~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/block/blk-iocost.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0
  2  *
  3  * IO cost model based controller.
  4  *
  5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
  6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
  7  * Copyright (C) 2019 Facebook
  8  *
  9  * One challenge of controlling IO resources is the lack of trivially
 10  * observable cost metric.  This is distinguished from CPU and memory where
 11  * wallclock time and the number of bytes can serve as accurate enough
 12  * approximations.
 13  *
 14  * Bandwidth and iops are the most commonly used metrics for IO devices but
 15  * depending on the type and specifics of the device, different IO patterns
 16  * easily lead to multiple orders of magnitude variations rendering them
 17  * useless for the purpose of IO capacity distribution.  While on-device
 18  * time, with a lot of clutches, could serve as a useful approximation for
 19  * non-queued rotational devices, this is no longer viable with modern
 20  * devices, even the rotational ones.
 21  *
 22  * While there is no cost metric we can trivially observe, it isn't a
 23  * complete mystery.  For example, on a rotational device, seek cost
 24  * dominates while a contiguous transfer contributes a smaller amount
 25  * proportional to the size.  If we can characterize at least the relative
 26  * costs of these different types of IOs, it should be possible to
 27  * implement a reasonable work-conserving proportional IO resource
 28  * distribution.
 29  *
 30  * 1. IO Cost Model
 31  *
 32  * IO cost model estimates the cost of an IO given its basic parameters and
 33  * history (e.g. the end sector of the last IO).  The cost is measured in
 34  * device time.  If a given IO is estimated to cost 10ms, the device should
 35  * be able to process ~100 of those IOs in a second.
 36  *
 37  * Currently, there's only one builtin cost model - linear.  Each IO is
 38  * classified as sequential or random and given a base cost accordingly.
 39  * On top of that, a size cost proportional to the length of the IO is
 40  * added.  While simple, this model captures the operational
 41  * characteristics of a wide varienty of devices well enough.  Default
 42  * parameters for several different classes of devices are provided and the
 43  * parameters can be configured from userspace via
 44  * /sys/fs/cgroup/io.cost.model.
 45  *
 46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
 47  * device-specific coefficients.
 48  *
 49  * 2. Control Strategy
 50  *
 51  * The device virtual time (vtime) is used as the primary control metric.
 52  * The control strategy is composed of the following three parts.
 53  *
 54  * 2-1. Vtime Distribution
 55  *
 56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
 57  * calculated.  Please consider the following hierarchy where the numbers
 58  * inside parentheses denote the configured weights.
 59  *
 60  *           root
 61  *         /       \
 62  *      A (w:100)  B (w:300)
 63  *      /       \
 64  *  A0 (w:100)  A1 (w:100)
 65  *
 66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
 67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
 68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
 69  * 12.5% each.  The distribution mechanism only cares about these flattened
 70  * shares.  They're called hweights (hierarchical weights) and always add
 71  * upto 1 (WEIGHT_ONE).
 72  *
 73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
 74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
 75  * against the device vtime - an IO which takes 10ms on the underlying
 76  * device is considered to take 80ms on A0.
 77  *
 78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
 79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
 80  * the vtime consumed by past IOs and can issue a new IO if doing so
 81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
 82  * suspended until the vtime has progressed enough to cover it.
 83  *
 84  * 2-2. Vrate Adjustment
 85  *
 86  * It's unrealistic to expect the cost model to be perfect.  There are too
 87  * many devices and even on the same device the overall performance
 88  * fluctuates depending on numerous factors such as IO mixture and device
 89  * internal garbage collection.  The controller needs to adapt dynamically.
 90  *
 91  * This is achieved by adjusting the overall IO rate according to how busy
 92  * the device is.  If the device becomes overloaded, we're sending down too
 93  * many IOs and should generally slow down.  If there are waiting issuers
 94  * but the device isn't saturated, we're issuing too few and should
 95  * generally speed up.
 96  *
 97  * To slow down, we lower the vrate - the rate at which the device vtime
 98  * passes compared to the wall clock.  For example, if the vtime is running
 99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207 
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211 
212 enum {
213         MILLION                 = 1000000,
214 
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218 
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227 
228         INUSE_ADJ_STEP_PCT      = 25,
229 
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232 
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235 };
236 
237 enum {
238         /*
239          * As vtime is used to calculate the cost of each IO, it needs to
240          * be fairly high precision.  For example, it should be able to
241          * represent the cost of a single page worth of discard with
242          * suffificient accuracy.  At the same time, it should be able to
243          * represent reasonably long enough durations to be useful and
244          * convenient during operation.
245          *
246          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247          * granularity and days of wrap-around time even at extreme vrates.
248          */
249         VTIME_PER_SEC_SHIFT     = 37,
250         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
251         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
252         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
253 
254         /* bound vrate adjustments within two orders of magnitude */
255         VRATE_MIN_PPM           = 10000,        /* 1% */
256         VRATE_MAX_PPM           = 100000000,    /* 10000% */
257 
258         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259         VRATE_CLAMP_ADJ_PCT     = 4,
260 
261         /* switch iff the conditions are met for longer than this */
262         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
263 };
264 
265 enum {
266         /* if IOs end up waiting for requests, issue less */
267         RQ_WAIT_BUSY_PCT        = 5,
268 
269         /* unbusy hysterisis */
270         UNBUSY_THR_PCT          = 75,
271 
272         /*
273          * The effect of delay is indirect and non-linear and a huge amount of
274          * future debt can accumulate abruptly while unthrottled. Linearly scale
275          * up delay as debt is going up and then let it decay exponentially.
