~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/xtensa/kernel/vectors.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * arch/xtensa/kernel/vectors.S
  3  *
  4  * This file contains all exception vectors (user, kernel, and double),
  5  * as well as the window vectors (overflow and underflow), and the debug
  6  * vector. These are the primary vectors executed by the processor if an
  7  * exception occurs.
  8  *
  9  * This file is subject to the terms and conditions of the GNU General
 10  * Public License.  See the file "COPYING" in the main directory of
 11  * this archive for more details.
 12  *
 13  * Copyright (C) 2005 - 2008 Tensilica, Inc.
 14  *
 15  * Chris Zankel <chris@zankel.net>
 16  *
 17  */
 18 
 19 /*
 20  * We use a two-level table approach. The user and kernel exception vectors
 21  * use a first-level dispatch table to dispatch the exception to a registered
 22  * fast handler or the default handler, if no fast handler was registered.
 23  * The default handler sets up a C-stack and dispatches the exception to a
 24  * registerd C handler in the second-level dispatch table.
 25  *
 26  * Fast handler entry condition:
 27  *
 28  *   a0:        trashed, original value saved on stack (PT_AREG0)
 29  *   a1:        a1
 30  *   a2:        new stack pointer, original value in depc
 31  *   a3:        dispatch table
 32  *   depc:      a2, original value saved on stack (PT_DEPC)
 33  *   excsave_1: a3
 34  *
 35  * The value for PT_DEPC saved to stack also functions as a boolean to
 36  * indicate that the exception is either a double or a regular exception:
 37  *
 38  *   PT_DEPC    >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
 39  *              <  VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
 40  *
 41  * Note:  Neither the kernel nor the user exception handler generate literals.
 42  *
 43  */
 44 
 45 #include <linux/linkage.h>
 46 #include <linux/pgtable.h>
 47 #include <asm/asmmacro.h>
 48 #include <asm/ptrace.h>
 49 #include <asm/current.h>
 50 #include <asm/asm-offsets.h>
 51 #include <asm/processor.h>
 52 #include <asm/page.h>
 53 #include <asm/thread_info.h>
 54 #include <asm/vectors.h>
 55 
 56 #define WINDOW_VECTORS_SIZE   0x180
 57 
 58 
 59 /*
 60  * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
 61  *
 62  * We get here when an exception occurred while we were in userland.
 63  * We switch to the kernel stack and jump to the first level handler
 64  * associated to the exception cause.
 65  *
 66  * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
 67  *       decremented by PT_USER_SIZE.
 68  */
 69 
 70         .section .UserExceptionVector.text, "ax"
 71 
 72 ENTRY(_UserExceptionVector)
 73 
 74         xsr     a3, excsave1            # save a3 and get dispatch table
 75         wsr     a2, depc                # save a2
 76         l32i    a2, a3, EXC_TABLE_KSTK  # load kernel stack to a2
 77         s32i    a0, a2, PT_AREG0        # save a0 to ESF
 78         rsr     a0, exccause            # retrieve exception cause
 79         s32i    a0, a2, PT_DEPC         # mark it as a regular exception
 80         addx4   a0, a0, a3              # find entry in table
 81         l32i    a0, a0, EXC_TABLE_FAST_USER     # load handler
 82         xsr     a3, excsave1            # restore a3 and dispatch table
 83         jx      a0
 84 
 85 ENDPROC(_UserExceptionVector)
 86 
 87 /*
 88  * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
 89  *
 90  * We get this exception when we were already in kernel space.
 91  * We decrement the current stack pointer (kernel) by PT_KERNEL_SIZE and
 92  * jump to the first-level handler associated with the exception cause.
 93  *
 94  * Note: we need to preserve space for the spill region.
