap = NULL, 955 .nr_ports = 0, 956 }; 957 958 native_tss_invalidate_io_bitmap(); 959 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap); 960 } 961 962 static void xen_update_io_bitmap(void) 963 { 964 struct physdev_set_iobitmap iobitmap; 965 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 966 967 native_tss_update_io_bitmap(); 968 969 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) + 970 tss->x86_tss.io_bitmap_base; 971 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID) 972 iobitmap.nr_ports = 0; 973 else 974 iobitmap.nr_ports = IO_BITMAP_BITS; 975 976 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap); 977 } 978 #endif 979 980 static void xen_io_delay(void) 981 { 982 } 983 984 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 985 986 static unsigned long xen_read_cr0(void) 987 { 988 unsigned long cr0 = this_cpu_read(xen_cr0_value); 989 990 if (unlikely(cr0 == 0)) { 991 cr0 = native_read_cr0(); 992 this_cpu_write(xen_cr0_value, cr0); 993 } 994 995 return cr0; 996 } 997 998 static void xen_write_cr0(unsigned long cr0) 999 { 1000 struct multicall_space mcs; 1001 1002 this_cpu_write(xen_cr0_value, cr0); 1003 1004 /* Only pay attention to cr0.TS; everything else is 1005 ignored. */ 1006 mcs = xen_mc_entry(0); 1007 1008 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 1009 1010 xen_mc_issue(XEN_LAZY_CPU); 1011 } 1012 1013 static void xen_write_cr4(unsigned long cr4) 1014 { 1015 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); 1016 1017 native_write_cr4(cr4); 1018 } 1019 1020 static u64 xen_do_read_msr(unsigned int msr, int *err) 1021 { 1022 u64 val = 0; /* Avoid uninitialized value for safe variant. */ 1023 1024 if (pmu_msr_read(msr, &val, err)) 1025 return val; 1026 1027 if (err) 1028 val = native_read_msr_safe(msr, err); 1029 else 1030 val = native_read_msr(msr); 1031 1032 switch (msr) { 1033 case MSR_IA32_APICBASE: 1034 val &= ~X2APIC_ENABLE; 1035 if (smp_processor_id() == 0) 1036 val |= MSR_IA32_APICBASE_BSP; 1037 else 1038 val &= ~MSR_IA32_APICBASE_BSP; 1039 break; 1040 } 1041 return val; 1042 } 1043 1044 static void set_seg(unsigned int which, unsigned int low, unsigned int high, 1045 int *err) 1046 { 1047 u64 base = ((u64)high << 32) | low; 1048 1049 if (HYPERVISOR_set_segment_base(which, base) == 0) 1050 return; 1051 1052 if (err) 1053 *err = -EIO; 1054 else 1055 WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base); 1056 } 1057 1058 /* 1059 * Support write_msr_safe() and write_msr() semantics. 1060 * With err == NULL write_msr() semantics are selected. 1061 * Supplying an err pointer requires err to be pre-initialized with 0. 1062 */ 1063 static void xen_do_write_msr(unsigned int msr, unsigned int low, 1064 unsigned int high, int *err) 1065 { 1066 switch (msr) { 1067 case MSR_FS_BASE: 1068 set_seg(SEGBASE_FS, low, high, err); 1069 break; 1070 1071 case MSR_KERNEL_GS_BASE: 1072 set_seg(SEGBASE_GS_USER, low, high, err); 1073 break; 1074 1075 case MSR_GS_BASE: 1076 set_seg(SEGBASE_GS_KERNEL, low, high, err); 1077 break; 1078 1079 case MSR_STAR: 1080 case MSR_CSTAR: 1081 case MSR_LSTAR: 1082 case MSR_SYSCALL_MASK: 1083 case MSR_IA32_SYSENTER_CS: 1084 case MSR_IA32_SYSENTER_ESP: 1085 case MSR_IA32_SYSENTER_EIP: 1086 /* Fast syscall setup is all done in hypercalls, so 1087 these are all ignored. Stub them out here to stop 1088 Xen console noise. */ 1089 break; 