1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * include/asm-xtensa/pgtable.h 4 * 5 * Copyright (C) 2001 - 2013 Tensilica Inc. 6 */ 7 8 #ifndef _XTENSA_PGTABLE_H 9 #define _XTENSA_PGTABLE_H 10 11 #include <asm/page.h> 12 #include <asm/kmem_layout.h> 13 #include <asm-generic/pgtable-nopmd.h> 14 15 /* 16 * We only use two ring levels, user and kernel space. 17 */ 18 19 #ifdef CONFIG_MMU 20 #define USER_RING 1 /* user ring level */ 21 #else 22 #define USER_RING 0 23 #endif 24 #define KERNEL_RING 0 /* kernel ring level */ 25 26 /* 27 * The Xtensa architecture port of Linux has a two-level page table system, 28 * i.e. the logical three-level Linux page table layout is folded. 29 * Each task has the following memory page tables: 30 * 31 * PGD table (page directory), ie. 3rd-level page table: 32 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables 33 * (Architectures that don't have the PMD folded point to the PMD tables) 34 * 35 * The pointer to the PGD table for a given task can be retrieved from 36 * the task structure (struct task_struct*) t, e.g. current(): 37 * (t->mm ? t->mm : t->active_mm)->pgd 38 * 39 * PMD tables (page middle-directory), ie. 2nd-level page tables: 40 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). 41 * 42 * PTE tables (page table entry), ie. 1st-level page tables: 43 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE 44 * invalid_pte_table for absent mappings. 45 * 46 * The individual pages are 4 kB big with special pages for the empty_zero_page. 47 */ 48 49 #define PGDIR_SHIFT 22 50 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 51 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 52 53 /* 54 * Entries per page directory level: we use two-level, so 55 * we don't really have any PMD directory physically. 56 */ 57 #define PTRS_PER_PTE 1024 58 #define PTRS_PER_PTE_SHIFT 10 59 #define PTRS_PER_PGD 1024 60 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 61 #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) 62 63 #ifdef CONFIG_MMU 64 /* 65 * Virtual memory area. We keep a distance to other memory regions to be 66 * on the safe side. We also use this area for cache aliasing. 67 */ 68 #define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000) 69 #define VMALLOC_END (VMALLOC_START + 0x07FEFFFF) 70 #define TLBTEMP_BASE_1 (VMALLOC_START + 0x08000000) 71 #define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE) 72 #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE 73 #define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE) 74 #else 75 #define TLBTEMP_SIZE ICACHE_WAY_SIZE 76 #endif 77 78 #else 79 80 #define VMALLOC_START __XTENSA_UL_CONST(0) 81 #define VMALLOC_END __XTENSA_UL_CONST(0xffffffff) 82 83 #endif 84 85 /* 86 * For the Xtensa architecture, the PTE layout is as follows: 87 * 88 * 31------12 11 10-9 8-6 5-4 3-2 1-0 89 * +-----------------------------------------+ 90 * | | Software | HARDWARE | 91 * | PPN | ADW | RI |Attribute| 92 * +-----------------------------------------+ 93 * pte_none | MBZ | 01 | 11 | 00 | 94 * +-----------------------------------------+ 95 * present | PPN | 0 | 00 | ADW | RI | CA | wx | 96 * +- - - - - - - - - - - - - - - - - - - - -+ 97 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 | 98 * +-----------------------------------------+ 99 * swap | index | type | 01 | 11 | e0 | 100 * +-----------------------------------------+ 101 * 102 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE) 103 * +-----------------------------------------+ 104 * present | PPN | 0 | 00 | ADW | RI | CA | w1 | 105 * +-----------------------------------------+ 106 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 | 107 * +-----------------------------------------+ 108 * 109 * Legend: 110 * PPN Physical Page Number 111 * ADW software: accessed (young) / dirty / writable 112 * RI ring (0=privileged, 1=user, 2 and 3 are unused) 113 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough 114 * (11 is invalid and used to mark pages that are not present) 115 * e exclusive marker in swap PTEs 116 * w page is writable (hw) 117 * x page is executable (hw) 118 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB) 119 * (note that the index is always non-zero) 120 * type swap type (5 bits -> 32 types) 121 * 122 * Notes: 123 * - (PROT_NONE) is a special case of 'present' but causes an exception for 124 * any access (read, write, and execute). 125 * - 'multihit-exception' has the highest priority of all MMU exceptions, 126 * so the ring must be set to 'RING_USER' even for 'non-present' pages. 