~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/block/blk-core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 1991, 1992 Linus Torvalds
  4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
  5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
  6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
  8  *      -  July2000
  9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
 10  */
 11 
 12 /*
 13  * This handles all read/write requests to block devices
 14  */
 15 #include <linux/kernel.h>
 16 #include <linux/module.h>
 17 #include <linux/bio.h>
 18 #include <linux/blkdev.h>
 19 #include <linux/blk-pm.h>
 20 #include <linux/blk-integrity.h>
 21 #include <linux/highmem.h>
 22 #include <linux/mm.h>
 23 #include <linux/pagemap.h>
 24 #include <linux/kernel_stat.h>
 25 #include <linux/string.h>
 26 #include <linux/init.h>
 27 #include <linux/completion.h>
 28 #include <linux/slab.h>
 29 #include <linux/swap.h>
 30 #include <linux/writeback.h>
 31 #include <linux/task_io_accounting_ops.h>
 32 #include <linux/fault-inject.h>
 33 #include <linux/list_sort.h>
 34 #include <linux/delay.h>
 35 #include <linux/ratelimit.h>
 36 #include <linux/pm_runtime.h>
 37 #include <linux/t10-pi.h>
 38 #include <linux/debugfs.h>
 39 #include <linux/bpf.h>
 40 #include <linux/part_stat.h>
 41 #include <linux/sched/sysctl.h>
 42 #include <linux/blk-crypto.h>
 43 
 44 #define CREATE_TRACE_POINTS
 45 #include <trace/events/block.h>
 46 
 47 #include "blk.h"
 48 #include "blk-mq-sched.h"
 49 #include "blk-pm.h"
 50 #include "blk-cgroup.h"
 51 #include "blk-throttle.h"
 52 #include "blk-ioprio.h"
 53 
 54 struct dentry *blk_debugfs_root;
 55 
 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
 62 
 63 static DEFINE_IDA(blk_queue_ida);
 64 
 65 /*
 66  * For queue allocation
 67  */
 68 static struct kmem_cache *blk_requestq_cachep;
 69 
 70 /*
 71  * Controlling structure to kblockd
 72  */
 73 static struct workqueue_struct *kblockd_workqueue;
 74 
 75 /**
 76  * blk_queue_flag_set - atomically set a queue flag
 77  * @flag: flag to be set
 78  * @q: request queue
 79  */
 80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
 81 {
 82         set_bit(flag, &q->queue_flags);
 83 }
 84 EXPORT_SYMBOL(blk_queue_flag_set);
 85 
 86 /**
 87  * blk_queue_flag_clear - atomically clear a queue flag
 88  * @flag: flag to be cleared
 89  * @q: request queue
 90  */
 91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
 92 {
 93         clear_bit(flag, &q->queue_flags);
 94 }
 95 EXPORT_SYMBOL(blk_queue_flag_clear);
 96 
 97 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 98 static const char *const blk_op_name[] = {
 99         REQ_OP_NAME(READ),
100         REQ_OP_NAME(WRITE),
101         REQ_OP_NAME(FLUSH),
102         REQ_OP_NAME(DISCARD),
103         REQ_OP_NAME(SECURE_ERASE),
104         REQ_OP_NAME(ZONE_RESET),
105         REQ_OP_NAME(ZONE_RESET_ALL),
106         REQ_OP_NAME(ZONE_OPEN),
107         REQ_OP_NAME(ZONE_CLOSE),
108         REQ_OP_NAME(ZONE_FINISH),
109         REQ_OP_NAME(ZONE_APPEND),
110         REQ_OP_NAME(WRITE_ZEROES),
111         REQ_OP_NAME(DRV_IN),
112         REQ_OP_NAME(DRV_OUT),
113 };
114 #undef REQ_OP_NAME
115 
116 /**
117  * blk_op_str - Return string XXX in the REQ_OP_XXX.
118  * @op: REQ_OP_XXX.
119  *
120  * Description: Centralize block layer function to convert REQ_OP_XXX into
121  * string format. Useful in the debugging and tracing bio or request. For
122  * invalid REQ_OP_XXX it returns string "UNKNOWN".