276          * This gives us quick ramp ups while delay is accumulating and long
277          * tails which can help reducing the frequency of debt explosions on
278          * unthrottle. The parameters are experimentally determined.
279          *
280          * The delay mechanism provides adequate protection and behavior in many
281          * cases. However, this is far from ideal and falls shorts on both
282          * fronts. The debtors are often throttled too harshly costing a
283          * significant level of fairness and possibly total work while the
284          * protection against their impacts on the system can be choppy and
285          * unreliable.
286          *
287          * The shortcoming primarily stems from the fact that, unlike for page
288          * cache, the kernel doesn't have well-defined back-pressure propagation
289          * mechanism and policies for anonymous memory. Fully addressing this
290          * issue will likely require substantial improvements in the area.
291          */
292         MIN_DELAY_THR_PCT       = 500,
293         MAX_DELAY_THR_PCT       = 25000,
294         MIN_DELAY               = 250,
295         MAX_DELAY               = 250 * USEC_PER_MSEC,
296 
297         /* halve debts if avg usage over 100ms is under 50% */
298         DFGV_USAGE_PCT          = 50,
299         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
300 
301         /* don't let cmds which take a very long time pin lagging for too long */
302         MAX_LAGGING_PERIODS     = 10,
303 
304         /*
305          * Count IO size in 4k pages.  The 12bit shift helps keeping
306          * size-proportional components of cost calculation in closer
307          * numbers of digits to per-IO cost components.
308          */
309         IOC_PAGE_SHIFT          = 12,
310         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
311         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
312 
313         /* if apart further than 16M, consider randio for linear model */
314         LCOEF_RANDIO_PAGES      = 4096,
315 };
316 
317 enum ioc_running {
318         IOC_IDLE,
319         IOC_RUNNING,
320         IOC_STOP,
321 };
322 
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325         QOS_ENABLE,
326         QOS_CTRL,
327         NR_QOS_CTRL_PARAMS,
328 };
329 
330 /* io.cost.qos params */
331 enum {
332         QOS_RPPM,
333         QOS_RLAT,
334         QOS_WPPM,
335         QOS_WLAT,
336         QOS_MIN,
337         QOS_MAX,
338         NR_QOS_PARAMS,
339 };
340 
341 /* io.cost.model controls */
342 enum {
343         COST_CTRL,
344         COST_MODEL,
345         NR_COST_CTRL_PARAMS,
346 };
347 
348 /* builtin linear cost model coefficients */
349 enum {
350         I_LCOEF_RBPS,
351         I_LCOEF_RSEQIOPS,
352         I_LCOEF_RRANDIOPS,
353         I_LCOEF_WBPS,
354         I_LCOEF_WSEQIOPS,
355         I_LCOEF_WRANDIOPS,
356         NR_I_LCOEFS,
357 };
358 
359 enum {
360         LCOEF_RPAGE,
361         LCOEF_RSEQIO,
362         LCOEF_RRANDIO,
363         LCOEF_WPAGE,
364         LCOEF_WSEQIO,
365         LCOEF_WRANDIO,
366         NR_LCOEFS,
367 };
368 
369 enum {
370         AUTOP_INVALID,
371         AUTOP_HDD,
372         AUTOP_SSD_QD1,
373         AUTOP_SSD_DFL,
374         AUTOP_SSD_FAST,
375 };
376 
377 struct ioc_params {
378         u32                             qos[NR_QOS_PARAMS];
379         u64                             i_lcoefs[NR_I_LCOEFS];
380         u64                             lcoefs[NR_LCOEFS];
381         u32                             too_fast_vrate_pct;
382         u32                             too_slow_vrate_pct;
383 };
384 
385 struct ioc_margins {
386         s64                             min;
387         s64                             low;
388         s64                             target;
389 };
390 
391 struct ioc_missed {
392         local_t                         nr_met;
393         local_t                         nr_missed;
394         u32                             last_met;
395         u32                             last_missed;
396 };
397 
398 struct ioc_pcpu_stat {
399         struct ioc_missed               missed[2];
400 
401         local64_t                       rq_wait_ns;
402         u64                             last_rq_wait_ns;
403 };
404 
405 /* per device */
406 struct ioc {
407         struct rq_qos                   rqos;
408 
409         bool                            enabled;
410 
411         struct ioc_params               params;
412         struct ioc_margins              margins;
413         u32                             period_us;
414         u32                             timer_slack_ns;
415         u64                             vrate_min;
416         u64                             vrate_max;
417 
418         spinlock_t                      lock;
419         struct timer_list               timer;
420         struct list_head                active_iocgs;   /* active cgroups */
421         struct ioc_pcpu_stat __percpu   *pcpu_stat;
422 
423         enum ioc_running                running;
424         atomic64_t                      vtime_rate;
425         u64                             vtime_base_rate;
426         s64                             vtime_err;
427 
428         seqcount_spinlock_t             period_seqcount;
429         u64                             period_at;      /* wallclock starttime */
430         u64                             period_at_vtime; /* vtime starttime */
431 
432         atomic64_t                      cur_period;     /* inc'd each period */
433         int                             busy_level;     /* saturation history */
434 
435         bool                            weights_updated;
