~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/xen/mmu_pv.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 /*
  4  * Xen mmu operations
  5  *
  6  * This file contains the various mmu fetch and update operations.
  7  * The most important job they must perform is the mapping between the
  8  * domain's pfn and the overall machine mfns.
  9  *
 10  * Xen allows guests to directly update the pagetable, in a controlled
 11  * fashion.  In other words, the guest modifies the same pagetable
 12  * that the CPU actually uses, which eliminates the overhead of having
 13  * a separate shadow pagetable.
 14  *
 15  * In order to allow this, it falls on the guest domain to map its
 16  * notion of a "physical" pfn - which is just a domain-local linear
 17  * address - into a real "machine address" which the CPU's MMU can
 18  * use.
 19  *
 20  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 21  * inserted directly into the pagetable.  When creating a new
 22  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 23  * when reading the content back with __(pgd|pmd|pte)_val, it converts
 24  * the mfn back into a pfn.
 25  *
 26  * The other constraint is that all pages which make up a pagetable
 27  * must be mapped read-only in the guest.  This prevents uncontrolled
 28  * guest updates to the pagetable.  Xen strictly enforces this, and
 29  * will disallow any pagetable update which will end up mapping a
 30  * pagetable page RW, and will disallow using any writable page as a
 31  * pagetable.
 32  *
 33  * Naively, when loading %cr3 with the base of a new pagetable, Xen
 34  * would need to validate the whole pagetable before going on.
 35  * Naturally, this is quite slow.  The solution is to "pin" a
 36  * pagetable, which enforces all the constraints on the pagetable even
 37  * when it is not actively in use.  This means that Xen can be assured
 38  * that it is still valid when you do load it into %cr3, and doesn't
 39  * need to revalidate it.
 40  *
 41  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 42  */
 43 #include <linux/sched/mm.h>
 44 #include <linux/debugfs.h>
 45 #include <linux/bug.h>
 46 #include <linux/vmalloc.h>
 47 #include <linux/export.h>
 48 #include <linux/init.h>
 49 #include <linux/gfp.h>
 50 #include <linux/memblock.h>
 51 #include <linux/seq_file.h>
 52 #include <linux/crash_dump.h>
 53 #include <linux/pgtable.h>
 54 #ifdef CONFIG_KEXEC_CORE
 55 #include <linux/kexec.h>
 56 #endif
 57 
 58 #include <trace/events/xen.h>
 59 
 60 #include <asm/tlbflush.h>
 61 #include <asm/fixmap.h>
 62 #include <asm/mmu_context.h>
 63 #include <asm/setup.h>
 64 #include <asm/paravirt.h>
 65 #include <asm/e820/api.h>
 66 #include <asm/linkage.h>
 67 #include <asm/page.h>
 68 #include <asm/init.h>
 69 #include <asm/memtype.h>
 70 #include <asm/smp.h>
 71 #include <asm/tlb.h>
 72 
 73 #include <asm/xen/hypercall.h>
 74 #include <asm/xen/hypervisor.h>
 75 
 76 #include <xen/xen.h>
 77 #include <xen/page.h>
 78 #include <xen/interface/xen.h>
 79 #include <xen/interface/hvm/hvm_op.h>
 80 #include <xen/interface/version.h>
 81 #include <xen/interface/memory.h>
 82 #include <xen/hvc-console.h>
 83 #include <xen/swiotlb-xen.h>
 84 
 85 #include "xen-ops.h"
 86 
 87 /*
 88  * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order
 89  * to avoid warnings with "-Wmissing-prototypes".
 90  */
 91 pteval_t xen_pte_val(pte_t pte);
 92 pgdval_t xen_pgd_val(pgd_t pgd);
 93 pmdval_t xen_pmd_val(pmd_t pmd);
 94 pudval_t xen_pud_val(pud_t pud);
 95 p4dval_t xen_p4d_val(p4d_t p4d);
 96 pte_t xen_make_pte(pteval_t pte);
 97 pgd_t xen_make_pgd(pgdval_t pgd);
 98 pmd_t xen_make_pmd(pmdval_t pmd);
 99 pud_t xen_make_pud(pudval_t pud);
100 p4d_t xen_make_p4d(p4dval_t p4d);
101 pte_t xen_make_pte_init(pteval_t pte);
102 
103 #ifdef CONFIG_X86_VSYSCALL_EMULATION
104 /* l3 pud for userspace vsyscall mapping */
105 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
106 #endif
107 
108 /*
109  * Protects atomic reservation decrease/increase against concurrent increases.
110  * Also protects non-atomic updates of current_pages and balloon lists.
111  */
112 static DEFINE_SPINLOCK(xen_reservation_lock);
113 
114 /*
115  * Note about cr3 (pagetable base) values:
116  *
117  * xen_cr3 contains the current logical cr3 value; it contains the
118  * last set cr3.  This may not be the current effective cr3, because
119  * its update may be being lazily deferred.  However, a vcpu looking
120  * at its own cr3 can use this value knowing that it everything will
121  * be self-consistent.
122  *
123  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
124  * hypercall to set the vcpu cr3 is complete (so it may be a little
125  * out of date, but it will never be set early).  If one vcpu is
126  * looking at another vcpu's cr3 value, it should use this variable.
127  */
128 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
129 static DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
130 
131 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
132 
133 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
134 
135 /*
136  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
137  * redzone above it, so round it up to a PGD boundary.
138  */
139 #define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
140 
141 void make_lowmem_page_readonly(void *vaddr)
142 {
143         pte_t *pte, ptev;
144         unsigned long address = (unsigned long)vaddr;
145         unsigned int level;
146 
147         pte = lookup_address(address, &level);
148         if (pte == NULL)
149                 return;         /* vaddr missing */
150 
151         ptev = pte_wrprotect(*pte);
152 
153         if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154                 BUG();
155 }
156 
157 void make_lowmem_page_readwrite(void *vaddr)
158 {
159         pte_t *pte, ptev;
160         unsigned long address = (unsigned long)vaddr;
161         unsigned int level;
162 
163         pte = lookup_address(address, &level);
164         if (pte == NULL)
165                 return;         /* vaddr missing */
166 
167         ptev = pte_mkwrite_novma(*pte);
168 
169         if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170                 BUG();
171 }
172 
173 
174 /*
175  * During early boot all page table pages are pinned, but we do not have struct
176  * pages, so return true until struct pages are ready.
177  */
178 static bool xen_page_pinned(void *ptr)
179 {
180         if (static_branch_likely(&xen_struct_pages_ready)) {
181                 struct page *page = virt_to_page(ptr);
182 
183                 return PagePinned(page);
184         }
185         return true;
186 }
187 
188 static void xen_extend_mmu_update(const struct mmu_update *update)
189 {
190         struct multicall_space mcs;
191         struct mmu_update *u;
192 
193         mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
194 
195         if (mcs.mc != NULL) {
196                 mcs.mc->args[1]++;
197         } else {
198                 mcs = __xen_mc_entry(sizeof(*u));
199                 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
200         }
201 
202         u = mcs.args;
203         *u = *update;
204 }
205 
206 static void xen_extend_mmuext_op(const struct mmuext_op *op)
207 {
208         struct multicall_space mcs;
209         struct mmuext_op *u;
210 
211         mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
212 
213         if (mcs.mc != NULL) {
214                 mcs.mc->args[1]++;
215         } else {
216                 mcs = __xen_mc_entry(sizeof(*u));
217                 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
218         }
219 
220         u = mcs.args;
221         *u = *op;
222 }
223 
224 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
225 {
226         struct mmu_update u;
227 
228         preempt_disable();
229 
230         xen_mc_batch();
231 
232         /* ptr may be ioremapped for 64-bit pagetable setup */
233         u.ptr = arbitrary_virt_to_machine(ptr).maddr;
234         u.val = pmd_val_ma(val);
235         xen_extend_mmu_update(&u);
236 
237         xen_mc_issue(XEN_LAZY_MMU);
238 
239         preempt_enable();
240 }
241 
242 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
243 {
244         trace_xen_mmu_set_pmd(ptr, val);
245 
246         /* If page is not pinned, we can just update the entry
247            directly */
248         if (!xen_page_pinned(ptr)) {
249                 *ptr = val;
250                 return;
251         }
252 
253         xen_set_pmd_hyper(ptr, val);
254 }
255 
256 /*
257  * Associate a virtual page frame with a given physical page frame
258  * and protection flags for that frame.
259  */
260 void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
261 {
262         if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
263                                          UVMF_INVLPG))
264                 BUG();
265 }
266 
267 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
268 {
269         struct mmu_update u;
270 
271         if (xen_get_lazy_mode() != XEN_LAZY_MMU)
272                 return false;
273 
274         xen_mc_batch();
275 
276         u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
277         u.val = pte_val_ma(pteval);
278         xen_extend_mmu_update(&u);
279 
280         xen_mc_issue(XEN_LAZY_MMU);
281 
282         return true;
283 }
284 
285 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
286 {
287         if (!xen_batched_set_pte(ptep, pteval)) {
288                 /*
289                  * Could call native_set_pte() here and trap and
290                  * emulate the PTE write, but a hypercall is much cheaper.