123  */
124 inline const char *blk_op_str(enum req_op op)
125 {
126         const char *op_str = "UNKNOWN";
127 
128         if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
129                 op_str = blk_op_name[op];
130 
131         return op_str;
132 }
133 EXPORT_SYMBOL_GPL(blk_op_str);
134 
135 static const struct {
136         int             errno;
137         const char      *name;
138 } blk_errors[] = {
139         [BLK_STS_OK]            = { 0,          "" },
140         [BLK_STS_NOTSUPP]       = { -EOPNOTSUPP, "operation not supported" },
141         [BLK_STS_TIMEOUT]       = { -ETIMEDOUT, "timeout" },
142         [BLK_STS_NOSPC]         = { -ENOSPC,    "critical space allocation" },
143         [BLK_STS_TRANSPORT]     = { -ENOLINK,   "recoverable transport" },
144         [BLK_STS_TARGET]        = { -EREMOTEIO, "critical target" },
145         [BLK_STS_RESV_CONFLICT] = { -EBADE,     "reservation conflict" },
146         [BLK_STS_MEDIUM]        = { -ENODATA,   "critical medium" },
147         [BLK_STS_PROTECTION]    = { -EILSEQ,    "protection" },
148         [BLK_STS_RESOURCE]      = { -ENOMEM,    "kernel resource" },
149         [BLK_STS_DEV_RESOURCE]  = { -EBUSY,     "device resource" },
150         [BLK_STS_AGAIN]         = { -EAGAIN,    "nonblocking retry" },
151         [BLK_STS_OFFLINE]       = { -ENODEV,    "device offline" },
152 
153         /* device mapper special case, should not leak out: */
154         [BLK_STS_DM_REQUEUE]    = { -EREMCHG, "dm internal retry" },
155 
156         /* zone device specific errors */
157         [BLK_STS_ZONE_OPEN_RESOURCE]    = { -ETOOMANYREFS, "open zones exceeded" },
158         [BLK_STS_ZONE_ACTIVE_RESOURCE]  = { -EOVERFLOW, "active zones exceeded" },
159 
160         /* Command duration limit device-side timeout */
161         [BLK_STS_DURATION_LIMIT]        = { -ETIME, "duration limit exceeded" },
162 
163         [BLK_STS_INVAL]         = { -EINVAL,    "invalid" },
164 
165         /* everything else not covered above: */
166         [BLK_STS_IOERR]         = { -EIO,       "I/O" },
167 };
168 
169 blk_status_t errno_to_blk_status(int errno)
170 {
171         int i;
172 
173         for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
174                 if (blk_errors[i].errno == errno)
175                         return (__force blk_status_t)i;
176         }
177 
178         return BLK_STS_IOERR;
179 }
180 EXPORT_SYMBOL_GPL(errno_to_blk_status);
181 
182 int blk_status_to_errno(blk_status_t status)
183 {
184         int idx = (__force int)status;
185 
186         if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
187                 return -EIO;
188         return blk_errors[idx].errno;
189 }
190 EXPORT_SYMBOL_GPL(blk_status_to_errno);
191 
192 const char *blk_status_to_str(blk_status_t status)
193 {
194         int idx = (__force int)status;
195 
196         if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197                 return "<null>";
198         return blk_errors[idx].name;
199 }
200 EXPORT_SYMBOL_GPL(blk_status_to_str);
201 
202 /**
203  * blk_sync_queue - cancel any pending callbacks on a queue
204  * @q: the queue
205  *
206  * Description:
207  *     The block layer may perform asynchronous callback activity
208  *     on a queue, such as calling the unplug function after a timeout.
209  *     A block device may call blk_sync_queue to ensure that any
210  *     such activity is cancelled, thus allowing it to release resources
211  *     that the callbacks might use. The caller must already have made sure
212  *     that its ->submit_bio will not re-add plugging prior to calling
213  *     this function.
214  *
215  *     This function does not cancel any asynchronous activity arising
216  *     out of elevator or throttling code. That would require elevator_exit()
217  *     and blkcg_exit_queue() to be called with queue lock initialized.
218  *
219  */
220 void blk_sync_queue(struct request_queue *q)
221 {
222         del_timer_sync(&q->timeout);
223         cancel_work_sync(&q->timeout_work);
224 }
225 EXPORT_SYMBOL(blk_sync_queue);
226 
227 /**
228  * blk_set_pm_only - increment pm_only counter
229  * @q: request queue pointer
230  */
231 void blk_set_pm_only(struct request_queue *q)
232 {
233         atomic_inc(&q->pm_only);
234 }
235 EXPORT_SYMBOL_GPL(blk_set_pm_only);
236 
237 void blk_clear_pm_only(struct request_queue *q)
238 {
239         int pm_only;
240 
241         pm_only = atomic_dec_return(&q->pm_only);
242         WARN_ON_ONCE(pm_only < 0);
243         if (pm_only == 0)
244                 wake_up_all(&q->mq_freeze_wq);
245 }
246 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
247 
248 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
249 {
250         struct request_queue *q = container_of(rcu_head,
251                         struct request_queue, rcu_head);
252 
253         percpu_ref_exit(&q->q_usage_counter);
254         kmem_cache_free(blk_requestq_cachep, q);
255 }
256 
257 static void blk_free_queue(struct request_queue *q)
258 {
259         blk_free_queue_stats(q->stats);
260         if (queue_is_mq(q))
261                 blk_mq_release(q);
262 
263         ida_free(&blk_queue_ida, q->id);
264         call_rcu(&q->rcu_head, blk_free_queue_rcu);
265 }
266 
267 /**
268  * blk_put_queue - decrement the request_queue refcount
269  * @q: the request_queue structure to decrement the refcount for
270  *
271  * Decrements the refcount of the request_queue and free it when the refcount
272  * reaches 0.
273  */
274 void blk_put_queue(struct request_queue *q)
275 {
276         if (refcount_dec_and_test(&q->refs))
277                 blk_free_queue(q);
278 }
279 EXPORT_SYMBOL(blk_put_queue);
280 
281 void blk_queue_start_drain(struct request_queue *q)
282 {
283         /*
284          * When queue DYING flag is set, we need to block new req
285          * entering queue, so we call blk_freeze_queue_start() to
286          * prevent I/O from crossing blk_queue_enter().