436         atomic_t                        hweight_gen;    /* for lazy hweights */
437 
438         /* debt forgivness */
439         u64                             dfgv_period_at;
440         u64                             dfgv_period_rem;
441         u64                             dfgv_usage_us_sum;
442 
443         u64                             autop_too_fast_at;
444         u64                             autop_too_slow_at;
445         int                             autop_idx;
446         bool                            user_qos_params:1;
447         bool                            user_cost_model:1;
448 };
449 
450 struct iocg_pcpu_stat {
451         local64_t                       abs_vusage;
452 };
453 
454 struct iocg_stat {
455         u64                             usage_us;
456         u64                             wait_us;
457         u64                             indebt_us;
458         u64                             indelay_us;
459 };
460 
461 /* per device-cgroup pair */
462 struct ioc_gq {
463         struct blkg_policy_data         pd;
464         struct ioc                      *ioc;
465 
466         /*
467          * A iocg can get its weight from two sources - an explicit
468          * per-device-cgroup configuration or the default weight of the
469          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
470          * configuration.  `weight` is the effective considering both
471          * sources.
472          *
473          * When an idle cgroup becomes active its `active` goes from 0 to
474          * `weight`.  `inuse` is the surplus adjusted active weight.
475          * `active` and `inuse` are used to calculate `hweight_active` and
476          * `hweight_inuse`.
477          *
478          * `last_inuse` remembers `inuse` while an iocg is idle to persist
479          * surplus adjustments.
480          *
481          * `inuse` may be adjusted dynamically during period. `saved_*` are used
482          * to determine and track adjustments.
483          */
484         u32                             cfg_weight;
485         u32                             weight;
486         u32                             active;
487         u32                             inuse;
488 
489         u32                             last_inuse;
490         s64                             saved_margin;
491 
492         sector_t                        cursor;         /* to detect randio */
493 
494         /*
495          * `vtime` is this iocg's vtime cursor which progresses as IOs are
496          * issued.  If lagging behind device vtime, the delta represents
497          * the currently available IO budget.  If running ahead, the
498          * overage.
499          *
500          * `vtime_done` is the same but progressed on completion rather
501          * than issue.  The delta behind `vtime` represents the cost of
502          * currently in-flight IOs.
503          */
504         atomic64_t                      vtime;
505         atomic64_t                      done_vtime;
506         u64                             abs_vdebt;
507 
508         /* current delay in effect and when it started */
509         u64                             delay;
510         u64                             delay_at;
511 
512         /*
513          * The period this iocg was last active in.  Used for deactivation
514          * and invalidating `vtime`.
515          */
516         atomic64_t                      active_period;
517         struct list_head                active_list;
518 
519         /* see __propagate_weights() and current_hweight() for details */
520         u64                             child_active_sum;
521         u64                             child_inuse_sum;
522         u64                             child_adjusted_sum;
523         int                             hweight_gen;
524         u32                             hweight_active;
525         u32                             hweight_inuse;
526         u32                             hweight_donating;
527         u32                             hweight_after_donation;
528 
529         struct list_head                walk_list;
530         struct list_head                surplus_list;
531 
532         struct wait_queue_head          waitq;
533         struct hrtimer                  waitq_timer;
534 
535         /* timestamp at the latest activation */
536         u64                             activated_at;
537 
538         /* statistics */
539         struct iocg_pcpu_stat __percpu  *pcpu_stat;
540         struct iocg_stat                stat;
541         struct iocg_stat                last_stat;
542         u64                             last_stat_abs_vusage;
543         u64                             usage_delta_us;
544         u64                             wait_since;
545         u64                             indebt_since;
546         u64                             indelay_since;
547 
548         /* this iocg's depth in the hierarchy and ancestors including self */
549         int                             level;
550         struct ioc_gq                   *ancestors[];
551 };
552 
553 /* per cgroup */
554 struct ioc_cgrp {
555         struct blkcg_policy_data        cpd;
556         unsigned int                    dfl_weight;
557 };
558 
559 struct ioc_now {
560         u64                             now_ns;
561         u64                             now;
562         u64                             vnow;
563 };
564 
565 struct iocg_wait {
566         struct wait_queue_entry         wait;
567         struct bio                      *bio;
568         u64                             abs_cost;
569         bool                            committed;
570 };
571 
