~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/xtensa/Kconfig

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 # SPDX-License-Identifier: GPL-2.0
  2 config XTENSA
  3         def_bool y
  4         select ARCH_32BIT_OFF_T
  5         select ARCH_HAS_CPU_CACHE_ALIASING
  6         select ARCH_HAS_BINFMT_FLAT if !MMU
  7         select ARCH_HAS_CURRENT_STACK_POINTER
  8         select ARCH_HAS_DEBUG_VM_PGTABLE
  9         select ARCH_HAS_DMA_PREP_COHERENT if MMU
 10         select ARCH_HAS_GCOV_PROFILE_ALL
 11         select ARCH_HAS_KCOV
 12         select ARCH_HAS_SYNC_DMA_FOR_CPU if MMU
 13         select ARCH_HAS_SYNC_DMA_FOR_DEVICE if MMU
 14         select ARCH_HAS_DMA_SET_UNCACHED if MMU
 15         select ARCH_HAS_STRNCPY_FROM_USER if !KASAN
 16         select ARCH_HAS_STRNLEN_USER
 17         select ARCH_NEED_CMPXCHG_1_EMU
 18         select ARCH_USE_MEMTEST
 19         select ARCH_USE_QUEUED_RWLOCKS
 20         select ARCH_USE_QUEUED_SPINLOCKS
 21         select ARCH_WANT_IPC_PARSE_VERSION
 22         select BUILDTIME_TABLE_SORT
 23         select CLONE_BACKWARDS
 24         select COMMON_CLK
 25         select DMA_NONCOHERENT_MMAP if MMU
 26         select GENERIC_ATOMIC64
 27         select GENERIC_IRQ_SHOW
 28         select GENERIC_LIB_CMPDI2
 29         select GENERIC_LIB_MULDI3
 30         select GENERIC_LIB_UCMPDI2
 31         select GENERIC_PCI_IOMAP
 32         select GENERIC_SCHED_CLOCK
 33         select GENERIC_IOREMAP if MMU
 34         select HAVE_ARCH_AUDITSYSCALL
 35         select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL
 36         select HAVE_ARCH_KASAN if MMU && !XIP_KERNEL
 37         select HAVE_ARCH_KCSAN
 38         select HAVE_ARCH_SECCOMP_FILTER
 39         select HAVE_ARCH_TRACEHOOK
 40         select HAVE_ASM_MODVERSIONS
 41         select HAVE_CONTEXT_TRACKING_USER
 42         select HAVE_DEBUG_KMEMLEAK
 43         select HAVE_DMA_CONTIGUOUS
 44         select HAVE_EXIT_THREAD
 45         select HAVE_FUNCTION_TRACER
 46         select HAVE_GCC_PLUGINS if GCC_VERSION >= 120000
 47         select HAVE_HW_BREAKPOINT if PERF_EVENTS
 48         select HAVE_IRQ_TIME_ACCOUNTING
 49         select HAVE_PAGE_SIZE_4KB
 50         select HAVE_PCI
 51         select HAVE_PERF_EVENTS
 52         select HAVE_STACKPROTECTOR
 53         select HAVE_SYSCALL_TRACEPOINTS
 54         select HAVE_VIRT_CPU_ACCOUNTING_GEN
 55         select IRQ_DOMAIN
 56         select LOCK_MM_AND_FIND_VMA
 57         select MODULES_USE_ELF_RELA
 58         select PERF_USE_VMALLOC
 59         select TRACE_IRQFLAGS_SUPPORT
 60         help
 61           Xtensa processors are 32-bit RISC machines designed by Tensilica
 62           primarily for embedded systems.  These processors are both
 63           configurable and extensible.  The Linux port to the Xtensa
 64           architecture supports all processor configurations and extensions,
 65           with reasonable minimum requirements.  The Xtensa Linux project has
 66           a home page at <http://www.linux-xtensa.org/>.