 95  */
 96 
 97         .section .KernelExceptionVector.text, "ax"
 98 
 99 ENTRY(_KernelExceptionVector)
100 
101         xsr     a3, excsave1            # save a3, and get dispatch table
102         wsr     a2, depc                # save a2
103         addi    a2, a1, -16 - PT_KERNEL_SIZE    # adjust stack pointer
104         s32i    a0, a2, PT_AREG0        # save a0 to ESF
105         rsr     a0, exccause            # retrieve exception cause
106         s32i    a0, a2, PT_DEPC         # mark it as a regular exception
107         addx4   a0, a0, a3              # find entry in table
108         l32i    a0, a0, EXC_TABLE_FAST_KERNEL   # load handler address
109         xsr     a3, excsave1            # restore a3 and dispatch table
110         jx      a0
111 
112 ENDPROC(_KernelExceptionVector)
113 
114 /*
115  * Double exception vector (Exceptions with PS.EXCM == 1)
116  * We get this exception when another exception occurs while were are
117  * already in an exception, such as window overflow/underflow exception,
118  * or 'expected' exceptions, for example memory exception when we were trying
119  * to read data from an invalid address in user space.
120  *
121  * Note that this vector is never invoked for level-1 interrupts, because such
122  * interrupts are disabled (masked) when PS.EXCM is set.
123  *
124  * We decode the exception and take the appropriate action.  However, the
125  * double exception vector is much more careful, because a lot more error
126  * cases go through the double exception vector than through the user and
127  * kernel exception vectors.
128  *
129  * Occasionally, the kernel expects a double exception to occur.  This usually
130  * happens when accessing user-space memory with the user's permissions
131  * (l32e/s32e instructions).  The kernel state, though, is not always suitable
132  * for immediate transfer of control to handle_double, where "normal" exception
133  * processing occurs. Also in kernel mode, TLB misses can occur if accessing
134  * vmalloc memory, possibly requiring repair in a double exception handler.
135  *
136  * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
137  * a boolean variable and a pointer to a fixup routine. If the variable
138  * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
139  * zero indicates to use the default kernel/user exception handler.
140  * There is only one exception, when the value is identical to the exc_table
141  * label, the kernel is in trouble. This mechanism is used to protect critical
142  * sections, mainly when the handler writes to the stack to assert the stack
143  * pointer is valid. Once the fixup/default handler leaves that area, the
144  * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
145  *
146  * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
147  * nonzero address of a fixup routine before it could cause a double exception
148  * and reset it before it returns.
149  *
150  * Some other things to take care of when a fast exception handler doesn't
151  * specify a particular fixup handler but wants to use the default handlers:
152  *
153  *  - The original stack pointer (in a1) must not be modified. The fast
154  *    exception handler should only use a2 as the stack pointer.
155  *
156  *  - If the fast handler manipulates the stack pointer (in a2), it has to
157  *    register a valid fixup handler and cannot use the default handlers.
158  *
159  *  - The handler can use any other generic register from a3 to a15, but it
160  *    must save the content of these registers to stack (PT_AREG3...PT_AREGx)
161  *
162  *  - These registers must be saved before a double exception can occur.
163  *
164  *  - If we ever implement handling signals while in double exceptions, the
165  *    number of registers a fast handler has saved (excluding a0 and a1) must
166  *    be written to  PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
167  *
168  * The fixup handlers are special handlers:
169  *
170  *  - Fixup entry conditions differ from regular exceptions:
171  *
172  *      a0:        DEPC
173  *      a1:        a1
174  *      a2:        trashed, original value in EXC_TABLE_DOUBLE_SAVE
175  *      a3:        exctable
176  *      depc:      a0
177  *      excsave_1: a3
178  *
179  *  - When the kernel enters the fixup handler, it still assumes it is in a
180  *    critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
181  *    The fixup handler, therefore, has to re-register itself as the fixup
182  *    handler before it returns from the double exception.
183  *
184  *  - Fixup handler can share the same exception frame with the fast handler.
185  *    The kernel stack pointer is not changed when entering the fixup handler.
186  *
187  *  - Fixup handlers can jump to the default kernel and user exception
188  *    handlers. Before it jumps, though, it has to setup a exception frame
189  *    on stack. Because the default handler resets the register fixup handler
190  *    the fixup handler must make sure that the default handler returns to
191  *    it instead of the exception address, so it can re-register itself as
192  *    the fixup handler.
193  *
194  * In case of a critical condition where the kernel cannot recover, we jump
195  * to unrecoverable_exception with the following entry conditions.