1090 1091 default: 1092 if (!pmu_msr_write(msr, low, high, err)) { 1093 if (err) 1094 *err = native_write_msr_safe(msr, low, high); 1095 else 1096 native_write_msr(msr, low, high); 1097 } 1098 } 1099 } 1100 1101 static u64 xen_read_msr_safe(unsigned int msr, int *err) 1102 { 1103 return xen_do_read_msr(msr, err); 1104 } 1105 1106 static int xen_write_msr_safe(unsigned int msr, unsigned int low, 1107 unsigned int high) 1108 { 1109 int err = 0; 1110 1111 xen_do_write_msr(msr, low, high, &err); 1112 1113 return err; 1114 } 1115 1116 static u64 xen_read_msr(unsigned int msr) 1117 { 1118 int err; 1119 1120 return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL); 1121 } 1122 1123 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) 1124 { 1125 int err; 1126 1127 xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL); 1128 } 1129 1130 /* This is called once we have the cpu_possible_mask */ 1131 void __init xen_setup_vcpu_info_placement(void) 1132 { 1133 int cpu; 1134 1135 for_each_possible_cpu(cpu) { 1136 /* Set up direct vCPU id mapping for PV guests. */ 1137 per_cpu(xen_vcpu_id, cpu) = cpu; 1138 xen_vcpu_setup(cpu); 1139 } 1140 1141 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 1142 pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 1143 pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1144 pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct); 1145 } 1146 1147 static const struct pv_info xen_info __initconst = { 1148 .extra_user_64bit_cs = FLAT_USER_CS64, 1149 .name = "Xen", 1150 }; 1151 1152 static const typeof(pv_ops) xen_cpu_ops __initconst = { 1153 .cpu = { 1154 .cpuid = xen_cpuid, 1155 1156 .set_debugreg = xen_set_debugreg, 1157 .get_debugreg = xen_get_debugreg, 1158 1159 .read_cr0 = xen_read_cr0, 1160 .write_cr0 = xen_write_cr0, 1161 1162 .write_cr4 = xen_write_cr4, 1163 1164 .wbinvd = pv_native_wbinvd, 1165 1166 .read_msr = xen_read_msr, 1167 .write_msr = xen_write_msr, 1168 1169 .read_msr_safe = xen_read_msr_safe, 1170 .write_msr_safe = xen_write_msr_safe, 1171 1172 .read_pmc = xen_read_pmc, 1173 1174 .load_tr_desc = paravirt_nop, 1175 .set_ldt = xen_set_ldt, 1176 .load_gdt = xen_load_gdt, 1177 .load_idt = xen_load_idt, 1178 .load_tls = xen_load_tls, 1179 .load_gs_index = xen_load_gs_index, 1180 1181 .alloc_ldt = xen_alloc_ldt, 1182 .free_ldt = xen_free_ldt, 1183 1184 .store_tr = xen_store_tr, 1185 1186 .write_ldt_entry = xen_write_ldt_entry, 1187 .write_gdt_entry = xen_write_gdt_entry, 1188 .write_idt_entry = xen_write_idt_entry, 1189 .load_sp0 = xen_load_sp0, 1190 1191 #ifdef CONFIG_X86_IOPL_IOPERM 1192 .invalidate_io_bitmap = xen_invalidate_io_bitmap, 1193 .update_io_bitmap = xen_update_io_bitmap, 1194 #endif 1195 .io_delay = xen_io_delay, 1196 1197 .start_context_switch = xen_start_context_switch, 1198 .end_context_switch = xen_end_context_switch, 1199 }, 1200 }; 1201 1202 static void xen_restart(char *msg) 1203 { 1204 xen_reboot(SHUTDOWN_reboot); 1205 } 1206 1207 static void xen_machine_halt(void) 1208 { 1209 xen_reboot(SHUTDOWN_poweroff); 1210 } 1211 1212 static void xen_machine_power_off(void) 1213 { 1214 do_kernel_power_off(); 1215 xen_reboot(SHUTDOWN_poweroff); 1216 } 1217 1218 static void xen_crash_shutdown(struct pt_regs *regs) 1219 { 1220 xen_reboot(SHUTDOWN_crash); 1221 } 1222 1223 static const struct machine_ops xen_machine_ops __initconst = { 1224 .restart = xen_restart, 1225 .halt = xen_machine_halt, 1226 .power_off = xen_machine_power_off, 1227 .shutdown = xen_machine_halt, 1228 .crash_shutdown = xen_crash_shutdown, 1229 .emergency_restart = xen_emergency_restart, 1230 }; 1231 1232 static unsigned char xen_get_nmi_reason(void) 1233 { 1234 unsigned char reason = 0; 1235 1236 /* Construct a value which looks like it came from port 0x61. */ 1237 if (test_bit(_XEN_NMIREASON_io_error, 1238 &HYPERVISOR_shared_info->arch.nmi_reason)) 1239 reason |= NMI_REASON_IOCHK; 1240 if (test_bit(_XEN_NMIREASON_pci_serr, 1241 &HYPERVISOR_shared_info->arch.nmi_reason)) 1242 reason |= NMI_REASON_SERR; 1243 1244 return reason; 1245 } 1246 1247 static void __init xen_boot_params_init_edd(void) 1248 { 1249 #if IS_ENABLED(CONFIG_EDD) 1250 struct xen_platform_op op; 1251 struct edd_info *edd_info; 1252 u32 *mbr_signature; 1253 unsigned nr; 1254 int ret; 1255 1256 edd_info = boot_params.eddbuf; 1257 mbr_signature = boot_params.edd_mbr_sig_buffer; 1258 1259 op.cmd = XENPF_firmware_info; 1260 1261 op.u.firmware_info.type = XEN_FW_DISK_INFO; 1262 for (nr = 0; nr < EDDMAXNR; nr++) { 1263 struct edd_info *info = edd_info + nr; 1264 1265 op.u.firmware_info.index = nr; 1266 info->params.length = sizeof(info->params); 1267 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, 1268 &info->params); 1269 ret = HYPERVISOR_platform_op(&op); 1270 if (ret) 1271 break; 1272 1273 #define C(x) info->x = op.u.firmware_info.u.disk_info.x 1274 C(device); 1275 C(version); 1276 C(interface_support); 1277 C(legacy_max_cylinder); 1278 C(legacy_max_head); 1279 C(legacy_sectors_per_track); 1280 #undef C 1281 } 1282 boot_params.eddbuf_entries = nr; 1283 1284 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; 1285 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { 1286 op.u.firmware_info.index = nr; 1287 ret = HYPERVISOR_platform_op(&op); 1288 if (ret) 1289 break; 1290 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; 1291 } 1292 boot_params.edd_mbr_sig_buf_entries = nr; 1293 #endif 1294 } 1295 1296 /* 1297 * Set up the GDT and segment registers for -fstack-protector. Until 1298 * we do this, we have to be careful not to call any stack-protected 1299 * function, which is most of the kernel. 1300 */ 1301 static void __init xen_setup_gdt(int cpu) 1302 { 1303 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot; 1304 pv_ops.cpu.load_gdt = xen_load_gdt_boot; 1305 1306 switch_gdt_and_percpu_base(cpu); 1307 1308 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry; 1309 pv_ops.cpu.load_gdt = xen_load_gdt; 1310 } 1311 1312 static void __init xen_dom0_set_legacy_features(void) 1313 { 1314 x86_platform.legacy.rtc = 1; 1315 } 1316 1317 static void __init xen_domu_set_legacy_features(void) 1318 { 1319 x86_platform.legacy.rtc = 0; 1320 } 1321 1322 extern void early_xen_iret_patch(void); 1323 1324 /* First C function to be called on Xen boot */ 1325 asmlinkage __visible void __init xen_start_kernel(struct start_info *si) 1326 { 1327 struct physdev_set_iopl set_iopl; 1328 unsigned long initrd_start = 0; 1329 int rc; 1330 1331 if (!si) 1332 return; 1333 1334 clear_bss(); 1335 1336 xen_start_info = si; 1337 1338 __text_gen_insn(&early_xen_iret_patch, 1339 JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret, 1340 JMP32_INSN_SIZE); 1341 1342 xen_domain_type = XEN_PV_DOMAIN; 1343 xen_start_flags = xen_start_info->flags; 1344 1345 xen_setup_features(); 1346 1347 /* Install Xen paravirt ops */ 1348 pv_info = xen_info; 1349 pv_ops.cpu = xen_cpu_ops.cpu; 1350 xen_init_irq_ops(); 1351 1352 /* 1353 * Setup xen_vcpu early because it is needed for 1354 * local_irq_disable(), irqs_disabled(), e.g. in printk(). 