 67 
 68 config GENERIC_HWEIGHT
 69         def_bool y
 70 
 71 config ARCH_HAS_ILOG2_U32
 72         def_bool n
 73 
 74 config ARCH_HAS_ILOG2_U64
 75         def_bool n
 76 
 77 config ARCH_MTD_XIP
 78         def_bool y
 79 
 80 config NO_IOPORT_MAP
 81         def_bool n
 82 
 83 config HZ
 84         int
 85         default 100
 86 
 87 config LOCKDEP_SUPPORT
 88         def_bool y
 89 
 90 config STACKTRACE_SUPPORT
 91         def_bool y
 92 
 93 config MMU
 94         def_bool n
 95         select PFAULT
 96 
 97 config HAVE_XTENSA_GPIO32
 98         def_bool n
 99 
100 config KASAN_SHADOW_OFFSET
101         hex
102         default 0x6e400000
103 
104 config CPU_BIG_ENDIAN
105         def_bool $(success,test "$(shell,echo __XTENSA_EB__ | $(CC) -E -P -)" = 1)
106 
107 config CPU_LITTLE_ENDIAN
108         def_bool !CPU_BIG_ENDIAN
109 
110 config CC_HAVE_CALL0_ABI
111         def_bool $(success,test "$(shell,echo __XTENSA_CALL0_ABI__ | $(CC) -mabi=call0 -E -P - 2>/dev/null)" = 1)
112 
113 menu "Processor type and features"
114 
115 choice
116         prompt "Xtensa Processor Configuration"
117         default XTENSA_VARIANT_FSF
118 
119 config XTENSA_VARIANT_FSF
120         bool "fsf - default (not generic) configuration"
121         select MMU
122 
123 config XTENSA_VARIANT_DC232B
124         bool "dc232b - Diamond 232L Standard Core Rev.B (LE)"
125         select MMU
126         select HAVE_XTENSA_GPIO32
127         help
128           This variant refers to Tensilica's Diamond 232L Standard core Rev.B (LE).
129 
130 config XTENSA_VARIANT_DC233C
131         bool "dc233c - Diamond 233L Standard Core Rev.C (LE)"
132         select MMU
133         select HAVE_XTENSA_GPIO32
134         help
135           This variant refers to Tensilica's Diamond 233L Standard core Rev.C (LE).
136 
137 config XTENSA_VARIANT_CUSTOM
138         bool "Custom Xtensa processor configuration"
139         select HAVE_XTENSA_GPIO32
140         help
141           Select this variant to use a custom Xtensa processor configuration.
142           You will be prompted for a processor variant CORENAME.
143 endchoice
144 
145 config XTENSA_VARIANT_CUSTOM_NAME
146         string "Xtensa Processor Custom Core Variant Name"
147         depends on XTENSA_VARIANT_CUSTOM
148         help
149           Provide the name of a custom Xtensa processor variant.
150           This CORENAME selects arch/xtensa/variants/CORENAME.
151           Don't forget you have to select MMU if you have one.
152 
153 config XTENSA_VARIANT_NAME
154         string
155         default "dc232b"                        if XTENSA_VARIANT_DC232B
156         default "dc233c"                        if XTENSA_VARIANT_DC233C
157         default "fsf"                           if XTENSA_VARIANT_FSF
158         default XTENSA_VARIANT_CUSTOM_NAME      if XTENSA_VARIANT_CUSTOM
159 
160 config XTENSA_VARIANT_MMU
161         bool "Core variant has a Full MMU (TLB, Pages, Protection, etc)"
162         depends on XTENSA_VARIANT_CUSTOM
163         default y
164         select MMU
165         help
166           Build a Conventional Kernel with full MMU support,
167           ie: it supports a TLB with auto-loading, page protection.