196  * All registers a0...a15 are unchanged from the last exception, except:
197  *
198  *      a0:        last address before we jumped to the unrecoverable_exception.
199  *      excsave_1: a0
200  *
201  *
202  * See the handle_alloca_user and spill_registers routines for example clients.
203  *
204  * FIXME: Note: we currently don't allow signal handling coming from a double
205  *        exception, so the item markt with (*) is not required.
206  */
207 
208         .section .DoubleExceptionVector.text, "ax"
209 
210 ENTRY(_DoubleExceptionVector)
211 
212         xsr     a3, excsave1
213         s32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
214 
215         /* Check for kernel double exception (usually fatal). */
216 
217         rsr     a2, ps
218         _bbsi.l a2, PS_UM_BIT, 1f
219         j       .Lksp
220 
221         .align  4
222         .literal_position
223 1:
224         /* Check if we are currently handling a window exception. */
225         /* Note: We don't need to indicate that we enter a critical section. */
226 
227         xsr     a0, depc                # get DEPC, save a0
228 
229 #ifdef SUPPORT_WINDOWED
230         movi    a2, WINDOW_VECTORS_VADDR
231         _bltu   a0, a2, .Lfixup
232         addi    a2, a2, WINDOW_VECTORS_SIZE
233         _bgeu   a0, a2, .Lfixup
234 
235         /* Window overflow/underflow exception. Get stack pointer. */
236 
237         l32i    a2, a3, EXC_TABLE_KSTK
238 
239         /* Check for overflow/underflow exception, jump if overflow. */
240 
241         bbci.l  a0, 6, _DoubleExceptionVector_WindowOverflow
242 
243         /*
244          * Restart window underflow exception.
245          * Currently:
246          *      depc = orig a0,
247          *      a0 = orig DEPC,
248          *      a2 = new sp based on KSTK from exc_table
249          *      a3 = excsave_1
250          *      excsave_1 = orig a3
251          *
252          * We return to the instruction in user space that caused the window
253          * underflow exception. Therefore, we change window base to the value
254          * before we entered the window underflow exception and prepare the
255          * registers to return as if we were coming from a regular exception
256          * by changing depc (in a0).
257          * Note: We can trash the current window frame (a0...a3) and depc!
258          */
259 _DoubleExceptionVector_WindowUnderflow:
260         xsr     a3, excsave1
261         wsr     a2, depc                # save stack pointer temporarily
262         rsr     a0, ps
263         extui   a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
264         wsr     a0, windowbase
265         rsync
266 
267         /* We are now in the previous window frame. Save registers again. */
268 
269         xsr     a2, depc                # save a2 and get stack pointer
270         s32i    a0, a2, PT_AREG0
271         xsr     a3, excsave1
272         rsr     a0, exccause
273         s32i    a0, a2, PT_DEPC         # mark it as a regular exception
274         addx4   a0, a0, a3
275         xsr     a3, excsave1
276         l32i    a0, a0, EXC_TABLE_FAST_USER
277         jx      a0
278 
279 #else
280         j       .Lfixup
281 #endif
282 
283         /*
284          * We only allow the ITLB miss exception if we are in kernel space.
285          * All other exceptions are unexpected and thus unrecoverable!