287          */
288         blk_freeze_queue_start(q);
289         if (queue_is_mq(q))
290                 blk_mq_wake_waiters(q);
291         /* Make blk_queue_enter() reexamine the DYING flag. */
292         wake_up_all(&q->mq_freeze_wq);
293 }
294 
295 /**
296  * blk_queue_enter() - try to increase q->q_usage_counter
297  * @q: request queue pointer
298  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
299  */
300 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
301 {
302         const bool pm = flags & BLK_MQ_REQ_PM;
303 
304         while (!blk_try_enter_queue(q, pm)) {
305                 if (flags & BLK_MQ_REQ_NOWAIT)
306                         return -EAGAIN;
307 
308                 /*
309                  * read pair of barrier in blk_freeze_queue_start(), we need to
310                  * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
311                  * reading .mq_freeze_depth or queue dying flag, otherwise the
312                  * following wait may never return if the two reads are
313                  * reordered.
314                  */
315                 smp_rmb();
316                 wait_event(q->mq_freeze_wq,
317                            (!q->mq_freeze_depth &&
318                             blk_pm_resume_queue(pm, q)) ||
319                            blk_queue_dying(q));
320                 if (blk_queue_dying(q))
321                         return -ENODEV;
322         }
323 
324         return 0;
325 }
326 
327 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
328 {
329         while (!blk_try_enter_queue(q, false)) {
330                 struct gendisk *disk = bio->bi_bdev->bd_disk;
331 
332                 if (bio->bi_opf & REQ_NOWAIT) {
333                         if (test_bit(GD_DEAD, &disk->state))
334                                 goto dead;
335                         bio_wouldblock_error(bio);
336                         return -EAGAIN;
337                 }
338 
339                 /*
340                  * read pair of barrier in blk_freeze_queue_start(), we need to
341                  * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
342                  * reading .mq_freeze_depth or queue dying flag, otherwise the
343                  * following wait may never return if the two reads are
344                  * reordered.
345                  */
346                 smp_rmb();
347                 wait_event(q->mq_freeze_wq,
348                            (!q->mq_freeze_depth &&
349                             blk_pm_resume_queue(false, q)) ||
350                            test_bit(GD_DEAD, &disk->state));
351                 if (test_bit(GD_DEAD, &disk->state))
352                         goto dead;
353         }
354 
355         return 0;
356 dead:
357         bio_io_error(bio);
358         return -ENODEV;
359 }
360 
361 void blk_queue_exit(struct request_queue *q)
362 {
363         percpu_ref_put(&q->q_usage_counter);
364 }
365 
366 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
367 {
368         struct request_queue *q =
369                 container_of(ref, struct request_queue, q_usage_counter);
370 
371         wake_up_all(&q->mq_freeze_wq);
372 }
373 
374 static void blk_rq_timed_out_timer(struct timer_list *t)
375 {
376         struct request_queue *q = from_timer(q, t, timeout);
377 
378         kblockd_schedule_work(&q->timeout_work);
379 }
380 
381 static void blk_timeout_work(struct work_struct *work)
382 {
383 }
384 
385 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
386 {
387         struct request_queue *q;
388         int error;
389 
390         q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
391                                   node_id);
392         if (!q)
393                 return ERR_PTR(-ENOMEM);
394 
395         q->last_merge = NULL;
396 
397         q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
398         if (q->id < 0) {
399                 error = q->id;
400                 goto fail_q;
401         }
402 
403         q->stats = blk_alloc_queue_stats();
404         if (!q->stats) {
405                 error = -ENOMEM;
406                 goto fail_id;
407         }
408 
409         error = blk_set_default_limits(lim);
410         if (error)
411                 goto fail_stats;
412         q->limits = *lim;
413 
414         q->node = node_id;
415 
416         atomic_set(&q->nr_active_requests_shared_tags, 0);
417 
418         timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
419         INIT_WORK(&q->timeout_work, blk_timeout_work);
420         INIT_LIST_HEAD(&q->icq_list);
421 
422         refcount_set(&q->refs, 1);
423         mutex_init(&q->debugfs_mutex);
424         mutex_init(&q->sysfs_lock);
425         mutex_init(&q->sysfs_dir_lock);
426         mutex_init(&q->limits_lock);
427         mutex_init(&q->rq_qos_mutex);
428         spin_lock_init(&q->queue_lock);
429 
430         init_waitqueue_head(&q->mq_freeze_wq);
431         mutex_init(&q->mq_freeze_lock);
432 
433         blkg_init_queue(q);
434 
435         /*
436          * Init percpu_ref in atomic mode so that it's faster to shutdown.
437          * See blk_register_queue() for details.
438          */
439         error = percpu_ref_init(&q->q_usage_counter,
440                                 blk_queue_usage_counter_release,
441                                 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
442         if (error)
443                 goto fail_stats;
444 
445         q->nr_requests = BLKDEV_DEFAULT_RQ;
446 
447         return q;
448 
449 fail_stats:
450         blk_free_queue_stats(q->stats);
451 fail_id:
452         ida_free(&blk_queue_ida, q->id);
453 fail_q:
454         kmem_cache_free(blk_requestq_cachep, q);
455         return ERR_PTR(error);
456 }
457 
458 /**
459  * blk_get_queue - increment the request_queue refcount
460  * @q: the request_queue structure to increment the refcount for
461  *
462  * Increment the refcount of the request_queue kobject.