168 
169 config XTENSA_VARIANT_HAVE_PERF_EVENTS
170         bool "Core variant has Performance Monitor Module"
171         depends on XTENSA_VARIANT_CUSTOM
172         default n
173         help
174           Enable if core variant has Performance Monitor Module with
175           External Registers Interface.
176 
177           If unsure, say N.
178 
179 config XTENSA_FAKE_NMI
180         bool "Treat PMM IRQ as NMI"
181         depends on XTENSA_VARIANT_HAVE_PERF_EVENTS
182         default n
183         help
184           If PMM IRQ is the only IRQ at EXCM level it is safe to
185           treat it as NMI, which improves accuracy of profiling.
186 
187           If there are other interrupts at or above PMM IRQ priority level
188           but not above the EXCM level, PMM IRQ still may be treated as NMI,
189           but only if these IRQs are not used. There will be a build warning
190           saying that this is not safe, and a bugcheck if one of these IRQs
191           actually fire.
192 
193           If unsure, say N.
194 
195 config PFAULT
196         bool "Handle protection faults" if EXPERT && !MMU
197         default y
198         help
199           Handle protection faults. MMU configurations must enable it.
200           noMMU configurations may disable it if used memory map never
201           generates protection faults or faults are always fatal.
202 
203           If unsure, say Y.
204 
205 config XTENSA_UNALIGNED_USER
206         bool "Unaligned memory access in user space"
207         help
208           The Xtensa architecture currently does not handle unaligned
209           memory accesses in hardware but through an exception handler.
210           Per default, unaligned memory accesses are disabled in user space.
211 
212           Say Y here to enable unaligned memory access in user space.
213 
214 config XTENSA_LOAD_STORE
215         bool "Load/store exception handler for memory only readable with l32"
216         help
217           The Xtensa architecture only allows reading memory attached to its
218           instruction bus with l32r and l32i instructions, all other
219           instructions raise an exception with the LoadStoreErrorCause code.
220           This makes it hard to use some configurations, e.g. store string
221           literals in FLASH memory attached to the instruction bus.
222 
223           Say Y here to enable exception handler that allows transparent
224           byte and 2-byte access to memory attached to instruction bus.
225 
226 config HAVE_SMP
227         bool "System Supports SMP (MX)"
228         depends on XTENSA_VARIANT_CUSTOM
229         select XTENSA_MX
230         help
231           This option is used to indicate that the system-on-a-chip (SOC)
232           supports Multiprocessing. Multiprocessor support implemented above
233           the CPU core definition and currently needs to be selected manually.
234 
235           Multiprocessor support is implemented with external cache and
236           interrupt controllers.
237 
238           The MX interrupt distributer adds Interprocessor Interrupts
239           and causes the IRQ numbers to be increased by 4 for devices
240           like the open cores ethernet driver and the serial interface.
241 
242           You still have to select "Enable SMP" to enable SMP on this SOC.
243 
244 config SMP
245         bool "Enable Symmetric multi-processing support"
246         depends on HAVE_SMP
247         select GENERIC_SMP_IDLE_THREAD
248         help
249           Enabled SMP Software; allows more than one CPU/CORE
250           to be activated during startup.
251 
252 config NR_CPUS
253         depends on SMP
254         int "Maximum number of CPUs (2-32)"
255         range 2 32
256         default "4"
257 
258 config HOTPLUG_CPU
259         bool "Enable CPU hotplug support"
260         depends on SMP
261         help
262           Say Y here to allow turning CPUs off and on. CPUs can be
263           controlled through /sys/devices/system/cpu.
264 
265           Say N if you want to disable CPU hotplug.
266 
267 config SECONDARY_RESET_VECTOR
268         bool "Secondary cores use alternative reset vector"
269         default y
270         depends on HAVE_SMP
271         help
272           Secondary cores may be configured to use alternative reset vector,
273           or all cores may use primary reset vector.
274           Say Y here to supply handler for the alternative reset location.
275 
276 config FAST_SYSCALL_XTENSA
277         bool "Enable fast atomic syscalls"
278         default n
279         help
280           fast_syscall_xtensa is a syscall that can make atomic operations
281           on UP kernel when processor has no s32c1i support.