291                  */
292                 struct mmu_update u;
293 
294                 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
295                 u.val = pte_val_ma(pteval);
296                 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
297         }
298 }
299 
300 static void xen_set_pte(pte_t *ptep, pte_t pteval)
301 {
302         trace_xen_mmu_set_pte(ptep, pteval);
303         __xen_set_pte(ptep, pteval);
304 }
305 
306 static pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
307                                         unsigned long addr, pte_t *ptep)
308 {
309         /* Just return the pte as-is.  We preserve the bits on commit */
310         trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
311         return *ptep;
312 }
313 
314 static void xen_ptep_modify_prot_commit(struct vm_area_struct *vma,
315                                         unsigned long addr,
316                                         pte_t *ptep, pte_t pte)
317 {
318         struct mmu_update u;
319 
320         trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
321         xen_mc_batch();
322 
323         u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
324         u.val = pte_val_ma(pte);
325         xen_extend_mmu_update(&u);
326 
327         xen_mc_issue(XEN_LAZY_MMU);
328 }
329 
330 /* Assume pteval_t is equivalent to all the other *val_t types. */
331 static pteval_t pte_mfn_to_pfn(pteval_t val)
332 {
333         if (val & _PAGE_PRESENT) {
334                 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
335                 unsigned long pfn = mfn_to_pfn(mfn);
336 
337                 pteval_t flags = val & PTE_FLAGS_MASK;
338                 if (unlikely(pfn == ~0))
339                         val = flags & ~_PAGE_PRESENT;
340                 else
341                         val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
342         }
343 
344         return val;
345 }
346 
347 static pteval_t pte_pfn_to_mfn(pteval_t val)
348 {
349         if (val & _PAGE_PRESENT) {
350                 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
351                 pteval_t flags = val & PTE_FLAGS_MASK;
352                 unsigned long mfn;
353 
354                 mfn = __pfn_to_mfn(pfn);
355 
356                 /*
357                  * If there's no mfn for the pfn, then just create an
358                  * empty non-present pte.  Unfortunately this loses
359                  * information about the original pfn, so
360                  * pte_mfn_to_pfn is asymmetric.
361                  */
362                 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
363                         mfn = 0;
364                         flags = 0;
365                 } else
366                         mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
367                 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
368         }
369 
370         return val;
371 }
372 
373 __visible pteval_t xen_pte_val(pte_t pte)
374 {
375         pteval_t pteval = pte.pte;
376 
377         return pte_mfn_to_pfn(pteval);
378 }
379 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
380 
381 __visible pgdval_t xen_pgd_val(pgd_t pgd)
382 {
383         return pte_mfn_to_pfn(pgd.pgd);
384 }
385 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
386 
387 __visible pte_t xen_make_pte(pteval_t pte)
388 {
389         pte = pte_pfn_to_mfn(pte);
390 
391         return native_make_pte(pte);
392 }
393 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
394 
395 __visible pgd_t xen_make_pgd(pgdval_t pgd)
396 {
397         pgd = pte_pfn_to_mfn(pgd);
398         return native_make_pgd(pgd);
399 }
400 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
401 
402 __visible pmdval_t xen_pmd_val(pmd_t pmd)
403 {
404         return pte_mfn_to_pfn(pmd.pmd);
405 }
406 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
407 
408 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
409 {
410         struct mmu_update u;
411 
412         preempt_disable();
413 
414         xen_mc_batch();
415 
416         /* ptr may be ioremapped for 64-bit pagetable setup */
417         u.ptr = arbitrary_virt_to_machine(ptr).maddr;
418         u.val = pud_val_ma(val);
419         xen_extend_mmu_update(&u);
420 
421         xen_mc_issue(XEN_LAZY_MMU);
422 
423         preempt_enable();
424 }
425 
426 static void xen_set_pud(pud_t *ptr, pud_t val)
427 {
428         trace_xen_mmu_set_pud(ptr, val);
429 
430         /* If page is not pinned, we can just update the entry
431            directly */
432         if (!xen_page_pinned(ptr)) {
433                 *ptr = val;
434                 return;
435         }
436 
437         xen_set_pud_hyper(ptr, val);
438 }
439 
440 __visible pmd_t xen_make_pmd(pmdval_t pmd)
441 {
442         pmd = pte_pfn_to_mfn(pmd);
443         return native_make_pmd(pmd);
444 }
445 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
446 
447 __visible pudval_t xen_pud_val(pud_t pud)
448 {
449         return pte_mfn_to_pfn(pud.pud);
450 }
451 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
452 
453 __visible pud_t xen_make_pud(pudval_t pud)
454 {
455         pud = pte_pfn_to_mfn(pud);
456 
457         return native_make_pud(pud);
458 }
459 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
460 
461 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
462 {
463         pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
464         unsigned offset = pgd - pgd_page;
465         pgd_t *user_ptr = NULL;
466 
467         if (offset < pgd_index(USER_LIMIT)) {
468                 struct page *page = virt_to_page(pgd_page);
469                 user_ptr = (pgd_t *)page->private;
470                 if (user_ptr)
471                         user_ptr += offset;
472         }
473 
474         return user_ptr;
475 }
476 
477 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
478 {
479         struct mmu_update u;
480 
481         u.ptr = virt_to_machine(ptr).maddr;
482         u.val = p4d_val_ma(val);
483         xen_extend_mmu_update(&u);
484 }
485 
486 /*
487  * Raw hypercall-based set_p4d, intended for in early boot before
488  * there's a page structure.  This implies:
489  *  1. The only existing pagetable is the kernel's
490  *  2. It is always pinned
491  *  3. It has no user pagetable attached to it
492  */
493 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
494 {
495         preempt_disable();
496 
497         xen_mc_batch();
498 
499         __xen_set_p4d_hyper(ptr, val);
500 
501         xen_mc_issue(XEN_LAZY_MMU);
502 
503         preempt_enable();
504 }
505 
506 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
507 {
508         pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
509         pgd_t pgd_val;
510 
511         trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
512 
513         /* If page is not pinned, we can just update the entry
514            directly */
515         if (!xen_page_pinned(ptr)) {
516                 *ptr = val;
517                 if (user_ptr) {
518                         WARN_ON(xen_page_pinned(user_ptr));
519                         pgd_val.pgd = p4d_val_ma(val);
520                         *user_ptr = pgd_val;
521                 }
522                 return;
523         }
524 
525         /* If it's pinned, then we can at least batch the kernel and
526            user updates together. */
527         xen_mc_batch();
528 
529         __xen_set_p4d_hyper(ptr, val);
530         if (user_ptr)
531                 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
532 
533         xen_mc_issue(XEN_LAZY_MMU);
534 }
535 
536 #if CONFIG_PGTABLE_LEVELS >= 5
537 __visible p4dval_t xen_p4d_val(p4d_t p4d)
538 {
539         return pte_mfn_to_pfn(p4d.p4d);
540 }
541 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
542 
543 __visible p4d_t xen_make_p4d(p4dval_t p4d)
544 {
545         p4d = pte_pfn_to_mfn(p4d);
546 
547         return native_make_p4d(p4d);
548 }
549 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
550 #endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
551 
552 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
553                          void (*func)(struct mm_struct *mm, struct page *,
554                                       enum pt_level),
555                          bool last, unsigned long limit)
556 {
557         int i, nr;
558 
559         nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
560         for (i = 0; i < nr; i++) {
561                 if (!pmd_none(pmd[i]))
562                         (*func)(mm, pmd_page(pmd[i]), PT_PTE);
563         }
564 }
565 
566 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
567                          void (*func)(struct mm_struct *mm, struct page *,
568                                       enum pt_level),
569                          bool last, unsigned long limit)
570 {
571         int i, nr;
572 
573         nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
574         for (i = 0; i < nr; i++) {
575                 pmd_t *pmd;
576 
577                 if (pud_none(pud[i]))
578                         continue;
579 
580                 pmd = pmd_offset(&pud[i], 0);
581                 if (PTRS_PER_PMD > 1)
582                         (*func)(mm, virt_to_page(pmd), PT_PMD);
583                 xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
584         }
585 }
586 
587 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
588                          void (*func)(struct mm_struct *mm, struct page *,
589                                       enum pt_level),
590                          bool last, unsigned long limit)
591 {
592         pud_t *pud;
593 
594 
595         if (p4d_none(*p4d))
596                 return;
597 
598         pud = pud_offset(p4d, 0);
599         if (PTRS_PER_PUD > 1)
600                 (*func)(mm, virt_to_page(pud), PT_PUD);
601         xen_pud_walk(mm, pud, func, last, limit);
602 }
603 
604 /*
605  * (Yet another) pagetable walker.  This one is intended for pinning a
606  * pagetable.  This means that it walks a pagetable and calls the
607  * callback function on each page it finds making up the page table,
608  * at every level.  It walks the entire pagetable, but it only bothers
609  * pinning pte pages which are below limit.  In the normal case this
610  * will be STACK_TOP_MAX, but at boot we need to pin up to
611  * FIXADDR_TOP.
612  *
613  * We must skip the Xen hole in the middle of the address space, just after
614  * the big x86-64 virtual hole.
615  */
616 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
617                            void (*func)(struct mm_struct *mm, struct page *,
618                                         enum pt_level),
619                            unsigned long limit)
620 {
621         int i, nr;
622         unsigned hole_low = 0, hole_high = 0;
623 
624         /* The limit is the last byte to be touched */
625         limit--;
626         BUG_ON(limit >= FIXADDR_TOP);
627 
628         /*
629          * 64-bit has a great big hole in the middle of the address
630          * space, which contains the Xen mappings.