572 struct iocg_wake_ctx {
573         struct ioc_gq                   *iocg;
574         u32                             hw_inuse;
575         s64                             vbudget;
576 };
577 
578 static const struct ioc_params autop[] = {
579         [AUTOP_HDD] = {
580                 .qos                            = {
581                         [QOS_RLAT]              =        250000, /* 250ms */
582                         [QOS_WLAT]              =        250000,
583                         [QOS_MIN]               = VRATE_MIN_PPM,
584                         [QOS_MAX]               = VRATE_MAX_PPM,
585                 },
586                 .i_lcoefs                       = {
587                         [I_LCOEF_RBPS]          =     174019176,
588                         [I_LCOEF_RSEQIOPS]      =         41708,
589                         [I_LCOEF_RRANDIOPS]     =           370,
590                         [I_LCOEF_WBPS]          =     178075866,
591                         [I_LCOEF_WSEQIOPS]      =         42705,
592                         [I_LCOEF_WRANDIOPS]     =           378,
593                 },
594         },
595         [AUTOP_SSD_QD1] = {
596                 .qos                            = {
597                         [QOS_RLAT]              =         25000, /* 25ms */
598                         [QOS_WLAT]              =         25000,
599                         [QOS_MIN]               = VRATE_MIN_PPM,
600                         [QOS_MAX]               = VRATE_MAX_PPM,
601                 },
602                 .i_lcoefs                       = {
603                         [I_LCOEF_RBPS]          =     245855193,
604                         [I_LCOEF_RSEQIOPS]      =         61575,
605                         [I_LCOEF_RRANDIOPS]     =          6946,
606                         [I_LCOEF_WBPS]          =     141365009,
607                         [I_LCOEF_WSEQIOPS]      =         33716,
608                         [I_LCOEF_WRANDIOPS]     =         26796,
609                 },
610         },
611         [AUTOP_SSD_DFL] = {
612                 .qos                            = {
613                         [QOS_RLAT]              =         25000, /* 25ms */
614                         [QOS_WLAT]              =         25000,
615                         [QOS_MIN]               = VRATE_MIN_PPM,
616                         [QOS_MAX]               = VRATE_MAX_PPM,
617                 },
618                 .i_lcoefs                       = {
619                         [I_LCOEF_RBPS]          =     488636629,
620                         [I_LCOEF_RSEQIOPS]      =          8932,
621                         [I_LCOEF_RRANDIOPS]     =          8518,
622                         [I_LCOEF_WBPS]          =     427891549,
623                         [I_LCOEF_WSEQIOPS]      =         28755,
624                         [I_LCOEF_WRANDIOPS]     =         21940,
625                 },
626                 .too_fast_vrate_pct             =           500,
627         },
628         [AUTOP_SSD_FAST] = {
629                 .qos                            = {
630                         [QOS_RLAT]              =          5000, /* 5ms */
631                         [QOS_WLAT]              =          5000,
632                         [QOS_MIN]               = VRATE_MIN_PPM,
633                         [QOS_MAX]               = VRATE_MAX_PPM,
634                 },
635                 .i_lcoefs                       = {
636                         [I_LCOEF_RBPS]          =    3102524156LLU,
637                         [I_LCOEF_RSEQIOPS]      =        724816,
638                         [I_LCOEF_RRANDIOPS]     =        778122,
639                         [I_LCOEF_WBPS]          =    1742780862LLU,
640                         [I_LCOEF_WSEQIOPS]      =        425702,
641                         [I_LCOEF_WRANDIOPS]     =        443193,
642                 },
643                 .too_slow_vrate_pct             =            10,
644         },
645 };
646 
647 /*
648  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
649  * vtime credit shortage and down on device saturation.
650  */
651 static u32 vrate_adj_pct[] =
652         { 0, 0, 0, 0,
653           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656 
657 static struct blkcg_policy blkcg_policy_iocost;
658 
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661 {
662         return container_of(rqos, struct ioc, rqos);
663 }
664 
665 static struct ioc *q_to_ioc(struct request_queue *q)
666 {
667         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668 }
669 
670 static const char __maybe_unused *ioc_name(struct ioc *ioc)
671 {
672         struct gendisk *disk = ioc->rqos.disk;
673 
674         if (!disk)
675                 return "<unknown>";
676         return disk->disk_name;
677 }
678 
679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
680 {
681         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
682 }
683 
684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
685 {
686         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
687 }
688 
689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
690 {
691         return pd_to_blkg(&iocg->pd);
692 }
693 
694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
695 {
696         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697                             struct ioc_cgrp, cpd);
698 }
699 
700 /*
701  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
702  * weight, the more expensive each IO.  Must round up.
703  */
704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
705 {
706         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
707 }
708 
709 /*
710  * The inverse of abs_cost_to_cost().  Must round up.