282 
283           This syscall is deprecated. It may have issues when called with
284           invalid arguments. It is provided only for backwards compatibility.
285           Only enable it if your userspace software requires it.
286 
287           If unsure, say N.
288 
289 config FAST_SYSCALL_SPILL_REGISTERS
290         bool "Enable spill registers syscall"
291         default n
292         help
293           fast_syscall_spill_registers is a syscall that spills all active
294           register windows of a calling userspace task onto its stack.
295 
296           This syscall is deprecated. It may have issues when called with
297           invalid arguments. It is provided only for backwards compatibility.
298           Only enable it if your userspace software requires it.
299 
300           If unsure, say N.
301 
302 choice
303         prompt "Kernel ABI"
304         default KERNEL_ABI_DEFAULT
305         help
306           Select ABI for the kernel code. This ABI is independent of the
307           supported userspace ABI and any combination of the
308           kernel/userspace ABI is possible and should work.
309 
310           In case both kernel and userspace support only call0 ABI
311           all register windows support code will be omitted from the
312           build.
313 
314           If unsure, choose the default ABI.
315 
316 config KERNEL_ABI_DEFAULT
317         bool "Default ABI"
318         help
319           Select this option to compile kernel code with the default ABI
320           selected for the toolchain.
321           Normally cores with windowed registers option use windowed ABI and
322           cores without it use call0 ABI.
323 
324 config KERNEL_ABI_CALL0
325         bool "Call0 ABI" if CC_HAVE_CALL0_ABI
326         help
327           Select this option to compile kernel code with call0 ABI even with
328           toolchain that defaults to windowed ABI.
329           When this option is not selected the default toolchain ABI will
330           be used for the kernel code.
331 
332 endchoice
333 
334 config USER_ABI_CALL0
335         bool
336 
337 choice
338         prompt "Userspace ABI"
339         default USER_ABI_DEFAULT
340         help
341           Select supported userspace ABI.
342 
343           If unsure, choose the default ABI.
344 
345 config USER_ABI_DEFAULT
346         bool "Default ABI only"
347         help
348           Assume default userspace ABI. For XEA2 cores it is windowed ABI.
349           call0 ABI binaries may be run on such kernel, but signal delivery
350           will not work correctly for them.
351 
352 config USER_ABI_CALL0_ONLY
353         bool "Call0 ABI only"
354         select USER_ABI_CALL0
355         help
356           Select this option to support only call0 ABI in userspace.
357           Windowed ABI binaries will crash with a segfault caused by
358           an illegal instruction exception on the first 'entry' opcode.
359 
360           Choose this option if you're planning to run only user code
361           built with call0 ABI.
362 
363 config USER_ABI_CALL0_PROBE
364         bool "Support both windowed and call0 ABI by probing"
365         select USER_ABI_CALL0
366         help
367           Select this option to support both windowed and call0 userspace
368           ABIs. When enabled all processes are started with PS.WOE disabled
369           and a fast user exception handler for an illegal instruction is
370           used to turn on PS.WOE bit on the first 'entry' opcode executed by
371           the userspace.
372 
373           This option should be enabled for the kernel that must support
374           both call0 and windowed ABIs in userspace at the same time.
375 
376           Note that Xtensa ISA does not guarantee that entry opcode will
377           raise an illegal instruction exception on cores with XEA2 when
378           PS.WOE is disabled, check whether the target core supports it.
379 
380 endchoice
381 
382 endmenu
383 
384 config XTENSA_CALIBRATE_CCOUNT
385         def_bool n
386         help
387           On some platforms (XT2000, for example), the CPU clock rate can
388           vary.  The frequency can be determined, however, by measuring
389           against a well known, fixed frequency, such as an UART oscillator.