631          */
632         hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
633         hole_high = pgd_index(GUARD_HOLE_END_ADDR);
634 
635         nr = pgd_index(limit) + 1;
636         for (i = 0; i < nr; i++) {
637                 p4d_t *p4d;
638 
639                 if (i >= hole_low && i < hole_high)
640                         continue;
641 
642                 if (pgd_none(pgd[i]))
643                         continue;
644 
645                 p4d = p4d_offset(&pgd[i], 0);
646                 xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
647         }
648 
649         /* Do the top level last, so that the callbacks can use it as
650            a cue to do final things like tlb flushes. */
651         (*func)(mm, virt_to_page(pgd), PT_PGD);
652 }
653 
654 static void xen_pgd_walk(struct mm_struct *mm,
655                          void (*func)(struct mm_struct *mm, struct page *,
656                                       enum pt_level),
657                          unsigned long limit)
658 {
659         __xen_pgd_walk(mm, mm->pgd, func, limit);
660 }
661 
662 /* If we're using split pte locks, then take the page's lock and
663    return a pointer to it.  Otherwise return NULL. */
664 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
665 {
666         spinlock_t *ptl = NULL;
667 
668 #if USE_SPLIT_PTE_PTLOCKS
669         ptl = ptlock_ptr(page_ptdesc(page));
670         spin_lock_nest_lock(ptl, &mm->page_table_lock);
671 #endif
672 
673         return ptl;
674 }
675 
676 static void xen_pte_unlock(void *v)
677 {
678         spinlock_t *ptl = v;
679         spin_unlock(ptl);
680 }
681 
682 static void xen_do_pin(unsigned level, unsigned long pfn)
683 {
684         struct mmuext_op op;
685 
686         op.cmd = level;
687         op.arg1.mfn = pfn_to_mfn(pfn);
688 
689         xen_extend_mmuext_op(&op);
690 }
691 
692 static void xen_pin_page(struct mm_struct *mm, struct page *page,
693                          enum pt_level level)
694 {
695         unsigned pgfl = TestSetPagePinned(page);
696 
697         if (!pgfl) {
698                 void *pt = lowmem_page_address(page);
699                 unsigned long pfn = page_to_pfn(page);
700                 struct multicall_space mcs = __xen_mc_entry(0);
701                 spinlock_t *ptl;
702 
703                 /*
704                  * We need to hold the pagetable lock between the time
705                  * we make the pagetable RO and when we actually pin
706                  * it.  If we don't, then other users may come in and
707                  * attempt to update the pagetable by writing it,
708                  * which will fail because the memory is RO but not
709                  * pinned, so Xen won't do the trap'n'emulate.
710                  *
711                  * If we're using split pte locks, we can't hold the
712                  * entire pagetable's worth of locks during the
713                  * traverse, because we may wrap the preempt count (8
714                  * bits).  The solution is to mark RO and pin each PTE
715                  * page while holding the lock.  This means the number
716                  * of locks we end up holding is never more than a
717                  * batch size (~32 entries, at present).
718                  *
719                  * If we're not using split pte locks, we needn't pin
720                  * the PTE pages independently, because we're
721                  * protected by the overall pagetable lock.
722                  */
723                 ptl = NULL;
724                 if (level == PT_PTE)
725                         ptl = xen_pte_lock(page, mm);
726 
727                 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
728                                         pfn_pte(pfn, PAGE_KERNEL_RO),
729                                         level == PT_PGD ? UVMF_TLB_FLUSH : 0);
730 
731                 if (ptl) {
732                         xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
733 
734                         /* Queue a deferred unlock for when this batch
735                            is completed. */
736                         xen_mc_callback(xen_pte_unlock, ptl);
737                 }
738         }
739 }
740 
741 /* This is called just after a mm has been created, but it has not
742    been used yet.  We need to make sure that its pagetable is all
743    read-only, and can be pinned. */
744 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
745 {
746         pgd_t *user_pgd = xen_get_user_pgd(pgd);
747 
748         trace_xen_mmu_pgd_pin(mm, pgd);
749 
750         xen_mc_batch();
751 
752         __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
753 
754         xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
755 
756         if (user_pgd) {
757                 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
758                 xen_do_pin(MMUEXT_PIN_L4_TABLE,
759                            PFN_DOWN(__pa(user_pgd)));
760         }
761 
762         xen_mc_issue(0);
763 }
764 
765 static void xen_pgd_pin(struct mm_struct *mm)
766 {
767         __xen_pgd_pin(mm, mm->pgd);
768 }
769 
770 /*
771  * On save, we need to pin all pagetables to make sure they get their
772  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
773  * them (unpinned pgds are not currently in use, probably because the
774  * process is under construction or destruction).
775  *
776  * Expected to be called in stop_machine() ("equivalent to taking
777  * every spinlock in the system"), so the locking doesn't really
778  * matter all that much.
779  */
780 void xen_mm_pin_all(void)
781 {
782         struct page *page;
783 
784         spin_lock(&pgd_lock);
785 
786         list_for_each_entry(page, &pgd_list, lru) {
787                 if (!PagePinned(page)) {
788                         __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
789                         SetPageSavePinned(page);
790                 }
791         }
792 
793         spin_unlock(&pgd_lock);
794 }
795 
796 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
797                                    enum pt_level level)
798 {
799         SetPagePinned(page);
800 }
801 
802 /*
803  * The init_mm pagetable is really pinned as soon as its created, but
804  * that's before we have page structures to store the bits.  So do all
805  * the book-keeping now once struct pages for allocated pages are
806  * initialized. This happens only after memblock_free_all() is called.
807  */
808 static void __init xen_after_bootmem(void)
809 {
810         static_branch_enable(&xen_struct_pages_ready);
811 #ifdef CONFIG_X86_VSYSCALL_EMULATION
812         SetPagePinned(virt_to_page(level3_user_vsyscall));
813 #endif
814         xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
815 }
816 
817 static void xen_unpin_page(struct mm_struct *mm, struct page *page,
818                            enum pt_level level)
819 {
820         unsigned pgfl = TestClearPagePinned(page);
821 
822         if (pgfl) {
823                 void *pt = lowmem_page_address(page);
824                 unsigned long pfn = page_to_pfn(page);
825                 spinlock_t *ptl = NULL;
826                 struct multicall_space mcs;
827 
828                 /*
829                  * Do the converse to pin_page.  If we're using split
830                  * pte locks, we must be holding the lock for while
831                  * the pte page is unpinned but still RO to prevent
832                  * concurrent updates from seeing it in this
833                  * partially-pinned state.
834                  */
835                 if (level == PT_PTE) {
836                         ptl = xen_pte_lock(page, mm);
837 
838                         if (ptl)
839                                 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
840                 }
841 
842                 mcs = __xen_mc_entry(0);
843 
844                 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
845                                         pfn_pte(pfn, PAGE_KERNEL),
846                                         level == PT_PGD ? UVMF_TLB_FLUSH : 0);
847 
848                 if (ptl) {
849                         /* unlock when batch completed */
850                         xen_mc_callback(xen_pte_unlock, ptl);
851                 }
852         }
853 }
854 
855 /* Release a pagetables pages back as normal RW */
856 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
857 {
858         pgd_t *user_pgd = xen_get_user_pgd(pgd);
859 
860         trace_xen_mmu_pgd_unpin(mm, pgd);
861 
862         xen_mc_batch();
863 
864         xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
865 
866         if (user_pgd) {
867                 xen_do_pin(MMUEXT_UNPIN_TABLE,
868                            PFN_DOWN(__pa(user_pgd)));
869                 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
870         }
871 
872         __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
873 
874         xen_mc_issue(0);
875 }
876 
877 static void xen_pgd_unpin(struct mm_struct *mm)
878 {
879         __xen_pgd_unpin(mm, mm->pgd);
880 }
881 
882 /*
883  * On resume, undo any pinning done at save, so that the rest of the
884  * kernel doesn't see any unexpected pinned pagetables.
885  */
886 void xen_mm_unpin_all(void)
887 {
888         struct page *page;
889 
890         spin_lock(&pgd_lock);
891 
892         list_for_each_entry(page, &pgd_list, lru) {
893                 if (PageSavePinned(page)) {
894                         BUG_ON(!PagePinned(page));
895                         __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
896                         ClearPageSavePinned(page);
897                 }
898         }
899 
900         spin_unlock(&pgd_lock);
901 }
902 
903 static void xen_enter_mmap(struct mm_struct *mm)
904 {
905         spin_lock(&mm->page_table_lock);
906         xen_pgd_pin(mm);
907         spin_unlock(&mm->page_table_lock);
908 }
909 
910 static void drop_mm_ref_this_cpu(void *info)
911 {
912         struct mm_struct *mm = info;
913 
914         if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
915                 leave_mm();
916 
917         /*
918          * If this cpu still has a stale cr3 reference, then make sure
919          * it has been flushed.
920          */
921         if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
922                 xen_mc_flush();
923 }
924 
925 #ifdef CONFIG_SMP
926 /*
927  * Another cpu may still have their %cr3 pointing at the pagetable, so
928  * we need to repoint it somewhere else before we can unpin it.
929  */
930 static void xen_drop_mm_ref(struct mm_struct *mm)
931 {
932         cpumask_var_t mask;
933         unsigned cpu;
934 
935         drop_mm_ref_this_cpu(mm);
936 
937         /* Get the "official" set of cpus referring to our pagetable. */
938         if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
939                 for_each_online_cpu(cpu) {
940                         if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
941                                 continue;
942                         smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
943                 }
944                 return;
945         }
946 
947         /*
948          * It's possible that a vcpu may have a stale reference to our
949          * cr3, because its in lazy mode, and it hasn't yet flushed
950          * its set of pending hypercalls yet.  In this case, we can
951          * look at its actual current cr3 value, and force it to flush
952          * if needed.
953          */
954         cpumask_clear(mask);
955         for_each_online_cpu(cpu) {
956                 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
957                         cpumask_set_cpu(cpu, mask);
958         }
959 
960         smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
961         free_cpumask_var(mask);
962 }
963 #else
964 static void xen_drop_mm_ref(struct mm_struct *mm)
965 {
966         drop_mm_ref_this_cpu(mm);
967 }
968 #endif
969 
970 /*
971  * While a process runs, Xen pins its pagetables, which means that the
972  * hypervisor forces it to be read-only, and it controls all updates
973  * to it.  This means that all pagetable updates have to go via the
974  * hypervisor, which is moderately expensive.
975  *
976  * Since we're pulling the pagetable down, we switch to use init_mm,
977  * unpin old process pagetable and mark it all read-write, which
978  * allows further operations on it to be simple memory accesses.