286          */
287 
288 #ifdef CONFIG_MMU
289         .extern fast_second_level_miss_double_kernel
290 
291 .Lksp:  /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
292 
293         rsr     a3, exccause
294         beqi    a3, EXCCAUSE_ITLB_MISS, 1f
295         addi    a3, a3, -EXCCAUSE_DTLB_MISS
296         bnez    a3, .Lunrecoverable
297 1:      movi    a3, fast_second_level_miss_double_kernel
298         jx      a3
299 #else
300 .equ    .Lksp,  .Lunrecoverable
301 #endif
302 
303         /* Critical! We can't handle this situation. PANIC! */
304 
305         .extern unrecoverable_exception
306 
307 .Lunrecoverable_fixup:
308         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
309         xsr     a0, depc
310 
311 .Lunrecoverable:
312         rsr     a3, excsave1
313         wsr     a0, excsave1
314         call0   unrecoverable_exception
315 
316 .Lfixup:/* Check for a fixup handler or if we were in a critical section. */
317 
318         /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */
319 
320         /* Enter critical section. */
321 
322         l32i    a2, a3, EXC_TABLE_FIXUP
323         s32i    a3, a3, EXC_TABLE_FIXUP
324         beq     a2, a3, .Lunrecoverable_fixup   # critical section
325         beqz    a2, .Ldflt                      # no handler was registered
326 
327         /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
328 
329         jx      a2
330 
331 .Ldflt: /* Get stack pointer. */
332 
333         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
334         addi    a2, a2, -PT_USER_SIZE
335 
336         /* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */
337 
338         s32i    a0, a2, PT_DEPC
339         l32i    a0, a3, EXC_TABLE_DOUBLE_SAVE
340         xsr     a0, depc
341         s32i    a0, a2, PT_AREG0
342 
343         /* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */
344 
345         rsr     a0, exccause
346         addx4   a0, a0, a3
347         xsr     a3, excsave1
348         l32i    a0, a0, EXC_TABLE_FAST_USER
349         jx      a0
350 
351 #ifdef SUPPORT_WINDOWED
352         /*
353          * Restart window OVERFLOW exception.
354          * Currently:
355          *      depc = orig a0,
356          *      a0 = orig DEPC,
357          *      a2 = new sp based on KSTK from exc_table
358          *      a3 = EXCSAVE_1
359          *      excsave_1 = orig a3
360          *
361          * We return to the instruction in user space that caused the window
362          * overflow exception. Therefore, we change window base to the value
363          * before we entered the window overflow exception and prepare the
364          * registers to return as if we were coming from a regular exception
365          * by changing DEPC (in a0).
366          *
367          * NOTE: We CANNOT trash the current window frame (a0...a3), but we
368          * can clobber depc.
369          *
370          * The tricky part here is that overflow8 and overflow12 handlers
371          * save a0, then clobber a0.  To restart the handler, we have to restore
372          * a0 if the double exception was past the point where a0 was clobbered.
373          *
374          * To keep things simple, we take advantage of the fact all overflow
375          * handlers save a0 in their very first instruction.  If DEPC was past
376          * that instruction, we can safely restore a0 from where it was saved
377          * on the stack.
378          *
379          * a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3
380          */
381 _DoubleExceptionVector_WindowOverflow:
382         extui   a2, a0, 0, 6    # get offset into 64-byte vector handler
383         beqz    a2, 1f          # if at start of vector, don't restore
384 
385         addi    a0, a0, -128
386         bbsi.l  a0, 8, 1f       # don't restore except for overflow 8 and 12
387 
388         /*
389          * This fixup handler is for the extremely unlikely case where the
390          * overflow handler's reference thru a0 gets a hardware TLB refill
391          * that bumps out the (distinct, aliasing) TLB entry that mapped its
392          * prior references thru a9/a13, and where our reference now thru
393          * a9/a13 gets a 2nd-level miss exception (not hardware TLB refill).
394          */
395         movi    a2, window_overflow_restore_a0_fixup
396         s32i    a2, a3, EXC_TABLE_FIXUP
397         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
398         xsr     a3, excsave1
399 
400         bbsi.l  a0, 7, 2f
401 
402         /*
403          * Restore a0 as saved by _WindowOverflow8().
404          */
405 
406         l32e    a0, a9, -16
407         wsr     a0, depc        # replace the saved a0
408         j       3f
409 
410 2:
411         /*
412          * Restore a0 as saved by _WindowOverflow12().
413          */
414 
415         l32e    a0, a13, -16
416         wsr     a0, depc        # replace the saved a0
417 3:
418         xsr     a3, excsave1
419         movi    a0, 0
420         s32i    a0, a3, EXC_TABLE_FIXUP
421         s32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
422 1:
423         /*
424          * Restore WindowBase while leaving all address registers restored.
425          * We have to use ROTW for this, because WSR.WINDOWBASE requires
426          * an address register (which would prevent restore).