390 
391 config SERIAL_CONSOLE
392         def_bool n
393 
394 config PLATFORM_HAVE_XIP
395         def_bool n
396 
397 menu "Platform options"
398 
399 choice
400         prompt "Xtensa System Type"
401         default XTENSA_PLATFORM_ISS
402 
403 config XTENSA_PLATFORM_ISS
404         bool "ISS"
405         select XTENSA_CALIBRATE_CCOUNT
406         select SERIAL_CONSOLE
407         help
408           ISS is an acronym for Tensilica's Instruction Set Simulator.
409 
410 config XTENSA_PLATFORM_XT2000
411         bool "XT2000"
412         help
413           XT2000 is the name of Tensilica's feature-rich emulation platform.
414           This hardware is capable of running a full Linux distribution.
415 
416 config XTENSA_PLATFORM_XTFPGA
417         bool "XTFPGA"
418         select ETHOC if ETHERNET
419         select PLATFORM_WANT_DEFAULT_MEM if !MMU
420         select SERIAL_CONSOLE
421         select XTENSA_CALIBRATE_CCOUNT
422         select PLATFORM_HAVE_XIP
423         help
424           XTFPGA is the name of Tensilica board family (LX60, LX110, LX200, ML605).
425           This hardware is capable of running a full Linux distribution.
426 
427 endchoice
428 
429 config PLATFORM_NR_IRQS
430         int
431         default 3 if XTENSA_PLATFORM_XT2000
432         default 0
433 
434 config XTENSA_CPU_CLOCK
435         int "CPU clock rate [MHz]"
436         depends on !XTENSA_CALIBRATE_CCOUNT
437         default 16
438 
439 config GENERIC_CALIBRATE_DELAY
440         bool "Auto calibration of the BogoMIPS value"
441         help
442           The BogoMIPS value can easily be derived from the CPU frequency.
443 
444 config CMDLINE_BOOL
445         bool "Default bootloader kernel arguments"
446 
447 config CMDLINE
448         string "Initial kernel command string"
449         depends on CMDLINE_BOOL
450         default "console=ttyS0,38400 root=/dev/ram"
451         help
452           On some architectures (EBSA110 and CATS), there is currently no way
453           for the boot loader to pass arguments to the kernel. For these
454           architectures, you should supply some command-line options at build
455           time by entering them here. As a minimum, you should specify the
456           memory size and the root device (e.g., mem=64M root=/dev/nfs).
457 
458 config USE_OF
459         bool "Flattened Device Tree support"
460         select OF
461         select OF_EARLY_FLATTREE
462         help
463           Include support for flattened device tree machine descriptions.
464 
465 config BUILTIN_DTB_SOURCE
466         string "DTB to build into the kernel image"
467         depends on OF
468 
469 config PARSE_BOOTPARAM
470         bool "Parse bootparam block"
471         default y
472         help
473           Parse parameters passed to the kernel from the bootloader. It may
474           be disabled if the kernel is known to run without the bootloader.
475 
476           If unsure, say Y.
477 
478 choice
479         prompt "Semihosting interface"
480         default XTENSA_SIMCALL_ISS
481         depends on XTENSA_PLATFORM_ISS
482         help
483           Choose semihosting interface that will be used for serial port,
484           block device and networking.
485 
486 config XTENSA_SIMCALL_ISS
487         bool "simcall"
488         help
489           Use simcall instruction. simcall is only available on simulators,
490           it does nothing on hardware.
491 
492 config XTENSA_SIMCALL_GDBIO
493         bool "GDBIO"
494         help
495           Use break instruction. It is available on real hardware when GDB
496           is attached to it via JTAG.
497 
498 endchoice
499 
500 config BLK_DEV_SIMDISK
501         tristate "Host file-based simulated block device support"
502         default n
503         depends on XTENSA_PLATFORM_ISS && BLOCK
504         help
505           Create block devices that map to files in the host file system.
506           Device binding to host file may be changed at runtime via proc
507           interface provided the device is not in use.