979  *
980  * The only subtle point is that another CPU may be still using the
981  * pagetable because of lazy tlb flushing.  This means we need need to
982  * switch all CPUs off this pagetable before we can unpin it.
983  */
984 static void xen_exit_mmap(struct mm_struct *mm)
985 {
986         get_cpu();              /* make sure we don't move around */
987         xen_drop_mm_ref(mm);
988         put_cpu();
989 
990         spin_lock(&mm->page_table_lock);
991 
992         /* pgd may not be pinned in the error exit path of execve */
993         if (xen_page_pinned(mm->pgd))
994                 xen_pgd_unpin(mm);
995 
996         spin_unlock(&mm->page_table_lock);
997 }
998 
999 static void xen_post_allocator_init(void);
1000 
1001 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1002 {
1003         struct mmuext_op op;
1004 
1005         op.cmd = cmd;
1006         op.arg1.mfn = pfn_to_mfn(pfn);
1007         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1008                 BUG();
1009 }
1010 
1011 static void __init xen_cleanhighmap(unsigned long vaddr,
1012                                     unsigned long vaddr_end)
1013 {
1014         unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1015         pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1016 
1017         /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1018          * We include the PMD passed in on _both_ boundaries. */
1019         for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1020                         pmd++, vaddr += PMD_SIZE) {
1021                 if (pmd_none(*pmd))
1022                         continue;
1023                 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1024                         set_pmd(pmd, __pmd(0));
1025         }
1026         /* In case we did something silly, we should crash in this function
1027          * instead of somewhere later and be confusing. */
1028         xen_mc_flush();
1029 }
1030 
1031 /*
1032  * Make a page range writeable and free it.
1033  */
1034 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1035 {
1036         void *vaddr = __va(paddr);
1037         void *vaddr_end = vaddr + size;
1038 
1039         for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1040                 make_lowmem_page_readwrite(vaddr);
1041 
1042         memblock_phys_free(paddr, size);
1043 }
1044 
1045 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1046 {
1047         unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1048 
1049         if (unpin)
1050                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1051         ClearPagePinned(virt_to_page(__va(pa)));
1052         xen_free_ro_pages(pa, PAGE_SIZE);
1053 }
1054 
1055 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1056 {
1057         unsigned long pa;
1058         pte_t *pte_tbl;
1059         int i;
1060 
1061         if (pmd_leaf(*pmd)) {
1062                 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1063                 xen_free_ro_pages(pa, PMD_SIZE);
1064                 return;
1065         }
1066 
1067         pte_tbl = pte_offset_kernel(pmd, 0);
1068         for (i = 0; i < PTRS_PER_PTE; i++) {
1069                 if (pte_none(pte_tbl[i]))
1070                         continue;
1071                 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1072                 xen_free_ro_pages(pa, PAGE_SIZE);
1073         }
1074         set_pmd(pmd, __pmd(0));
1075         xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1076 }
1077 
1078 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1079 {
1080         unsigned long pa;
1081         pmd_t *pmd_tbl;
1082         int i;
1083 
1084         if (pud_leaf(*pud)) {
1085                 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1086                 xen_free_ro_pages(pa, PUD_SIZE);
1087                 return;
1088         }
1089 
1090         pmd_tbl = pmd_offset(pud, 0);
1091         for (i = 0; i < PTRS_PER_PMD; i++) {
1092                 if (pmd_none(pmd_tbl[i]))
1093                         continue;
1094                 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1095         }
1096         set_pud(pud, __pud(0));
1097         xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1098 }
1099 
1100 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1101 {
1102         unsigned long pa;
1103         pud_t *pud_tbl;
1104         int i;
1105 
1106         if (p4d_leaf(*p4d)) {
1107                 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1108                 xen_free_ro_pages(pa, P4D_SIZE);
1109                 return;
1110         }
1111 
1112         pud_tbl = pud_offset(p4d, 0);
1113         for (i = 0; i < PTRS_PER_PUD; i++) {
1114                 if (pud_none(pud_tbl[i]))
1115                         continue;
1116                 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1117         }
1118         set_p4d(p4d, __p4d(0));
1119         xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1120 }
1121 
1122 /*
1123  * Since it is well isolated we can (and since it is perhaps large we should)
1124  * also free the page tables mapping the initial P->M table.
1125  */
1126 static void __init xen_cleanmfnmap(unsigned long vaddr)
1127 {
1128         pgd_t *pgd;
1129         p4d_t *p4d;
1130         bool unpin;
1131 
1132         unpin = (vaddr == 2 * PGDIR_SIZE);
1133         vaddr &= PMD_MASK;
1134         pgd = pgd_offset_k(vaddr);
1135         p4d = p4d_offset(pgd, 0);
1136         if (!p4d_none(*p4d))
1137                 xen_cleanmfnmap_p4d(p4d, unpin);
1138 }
1139 
1140 static void __init xen_pagetable_p2m_free(void)
1141 {
1142         unsigned long size;
1143         unsigned long addr;
1144 
1145         size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1146 
1147         /* No memory or already called. */
1148         if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1149                 return;
1150 
1151         /* using __ka address and sticking INVALID_P2M_ENTRY! */
1152         memset((void *)xen_start_info->mfn_list, 0xff, size);
1153 
1154         addr = xen_start_info->mfn_list;
1155         /*
1156          * We could be in __ka space.
1157          * We roundup to the PMD, which means that if anybody at this stage is
1158          * using the __ka address of xen_start_info or
1159          * xen_start_info->shared_info they are in going to crash. Fortunately
1160          * we have already revectored in xen_setup_kernel_pagetable.
1161          */
1162         size = roundup(size, PMD_SIZE);
1163 
1164         if (addr >= __START_KERNEL_map) {
1165                 xen_cleanhighmap(addr, addr + size);
1166                 size = PAGE_ALIGN(xen_start_info->nr_pages *
1167                                   sizeof(unsigned long));
1168                 memblock_free((void *)addr, size);
1169         } else {
1170                 xen_cleanmfnmap(addr);
1171         }
1172 }
1173 
1174 static void __init xen_pagetable_cleanhighmap(void)
1175 {
1176         unsigned long size;
1177         unsigned long addr;
1178 
1179         /* At this stage, cleanup_highmap has already cleaned __ka space
1180          * from _brk_limit way up to the max_pfn_mapped (which is the end of
1181          * the ramdisk). We continue on, erasing PMD entries that point to page
1182          * tables - do note that they are accessible at this stage via __va.
1183          * As Xen is aligning the memory end to a 4MB boundary, for good
1184          * measure we also round up to PMD_SIZE * 2 - which means that if
1185          * anybody is using __ka address to the initial boot-stack - and try
1186          * to use it - they are going to crash. The xen_start_info has been
1187          * taken care of already in xen_setup_kernel_pagetable. */
1188         addr = xen_start_info->pt_base;
1189         size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1190 
1191         xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1192         xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1193 }
1194 
1195 static void __init xen_pagetable_p2m_setup(void)
1196 {
1197         xen_vmalloc_p2m_tree();
1198 
1199         xen_pagetable_p2m_free();
1200 
1201         xen_pagetable_cleanhighmap();
1202 
1203         /* And revector! Bye bye old array */
1204         xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1205 }
1206 
1207 static void __init xen_pagetable_init(void)
1208 {
1209         /*
1210          * The majority of further PTE writes is to pagetables already
1211          * announced as such to Xen. Hence it is more efficient to use
1212          * hypercalls for these updates.