463  *
464  * Context: Any context.
465  */
466 bool blk_get_queue(struct request_queue *q)
467 {
468         if (unlikely(blk_queue_dying(q)))
469                 return false;
470         refcount_inc(&q->refs);
471         return true;
472 }
473 EXPORT_SYMBOL(blk_get_queue);
474 
475 #ifdef CONFIG_FAIL_MAKE_REQUEST
476 
477 static DECLARE_FAULT_ATTR(fail_make_request);
478 
479 static int __init setup_fail_make_request(char *str)
480 {
481         return setup_fault_attr(&fail_make_request, str);
482 }
483 __setup("fail_make_request=", setup_fail_make_request);
484 
485 bool should_fail_request(struct block_device *part, unsigned int bytes)
486 {
487         return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
488                should_fail(&fail_make_request, bytes);
489 }
490 
491 static int __init fail_make_request_debugfs(void)
492 {
493         struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
494                                                 NULL, &fail_make_request);
495 
496         return PTR_ERR_OR_ZERO(dir);
497 }
498 
499 late_initcall(fail_make_request_debugfs);
500 #endif /* CONFIG_FAIL_MAKE_REQUEST */
501 
502 static inline void bio_check_ro(struct bio *bio)
503 {
504         if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
505                 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
506                         return;
507 
508                 if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
509                         return;
510 
511                 bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
512 
513                 /*
514                  * Use ioctl to set underlying disk of raid/dm to read-only
515                  * will trigger this.
516                  */
517                 pr_warn("Trying to write to read-only block-device %pg\n",
518                         bio->bi_bdev);
519         }
520 }
521 
522 static noinline int should_fail_bio(struct bio *bio)
523 {
524         if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
525                 return -EIO;
526         return 0;
527 }
528 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
529 
530 /*
531  * Check whether this bio extends beyond the end of the device or partition.
532  * This may well happen - the kernel calls bread() without checking the size of
533  * the device, e.g., when mounting a file system.
534  */
535 static inline int bio_check_eod(struct bio *bio)
536 {
537         sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
538         unsigned int nr_sectors = bio_sectors(bio);
539 
540         if (nr_sectors &&
541             (nr_sectors > maxsector ||
542              bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
543                 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
544                                     "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
545                                     current->comm, bio->bi_bdev, bio->bi_opf,
546                                     bio->bi_iter.bi_sector, nr_sectors, maxsector);
547                 return -EIO;
548         }
549         return 0;
550 }
551 
552 /*
553  * Remap block n of partition p to block n+start(p) of the disk.
554  */
555 static int blk_partition_remap(struct bio *bio)
556 {
557         struct block_device *p = bio->bi_bdev;
558 
559         if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
560                 return -EIO;
561         if (bio_sectors(bio)) {
562                 bio->bi_iter.bi_sector += p->bd_start_sect;
563                 trace_block_bio_remap(bio, p->bd_dev,
564                                       bio->bi_iter.bi_sector -
565                                       p->bd_start_sect);
566         }
567         bio_set_flag(bio, BIO_REMAPPED);
568         return 0;
569 }
570 
571 /*
572  * Check write append to a zoned block device.
573  */
574 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
575                                                  struct bio *bio)
576 {
577         int nr_sectors = bio_sectors(bio);
578 
579         /* Only applicable to zoned block devices */
580         if (!bdev_is_zoned(bio->bi_bdev))
581                 return BLK_STS_NOTSUPP;
582 
583         /* The bio sector must point to the start of a sequential zone */
584         if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
585                 return BLK_STS_IOERR;
586 
587         /*
588          * Not allowed to cross zone boundaries. Otherwise, the BIO will be
589          * split and could result in non-contiguous sectors being written in
590          * different zones.
591          */
592         if (nr_sectors > q->limits.chunk_sectors)
593                 return BLK_STS_IOERR;
594 
595         /* Make sure the BIO is small enough and will not get split */
596         if (nr_sectors > queue_max_zone_append_sectors(q))
597                 return BLK_STS_IOERR;
598 
599         bio->bi_opf |= REQ_NOMERGE;
600 
601         return BLK_STS_OK;
602 }
603 
604 static void __submit_bio(struct bio *bio)
605 {
606         /* If plug is not used, add new plug here to cache nsecs time. */
607         struct blk_plug plug;
608 
609         if (unlikely(!blk_crypto_bio_prep(&bio)))
610                 return;
611 
612         blk_start_plug(&plug);
613 
614         if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
615                 blk_mq_submit_bio(bio);
616         } else if (likely(bio_queue_enter(bio) == 0)) {
617                 struct gendisk *disk = bio->bi_bdev->bd_disk;
618 
619                 disk->fops->submit_bio(bio);
620                 blk_queue_exit(disk->queue);
621         }
622 
623         blk_finish_plug(&plug);
624 }
625 
626 /*
627  * The loop in this function may be a bit non-obvious, and so deserves some
628  * explanation:
629  *
630  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
631  *    that), so we have a list with a single bio.