508 
509 config BLK_DEV_SIMDISK_COUNT
510         int "Number of host file-based simulated block devices"
511         range 1 10
512         depends on BLK_DEV_SIMDISK
513         default 2
514         help
515           This is the default minimal number of created block devices.
516           Kernel/module parameter 'simdisk_count' may be used to change this
517           value at runtime. More file names (but no more than 10) may be
518           specified as parameters, simdisk_count grows accordingly.
519 
520 config SIMDISK0_FILENAME
521         string "Host filename for the first simulated device"
522         depends on BLK_DEV_SIMDISK = y
523         default ""
524         help
525           Attach a first simdisk to a host file. Conventionally, this file
526           contains a root file system.
527 
528 config SIMDISK1_FILENAME
529         string "Host filename for the second simulated device"
530         depends on BLK_DEV_SIMDISK = y && BLK_DEV_SIMDISK_COUNT != 1
531         default ""
532         help
533           Another simulated disk in a host file for a buildroot-independent
534           storage.
535 
536 config XTFPGA_LCD
537         bool "Enable XTFPGA LCD driver"
538         depends on XTENSA_PLATFORM_XTFPGA
539         default n
540         help
541           There's a 2x16 LCD on most of XTFPGA boards, kernel may output
542           progress messages there during bootup/shutdown. It may be useful
543           during board bringup.
544 
545           If unsure, say N.
546 
547 config XTFPGA_LCD_BASE_ADDR
548         hex "XTFPGA LCD base address"
549         depends on XTFPGA_LCD
550         default "0x0d0c0000"
551         help
552           Base address of the LCD controller inside KIO region.
553           Different boards from XTFPGA family have LCD controller at different
554           addresses. Please consult prototyping user guide for your board for
555           the correct address. Wrong address here may lead to hardware lockup.
556 
557 config XTFPGA_LCD_8BIT_ACCESS
558         bool "Use 8-bit access to XTFPGA LCD"
559         depends on XTFPGA_LCD
560         default n
561         help
562           LCD may be connected with 4- or 8-bit interface, 8-bit access may
563           only be used with 8-bit interface. Please consult prototyping user
564           guide for your board for the correct interface width.
565 
566 comment "Kernel memory layout"
567 
568 config INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
569         bool "Initialize Xtensa MMU inside the Linux kernel code"
570         depends on !XTENSA_VARIANT_FSF && !XTENSA_VARIANT_DC232B
571         default y if XTENSA_VARIANT_DC233C || XTENSA_VARIANT_CUSTOM
572         help
573           Earlier version initialized the MMU in the exception vector
574           before jumping to _startup in head.S and had an advantage that
575           it was possible to place a software breakpoint at 'reset' and
576           then enter your normal kernel breakpoints once the MMU was mapped
577           to the kernel mappings (0XC0000000).
578 
579           This unfortunately won't work for U-Boot and likely also won't
580           work for using KEXEC to have a hot kernel ready for doing a
581           KDUMP.
582 
583           So now the MMU is initialized in head.S but it's necessary to
584           use hardware breakpoints (gdb 'hbreak' cmd) to break at _startup.
585           xt-gdb can't place a Software Breakpoint in the  0XD region prior
586           to mapping the MMU and after mapping even if the area of low memory
587           was mapped gdb wouldn't remove the breakpoint on hitting it as the
588           PC wouldn't match. Since Hardware Breakpoints are recommended for
589           Linux configurations it seems reasonable to just assume they exist
590           and leave this older mechanism for unfortunate souls that choose
591           not to follow Tensilica's recommendation.
592 
593           Selecting this will cause U-Boot to set the KERNEL Load and Entry
594           address at 0x00003000 instead of the mapped std of 0xD0003000.