1213          */
1214         pv_ops.mmu.set_pte = __xen_set_pte;
1215 
1216         paging_init();
1217         xen_post_allocator_init();
1218 
1219         xen_pagetable_p2m_setup();
1220 
1221         /* Allocate and initialize top and mid mfn levels for p2m structure */
1222         xen_build_mfn_list_list();
1223 
1224         /* Remap memory freed due to conflicts with E820 map */
1225         xen_remap_memory();
1226         xen_setup_mfn_list_list();
1227 }
1228 
1229 static noinstr void xen_write_cr2(unsigned long cr2)
1230 {
1231         this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1232 }
1233 
1234 static noinline void xen_flush_tlb(void)
1235 {
1236         struct mmuext_op *op;
1237         struct multicall_space mcs;
1238 
1239         preempt_disable();
1240 
1241         mcs = xen_mc_entry(sizeof(*op));
1242 
1243         op = mcs.args;
1244         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1245         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1246 
1247         xen_mc_issue(XEN_LAZY_MMU);
1248 
1249         preempt_enable();
1250 }
1251 
1252 static void xen_flush_tlb_one_user(unsigned long addr)
1253 {
1254         struct mmuext_op *op;
1255         struct multicall_space mcs;
1256 
1257         trace_xen_mmu_flush_tlb_one_user(addr);
1258 
1259         preempt_disable();
1260 
1261         mcs = xen_mc_entry(sizeof(*op));
1262         op = mcs.args;
1263         op->cmd = MMUEXT_INVLPG_LOCAL;
1264         op->arg1.linear_addr = addr & PAGE_MASK;
1265         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1266 
1267         xen_mc_issue(XEN_LAZY_MMU);
1268 
1269         preempt_enable();
1270 }
1271 
1272 static void xen_flush_tlb_multi(const struct cpumask *cpus,
1273                                 const struct flush_tlb_info *info)
1274 {
1275         struct {
1276                 struct mmuext_op op;
1277                 DECLARE_BITMAP(mask, NR_CPUS);
1278         } *args;
1279         struct multicall_space mcs;
1280         const size_t mc_entry_size = sizeof(args->op) +
1281                 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1282 
1283         trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1284 
1285         if (cpumask_empty(cpus))
1286                 return;         /* nothing to do */
1287 
1288         mcs = xen_mc_entry(mc_entry_size);
1289         args = mcs.args;
1290         args->op.arg2.vcpumask = to_cpumask(args->mask);
1291 
1292         /* Remove any offline CPUs */
1293         cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1294 
1295         args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1296         if (info->end != TLB_FLUSH_ALL &&
1297             (info->end - info->start) <= PAGE_SIZE) {
1298                 args->op.cmd = MMUEXT_INVLPG_MULTI;
1299                 args->op.arg1.linear_addr = info->start;
1300         }
1301 
1302         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1303 
1304         xen_mc_issue(XEN_LAZY_MMU);
1305 }
1306 
1307 static unsigned long xen_read_cr3(void)
1308 {
1309         return this_cpu_read(xen_cr3);
1310 }
1311 
1312 static void set_current_cr3(void *v)
1313 {
1314         this_cpu_write(xen_current_cr3, (unsigned long)v);
1315 }
1316 
1317 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1318 {
1319         struct mmuext_op op;
1320         unsigned long mfn;
1321 
1322         trace_xen_mmu_write_cr3(kernel, cr3);
1323 
1324         if (cr3)
1325                 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1326         else
1327                 mfn = 0;
1328 
1329         WARN_ON(mfn == 0 && kernel);
1330 
1331         op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1332         op.arg1.mfn = mfn;
1333 
1334         xen_extend_mmuext_op(&op);
1335 
1336         if (kernel) {
1337                 this_cpu_write(xen_cr3, cr3);
1338 
1339                 /* Update xen_current_cr3 once the batch has actually
1340                    been submitted. */
1341                 xen_mc_callback(set_current_cr3, (void *)cr3);
1342         }
1343 }
1344 static void xen_write_cr3(unsigned long cr3)
1345 {
1346         pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1347 
1348         BUG_ON(preemptible());
1349 
1350         xen_mc_batch();  /* disables interrupts */
1351 
1352         /* Update while interrupts are disabled, so its atomic with
1353            respect to ipis */
1354         this_cpu_write(xen_cr3, cr3);
1355 
1356         __xen_write_cr3(true, cr3);
1357 
1358         if (user_pgd)
1359                 __xen_write_cr3(false, __pa(user_pgd));
1360         else
1361                 __xen_write_cr3(false, 0);
1362 
1363         xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1364 }
1365 
1366 /*
1367  * At the start of the day - when Xen launches a guest, it has already
1368  * built pagetables for the guest. We diligently look over them
1369  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1370  * init_top_pgt and its friends. Then when we are happy we load
1371  * the new init_top_pgt - and continue on.
1372  *
1373  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1374  * up the rest of the pagetables. When it has completed it loads the cr3.
1375  * N.B. that baremetal would start at 'start_kernel' (and the early
1376  * #PF handler would create bootstrap pagetables) - so we are running
1377  * with the same assumptions as what to do when write_cr3 is executed
1378  * at this point.
1379  *
1380  * Since there are no user-page tables at all, we have two variants
1381  * of xen_write_cr3 - the early bootup (this one), and the late one
1382  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1383  * the Linux kernel and user-space are both in ring 3 while the
1384  * hypervisor is in ring 0.
1385  */
1386 static void __init xen_write_cr3_init(unsigned long cr3)
1387 {
1388         BUG_ON(preemptible());
1389 
1390         xen_mc_batch();  /* disables interrupts */
1391 
1392         /* Update while interrupts are disabled, so its atomic with
1393            respect to ipis */
1394         this_cpu_write(xen_cr3, cr3);
1395 
1396         __xen_write_cr3(true, cr3);
1397 
1398         xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1399 }
1400 
1401 static int xen_pgd_alloc(struct mm_struct *mm)
1402 {
1403         pgd_t *pgd = mm->pgd;
1404         struct page *page = virt_to_page(pgd);
1405         pgd_t *user_pgd;
1406         int ret = -ENOMEM;
1407 
1408         BUG_ON(PagePinned(virt_to_page(pgd)));
1409         BUG_ON(page->private != 0);
1410 
1411         user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1412         page->private = (unsigned long)user_pgd;
1413 
1414         if (user_pgd != NULL) {
1415 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1416                 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1417                         __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1418 #endif
1419                 ret = 0;
1420         }
1421 
1422         BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1423 
1424         return ret;
1425 }
1426 
1427 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1428 {
1429         pgd_t *user_pgd = xen_get_user_pgd(pgd);
1430 
1431         if (user_pgd)
1432                 free_page((unsigned long)user_pgd);
1433 }
1434 
1435 /*
1436  * Init-time set_pte while constructing initial pagetables, which
1437  * doesn't allow RO page table pages to be remapped RW.
1438  *
1439  * If there is no MFN for this PFN then this page is initially
1440  * ballooned out so clear the PTE (as in decrease_reservation() in
1441  * drivers/xen/balloon.c).
1442  *
1443  * Many of these PTE updates are done on unpinned and writable pages
1444  * and doing a hypercall for these is unnecessary and expensive.  At
1445  * this point it is rarely possible to tell if a page is pinned, so
1446  * mostly write the PTE directly and rely on Xen trapping and
1447  * emulating any updates as necessary.
1448  */
1449 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1450 {
1451         if (unlikely(is_early_ioremap_ptep(ptep)))
1452                 __xen_set_pte(ptep, pte);
1453         else
1454                 native_set_pte(ptep, pte);
1455 }
1456 
1457 __visible pte_t xen_make_pte_init(pteval_t pte)
1458 {
1459         unsigned long pfn;
1460 
1461         /*
1462          * Pages belonging to the initial p2m list mapped outside the default
1463          * address range must be mapped read-only. This region contains the
1464          * page tables for mapping the p2m list, too, and page tables MUST be
1465          * mapped read-only.
1466          */
1467         pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1468         if (xen_start_info->mfn_list < __START_KERNEL_map &&
1469             pfn >= xen_start_info->first_p2m_pfn &&
1470             pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1471                 pte &= ~_PAGE_RW;
1472 
1473         pte = pte_pfn_to_mfn(pte);
1474         return native_make_pte(pte);
1475 }
1476 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1477 
1478 /* Early in boot, while setting up the initial pagetable, assume
1479    everything is pinned. */
1480 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1481 {
1482 #ifdef CONFIG_FLATMEM
1483         BUG_ON(mem_map);        /* should only be used early */
1484 #endif
1485         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1486         pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1487 }
1488 
1489 /* Used for pmd and pud */
1490 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1491 {
1492 #ifdef CONFIG_FLATMEM
1493         BUG_ON(mem_map);        /* should only be used early */
1494 #endif
1495         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1496 }
1497 
1498 /* Early release_pte assumes that all pts are pinned, since there's
1499    only init_mm and anything attached to that is pinned. */
1500 static void __init xen_release_pte_init(unsigned long pfn)
1501 {
1502         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1503         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1504 }
1505 
1506 static void __init xen_release_pmd_init(unsigned long pfn)
1507 {
1508         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1509 }
1510 
1511 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1512 {
1513         struct multicall_space mcs;
1514         struct mmuext_op *op;
1515 
1516         mcs = __xen_mc_entry(sizeof(*op));
1517         op = mcs.args;
1518         op->cmd = cmd;
1519         op->arg1.mfn = pfn_to_mfn(pfn);
1520 
1521         MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1522 }
1523 
1524 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1525 {
1526         struct multicall_space mcs;
1527         unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1528 
1529         mcs = __xen_mc_entry(0);
1530         MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1531                                 pfn_pte(pfn, prot), 0);
1532 }
1533 
1534 /* This needs to make sure the new pte page is pinned iff its being
1535    attached to a pinned pagetable. */
1536 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1537                                     unsigned level)
1538 {
1539         bool pinned = xen_page_pinned(mm->pgd);
1540 
1541         trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1542 
1543         if (pinned) {
1544                 struct page *page = pfn_to_page(pfn);
1545 
1546                 pinned = false;
1547                 if (static_branch_likely(&xen_struct_pages_ready)) {
1548                         pinned = PagePinned(page);
1549                         SetPagePinned(page);
1550                 }
1551 
1552                 xen_mc_batch();
1553 
1554                 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1555 
1556                 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned)
1557                         __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1558 
1559                 xen_mc_issue(XEN_LAZY_MMU);
1560         }
1561 }
1562 
1563 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1564 {
1565         xen_alloc_ptpage(mm, pfn, PT_PTE);
1566 }
1567 
1568 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1569 {
1570         xen_alloc_ptpage(mm, pfn, PT_PMD);
1571 }
1572 
1573 /* This should never happen until we're OK to use struct page */
1574 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1575 {
1576         struct page *page = pfn_to_page(pfn);
1577         bool pinned = PagePinned(page);
1578 
1579         trace_xen_mmu_release_ptpage(pfn, level, pinned);
1580 
1581         if (pinned) {
1582                 xen_mc_batch();
1583 
1584                 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1585                         __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1586 
1587                 __set_pfn_prot(pfn, PAGE_KERNEL);
1588 
1589                 xen_mc_issue(XEN_LAZY_MMU);
1590 
1591                 ClearPagePinned(page);
1592         }
1593 }
1594 
1595 static void xen_release_pte(unsigned long pfn)
1596 {
1597         xen_release_ptpage(pfn, PT_PTE);
1598 }
1599 
1600 static void xen_release_pmd(unsigned long pfn)
1601 {
1602         xen_release_ptpage(pfn, PT_PMD);
1603 }
1604 
1605 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1606 {
1607         xen_alloc_ptpage(mm, pfn, PT_PUD);
1608 }
1609 
1610 static void xen_release_pud(unsigned long pfn)
1611 {
1612         xen_release_ptpage(pfn, PT_PUD);
1613 }
1614 
1615 /*
1616  * Like __va(), but returns address in the kernel mapping (which is
1617  * all we have until the physical memory mapping has been set up.