127 * - on older hardware, the exectuable flag was not supported and 128 * used as a 'valid' flag, so it needs to be always set. 129 * - we need to keep track of certain flags in software (dirty and young) 130 * to do this, we use write exceptions and have a separate software w-flag. 131 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved 132 */ 133 134 #define _PAGE_ATTRIB_MASK 0xf 135 136 #define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */ 137 #define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */ 138 139 #define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */ 140 #define _PAGE_CA_WB (1<<2) /* write-back */ 141 #define _PAGE_CA_WT (2<<2) /* write-through */ 142 #define _PAGE_CA_MASK (3<<2) 143 #define _PAGE_CA_INVALID (3<<2) 144 145 /* We use invalid attribute values to distinguish special pte entries */ 146 #if XCHAL_HW_VERSION_MAJOR < 2000 147 #define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */ 148 #define _PAGE_NONE 0x04 149 #else 150 #define _PAGE_HW_VALID 0x00 151 #define _PAGE_NONE 0x0f 152 #endif 153 154 #define _PAGE_USER (1<<4) /* user access (ring=1) */ 155 156 /* Software */ 157 #define _PAGE_WRITABLE_BIT 6 158 #define _PAGE_WRITABLE (1<<6) /* software: page writable */ 159 #define _PAGE_DIRTY (1<<7) /* software: page dirty */ 160 #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ 161 162 /* We borrow bit 1 to store the exclusive marker in swap PTEs. */ 163 #define _PAGE_SWP_EXCLUSIVE (1<<1) 164 165 #ifdef CONFIG_MMU 166 167 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 168 #define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED) 169 170 #define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER) 171 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) 172 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 173 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) 174 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 175 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE) 176 #define PAGE_SHARED_EXEC \ 177 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC) 178 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE) 179 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT) 180 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC) 181 182 #if (DCACHE_WAY_SIZE > PAGE_SIZE) 183 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS) 184 #else 185 # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB) 186 #endif 187 188 #else /* no mmu */ 189 190 # define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 191 # define PAGE_NONE __pgprot(0) 192 # define PAGE_SHARED __pgprot(0) 193 # define PAGE_COPY __pgprot(0) 194 # define PAGE_READONLY __pgprot(0) 195 # define PAGE_KERNEL __pgprot(0) 196 197 #endif 198 199 /* 200 * On certain configurations of Xtensa MMUs (eg. the initial Linux config), 201 * the MMU can't do page protection for execute, and considers that the same as 202 * read. Also, write permissions may imply read permissions. 203 * What follows is the closest we can get by reasonable means.. 204 * See linux/mm/mmap.c for protection_map[] array that uses these definitions. 205 */ 206 #ifndef __ASSEMBLY__ 207 208 #define pte_ERROR(e) \ 209 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 210 #define pgd_ERROR(e) \ 211 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 212 213 extern unsigned long empty_zero_page[1024]; 214 215 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 216 217 #ifdef CONFIG_MMU 218 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; 219 extern void paging_init(void); 220 #else 221 # define swapper_pg_dir NULL 222 static inline void paging_init(void) { } 223 #endif 224 225 /* 226 * The pmd contains the kernel virtual address of the pte page. 227 */ 228 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) 229 #define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT) 230 #define pmd_page(pmd) virt_to_page(pmd_val(pmd)) 231 232 /* 233 * pte status. 234 */ 235 # define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER)) 236 #if XCHAL_HW_VERSION_MAJOR < 2000 237 # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) 238 #else 239 # define pte_present(pte) \ 240 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \ 241 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE)) 242 #endif 243 #define pte_clear(mm,addr,ptep) \ 244 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0) 245 246 #define pmd_none(pmd) (!pmd_val(pmd)) 247 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) 248 #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 249 #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) 250 251 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; } 252 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 253 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 254 255 static inline pte_t pte_wrprotect(pte_t pte) 256 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; } 257 static inline pte_t pte_mkclean(pte_t pte) 258 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; } 259 static inline pte_t pte_mkold(pte_t pte) 260 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 261 static inline pte_t pte_mkdirty(pte_t pte) 262 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 263 static inline pte_t pte_mkyoung(pte_t pte) 264 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 