1355 * 1356 * Don't do the full vcpu_info placement stuff until we have 1357 * the cpu_possible_mask and a non-dummy shared_info. 1358 */ 1359 xen_vcpu_info_reset(0); 1360 1361 x86_platform.get_nmi_reason = xen_get_nmi_reason; 1362 x86_platform.realmode_reserve = x86_init_noop; 1363 x86_platform.realmode_init = x86_init_noop; 1364 1365 x86_init.resources.memory_setup = xen_memory_setup; 1366 x86_init.irqs.intr_mode_select = x86_init_noop; 1367 x86_init.irqs.intr_mode_init = x86_64_probe_apic; 1368 x86_init.oem.arch_setup = xen_arch_setup; 1369 x86_init.oem.banner = xen_banner; 1370 x86_init.hyper.init_platform = xen_pv_init_platform; 1371 x86_init.hyper.guest_late_init = xen_pv_guest_late_init; 1372 1373 /* 1374 * Set up some pagetable state before starting to set any ptes. 1375 */ 1376 1377 xen_setup_machphys_mapping(); 1378 xen_init_mmu_ops(); 1379 1380 /* Prevent unwanted bits from being set in PTEs. */ 1381 __supported_pte_mask &= ~_PAGE_GLOBAL; 1382 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 1383 1384 /* Get mfn list */ 1385 xen_build_dynamic_phys_to_machine(); 1386 1387 /* Work out if we support NX */ 1388 get_cpu_cap(&boot_cpu_data); 1389 x86_configure_nx(); 1390 1391 /* 1392 * Set up kernel GDT and segment registers, mainly so that 1393 * -fstack-protector code can be executed. 1394 */ 1395 xen_setup_gdt(0); 1396 1397 /* Determine virtual and physical address sizes */ 1398 get_cpu_address_sizes(&boot_cpu_data); 1399 1400 /* Let's presume PV guests always boot on vCPU with id 0. */ 1401 per_cpu(xen_vcpu_id, 0) = 0; 1402 1403 idt_setup_early_handler(); 1404 1405 xen_init_capabilities(); 1406 1407 /* 1408 * set up the basic apic ops. 1409 */ 1410 xen_init_apic(); 1411 1412 machine_ops = xen_machine_ops; 1413 1414 /* 1415 * The only reliable way to retain the initial address of the 1416 * percpu gdt_page is to remember it here, so we can go and 1417 * mark it RW later, when the initial percpu area is freed. 1418 */ 1419 xen_initial_gdt = &per_cpu(gdt_page, 0); 1420 1421 xen_smp_init(); 1422 1423 #ifdef CONFIG_ACPI_NUMA 1424 /* 1425 * The pages we from Xen are not related to machine pages, so 1426 * any NUMA information the kernel tries to get from ACPI will 1427 * be meaningless. Prevent it from trying. 1428 */ 1429 disable_srat(); 1430 #endif 1431 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv)); 1432 1433 local_irq_disable(); 1434 early_boot_irqs_disabled = true; 1435 1436 xen_raw_console_write("mapping kernel into physical memory\n"); 1437 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, 1438 xen_start_info->nr_pages); 1439 xen_reserve_special_pages(); 1440 1441 /* 1442 * We used to do this in xen_arch_setup, but that is too late 1443 * on AMD were early_cpu_init (run before ->arch_setup()) calls 1444 * early_amd_init which pokes 0xcf8 port. 1445 */ 1446 set_iopl.iopl = 1; 1447 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1448 if (rc != 0) 1449 xen_raw_printk("physdev_op failed %d\n", rc); 1450 1451 1452 if (xen_start_info->mod_start) { 1453 if (xen_start_info->flags & SIF_MOD_START_PFN) 