1618  */
1619 static void * __init __ka(phys_addr_t paddr)
1620 {
1621         return (void *)(paddr + __START_KERNEL_map);
1622 }
1623 
1624 /* Convert a machine address to physical address */
1625 static unsigned long __init m2p(phys_addr_t maddr)
1626 {
1627         phys_addr_t paddr;
1628 
1629         maddr &= XEN_PTE_MFN_MASK;
1630         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1631 
1632         return paddr;
1633 }
1634 
1635 /* Convert a machine address to kernel virtual */
1636 static void * __init m2v(phys_addr_t maddr)
1637 {
1638         return __ka(m2p(maddr));
1639 }
1640 
1641 /* Set the page permissions on an identity-mapped pages */
1642 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1643                                        unsigned long flags)
1644 {
1645         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1646         pte_t pte = pfn_pte(pfn, prot);
1647 
1648         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1649                 BUG();
1650 }
1651 static void __init set_page_prot(void *addr, pgprot_t prot)
1652 {
1653         return set_page_prot_flags(addr, prot, UVMF_NONE);
1654 }
1655 
1656 void __init xen_setup_machphys_mapping(void)
1657 {
1658         struct xen_machphys_mapping mapping;
1659 
1660         if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1661                 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1662                 machine_to_phys_nr = mapping.max_mfn + 1;
1663         } else {
1664                 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1665         }
1666 }
1667 
1668 static void __init convert_pfn_mfn(void *v)
1669 {
1670         pte_t *pte = v;
1671         int i;
1672 
1673         /* All levels are converted the same way, so just treat them
1674            as ptes. */
1675         for (i = 0; i < PTRS_PER_PTE; i++)
1676                 pte[i] = xen_make_pte(pte[i].pte);
1677 }
1678 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1679                                  unsigned long addr)
1680 {
1681         if (*pt_base == PFN_DOWN(__pa(addr))) {
1682                 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1683                 clear_page((void *)addr);
1684                 (*pt_base)++;
1685         }
1686         if (*pt_end == PFN_DOWN(__pa(addr))) {
1687                 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1688                 clear_page((void *)addr);
1689                 (*pt_end)--;
1690         }
1691 }
1692 /*
1693  * Set up the initial kernel pagetable.
1694  *
1695  * We can construct this by grafting the Xen provided pagetable into
1696  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1697  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1698  * kernel has a physical mapping to start with - but that's enough to
1699  * get __va working.  We need to fill in the rest of the physical
1700  * mapping once some sort of allocator has been set up.
1701  */
1702 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1703 {
1704         pud_t *l3;
1705         pmd_t *l2;
1706         unsigned long addr[3];
1707         unsigned long pt_base, pt_end;
1708         unsigned i;
1709 
1710         /* max_pfn_mapped is the last pfn mapped in the initial memory
1711          * mappings. Considering that on Xen after the kernel mappings we
1712          * have the mappings of some pages that don't exist in pfn space, we
1713          * set max_pfn_mapped to the last real pfn mapped. */
1714         if (xen_start_info->mfn_list < __START_KERNEL_map)
1715                 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1716         else
1717                 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1718 
1719         pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1720         pt_end = pt_base + xen_start_info->nr_pt_frames;
1721 
1722         /* Zap identity mapping */
1723         init_top_pgt[0] = __pgd(0);
1724 
1725         /* Pre-constructed entries are in pfn, so convert to mfn */
1726         /* L4[273] -> level3_ident_pgt  */
1727         /* L4[511] -> level3_kernel_pgt */
1728         convert_pfn_mfn(init_top_pgt);
1729 
1730         /* L3_i[0] -> level2_ident_pgt */
1731         convert_pfn_mfn(level3_ident_pgt);
1732         /* L3_k[510] -> level2_kernel_pgt */
1733         /* L3_k[511] -> level2_fixmap_pgt */
1734         convert_pfn_mfn(level3_kernel_pgt);
1735 
1736         /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1737         convert_pfn_mfn(level2_fixmap_pgt);
1738 
1739         /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1740         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1741         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1742 
1743         addr[0] = (unsigned long)pgd;
1744         addr[1] = (unsigned long)l3;
1745         addr[2] = (unsigned long)l2;
1746         /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1747          * Both L4[273][0] and L4[511][510] have entries that point to the same
1748          * L2 (PMD) tables. Meaning that if you modify it in __va space
1749          * it will be also modified in the __ka space! (But if you just
1750          * modify the PMD table to point to other PTE's or none, then you
1751          * are OK - which is what cleanup_highmap does) */
1752         copy_page(level2_ident_pgt, l2);
1753         /* Graft it onto L4[511][510] */
1754         copy_page(level2_kernel_pgt, l2);
1755 
1756         /*
1757          * Zap execute permission from the ident map. Due to the sharing of
1758          * L1 entries we need to do this in the L2.
1759          */
1760         if (__supported_pte_mask & _PAGE_NX) {
1761                 for (i = 0; i < PTRS_PER_PMD; ++i) {
1762                         if (pmd_none(level2_ident_pgt[i]))
1763                                 continue;
1764                         level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1765                 }
1766         }
1767 
1768         /* Copy the initial P->M table mappings if necessary. */
1769         i = pgd_index(xen_start_info->mfn_list);
1770         if (i && i < pgd_index(__START_KERNEL_map))
1771                 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1772 
1773         /* Make pagetable pieces RO */
1774         set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1775         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1776         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1777         set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1778         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1779         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1780 
1781         for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1782                 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1783                               PAGE_KERNEL_RO);
1784         }
1785 
1786         /* Pin down new L4 */
1787         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1788                           PFN_DOWN(__pa_symbol(init_top_pgt)));
1789 
1790         /* Unpin Xen-provided one */
1791         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1792 
1793 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1794         /* Pin user vsyscall L3 */
1795         set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1796         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1797                           PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1798 #endif
1799 
1800         /*
1801          * At this stage there can be no user pgd, and no page structure to
1802          * attach it to, so make sure we just set kernel pgd.
1803          */
1804         xen_mc_batch();
1805         __xen_write_cr3(true, __pa(init_top_pgt));
1806         xen_mc_issue(XEN_LAZY_CPU);
1807 
1808         /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1809          * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1810          * the initial domain. For guests using the toolstack, they are in:
1811          * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1812          * rip out the [L4] (pgd), but for guests we shave off three pages.
1813          */
1814         for (i = 0; i < ARRAY_SIZE(addr); i++)
1815                 check_pt_base(&pt_base, &pt_end, addr[i]);
1816 
1817         /* Our (by three pages) smaller Xen pagetable that we are using */
1818         xen_pt_base = PFN_PHYS(pt_base);
1819         xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1820         memblock_reserve(xen_pt_base, xen_pt_size);
1821 
1822         /* Revector the xen_start_info */
1823         xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1824 }
1825 
1826 /*
1827  * Read a value from a physical address.
1828  */
1829 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1830 {
1831         unsigned long *vaddr;
1832         unsigned long val;
1833 
1834         vaddr = early_memremap_ro(addr, sizeof(val));
1835         val = *vaddr;
1836         early_memunmap(vaddr, sizeof(val));
1837         return val;
1838 }
1839 
1840 /*
1841  * Translate a virtual address to a physical one without relying on mapped
1842  * page tables. Don't rely on big pages being aligned in (guest) physical
1843  * space!
1844  */
1845 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1846 {
1847         phys_addr_t pa;
1848         pgd_t pgd;
1849         pud_t pud;
1850         pmd_t pmd;
1851         pte_t pte;
1852 
1853         pa = read_cr3_pa();
1854         pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1855                                                        sizeof(pgd)));
1856         if (!pgd_present(pgd))
1857                 return 0;
1858 
1859         pa = pgd_val(pgd) & PTE_PFN_MASK;
1860         pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1861                                                        sizeof(pud)));
1862         if (!pud_present(pud))
1863                 return 0;
1864         pa = pud_val(pud) & PTE_PFN_MASK;
1865         if (pud_leaf(pud))
1866                 return pa + (vaddr & ~PUD_MASK);
1867 
1868         pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1869                                                        sizeof(pmd)));
1870         if (!pmd_present(pmd))
1871                 return 0;
1872         pa = pmd_val(pmd) & PTE_PFN_MASK;
1873         if (pmd_leaf(pmd))
1874                 return pa + (vaddr & ~PMD_MASK);
1875 
1876         pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1877                                                        sizeof(pte)));
1878         if (!pte_present(pte))
1879                 return 0;
1880         pa = pte_pfn(pte) << PAGE_SHIFT;
1881 
1882         return pa | (vaddr & ~PAGE_MASK);
1883 }
1884 
1885 /*
1886  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1887  * this area.
1888  */
1889 void __init xen_relocate_p2m(void)
1890 {
1891         phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1892         unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1893         int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1894         pte_t *pt;
1895         pmd_t *pmd;
1896         pud_t *pud;
1897         pgd_t *pgd;
1898         unsigned long *new_p2m;
1899 
1900         size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1901         n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1902         n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1903         n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1904         n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1905         n_frames = n_pte + n_pt + n_pmd + n_pud;
1906 
1907         new_area = xen_find_free_area(PFN_PHYS(n_frames));
1908         if (!new_area) {
1909                 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1910                 BUG();
1911         }
1912 
1913         /*
1914          * Setup the page tables for addressing the new p2m list.
1915          * We have asked the hypervisor to map the p2m list at the user address
1916          * PUD_SIZE. It may have done so, or it may have used a kernel space
1917          * address depending on the Xen version.
1918          * To avoid any possible virtual address collision, just use
1919          * 2 * PUD_SIZE for the new area.