632  *  - We pretend that we have just taken it off a longer list, so we assign
633  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
634  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
635  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
636  *    non-NULL value in bio_list and re-enter the loop from the top.
637  *  - In this case we really did just take the bio of the top of the list (no
638  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
639  *    again.
640  *
641  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
642  * bio_list_on_stack[1] contains bios that were submitted before the current
643  *      ->submit_bio, but that haven't been processed yet.
644  */
645 static void __submit_bio_noacct(struct bio *bio)
646 {
647         struct bio_list bio_list_on_stack[2];
648 
649         BUG_ON(bio->bi_next);
650 
651         bio_list_init(&bio_list_on_stack[0]);
652         current->bio_list = bio_list_on_stack;
653 
654         do {
655                 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
656                 struct bio_list lower, same;
657 
658                 /*
659                  * Create a fresh bio_list for all subordinate requests.
660                  */
661                 bio_list_on_stack[1] = bio_list_on_stack[0];
662                 bio_list_init(&bio_list_on_stack[0]);
663 
664                 __submit_bio(bio);
665 
666                 /*
667                  * Sort new bios into those for a lower level and those for the
668                  * same level.
669                  */
670                 bio_list_init(&lower);
671                 bio_list_init(&same);
672                 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
673                         if (q == bdev_get_queue(bio->bi_bdev))
674                                 bio_list_add(&same, bio);
675                         else
676                                 bio_list_add(&lower, bio);
677 
678                 /*
679                  * Now assemble so we handle the lowest level first.
680                  */
681                 bio_list_merge(&bio_list_on_stack[0], &lower);
682                 bio_list_merge(&bio_list_on_stack[0], &same);
683                 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
684         } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
685 
686         current->bio_list = NULL;
687 }
688 
689 static void __submit_bio_noacct_mq(struct bio *bio)
690 {
691         struct bio_list bio_list[2] = { };
692 
693         current->bio_list = bio_list;
694 
695         do {
696                 __submit_bio(bio);
697         } while ((bio = bio_list_pop(&bio_list[0])));
698 
699         current->bio_list = NULL;
700 }
701 
702 void submit_bio_noacct_nocheck(struct bio *bio)
703 {
704         blk_cgroup_bio_start(bio);
705         blkcg_bio_issue_init(bio);
706 
707         if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
708                 trace_block_bio_queue(bio);
709                 /*
710                  * Now that enqueuing has been traced, we need to trace
711                  * completion as well.
712                  */
713                 bio_set_flag(bio, BIO_TRACE_COMPLETION);
714         }
715 
716         /*
717          * We only want one ->submit_bio to be active at a time, else stack
718          * usage with stacked devices could be a problem.  Use current->bio_list
719          * to collect a list of requests submited by a ->submit_bio method while
720          * it is active, and then process them after it returned.
721          */
722         if (current->bio_list)
723                 bio_list_add(&current->bio_list[0], bio);
724         else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
725                 __submit_bio_noacct_mq(bio);
726         else
727                 __submit_bio_noacct(bio);
728 }
729 
730 static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
731                                                  struct bio *bio)
732 {
733         if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
734                 return BLK_STS_INVAL;
735 
736         if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
737                 return BLK_STS_INVAL;
738 
739         return BLK_STS_OK;
740 }
741 
742 /**
743  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
744  * @bio:  The bio describing the location in memory and on the device.
745  *
746  * This is a version of submit_bio() that shall only be used for I/O that is
747  * resubmitted to lower level drivers by stacking block drivers.  All file
748  * systems and other upper level users of the block layer should use
749  * submit_bio() instead.
750  */
751 void submit_bio_noacct(struct bio *bio)
752 {
753         struct block_device *bdev = bio->bi_bdev;
754         struct request_queue *q = bdev_get_queue(bdev);
755         blk_status_t status = BLK_STS_IOERR;
756 
757         might_sleep();
758 
759         /*
760          * For a REQ_NOWAIT based request, return -EOPNOTSUPP
761          * if queue does not support NOWAIT.
762          */
763         if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
764                 goto not_supported;
765 
766         if (should_fail_bio(bio))
767                 goto end_io;
768         bio_check_ro(bio);
769         if (!bio_flagged(bio, BIO_REMAPPED)) {
770                 if (unlikely(bio_check_eod(bio)))
771                         goto end_io;
772                 if (bdev_is_partition(bdev) &&
773                     unlikely(blk_partition_remap(bio)))
774                         goto end_io;
775         }
776 
777         /*
778          * Filter flush bio's early so that bio based drivers without flush
779          * support don't have to worry about them.