1454 initrd_start = PFN_PHYS(xen_start_info->mod_start); 1455 else 1456 initrd_start = __pa(xen_start_info->mod_start); 1457 } 1458 1459 /* Poke various useful things into boot_params */ 1460 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1461 boot_params.hdr.ramdisk_image = initrd_start; 1462 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1463 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1464 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; 1465 1466 if (!xen_initial_domain()) { 1467 if (pci_xen) 1468 x86_init.pci.arch_init = pci_xen_init; 1469 x86_platform.set_legacy_features = 1470 xen_domu_set_legacy_features; 1471 } else { 1472 const struct dom0_vga_console_info *info = 1473 (void *)((char *)xen_start_info + 1474 xen_start_info->console.dom0.info_off); 1475 struct xen_platform_op op = { 1476 .cmd = XENPF_firmware_info, 1477 .interface_version = XENPF_INTERFACE_VERSION, 1478 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1479 }; 1480 1481 x86_platform.set_legacy_features = 1482 xen_dom0_set_legacy_features; 1483 xen_init_vga(info, xen_start_info->console.dom0.info_size, 1484 &boot_params.screen_info); 1485 xen_start_info->console.domU.mfn = 0; 1486 xen_start_info->console.domU.evtchn = 0; 1487 1488 if (HYPERVISOR_platform_op(&op) == 0) 1489 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1490 1491 /* Make sure ACS will be enabled */ 1492 pci_request_acs(); 1493 1494 xen_acpi_sleep_register(); 1495 1496 xen_boot_params_init_edd(); 1497 1498 #ifdef CONFIG_ACPI 1499 /* 1500 * Disable selecting "Firmware First mode" for correctable 1501 * memory errors, as this is the duty of the hypervisor to 1502 * decide. 1503 */ 1504 acpi_disable_cmcff = 1; 1505 #endif 1506 } 1507 1508 xen_add_preferred_consoles(); 1509 1510 #ifdef CONFIG_PCI 1511 /* PCI BIOS service won't work from a PV guest. */ 1512 pci_probe &= ~PCI_PROBE_BIOS; 1513 #endif 1514 xen_raw_console_write("about to get started...\n"); 1515 1516 /* We need this for printk timestamps */ 1517 xen_setup_runstate_info(0); 1518 1519 xen_efi_init(&boot_params); 1520 1521 /* Start the world */ 1522 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ 1523 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1524 } 1525 1526 static int xen_cpu_up_prepare_pv(unsigned int cpu) 1527 { 1528 int rc; 1529 1530 if (per_cpu(xen_vcpu, cpu) == NULL) 1531 return -ENODEV; 1532 1533 xen_setup_timer(cpu); 1534 1535 rc = xen_smp_intr_init(cpu); 1536 if (rc) { 1537 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", 1538 cpu, rc); 1539 return rc; 1540 } 1541 1542 rc = xen_smp_intr_init_pv(cpu); 1543 if (rc) { 1544 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n", 1545 cpu, rc); 1546 return rc; 1547 } 1548 1549 return 0; 1550 } 1551 1552 static int xen_cpu_dead_pv(unsigned int cpu) 1553 { 1554 xen_smp_intr_free(cpu); 1555 xen_smp_intr_free_pv(cpu); 1556 1557 xen_teardown_timer(cpu); 1558 1559 return 0; 1560 } 1561 1562 static uint32_t __init xen_platform_pv(void) 1563 { 1564 if (xen_pv_domain()) 1565 return xen_cpuid_base(); 1566 1567 return 0; 1568 } 1569 1570 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = { 1571 .name = "Xen PV", 1572 .detect = xen_platform_pv, 1573 .type = X86_HYPER_XEN_PV, 1574 .runtime.pin_vcpu = xen_pin_vcpu, 1575 .ignore_nopv = true, 1576 }; 1577
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.