595 
596           If in doubt, say Y.
597 
598 config XIP_KERNEL
599         bool "Kernel Execute-In-Place from ROM"
600         depends on PLATFORM_HAVE_XIP
601         help
602           Execute-In-Place allows the kernel to run from non-volatile storage
603           directly addressable by the CPU, such as NOR flash. This saves RAM
604           space since the text section of the kernel is not loaded from flash
605           to RAM. Read-write sections, such as the data section and stack,
606           are still copied to RAM. The XIP kernel is not compressed since
607           it has to run directly from flash, so it will take more space to
608           store it. The flash address used to link the kernel object files,
609           and for storing it, is configuration dependent. Therefore, if you
610           say Y here, you must know the proper physical address where to
611           store the kernel image depending on your own flash memory usage.
612 
613           Also note that the make target becomes "make xipImage" rather than
614           "make Image" or "make uImage". The final kernel binary to put in
615           ROM memory will be arch/xtensa/boot/xipImage.
616 
617           If unsure, say N.
618 
619 config MEMMAP_CACHEATTR
620         hex "Cache attributes for the memory address space"
621         depends on !MMU
622         default 0x22222222
623         help
624           These cache attributes are set up for noMMU systems. Each hex digit
625           specifies cache attributes for the corresponding 512MB memory
626           region: bits 0..3 -- for addresses 0x00000000..0x1fffffff,
627           bits 4..7 -- for addresses 0x20000000..0x3fffffff, and so on.
628 
629           Cache attribute values are specific for the MMU type.
630           For region protection MMUs:
631             1: WT cached,
632             2: cache bypass,
633             4: WB cached,
634             f: illegal.
635           For full MMU:
636             bit 0: executable,
637             bit 1: writable,
638             bits 2..3:
639               0: cache bypass,
640               1: WB cache,
641               2: WT cache,
642               3: special (c and e are illegal, f is reserved).
643           For MPU:
644             0: illegal,
645             1: WB cache,
646             2: WB, no-write-allocate cache,
647             3: WT cache,
648             4: cache bypass.
649 
650 config KSEG_PADDR
651         hex "Physical address of the KSEG mapping"
652         depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX && MMU
653         default 0x00000000
654         help
655           This is the physical address where KSEG is mapped. Please refer to
656           the chosen KSEG layout help for the required address alignment.
657           Unpacked kernel image (including vectors) must be located completely
658           within KSEG.
659           Physical memory below this address is not available to linux.
660 
661           If unsure, leave the default value here.
662 
663 config KERNEL_VIRTUAL_ADDRESS
664         hex "Kernel virtual address"
665         depends on MMU && XIP_KERNEL
666         default 0xd0003000
667         help
668           This is the virtual address where the XIP kernel is mapped.
669           XIP kernel may be mapped into KSEG or KIO region, virtual address
670           provided here must match kernel load address provided in
671           KERNEL_LOAD_ADDRESS.
672 
673 config KERNEL_LOAD_ADDRESS
674         hex "Kernel load address"
675         default 0x60003000 if !MMU
676         default 0x00003000 if MMU && INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
677         default 0xd0003000 if MMU && !INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
678         help
679           This is the address where the kernel is loaded.
680           It is virtual address for MMUv2 configurations and physical address
681           for all other configurations.
682 
683           If unsure, leave the default value here.
684 
685 choice
686         prompt "Relocatable vectors location"
687         default XTENSA_VECTORS_IN_TEXT
688         help
689           Choose whether relocatable vectors are merged into the kernel .text
690           or placed separately at runtime. This option does not affect
691           configurations without VECBASE register where vectors are always
692           placed at their hardware-defined locations.
693 
694 config XTENSA_VECTORS_IN_TEXT
695         bool "Merge relocatable vectors into kernel text"
696         depends on !MTD_XIP
697         help
698           This option puts relocatable vectors into the kernel .text section
699           with proper alignment.
700           This is a safe choice for most configurations.
701 
702 config XTENSA_VECTORS_SEPARATE
703         bool "Put relocatable vectors at fixed address"
704         help
705           This option puts relocatable vectors at specific virtual address.
706           Vectors are merged with the .init data in the kernel image and
707           are copied into their designated location during kernel startup.