780          */
781         if (op_is_flush(bio->bi_opf)) {
782                 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
783                                  bio_op(bio) != REQ_OP_ZONE_APPEND))
784                         goto end_io;
785                 if (!bdev_write_cache(bdev)) {
786                         bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
787                         if (!bio_sectors(bio)) {
788                                 status = BLK_STS_OK;
789                                 goto end_io;
790                         }
791                 }
792         }
793 
794         if (!(q->limits.features & BLK_FEAT_POLL) &&
795                         (bio->bi_opf & REQ_POLLED)) {
796                 bio_clear_polled(bio);
797                 goto not_supported;
798         }
799 
800         switch (bio_op(bio)) {
801         case REQ_OP_READ:
802                 break;
803         case REQ_OP_WRITE:
804                 if (bio->bi_opf & REQ_ATOMIC) {
805                         status = blk_validate_atomic_write_op_size(q, bio);
806                         if (status != BLK_STS_OK)
807                                 goto end_io;
808                 }
809                 break;
810         case REQ_OP_FLUSH:
811                 /*
812                  * REQ_OP_FLUSH can't be submitted through bios, it is only
813                  * synthetized in struct request by the flush state machine.
814                  */
815                 goto not_supported;
816         case REQ_OP_DISCARD:
817                 if (!bdev_max_discard_sectors(bdev))
818                         goto not_supported;
819                 break;
820         case REQ_OP_SECURE_ERASE:
821                 if (!bdev_max_secure_erase_sectors(bdev))
822                         goto not_supported;
823                 break;
824         case REQ_OP_ZONE_APPEND:
825                 status = blk_check_zone_append(q, bio);
826                 if (status != BLK_STS_OK)
827                         goto end_io;
828                 break;
829         case REQ_OP_WRITE_ZEROES:
830                 if (!q->limits.max_write_zeroes_sectors)
831                         goto not_supported;
832                 break;
833         case REQ_OP_ZONE_RESET:
834         case REQ_OP_ZONE_OPEN:
835         case REQ_OP_ZONE_CLOSE:
836         case REQ_OP_ZONE_FINISH:
837         case REQ_OP_ZONE_RESET_ALL:
838                 if (!bdev_is_zoned(bio->bi_bdev))
839                         goto not_supported;
840                 break;
841         case REQ_OP_DRV_IN:
842         case REQ_OP_DRV_OUT:
843                 /*
844                  * Driver private operations are only used with passthrough
845                  * requests.
846                  */
847                 fallthrough;
848         default:
849                 goto not_supported;
850         }
851 
852         if (blk_throtl_bio(bio))
853                 return;
854         submit_bio_noacct_nocheck(bio);
855         return;
856 
857 not_supported:
858         status = BLK_STS_NOTSUPP;
859 end_io:
860         bio->bi_status = status;
861         bio_endio(bio);
862 }
863 EXPORT_SYMBOL(submit_bio_noacct);
864 
865 static void bio_set_ioprio(struct bio *bio)
866 {
867         /* Nobody set ioprio so far? Initialize it based on task's nice value */
868         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
869                 bio->bi_ioprio = get_current_ioprio();
870         blkcg_set_ioprio(bio);
871 }
872 
873 /**
874  * submit_bio - submit a bio to the block device layer for I/O
875  * @bio: The &struct bio which describes the I/O
876  *
877  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
878  * fully set up &struct bio that describes the I/O that needs to be done.  The
879  * bio will be send to the device described by the bi_bdev field.
880  *
881  * The success/failure status of the request, along with notification of
882  * completion, is delivered asynchronously through the ->bi_end_io() callback
883  * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
884  * been called.
885  */
886 void submit_bio(struct bio *bio)
887 {
888         if (bio_op(bio) == REQ_OP_READ) {
889                 task_io_account_read(bio->bi_iter.bi_size);
890                 count_vm_events(PGPGIN, bio_sectors(bio));
891         } else if (bio_op(bio) == REQ_OP_WRITE) {
892                 count_vm_events(PGPGOUT, bio_sectors(bio));
893         }
894 
895         bio_set_ioprio(bio);
896         submit_bio_noacct(bio);
897 }
898 EXPORT_SYMBOL(submit_bio);
899 
900 /**
901  * bio_poll - poll for BIO completions
902  * @bio: bio to poll for
903  * @iob: batches of IO
904  * @flags: BLK_POLL_* flags that control the behavior
905  *
906  * Poll for completions on queue associated with the bio. Returns number of
907  * completed entries found.
908  *
909  * Note: the caller must either be the context that submitted @bio, or
910  * be in a RCU critical section to prevent freeing of @bio.
911  */
912 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
913 {
914         blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
915         struct block_device *bdev;
916         struct request_queue *q;
917         int ret = 0;
918 
919         bdev = READ_ONCE(bio->bi_bdev);
920         if (!bdev)
921                 return 0;
922 
923         q = bdev_get_queue(bdev);
924         if (cookie == BLK_QC_T_NONE || !(q->limits.features & BLK_FEAT_POLL))
925                 return 0;
926 
927         blk_flush_plug(current->plug, false);
928 
929         /*
930          * We need to be able to enter a frozen queue, similar to how
931          * timeouts also need to do that. If that is blocked, then we can
932          * have pending IO when a queue freeze is started, and then the
933          * wait for the freeze to finish will wait for polled requests to
934          * timeout as the poller is preventer from entering the queue and
935          * completing them. As long as we prevent new IO from being queued,
936          * that should be all that matters.