1920          */
1921         pud_phys = new_area;
1922         pmd_phys = pud_phys + PFN_PHYS(n_pud);
1923         pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1924         p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1925 
1926         pgd = __va(read_cr3_pa());
1927         new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1928         for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1929                 pud = early_memremap(pud_phys, PAGE_SIZE);
1930                 clear_page(pud);
1931                 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1932                                 idx_pmd++) {
1933                         pmd = early_memremap(pmd_phys, PAGE_SIZE);
1934                         clear_page(pmd);
1935                         for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1936                                         idx_pt++) {
1937                                 pt = early_memremap(pt_phys, PAGE_SIZE);
1938                                 clear_page(pt);
1939                                 for (idx_pte = 0;
1940                                      idx_pte < min(n_pte, PTRS_PER_PTE);
1941                                      idx_pte++) {
1942                                         pt[idx_pte] = pfn_pte(p2m_pfn,
1943                                                               PAGE_KERNEL);
1944                                         p2m_pfn++;
1945                                 }
1946                                 n_pte -= PTRS_PER_PTE;
1947                                 early_memunmap(pt, PAGE_SIZE);
1948                                 make_lowmem_page_readonly(__va(pt_phys));
1949                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1950                                                 PFN_DOWN(pt_phys));
1951                                 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1952                                 pt_phys += PAGE_SIZE;
1953                         }
1954                         n_pt -= PTRS_PER_PMD;
1955                         early_memunmap(pmd, PAGE_SIZE);
1956                         make_lowmem_page_readonly(__va(pmd_phys));
1957                         pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1958                                         PFN_DOWN(pmd_phys));
1959                         pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1960                         pmd_phys += PAGE_SIZE;
1961                 }
1962                 n_pmd -= PTRS_PER_PUD;
1963                 early_memunmap(pud, PAGE_SIZE);
1964                 make_lowmem_page_readonly(__va(pud_phys));
1965                 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1966                 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1967                 pud_phys += PAGE_SIZE;
1968         }
1969 
1970         /* Now copy the old p2m info to the new area. */
1971         memcpy(new_p2m, xen_p2m_addr, size);
1972         xen_p2m_addr = new_p2m;
1973 
1974         /* Release the old p2m list and set new list info. */
1975         p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1976         BUG_ON(!p2m_pfn);
1977         p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1978 
1979         if (xen_start_info->mfn_list < __START_KERNEL_map) {
1980                 pfn = xen_start_info->first_p2m_pfn;
1981                 pfn_end = xen_start_info->first_p2m_pfn +
1982                           xen_start_info->nr_p2m_frames;
1983                 set_pgd(pgd + 1, __pgd(0));
1984         } else {
1985                 pfn = p2m_pfn;
1986                 pfn_end = p2m_pfn_end;
1987         }
1988 
1989         memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1990         while (pfn < pfn_end) {
1991                 if (pfn == p2m_pfn) {
1992                         pfn = p2m_pfn_end;
1993                         continue;
1994                 }
1995                 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1996                 pfn++;
1997         }
1998 
1999         xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2000         xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2001         xen_start_info->nr_p2m_frames = n_frames;
2002 }
2003 
2004 void __init xen_reserve_special_pages(void)
2005 {
2006         phys_addr_t paddr;
2007 
2008         memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2009         if (xen_start_info->store_mfn) {
2010                 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2011                 memblock_reserve(paddr, PAGE_SIZE);
2012         }
2013         if (!xen_initial_domain()) {
2014                 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2015                 memblock_reserve(paddr, PAGE_SIZE);
2016         }
2017 }
2018 
2019 void __init xen_pt_check_e820(void)
2020 {
2021         if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2022                 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2023                 BUG();
2024         }
2025 }
2026 
2027 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2028 
2029 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2030 {
2031         pte_t pte;
2032         unsigned long vaddr;
2033 
2034         phys >>= PAGE_SHIFT;
2035 
2036         switch (idx) {
2037         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2038 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2039         case VSYSCALL_PAGE:
2040 #endif
2041                 /* All local page mappings */
2042                 pte = pfn_pte(phys, prot);
2043                 break;
2044 
2045 #ifdef CONFIG_X86_LOCAL_APIC
2046         case FIX_APIC_BASE:     /* maps dummy local APIC */
2047                 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2048                 break;
2049 #endif
2050 
2051 #ifdef CONFIG_X86_IO_APIC
2052         case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2053                 /*
2054                  * We just don't map the IO APIC - all access is via
2055                  * hypercalls.  Keep the address in the pte for reference.
2056                  */
2057                 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2058                 break;
2059 #endif
2060 
2061         case FIX_PARAVIRT_BOOTMAP:
2062                 /* This is an MFN, but it isn't an IO mapping from the
2063                    IO domain */
2064                 pte = mfn_pte(phys, prot);
2065                 break;
2066 
2067         default:
2068                 /* By default, set_fixmap is used for hardware mappings */
2069                 pte = mfn_pte(phys, prot);
2070                 break;
2071         }
2072 
2073         vaddr = __fix_to_virt(idx);
2074         if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2075                 BUG();
2076 
2077 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2078         /* Replicate changes to map the vsyscall page into the user
2079            pagetable vsyscall mapping. */
2080         if (idx == VSYSCALL_PAGE)
2081                 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2082 #endif
2083 }
2084 
2085 static void xen_enter_lazy_mmu(void)
2086 {
2087         enter_lazy(XEN_LAZY_MMU);
2088 }
2089 
2090 static void xen_flush_lazy_mmu(void)
2091 {
2092         preempt_disable();
2093 
2094         if (xen_get_lazy_mode() == XEN_LAZY_MMU) {
2095                 arch_leave_lazy_mmu_mode();
2096                 arch_enter_lazy_mmu_mode();
2097         }
2098 
2099         preempt_enable();
2100 }
2101 
2102 static void __init xen_post_allocator_init(void)
2103 {
2104         pv_ops.mmu.set_pte = xen_set_pte;
2105         pv_ops.mmu.set_pmd = xen_set_pmd;
2106         pv_ops.mmu.set_pud = xen_set_pud;
2107         pv_ops.mmu.set_p4d = xen_set_p4d;
2108 
2109         /* This will work as long as patching hasn't happened yet
2110            (which it hasn't) */
2111         pv_ops.mmu.alloc_pte = xen_alloc_pte;
2112         pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2113         pv_ops.mmu.release_pte = xen_release_pte;
2114         pv_ops.mmu.release_pmd = xen_release_pmd;
2115         pv_ops.mmu.alloc_pud = xen_alloc_pud;
2116         pv_ops.mmu.release_pud = xen_release_pud;
2117         pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2118 
2119         pv_ops.mmu.write_cr3 = &xen_write_cr3;
2120 }
2121 
2122 static void xen_leave_lazy_mmu(void)
2123 {
2124         preempt_disable();
2125         xen_mc_flush();
2126         leave_lazy(XEN_LAZY_MMU);
2127         preempt_enable();
2128 }
2129 
2130 static const typeof(pv_ops) xen_mmu_ops __initconst = {
2131         .mmu = {
2132                 .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2133                 .write_cr2 = xen_write_cr2,
2134 
2135                 .read_cr3 = xen_read_cr3,
2136                 .write_cr3 = xen_write_cr3_init,
2137 
2138                 .flush_tlb_user = xen_flush_tlb,
2139                 .flush_tlb_kernel = xen_flush_tlb,
2140                 .flush_tlb_one_user = xen_flush_tlb_one_user,
2141                 .flush_tlb_multi = xen_flush_tlb_multi,
2142                 .tlb_remove_table = tlb_remove_table,
2143 
2144                 .pgd_alloc = xen_pgd_alloc,
2145                 .pgd_free = xen_pgd_free,
2146 
2147                 .alloc_pte = xen_alloc_pte_init,
2148                 .release_pte = xen_release_pte_init,
2149                 .alloc_pmd = xen_alloc_pmd_init,
2150                 .release_pmd = xen_release_pmd_init,
2151 
2152                 .set_pte = xen_set_pte_init,
2153                 .set_pmd = xen_set_pmd_hyper,
2154 
2155                 .ptep_modify_prot_start = xen_ptep_modify_prot_start,
2156                 .ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2157 
2158                 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2159                 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2160 
2161                 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2162                 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2163 
2164                 .set_pud = xen_set_pud_hyper,
2165 
2166                 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2167                 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2168 
2169                 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2170                 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2171                 .set_p4d = xen_set_p4d_hyper,
2172 
2173                 .alloc_pud = xen_alloc_pmd_init,
2174                 .release_pud = xen_release_pmd_init,
2175 
2176 #if CONFIG_PGTABLE_LEVELS >= 5
2177                 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2178                 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2179 #endif
2180 
2181                 .enter_mmap = xen_enter_mmap,
2182                 .exit_mmap = xen_exit_mmap,
2183 
2184                 .lazy_mode = {
2185                         .enter = xen_enter_lazy_mmu,
2186                         .leave = xen_leave_lazy_mmu,
2187                         .flush = xen_flush_lazy_mmu,
2188                 },
2189 
2190                 .set_fixmap = xen_set_fixmap,
2191         },
2192 };
2193 
2194 void __init xen_init_mmu_ops(void)
2195 {
2196         x86_init.paging.pagetable_init = xen_pagetable_init;
2197         x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2198 
2199         pv_ops.mmu = xen_mmu_ops.mmu;
2200 
2201         memset(dummy_mapping, 0xff, PAGE_SIZE);
2202 }
2203 
2204 /* Protected by xen_reservation_lock. */
2205 #define MAX_CONTIG_ORDER 9 /* 2MB */
2206 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2207 
2208 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2209 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2210                                 unsigned long *in_frames,
2211                                 unsigned long *out_frames)
2212 {
2213         int i;
2214         struct multicall_space mcs;
2215 
2216         xen_mc_batch();
2217         for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2218                 mcs = __xen_mc_entry(0);
2219 
2220                 if (in_frames)
2221                         in_frames[i] = virt_to_mfn((void *)vaddr);
2222 
2223                 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2224                 __set_phys_to_machine(virt_to_pfn((void *)vaddr), INVALID_P2M_ENTRY);
2225 
2226                 if (out_frames)
2227                         out_frames[i] = virt_to_pfn((void *)vaddr);
2228         }
2229         xen_mc_issue(0);
2230 }
2231 
2232 /*
2233  * Update the pfn-to-mfn mappings for a virtual address range, either to
2234  * point to an array of mfns, or contiguously from a single starting
2235  * mfn.