708           Use it to put vectors into IRAM or out of FLASH on kernels with
709           XIP-aware MTD support.
710 
711 endchoice
712 
713 config VECTORS_ADDR
714         hex "Kernel vectors virtual address"
715         default 0x00000000
716         depends on XTENSA_VECTORS_SEPARATE
717         help
718           This is the virtual address of the (relocatable) vectors base.
719           It must be within KSEG if MMU is used.
720 
721 config XIP_DATA_ADDR
722         hex "XIP kernel data virtual address"
723         depends on XIP_KERNEL
724         default 0x00000000
725         help
726           This is the virtual address where XIP kernel data is copied.
727           It must be within KSEG if MMU is used.
728 
729 config PLATFORM_WANT_DEFAULT_MEM
730         def_bool n
731 
732 config DEFAULT_MEM_START
733         hex
734         prompt "PAGE_OFFSET/PHYS_OFFSET" if !MMU && PLATFORM_WANT_DEFAULT_MEM
735         default 0x60000000 if PLATFORM_WANT_DEFAULT_MEM
736         default 0x00000000
737         help
738           This is the base address used for both PAGE_OFFSET and PHYS_OFFSET
739           in noMMU configurations.
740 
741           If unsure, leave the default value here.
742 
743 choice
744         prompt "KSEG layout"
745         depends on MMU
746         default XTENSA_KSEG_MMU_V2
747 
748 config XTENSA_KSEG_MMU_V2
749         bool "MMUv2: 128MB cached + 128MB uncached"
750         help
751           MMUv2 compatible kernel memory map: TLB way 5 maps 128MB starting
752           at KSEG_PADDR to 0xd0000000 with cache and to 0xd8000000
753           without cache.
754           KSEG_PADDR must be aligned to 128MB.
755 
756 config XTENSA_KSEG_256M
757         bool "256MB cached + 256MB uncached"
758         depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
759         help
760           TLB way 6 maps 256MB starting at KSEG_PADDR to 0xb0000000
761           with cache and to 0xc0000000 without cache.
762           KSEG_PADDR must be aligned to 256MB.
763 
764 config XTENSA_KSEG_512M
765         bool "512MB cached + 512MB uncached"
766         depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
767         help
768           TLB way 6 maps 512MB starting at KSEG_PADDR to 0xa0000000
769           with cache and to 0xc0000000 without cache.
770           KSEG_PADDR must be aligned to 256MB.
771 
772 endchoice
773 
774 config HIGHMEM
775         bool "High Memory Support"
776         depends on MMU
777         select KMAP_LOCAL
778         help
779           Linux can use the full amount of RAM in the system by
780           default. However, the default MMUv2 setup only maps the
781           lowermost 128 MB of memory linearly to the areas starting
782           at 0xd0000000 (cached) and 0xd8000000 (uncached).
783           When there are more than 128 MB memory in the system not
784           all of it can be "permanently mapped" by the kernel.
785           The physical memory that's not permanently mapped is called
786           "high memory".
787 
788           If you are compiling a kernel which will never run on a
789           machine with more than 128 MB total physical RAM, answer
790           N here.
791 
792           If unsure, say Y.
793 
794 config ARCH_FORCE_MAX_ORDER
795         int "Order of maximal physically contiguous allocations"
796         default "10"
797         help
798           The kernel page allocator limits the size of maximal physically
799           contiguous allocations. The limit is called MAX_PAGE_ORDER and it
800           defines the maximal power of two of number of pages that can be
801           allocated as a single contiguous block. This option allows
802           overriding the default setting when ability to allocate very
803           large blocks of physically contiguous memory is required.
804 
805           Don't change if unsure.
806 
807 endmenu
808 
809 menu "Power management options"
810 
811 config ARCH_HIBERNATION_POSSIBLE
812         def_bool y
813 
814 source "kernel/power/Kconfig"
815 
816 endmenu

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php