937          */
938         if (!percpu_ref_tryget(&q->q_usage_counter))
939                 return 0;
940         if (queue_is_mq(q)) {
941                 ret = blk_mq_poll(q, cookie, iob, flags);
942         } else {
943                 struct gendisk *disk = q->disk;
944 
945                 if (disk && disk->fops->poll_bio)
946                         ret = disk->fops->poll_bio(bio, iob, flags);
947         }
948         blk_queue_exit(q);
949         return ret;
950 }
951 EXPORT_SYMBOL_GPL(bio_poll);
952 
953 /*
954  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
955  * in iocb->private, and cleared before freeing the bio.
956  */
957 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
958                     unsigned int flags)
959 {
960         struct bio *bio;
961         int ret = 0;
962 
963         /*
964          * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
965          * point to a freshly allocated bio at this point.  If that happens
966          * we have a few cases to consider:
967          *
968          *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
969          *     simply nothing in this case
970          *  2) the bio points to a not poll enabled device.  bio_poll will catch
971          *     this and return 0
972          *  3) the bio points to a poll capable device, including but not
973          *     limited to the one that the original bio pointed to.  In this
974          *     case we will call into the actual poll method and poll for I/O,
975          *     even if we don't need to, but it won't cause harm either.
976          *
977          * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
978          * is still allocated. Because partitions hold a reference to the whole
979          * device bdev and thus disk, the disk is also still valid.  Grabbing
980          * a reference to the queue in bio_poll() ensures the hctxs and requests
981          * are still valid as well.
982          */
983         rcu_read_lock();
984         bio = READ_ONCE(kiocb->private);
985         if (bio)
986                 ret = bio_poll(bio, iob, flags);
987         rcu_read_unlock();
988 
989         return ret;
990 }
991 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
992 
993 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
994 {
995         unsigned long stamp;
996 again:
997         stamp = READ_ONCE(part->bd_stamp);
998         if (unlikely(time_after(now, stamp)) &&
999             likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
1000             (end || part_in_flight(part)))
1001                 __part_stat_add(part, io_ticks, now - stamp);
1002 
1003         if (bdev_is_partition(part)) {
1004                 part = bdev_whole(part);
1005                 goto again;
1006         }
1007 }
1008 
1009 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1010                                  unsigned long start_time)
1011 {
1012         part_stat_lock();
1013         update_io_ticks(bdev, start_time, false);
1014         part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1015         part_stat_unlock();
1016 
1017         return start_time;
1018 }
1019 EXPORT_SYMBOL(bdev_start_io_acct);
1020 
1021 /**
1022  * bio_start_io_acct - start I/O accounting for bio based drivers
1023  * @bio:        bio to start account for
1024  *
1025  * Returns the start time that should be passed back to bio_end_io_acct().
1026  */
1027 unsigned long bio_start_io_acct(struct bio *bio)
1028 {
1029         return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1030 }
1031 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1032 
1033 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1034                       unsigned int sectors, unsigned long start_time)
1035 {
1036         const int sgrp = op_stat_group(op);
1037         unsigned long now = READ_ONCE(jiffies);
1038         unsigned long duration = now - start_time;
1039 
1040         part_stat_lock();
1041         update_io_ticks(bdev, now, true);
1042         part_stat_inc(bdev, ios[sgrp]);
1043         part_stat_add(bdev, sectors[sgrp], sectors);
1044         part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1045         part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1046         part_stat_unlock();
1047 }
1048 EXPORT_SYMBOL(bdev_end_io_acct);
1049 
1050 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1051                               struct block_device *orig_bdev)
1052 {
1053         bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1054 }
1055 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1056 
1057 /**
1058  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1059  * @q : the queue of the device being checked
1060  *
1061  * Description:
1062  *    Check if underlying low-level drivers of a device are busy.
1063  *    If the drivers want to export their busy state, they must set own
1064  *    exporting function using blk_queue_lld_busy() first.
1065  *
1066  *    Basically, this function is used only by request stacking drivers
1067  *    to stop dispatching requests to underlying devices when underlying
1068  *    devices are busy.  This behavior helps more I/O merging on the queue
1069  *    of the request stacking driver and prevents I/O throughput regression
1070  *    on burst I/O load.
1071  *
1072  * Return:
1073  *    0 - Not busy (The request stacking driver should dispatch request)
1074  *    1 - Busy (The request stacking driver should stop dispatching request)
1075  */
1076 int blk_lld_busy(struct request_queue *q)
1077 {
1078         if (queue_is_mq(q) && q->mq_ops->busy)
1079                 return q->mq_ops->busy(q);
1080 
1081         return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(blk_lld_busy);
1084 
1085 int kblockd_schedule_work(struct work_struct *work)
1086 {
1087         return queue_work(kblockd_workqueue, work);
1088 }
1089 EXPORT_SYMBOL(kblockd_schedule_work);
1090 
1091 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1092                                 unsigned long delay)
1093 {
1094         return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1095 }
1096 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1097 
1098 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1099 {
1100         struct task_struct *tsk = current;
1101 
1102         /*
1103          * If this is a nested plug, don't actually assign it.