711  */
712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
713 {
714         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
715 }
716 
717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718                             u64 abs_cost, u64 cost)
719 {
720         struct iocg_pcpu_stat *gcs;
721 
722         bio->bi_iocost_cost = cost;
723         atomic64_add(cost, &iocg->vtime);
724 
725         gcs = get_cpu_ptr(iocg->pcpu_stat);
726         local64_add(abs_cost, &gcs->abs_vusage);
727         put_cpu_ptr(gcs);
728 }
729 
730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
731 {
732         if (lock_ioc) {
733                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
734                 spin_lock(&iocg->waitq.lock);
735         } else {
736                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
737         }
738 }
739 
740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
741 {
742         if (unlock_ioc) {
743                 spin_unlock(&iocg->waitq.lock);
744                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
745         } else {
746                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
747         }
748 }
749 
750 #define CREATE_TRACE_POINTS
751 #include <trace/events/iocost.h>
752 
753 static void ioc_refresh_margins(struct ioc *ioc)
754 {
755         struct ioc_margins *margins = &ioc->margins;
756         u32 period_us = ioc->period_us;
757         u64 vrate = ioc->vtime_base_rate;
758 
759         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
762 }
763 
764 /* latency Qos params changed, update period_us and all the dependent params */
765 static void ioc_refresh_period_us(struct ioc *ioc)
766 {
767         u32 ppm, lat, multi, period_us;
768 
769         lockdep_assert_held(&ioc->lock);
770 
771         /* pick the higher latency target */
772         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773                 ppm = ioc->params.qos[QOS_RPPM];
774                 lat = ioc->params.qos[QOS_RLAT];
775         } else {
776                 ppm = ioc->params.qos[QOS_WPPM];
777                 lat = ioc->params.qos[QOS_WLAT];
778         }
779 
780         /*
781          * We want the period to be long enough to contain a healthy number
782          * of IOs while short enough for granular control.  Define it as a
783          * multiple of the latency target.  Ideally, the multiplier should
784          * be scaled according to the percentile so that it would nominally
785          * contain a certain number of requests.  Let's be simpler and
786          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
787          */
788         if (ppm)
789                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
790         else
791                 multi = 2;
792         period_us = multi * lat;
793         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
794 
795         /* calculate dependent params */
796         ioc->period_us = period_us;
797         ioc->timer_slack_ns = div64_u64(
798                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
799                 100);
800         ioc_refresh_margins(ioc);
801 }
802 
803 /*
804  *  ioc->rqos.disk isn't initialized when this function is called from
805  *  the init path.
806  */
807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
808 {
809         int idx = ioc->autop_idx;
810         const struct ioc_params *p = &autop[idx];
811         u32 vrate_pct;
812         u64 now_ns;
813 
814         /* rotational? */
815         if (!blk_queue_nonrot(disk->queue))
816                 return AUTOP_HDD;
817 
818         /* handle SATA SSDs w/ broken NCQ */
819         if (blk_queue_depth(disk->queue) == 1)
820                 return AUTOP_SSD_QD1;
821 
822         /* use one of the normal ssd sets */
823         if (idx < AUTOP_SSD_DFL)
824                 return AUTOP_SSD_DFL;
825 
826         /* if user is overriding anything, maintain what was there */
827         if (ioc->user_qos_params || ioc->user_cost_model)
828                 return idx;
829 
830         /* step up/down based on the vrate */
831         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832         now_ns = blk_time_get_ns();
833 
834         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835                 if (!ioc->autop_too_fast_at)
836                         ioc->autop_too_fast_at = now_ns;
837                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
838                         return idx + 1;
839         } else {
840                 ioc->autop_too_fast_at = 0;
841         }
842 
843         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844                 if (!ioc->autop_too_slow_at)
845                         ioc->autop_too_slow_at = now_ns;
846                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
847                         return idx - 1;
848         } else {
849                 ioc->autop_too_slow_at = 0;
850         }
851 
852         return idx;
853 }
854 
855 /*
856  * Take the followings as input
857  *
858  *  @bps        maximum sequential throughput
859  *  @seqiops    maximum sequential 4k iops
860  *  @randiops   maximum random 4k iops
861  *
862  * and calculate the linear model cost coefficients.
863  *
864  *  *@page      per-page cost           1s / (@bps / 4096)
865  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
866  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
867  */
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869                         u64 *page, u64 *seqio, u64 *randio)
870 {
871         u64 v;
872 
873         *page = *seqio = *randio = 0;
874 
875         if (bps) {
876                 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
877 
878                 if (bps_pages)
879                         *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
880                 else
881                         *page = 1;
882         }
883 
884         if (seqiops) {
885                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
886                 if (v > *page)
887                         *seqio = v - *page;
888         }
889 
890         if (randiops) {
891                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
892                 if (v > *page)
893                         *randio = v - *page;
894         }
895 }
896 
897 static void ioc_refresh_lcoefs(struct ioc *ioc)
898 {
899         u64 *u = ioc->params.i_lcoefs;
900         u64 *c = ioc->params.lcoefs;
901 
902         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
903                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
904         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
905                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
906 }
907 
908 /*
909  * struct gendisk is required as an argument because ioc->rqos.disk
910  * is not properly initialized when called from the init path.