2236  */
2237 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2238                                      unsigned long *mfns,
2239                                      unsigned long first_mfn)
2240 {
2241         unsigned i, limit;
2242         unsigned long mfn;
2243 
2244         xen_mc_batch();
2245 
2246         limit = 1u << order;
2247         for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2248                 struct multicall_space mcs;
2249                 unsigned flags;
2250 
2251                 mcs = __xen_mc_entry(0);
2252                 if (mfns)
2253                         mfn = mfns[i];
2254                 else
2255                         mfn = first_mfn + i;
2256 
2257                 if (i < (limit - 1))
2258                         flags = 0;
2259                 else {
2260                         if (order == 0)
2261                                 flags = UVMF_INVLPG | UVMF_ALL;
2262                         else
2263                                 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2264                 }
2265 
2266                 MULTI_update_va_mapping(mcs.mc, vaddr,
2267                                 mfn_pte(mfn, PAGE_KERNEL), flags);
2268 
2269                 set_phys_to_machine(virt_to_pfn((void *)vaddr), mfn);
2270         }
2271 
2272         xen_mc_issue(0);
2273 }
2274 
2275 /*
2276  * Perform the hypercall to exchange a region of our pfns to point to
2277  * memory with the required contiguous alignment.  Takes the pfns as
2278  * input, and populates mfns as output.
2279  *
2280  * Returns a success code indicating whether the hypervisor was able to
2281  * satisfy the request or not.
2282  */
2283 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2284                                unsigned long *pfns_in,
2285                                unsigned long extents_out,
2286                                unsigned int order_out,
2287                                unsigned long *mfns_out,
2288                                unsigned int address_bits)
2289 {
2290         long rc;
2291         int success;
2292 
2293         struct xen_memory_exchange exchange = {
2294                 .in = {
2295                         .nr_extents   = extents_in,
2296                         .extent_order = order_in,
2297                         .extent_start = pfns_in,
2298                         .domid        = DOMID_SELF
2299                 },
2300                 .out = {
2301                         .nr_extents   = extents_out,
2302                         .extent_order = order_out,
2303                         .extent_start = mfns_out,
2304                         .address_bits = address_bits,
2305                         .domid        = DOMID_SELF
2306                 }
2307         };
2308 
2309         BUG_ON(extents_in << order_in != extents_out << order_out);
2310 
2311         rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2312         success = (exchange.nr_exchanged == extents_in);
2313 
2314         BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2315         BUG_ON(success && (rc != 0));
2316 
2317         return success;
2318 }
2319 
2320 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2321                                  unsigned int address_bits,
2322                                  dma_addr_t *dma_handle)
2323 {
2324         unsigned long *in_frames = discontig_frames, out_frame;
2325         unsigned long  flags;
2326         int            success;
2327         unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2328 
2329         if (unlikely(order > MAX_CONTIG_ORDER))
2330                 return -ENOMEM;
2331 
2332         memset((void *) vstart, 0, PAGE_SIZE << order);
2333 
2334         spin_lock_irqsave(&xen_reservation_lock, flags);
2335 
2336         /* 1. Zap current PTEs, remembering MFNs. */
2337         xen_zap_pfn_range(vstart, order, in_frames, NULL);
2338 
2339         /* 2. Get a new contiguous memory extent. */
2340         out_frame = virt_to_pfn((void *)vstart);
2341         success = xen_exchange_memory(1UL << order, 0, in_frames,
2342                                       1, order, &out_frame,
2343                                       address_bits);
2344 
2345         /* 3. Map the new extent in place of old pages. */
2346         if (success)
2347                 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2348         else
2349                 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2350 
2351         spin_unlock_irqrestore(&xen_reservation_lock, flags);
2352 
2353         *dma_handle = virt_to_machine(vstart).maddr;
2354         return success ? 0 : -ENOMEM;
2355 }
2356 
2357 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2358 {
2359         unsigned long *out_frames = discontig_frames, in_frame;
2360         unsigned long  flags;
2361         int success;
2362         unsigned long vstart;
2363 
2364         if (unlikely(order > MAX_CONTIG_ORDER))
2365                 return;
2366 
2367         vstart = (unsigned long)phys_to_virt(pstart);
2368         memset((void *) vstart, 0, PAGE_SIZE << order);
2369 
2370         spin_lock_irqsave(&xen_reservation_lock, flags);
2371 
2372         /* 1. Find start MFN of contiguous extent. */
2373         in_frame = virt_to_mfn((void *)vstart);
2374 
2375         /* 2. Zap current PTEs. */
2376         xen_zap_pfn_range(vstart, order, NULL, out_frames);
2377 
2378         /* 3. Do the exchange for non-contiguous MFNs. */
2379         success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2380                                         0, out_frames, 0);
2381 
2382         /* 4. Map new pages in place of old pages. */
2383         if (success)
2384                 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2385         else
2386                 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2387 
2388         spin_unlock_irqrestore(&xen_reservation_lock, flags);
2389 }
2390 
2391 static noinline void xen_flush_tlb_all(void)
2392 {
2393         struct mmuext_op *op;
2394         struct multicall_space mcs;
2395 
2396         preempt_disable();
2397 
2398         mcs = xen_mc_entry(sizeof(*op));
2399 
2400         op = mcs.args;
2401         op->cmd = MMUEXT_TLB_FLUSH_ALL;
2402         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2403 
2404         xen_mc_issue(XEN_LAZY_MMU);
2405 
2406         preempt_enable();
2407 }
2408 
2409 #define REMAP_BATCH_SIZE 16
2410 
2411 struct remap_data {
2412         xen_pfn_t *pfn;
2413         bool contiguous;
2414         bool no_translate;
2415         pgprot_t prot;
2416         struct mmu_update *mmu_update;
2417 };
2418 
2419 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2420 {
2421         struct remap_data *rmd = data;
2422         pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2423 
2424         /*
2425          * If we have a contiguous range, just update the pfn itself,
2426          * else update pointer to be "next pfn".
2427          */
2428         if (rmd->contiguous)
2429                 (*rmd->pfn)++;
2430         else
2431                 rmd->pfn++;
2432 
2433         rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2434         rmd->mmu_update->ptr |= rmd->no_translate ?
2435                 MMU_PT_UPDATE_NO_TRANSLATE :
2436                 MMU_NORMAL_PT_UPDATE;
2437         rmd->mmu_update->val = pte_val_ma(pte);
2438         rmd->mmu_update++;
2439 
2440         return 0;
2441 }
2442 
2443 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2444                   xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2445                   unsigned int domid, bool no_translate)
2446 {
2447         int err = 0;
2448         struct remap_data rmd;
2449         struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2450         unsigned long range;
2451         int mapped = 0;
2452 
2453         BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2454 
2455         rmd.pfn = pfn;
2456         rmd.prot = prot;
2457         /*
2458          * We use the err_ptr to indicate if there we are doing a contiguous
2459          * mapping or a discontiguous mapping.
2460          */
2461         rmd.contiguous = !err_ptr;
2462         rmd.no_translate = no_translate;
2463 
2464         while (nr) {
2465                 int index = 0;
2466                 int done = 0;
2467                 int batch = min(REMAP_BATCH_SIZE, nr);
2468                 int batch_left = batch;
2469 
2470                 range = (unsigned long)batch << PAGE_SHIFT;
2471 
2472                 rmd.mmu_update = mmu_update;
2473                 err = apply_to_page_range(vma->vm_mm, addr, range,
2474                                           remap_area_pfn_pte_fn, &rmd);
2475                 if (err)
2476                         goto out;
2477 
2478                 /*
2479                  * We record the error for each page that gives an error, but
2480                  * continue mapping until the whole set is done
2481                  */
2482                 do {
2483                         int i;
2484 
2485                         err = HYPERVISOR_mmu_update(&mmu_update[index],
2486                                                     batch_left, &done, domid);
2487 
2488                         /*
2489                          * @err_ptr may be the same buffer as @gfn, so
2490                          * only clear it after each chunk of @gfn is
2491                          * used.
2492                          */
2493                         if (err_ptr) {
2494                                 for (i = index; i < index + done; i++)
2495                                         err_ptr[i] = 0;
2496                         }
2497                         if (err < 0) {
2498                                 if (!err_ptr)
2499                                         goto out;
2500                                 err_ptr[i] = err;
2501                                 done++; /* Skip failed frame. */
2502                         } else
2503                                 mapped += done;
2504                         batch_left -= done;
2505                         index += done;
2506                 } while (batch_left);
2507 
2508                 nr -= batch;
2509                 addr += range;
2510                 if (err_ptr)
2511                         err_ptr += batch;
2512                 cond_resched();
2513         }
2514 out:
2515 
2516         xen_flush_tlb_all();
2517 
2518         return err < 0 ? err : mapped;
2519 }
2520 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2521 
2522 #ifdef CONFIG_VMCORE_INFO
2523 phys_addr_t paddr_vmcoreinfo_note(void)
2524 {
2525         if (xen_pv_domain())
2526                 return virt_to_machine(vmcoreinfo_note).maddr;
2527         else
2528                 return __pa(vmcoreinfo_note);
2529 }
2530 #endif /* CONFIG_KEXEC_CORE */
2531 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php