1104          */
1105         if (tsk->plug)
1106                 return;
1107 
1108         plug->cur_ktime = 0;
1109         plug->mq_list = NULL;
1110         plug->cached_rq = NULL;
1111         plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1112         plug->rq_count = 0;
1113         plug->multiple_queues = false;
1114         plug->has_elevator = false;
1115         INIT_LIST_HEAD(&plug->cb_list);
1116 
1117         /*
1118          * Store ordering should not be needed here, since a potential
1119          * preempt will imply a full memory barrier
1120          */
1121         tsk->plug = plug;
1122 }
1123 
1124 /**
1125  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1126  * @plug:       The &struct blk_plug that needs to be initialized
1127  *
1128  * Description:
1129  *   blk_start_plug() indicates to the block layer an intent by the caller
1130  *   to submit multiple I/O requests in a batch.  The block layer may use
1131  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1132  *   is called.  However, the block layer may choose to submit requests
1133  *   before a call to blk_finish_plug() if the number of queued I/Os
1134  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1135  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1136  *   the task schedules (see below).
1137  *
1138  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1139  *   pending I/O should the task end up blocking between blk_start_plug() and
1140  *   blk_finish_plug(). This is important from a performance perspective, but
1141  *   also ensures that we don't deadlock. For instance, if the task is blocking
1142  *   for a memory allocation, memory reclaim could end up wanting to free a
1143  *   page belonging to that request that is currently residing in our private
1144  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1145  *   this kind of deadlock.
1146  */
1147 void blk_start_plug(struct blk_plug *plug)
1148 {
1149         blk_start_plug_nr_ios(plug, 1);
1150 }
1151 EXPORT_SYMBOL(blk_start_plug);
1152 
1153 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1154 {
1155         LIST_HEAD(callbacks);
1156 
1157         while (!list_empty(&plug->cb_list)) {
1158                 list_splice_init(&plug->cb_list, &callbacks);
1159 
1160                 while (!list_empty(&callbacks)) {
1161                         struct blk_plug_cb *cb = list_first_entry(&callbacks,
1162                                                           struct blk_plug_cb,
1163                                                           list);
1164                         list_del(&cb->list);
1165                         cb->callback(cb, from_schedule);
1166                 }
1167         }
1168 }
1169 
1170 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1171                                       int size)
1172 {
1173         struct blk_plug *plug = current->plug;
1174         struct blk_plug_cb *cb;
1175 
1176         if (!plug)
1177                 return NULL;
1178 
1179         list_for_each_entry(cb, &plug->cb_list, list)
1180                 if (cb->callback == unplug && cb->data == data)
1181                         return cb;
1182 
1183         /* Not currently on the callback list */
1184         BUG_ON(size < sizeof(*cb));
1185         cb = kzalloc(size, GFP_ATOMIC);
1186         if (cb) {
1187                 cb->data = data;
1188                 cb->callback = unplug;
1189                 list_add(&cb->list, &plug->cb_list);
1190         }
1191         return cb;
1192 }
1193 EXPORT_SYMBOL(blk_check_plugged);
1194 
1195 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1196 {
1197         if (!list_empty(&plug->cb_list))
1198                 flush_plug_callbacks(plug, from_schedule);
1199         blk_mq_flush_plug_list(plug, from_schedule);
1200         /*
1201          * Unconditionally flush out cached requests, even if the unplug
1202          * event came from schedule. Since we know hold references to the
1203          * queue for cached requests, we don't want a blocked task holding
1204          * up a queue freeze/quiesce event.
1205          */
1206         if (unlikely(!rq_list_empty(plug->cached_rq)))
1207                 blk_mq_free_plug_rqs(plug);
1208 
1209         plug->cur_ktime = 0;
1210         current->flags &= ~PF_BLOCK_TS;
1211 }
1212 
1213 /**
1214  * blk_finish_plug - mark the end of a batch of submitted I/O
1215  * @plug:       The &struct blk_plug passed to blk_start_plug()
1216  *
1217  * Description:
1218  * Indicate that a batch of I/O submissions is complete.  This function
1219  * must be paired with an initial call to blk_start_plug().  The intent
1220  * is to allow the block layer to optimize I/O submission.  See the
1221  * documentation for blk_start_plug() for more information.
1222  */
1223 void blk_finish_plug(struct blk_plug *plug)
1224 {
1225         if (plug == current->plug) {
1226                 __blk_flush_plug(plug, false);
1227                 current->plug = NULL;
1228         }
1229 }
1230 EXPORT_SYMBOL(blk_finish_plug);
1231 
1232 void blk_io_schedule(void)
1233 {
1234         /* Prevent hang_check timer from firing at us during very long I/O */
1235         unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1236 
1237         if (timeout)
1238                 io_schedule_timeout(timeout);
1239         else
1240                 io_schedule();
1241 }
1242 EXPORT_SYMBOL_GPL(blk_io_schedule);
1243 
1244 int __init blk_dev_init(void)
1245 {
1246         BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1247         BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1248                         sizeof_field(struct request, cmd_flags));
1249         BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1250                         sizeof_field(struct bio, bi_opf));
1251 
1252         /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1253         kblockd_workqueue = alloc_workqueue("kblockd",
1254                                             WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1255         if (!kblockd_workqueue)
1256                 panic("Failed to create kblockd\n");
1257 
1258         blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1259 
1260         blk_debugfs_root = debugfs_create_dir("block", NULL);
1261 
1262         return 0;
1263 }
1264 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php