911  */
912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
913                                     struct gendisk *disk)
914 {
915         const struct ioc_params *p;
916         int idx;
917 
918         lockdep_assert_held(&ioc->lock);
919 
920         idx = ioc_autop_idx(ioc, disk);
921         p = &autop[idx];
922 
923         if (idx == ioc->autop_idx && !force)
924                 return false;
925 
926         if (idx != ioc->autop_idx) {
927                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
928                 ioc->vtime_base_rate = VTIME_PER_USEC;
929         }
930 
931         ioc->autop_idx = idx;
932         ioc->autop_too_fast_at = 0;
933         ioc->autop_too_slow_at = 0;
934 
935         if (!ioc->user_qos_params)
936                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
937         if (!ioc->user_cost_model)
938                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
939 
940         ioc_refresh_period_us(ioc);
941         ioc_refresh_lcoefs(ioc);
942 
943         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
944                                             VTIME_PER_USEC, MILLION);
945         ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
946                                             VTIME_PER_USEC, MILLION);
947 
948         return true;
949 }
950 
951 static bool ioc_refresh_params(struct ioc *ioc, bool force)
952 {
953         return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
954 }
955 
956 /*
957  * When an iocg accumulates too much vtime or gets deactivated, we throw away
958  * some vtime, which lowers the overall device utilization. As the exact amount
959  * which is being thrown away is known, we can compensate by accelerating the
960  * vrate accordingly so that the extra vtime generated in the current period
961  * matches what got lost.
962  */
963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
964 {
965         s64 pleft = ioc->period_at + ioc->period_us - now->now;
966         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
967         s64 vcomp, vcomp_min, vcomp_max;
968 
969         lockdep_assert_held(&ioc->lock);
970 
971         /* we need some time left in this period */
972         if (pleft <= 0)
973                 goto done;
974 
975         /*
976          * Calculate how much vrate should be adjusted to offset the error.
977          * Limit the amount of adjustment and deduct the adjusted amount from
978          * the error.
979          */
980         vcomp = -div64_s64(ioc->vtime_err, pleft);
981         vcomp_min = -(ioc->vtime_base_rate >> 1);
982         vcomp_max = ioc->vtime_base_rate;
983         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
984 
985         ioc->vtime_err += vcomp * pleft;
986 
987         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
988 done:
989         /* bound how much error can accumulate */
990         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
991 }
992 
993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
994                                   int nr_lagging, int nr_shortages,
995                                   int prev_busy_level, u32 *missed_ppm)
996 {
997         u64 vrate = ioc->vtime_base_rate;
998         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
999 
1000         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
1001                 if (ioc->busy_level != prev_busy_level || nr_lagging)
1002                         trace_iocost_ioc_vrate_adj(ioc, vrate,
1003                                                    missed_ppm, rq_wait_pct,
1004                                                    nr_lagging, nr_shortages);
1005 
1006                 return;
1007         }
1008 
1009         /*
1010          * If vrate is out of bounds, apply clamp gradually as the
1011          * bounds can change abruptly.  Otherwise, apply busy_level
1012          * based adjustment.
1013          */
1014         if (vrate < vrate_min) {
1015                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1016                 vrate = min(vrate, vrate_min);
1017         } else if (vrate > vrate_max) {
1018                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1019                 vrate = max(vrate, vrate_max);
1020         } else {
1021                 int idx = min_t(int, abs(ioc->busy_level),
1022                                 ARRAY_SIZE(vrate_adj_pct) - 1);
1023                 u32 adj_pct = vrate_adj_pct[idx];
1024 
1025                 if (ioc->busy_level > 0)
1026                         adj_pct = 100 - adj_pct;
1027                 else
1028                         adj_pct = 100 + adj_pct;
1029 
1030                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1031                               vrate_min, vrate_max);
1032         }
1033 
1034         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1035                                    nr_lagging, nr_shortages);
1036 
1037         ioc->vtime_base_rate = vrate;
1038         ioc_refresh_margins(ioc);
1039 }
1040 
1041 /* take a snapshot of the current [v]time and vrate */
1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1043 {
1044         unsigned seq;
1045         u64 vrate;
1046 
1047         now->now_ns = blk_time_get_ns();
1048         now->now = ktime_to_us(now->now_ns);
1049         vrate = atomic64_read(&ioc->vtime_rate);
1050 
1051         /*
1052          * The current vtime is
1053          *
1054          *   vtime at period start + (wallclock time since the start) * vrate
1055          *
1056          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1057          * needed, they're seqcount protected.
1058          */
1059         do {
1060                 seq = read_seqcount_begin(&ioc->period_seqcount);
1061                 now->vnow = ioc->period_at_vtime +
1062                         (now->now - ioc->period_at) * vrate;
1063         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1064 }
1065 
1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1067 {
1068         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1069 
1070         write_seqcount_begin(&ioc->period_seqcount);
1071         ioc->period_at = now->now;
1072         ioc->period_at_vtime = now->vnow;
1073         write_seqcount_end(&ioc->period_seqcount);
1074 
1075         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1076         add_timer(&ioc->timer);
1077 }
1078 
1079 /*
1080  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1081  * weight sums and propagate upwards accordingly. If @save, the current margin
1082  * is saved to be used as reference for later inuse in-period adjustments.
1083  */
1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085                                 bool save, struct ioc_now *now)
1086 {
1087         struct ioc *ioc = iocg->ioc;
1088         int lvl;
1089 
1090         lockdep_assert_held(&ioc->lock);
1091 
1092         /*
1093          * For an active leaf node, its inuse shouldn't be zero or exceed
1094          * @active. An active internal node's inuse is solely determined by the
1095          * inuse to active ratio of its children regardless of @inuse.