427          *
428          * Window Base goes from 0 ... 7 (Module 8)
429          * Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s
430          */
431 
432         rsr     a0, ps
433         extui   a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
434         rsr     a2, windowbase
435         sub     a0, a2, a0
436         extui   a0, a0, 0, 3
437 
438         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
439         xsr     a3, excsave1
440         beqi    a0, 1, .L1pane
441         beqi    a0, 3, .L3pane
442 
443         rsr     a0, depc
444         rotw    -2
445 
446         /*
447          * We are now in the user code's original window frame.
448          * Process the exception as a user exception as if it was
449          * taken by the user code.
450          *
451          * This is similar to the user exception vector,
452          * except that PT_DEPC isn't set to EXCCAUSE.
453          */
454 1:
455         xsr     a3, excsave1
456         wsr     a2, depc
457         l32i    a2, a3, EXC_TABLE_KSTK
458         s32i    a0, a2, PT_AREG0
459         rsr     a0, exccause
460 
461         s32i    a0, a2, PT_DEPC
462 
463 _DoubleExceptionVector_handle_exception:
464         addi    a0, a0, -EXCCAUSE_UNALIGNED
465         beqz    a0, 2f
466         addx4   a0, a0, a3
467         l32i    a0, a0, EXC_TABLE_FAST_USER + 4 * EXCCAUSE_UNALIGNED
468         xsr     a3, excsave1
469         jx      a0
470 2:
471         movi    a0, user_exception
472         xsr     a3, excsave1
473         jx      a0
474 
475 .L1pane:
476         rsr     a0, depc
477         rotw    -1
478         j       1b
479 
480 .L3pane:
481         rsr     a0, depc
482         rotw    -3
483         j       1b
484 #endif
485 
486 ENDPROC(_DoubleExceptionVector)
487 
488 #ifdef SUPPORT_WINDOWED
489 
490 /*
491  * Fixup handler for TLB miss in double exception handler for window owerflow.
492  * We get here with windowbase set to the window that was being spilled and
493  * a0 trashed. a0 bit 7 determines if this is a call8 (bit clear) or call12
494  * (bit set) window.
495  *
496  * We do the following here:
497  * - go to the original window retaining a0 value;
498  * - set up exception stack to return back to appropriate a0 restore code
499  *   (we'll need to rotate window back and there's no place to save this
500  *    information, use different return address for that);
501  * - handle the exception;
502  * - go to the window that was being spilled;
503  * - set up window_overflow_restore_a0_fixup as a fixup routine;
504  * - reload a0;
505  * - restore the original window;
506  * - reset the default fixup routine;
507  * - return to user. By the time we get to this fixup handler all information
508  *   about the conditions of the original double exception that happened in
509  *   the window overflow handler is lost, so we just return to userspace to
510  *   retry overflow from start.
511  *
512  * a0: value of depc, original value in depc
513  * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
514  * a3: exctable, original value in excsave1
515  */
516 
517         __XTENSA_HANDLER
518         .literal_position
519 
520 ENTRY(window_overflow_restore_a0_fixup)
521 
522         rsr     a0, ps
523         extui   a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
524         rsr     a2, windowbase
525         sub     a0, a2, a0
526         extui   a0, a0, 0, 3
527         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
528         xsr     a3, excsave1
529 
530         _beqi   a0, 1, .Lhandle_1
531         _beqi   a0, 3, .Lhandle_3
532 
533         .macro  overflow_fixup_handle_exception_pane n
534 
535         rsr     a0, depc
536         rotw    -\n
537 
538         xsr     a3, excsave1
539         wsr     a2, depc
540         l32i    a2, a3, EXC_TABLE_KSTK
541         s32i    a0, a2, PT_AREG0
542 
543         movi    a0, .Lrestore_\n
544         s32i    a0, a2, PT_DEPC
545         rsr     a0, exccause
546         j       _DoubleExceptionVector_handle_exception
547 
548         .endm
549 
550         overflow_fixup_handle_exception_pane 2
551 .Lhandle_1:
552         overflow_fixup_handle_exception_pane 1
553 .Lhandle_3:
554         overflow_fixup_handle_exception_pane 3
555 
556         .macro  overflow_fixup_restore_a0_pane n
557 
558         rotw    \n
559         /* Need to preserve a0 value here to be able to handle exception
560          * that may occur on a0 reload from stack. It may occur because
561          * TLB miss handler may not be atomic and pointer to page table
562          * may be lost before we get here. There are no free registers,
563          * so we need to use EXC_TABLE_DOUBLE_SAVE area.