265 static inline pte_t pte_mkwrite_novma(pte_t pte) 266 { pte_val(pte) |= _PAGE_WRITABLE; return pte; } 267 268 #define pgprot_noncached(prot) \ 269 ((__pgprot((pgprot_val(prot) & ~_PAGE_CA_MASK) | \ 270 _PAGE_CA_BYPASS))) 271 272 /* 273 * Conversion functions: convert a page and protection to a page entry, 274 * and a page entry and page directory to the page they refer to. 275 */ 276 277 #define PFN_PTE_SHIFT PAGE_SHIFT 278 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 279 #define pte_same(a,b) (pte_val(a) == pte_val(b)) 280 #define pte_page(x) pfn_to_page(pte_pfn(x)) 281 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 282 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 283 284 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 285 { 286 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 287 } 288 289 /* 290 * Certain architectures need to do special things when pte's 291 * within a page table are directly modified. Thus, the following 292 * hook is made available. 293 */ 294 static inline void update_pte(pte_t *ptep, pte_t pteval) 295 { 296 *ptep = pteval; 297 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 298 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep)); 299 #endif 300 301 } 302 303 struct mm_struct; 304 305 static inline void set_pte(pte_t *ptep, pte_t pte) 306 { 307 update_pte(ptep, pte); 308 } 309 310 static inline void 311 set_pmd(pmd_t *pmdp, pmd_t pmdval) 312 { 313 *pmdp = pmdval; 314 } 315 316 struct vm_area_struct; 317 318 static inline int 319 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, 320 pte_t *ptep) 321 { 322 pte_t pte = *ptep; 323 if (!pte_young(pte)) 324 return 0; 325 update_pte(ptep, pte_mkold(pte)); 326 return 1; 327 } 328 329 static inline pte_t 330 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 331 { 332 pte_t pte = *ptep; 333 pte_clear(mm, addr, ptep); 334 return pte; 335 } 336 337 static inline void 338 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 339 { 340 pte_t pte = *ptep; 341 update_pte(ptep, pte_wrprotect(pte)); 342 } 343 344 /* 345 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 346 * are !pte_none() && !pte_present(). 347 */ 348 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5) 349 350 #define __swp_type(entry) (((entry).val >> 6) & 0x1f) 351 #define __swp_offset(entry) ((entry).val >> 11) 352 #define __swp_entry(type,offs) \ 353 ((swp_entry_t){(((type) & 0x1f) << 6) | ((offs) << 11) | \ 354 _PAGE_CA_INVALID | _PAGE_USER}) 355 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 356 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 357 358 static inline int pte_swp_exclusive(pte_t pte) 359 { 360 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 361 } 362 363 static inline pte_t pte_swp_mkexclusive(pte_t pte) 364 { 365 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; 366 return pte; 367 } 368 369 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 370 { 371 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; 372 return pte; 373 } 374 375 #endif /* !defined (__ASSEMBLY__) */ 376 377 378 #ifdef __ASSEMBLY__ 379 380 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), 381 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), 382 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) 383 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) 384 * 385 * Note: We require an additional temporary register which can be the same as 386 * the register that holds the address. 387 * 388 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) 389 * 390 */ 391 #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT 392 #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT 393 394 #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ 395 _PGD_INDEX(tmp, adr); \ 396 addx4 mm, tmp, mm 397 398 #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ 399 srli pmd, pmd, PAGE_SHIFT; \ 400 slli pmd, pmd, PAGE_SHIFT; \ 401 addx4 pmd, tmp, pmd 402 403 #else 404 405 struct vm_fault; 406 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, 407 unsigned long address, pte_t *ptep, unsigned int nr); 408 #define update_mmu_cache(vma, address, ptep) \ 409 update_mmu_cache_range(NULL, vma, address, ptep, 1) 410 411 typedef pte_t *pte_addr_t; 412 413 void update_mmu_tlb_range(struct vm_area_struct *vma, 414 unsigned long address, pte_t *ptep, unsigned int nr); 415 #define update_mmu_tlb_range update_mmu_tlb_range 416 417 #endif /* !defined (__ASSEMBLY__) */ 418 419 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 420 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 421 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 422 #define __HAVE_ARCH_PTEP_MKDIRTY 423 #define __HAVE_ARCH_PTE_SAME 424 /* We provide our own get_unmapped_area to cope with 425 * SHM area cache aliasing for userland. 426 */ 427 #define HAVE_ARCH_UNMAPPED_AREA 428 429 #endif /* _XTENSA_PGTABLE_H */ 430
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.