1096          */
1097         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1098                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1099                                            iocg->child_active_sum);
1100         } else {
1101                 inuse = clamp_t(u32, inuse, 1, active);
1102         }
1103 
1104         iocg->last_inuse = iocg->inuse;
1105         if (save)
1106                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1107 
1108         if (active == iocg->active && inuse == iocg->inuse)
1109                 return;
1110 
1111         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1112                 struct ioc_gq *parent = iocg->ancestors[lvl];
1113                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1114                 u32 parent_active = 0, parent_inuse = 0;
1115 
1116                 /* update the level sums */
1117                 parent->child_active_sum += (s32)(active - child->active);
1118                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1119                 /* apply the updates */
1120                 child->active = active;
1121                 child->inuse = inuse;
1122 
1123                 /*
1124                  * The delta between inuse and active sums indicates that
1125                  * much of weight is being given away.  Parent's inuse
1126                  * and active should reflect the ratio.
1127                  */
1128                 if (parent->child_active_sum) {
1129                         parent_active = parent->weight;
1130                         parent_inuse = DIV64_U64_ROUND_UP(
1131                                 parent_active * parent->child_inuse_sum,
1132                                 parent->child_active_sum);
1133                 }
1134 
1135                 /* do we need to keep walking up? */
1136                 if (parent_active == parent->active &&
1137                     parent_inuse == parent->inuse)
1138                         break;
1139 
1140                 active = parent_active;
1141                 inuse = parent_inuse;
1142         }
1143 
1144         ioc->weights_updated = true;
1145 }
1146 
1147 static void commit_weights(struct ioc *ioc)
1148 {
1149         lockdep_assert_held(&ioc->lock);
1150 
1151         if (ioc->weights_updated) {
1152                 /* paired with rmb in current_hweight(), see there */
1153                 smp_wmb();
1154                 atomic_inc(&ioc->hweight_gen);
1155                 ioc->weights_updated = false;
1156         }
1157 }
1158 
1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1160                               bool save, struct ioc_now *now)
1161 {
1162         __propagate_weights(iocg, active, inuse, save, now);
1163         commit_weights(iocg->ioc);
1164 }
1165 
1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1167 {
1168         struct ioc *ioc = iocg->ioc;
1169         int lvl;
1170         u32 hwa, hwi;
1171         int ioc_gen;
1172 
1173         /* hot path - if uptodate, use cached */
1174         ioc_gen = atomic_read(&ioc->hweight_gen);
1175         if (ioc_gen == iocg->hweight_gen)
1176                 goto out;
1177 
1178         /*
1179          * Paired with wmb in commit_weights(). If we saw the updated
1180          * hweight_gen, all the weight updates from __propagate_weights() are
1181          * visible too.
1182          *
1183          * We can race with weight updates during calculation and get it
1184          * wrong.  However, hweight_gen would have changed and a future
1185          * reader will recalculate and we're guaranteed to discard the
1186          * wrong result soon.
1187          */
1188         smp_rmb();
1189 
1190         hwa = hwi = WEIGHT_ONE;
1191         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1192                 struct ioc_gq *parent = iocg->ancestors[lvl];
1193                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1194                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1195                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1196                 u32 active = READ_ONCE(child->active);
1197                 u32 inuse = READ_ONCE(child->inuse);
1198 
1199                 /* we can race with deactivations and either may read as zero */
1200                 if (!active_sum || !inuse_sum)
1201                         continue;
1202 
1203                 active_sum = max_t(u64, active, active_sum);
1204                 hwa = div64_u64((u64)hwa * active, active_sum);
1205 
1206                 inuse_sum = max_t(u64, inuse, inuse_sum);
1207                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1208         }
1209 
1210         iocg->hweight_active = max_t(u32, hwa, 1);
1211         iocg->hweight_inuse = max_t(u32, hwi, 1);
1212         iocg->hweight_gen = ioc_gen;
1213 out:
1214         if (hw_activep)
1215                 *hw_activep = iocg->hweight_active;
1216         if (hw_inusep)
1217                 *hw_inusep = iocg->hweight_inuse;
1218 }
1219 
1220 /*
1221  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1222  * other weights stay unchanged.
1223  */
1224 static u32 current_hweight_max(struct ioc_gq *iocg)
1225 {
1226         u32 hwm = WEIGHT_ONE;
1227         u32 inuse = iocg->active;
1228         u64 child_inuse_sum;
1229         int lvl;
1230 
1231         lockdep_assert_held(&iocg->ioc->lock);
1232 
1233         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1234                 struct ioc_gq *parent = iocg->ancestors[lvl];
1235                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1236 
1237                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1238                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1239                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1240                                            parent->child_active_sum);
1241         }
1242 
1243         return max_t(u32, hwm, 1);
1244 }
1245 
1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1247 {
1248         struct ioc *ioc = iocg->ioc;
1249         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1250         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1251         u32 weight;
1252 
1253         lockdep_assert_held(&ioc->lock);
1254 
1255         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1256         if (weight != iocg->weight && iocg->active)
1257                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1258         iocg->weight = weight;
1259 }
1260 
1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1262 {
1263         struct ioc *ioc = iocg->ioc;
1264         u64 __maybe_unused last_period, cur_period;
1265         u64 vtime, vtarget;
1266         int i;
1267 
1268         /*
1269          * If seem to be already active, just update the stamp to tell the
1270          * timer that we're still active.  We don't mind occassional races.