564          */
565         xsr     a3, excsave1
566         s32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
567         movi    a2, window_overflow_restore_a0_fixup
568         s32i    a2, a3, EXC_TABLE_FIXUP
569         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
570         xsr     a3, excsave1
571         bbsi.l  a0, 7, 1f
572         l32e    a0, a9, -16
573         j       2f
574 1:
575         l32e    a0, a13, -16
576 2:
577         rotw    -\n
578 
579         .endm
580 
581 .Lrestore_2:
582         overflow_fixup_restore_a0_pane 2
583 
584 .Lset_default_fixup:
585         xsr     a3, excsave1
586         s32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
587         movi    a2, 0
588         s32i    a2, a3, EXC_TABLE_FIXUP
589         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
590         xsr     a3, excsave1
591         rfe
592 
593 .Lrestore_1:
594         overflow_fixup_restore_a0_pane 1
595         j       .Lset_default_fixup
596 .Lrestore_3:
597         overflow_fixup_restore_a0_pane 3
598         j       .Lset_default_fixup
599 
600 ENDPROC(window_overflow_restore_a0_fixup)
601 
602 #endif
603 
604 /*
605  * Debug interrupt vector
606  *
607  * There is not much space here, so simply jump to another handler.
608  * EXCSAVE[DEBUGLEVEL] has been set to that handler.
609  */
610 
611         .section .DebugInterruptVector.text, "ax"
612 
613 ENTRY(_DebugInterruptVector)
614 
615         xsr     a3, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
616         s32i    a0, a3, DT_DEBUG_SAVE
617         l32i    a0, a3, DT_DEBUG_EXCEPTION
618         jx      a0
619 
620 ENDPROC(_DebugInterruptVector)
621 
622 
623 
624 /*
625  * Medium priority level interrupt vectors
626  *
627  * Each takes less than 16 (0x10) bytes, no literals, by placing
628  * the extra 8 bytes that would otherwise be required in the window
629  * vectors area where there is space.  With relocatable vectors,
630  * all vectors are within ~ 4 kB range of each other, so we can
631  * simply jump (J) to another vector without having to use JX.
632  *
633  * common_exception code gets current IRQ level in PS.INTLEVEL
634  * and preserves it for the IRQ handling time.
635  */
636 
637         .macro  irq_entry_level level
638 
639         .if     XCHAL_EXCM_LEVEL >= \level
640         .section .Level\level\()InterruptVector.text, "ax"
641 ENTRY(_Level\level\()InterruptVector)
642         wsr     a0, excsave2
643         rsr     a0, epc\level
644         wsr     a0, epc1
645         .if     \level <= LOCKLEVEL
646         movi    a0, EXCCAUSE_LEVEL1_INTERRUPT
647         .else
648         movi    a0, EXCCAUSE_MAPPED_NMI
649         .endif
650         wsr     a0, exccause
651         rsr     a0, eps\level
652                                         # branch to user or kernel vector
653         j       _SimulateUserKernelVectorException
654         .endif
655 
656         .endm
657 
658         irq_entry_level 2
659         irq_entry_level 3
660         irq_entry_level 4
661         irq_entry_level 5
662         irq_entry_level 6
663 
664 #if XCHAL_EXCM_LEVEL >= 2
665         /*
666          *  Continuation of medium priority interrupt dispatch code.
667          *  On entry here, a0 contains PS, and EPC2 contains saved a0:
668          */
669         __XTENSA_HANDLER
670         .align 4
671 _SimulateUserKernelVectorException:
672         addi    a0, a0, (1 << PS_EXCM_BIT)
673 #if !XTENSA_FAKE_NMI
674         wsr     a0, ps
675 #endif
676         bbsi.l  a0, PS_UM_BIT, 1f       # branch if user mode
677         xsr     a0, excsave2            # restore a0
678         j       _KernelExceptionVector  # simulate kernel vector exception
679 1:      xsr     a0, excsave2            # restore a0
680         j       _UserExceptionVector    # simulate user vector exception
681 #endif
682 
683 
684 /* Window overflow and underflow handlers.
685  * The handlers must be 64 bytes apart, first starting with the underflow
686  * handlers underflow-4 to underflow-12, then the overflow handlers
687  * overflow-4 to overflow-12.
688  *
689  * Note: We rerun the underflow handlers if we hit an exception, so
690  *       we try to access any page that would cause a page fault early.
691  */
692 
693 #define ENTRY_ALIGN64(name)     \
694         .globl name;            \
695         .align 64;              \
696         name:
697 
698         .section                .WindowVectors.text, "ax"
699 
700 
701 #ifdef SUPPORT_WINDOWED
702 
703 /* 4-Register Window Overflow Vector (Handler) */
704 
705 ENTRY_ALIGN64(_WindowOverflow4)
706 
707         s32e    a0, a5, -16
708         s32e    a1, a5, -12
709         s32e    a2, a5,  -8
710         s32e    a3, a5,  -4
711         rfwo
712 
713 ENDPROC(_WindowOverflow4)
714 
715 /* 4-Register Window Underflow Vector (Handler) */
716 
717 ENTRY_ALIGN64(_WindowUnderflow4)
718 
719         l32e    a0, a5, -16
720         l32e    a1, a5, -12
721         l32e    a2, a5,  -8
722         l32e    a3, a5,  -4
723         rfwu
724 
725 ENDPROC(_WindowUnderflow4)
726 
727 /* 8-Register Window Overflow Vector (Handler) */
728 
729 ENTRY_ALIGN64(_WindowOverflow8)
730 
731         s32e    a0, a9, -16
732         l32e    a0, a1, -12
733         s32e    a2, a9,  -8
734         s32e    a1, a9, -12
735         s32e    a3, a9,  -4
736         s32e    a4, a0, -32
737         s32e    a5, a0, -28
738         s32e    a6, a0, -24
739         s32e    a7, a0, -20
740         rfwo
741 
742 ENDPROC(_WindowOverflow8)
743 
744 /* 8-Register Window Underflow Vector (Handler) */
745 
746 ENTRY_ALIGN64(_WindowUnderflow8)
747 
748         l32e    a1, a9, -12
749         l32e    a0, a9, -16
750         l32e    a7, a1, -12
751         l32e    a2, a9,  -8
752         l32e    a4, a7, -32
753         l32e    a3, a9,  -4
754         l32e    a5, a7, -28
755         l32e    a6, a7, -24
756         l32e    a7, a7, -20
757         rfwu
758 
759 ENDPROC(_WindowUnderflow8)
760 
761 /* 12-Register Window Overflow Vector (Handler) */
762 
763 ENTRY_ALIGN64(_WindowOverflow12)
764 
765         s32e    a0,  a13, -16
766         l32e    a0,  a1,  -12
767         s32e    a1,  a13, -12
768         s32e    a2,  a13,  -8
769         s32e    a3,  a13,  -4
770         s32e    a4,  a0,  -48
771         s32e    a5,  a0,  -44
772         s32e    a6,  a0,  -40
773         s32e    a7,  a0,  -36
774         s32e    a8,  a0,  -32
775         s32e    a9,  a0,  -28
776         s32e    a10, a0,  -24
777         s32e    a11, a0,  -20
778         rfwo
779 
780 ENDPROC(_WindowOverflow12)
781 
782 /* 12-Register Window Underflow Vector (Handler) */
783 
784 ENTRY_ALIGN64(_WindowUnderflow12)
785 
786         l32e    a1,  a13, -12
787         l32e    a0,  a13, -16
788         l32e    a11, a1,  -12
789         l32e    a2,  a13,  -8
790         l32e    a4,  a11, -48
791         l32e    a8,  a11, -32
792         l32e    a3,  a13,  -4
793         l32e    a5,  a11, -44
794         l32e    a6,  a11, -40
795         l32e    a7,  a11, -36
796         l32e    a9,  a11, -28
797         l32e    a10, a11, -24
798         l32e    a11, a11, -20
799         rfwu
800 
801 ENDPROC(_WindowUnderflow12)
802 
803 #endif
804 
805         .text

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php