1271          */
1272         if (!list_empty(&iocg->active_list)) {
1273                 ioc_now(ioc, now);
1274                 cur_period = atomic64_read(&ioc->cur_period);
1275                 if (atomic64_read(&iocg->active_period) != cur_period)
1276                         atomic64_set(&iocg->active_period, cur_period);
1277                 return true;
1278         }
1279 
1280         /* racy check on internal node IOs, treat as root level IOs */
1281         if (iocg->child_active_sum)
1282                 return false;
1283 
1284         spin_lock_irq(&ioc->lock);
1285 
1286         ioc_now(ioc, now);
1287 
1288         /* update period */
1289         cur_period = atomic64_read(&ioc->cur_period);
1290         last_period = atomic64_read(&iocg->active_period);
1291         atomic64_set(&iocg->active_period, cur_period);
1292 
1293         /* already activated or breaking leaf-only constraint? */
1294         if (!list_empty(&iocg->active_list))
1295                 goto succeed_unlock;
1296         for (i = iocg->level - 1; i > 0; i--)
1297                 if (!list_empty(&iocg->ancestors[i]->active_list))
1298                         goto fail_unlock;
1299 
1300         if (iocg->child_active_sum)
1301                 goto fail_unlock;
1302 
1303         /*
1304          * Always start with the target budget. On deactivation, we throw away
1305          * anything above it.
1306          */
1307         vtarget = now->vnow - ioc->margins.target;
1308         vtime = atomic64_read(&iocg->vtime);
1309 
1310         atomic64_add(vtarget - vtime, &iocg->vtime);
1311         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1312         vtime = vtarget;
1313 
1314         /*
1315          * Activate, propagate weight and start period timer if not
1316          * running.  Reset hweight_gen to avoid accidental match from
1317          * wrapping.
1318          */
1319         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1320         list_add(&iocg->active_list, &ioc->active_iocgs);
1321 
1322         propagate_weights(iocg, iocg->weight,
1323                           iocg->last_inuse ?: iocg->weight, true, now);
1324 
1325         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1326                         last_period, cur_period, vtime);
1327 
1328         iocg->activated_at = now->now;
1329 
1330         if (ioc->running == IOC_IDLE) {
1331                 ioc->running = IOC_RUNNING;
1332                 ioc->dfgv_period_at = now->now;
1333                 ioc->dfgv_period_rem = 0;
1334                 ioc_start_period(ioc, now);
1335         }
1336 
1337 succeed_unlock:
1338         spin_unlock_irq(&ioc->lock);
1339         return true;
1340 
1341 fail_unlock:
1342         spin_unlock_irq(&ioc->lock);
1343         return false;
1344 }
1345 
1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1347 {
1348         struct ioc *ioc = iocg->ioc;
1349         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1350         u64 tdelta, delay, new_delay, shift;
1351         s64 vover, vover_pct;
1352         u32 hwa;
1353 
1354         lockdep_assert_held(&iocg->waitq.lock);
1355 
1356         /*
1357          * If the delay is set by another CPU, we may be in the past. No need to
1358          * change anything if so. This avoids decay calculation underflow.
1359          */
1360         if (time_before64(now->now, iocg->delay_at))
1361                 return false;
1362 
1363         /* calculate the current delay in effect - 1/2 every second */
1364         tdelta = now->now - iocg->delay_at;
1365         shift = div64_u64(tdelta, USEC_PER_SEC);
1366         if (iocg->delay && shift < BITS_PER_LONG)
1367                 delay = iocg->delay >> shift;
1368         else
1369                 delay = 0;
1370 
1371         /* calculate the new delay from the debt amount */
1372         current_hweight(iocg, &hwa, NULL);
1373         vover = atomic64_read(&iocg->vtime) +
1374                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1375         vover_pct = div64_s64(100 * vover,
1376                               ioc->period_us * ioc->vtime_base_rate);
1377 
1378         if (vover_pct <= MIN_DELAY_THR_PCT)
1379                 new_delay = 0;
1380         else if (vover_pct >= MAX_DELAY_THR_PCT)
1381                 new_delay = MAX_DELAY;
1382         else
1383                 new_delay = MIN_DELAY +
1384                         div_u64((MAX_DELAY - MIN_DELAY) *
1385                                 (vover_pct - MIN_DELAY_THR_PCT),
1386                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1387 
1388         /* pick the higher one and apply */
1389         if (new_delay > delay) {
1390                 iocg->delay = new_delay;
1391                 iocg->delay_at = now->now;
1392                 delay = new_delay;
1393         }
1394 
1395         if (delay >= MIN_DELAY) {
1396                 if (!iocg->indelay_since)
1397                         iocg->indelay_since = now->now;
1398                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1399                 return true;
1400         } else {
1401                 if (iocg->indelay_since) {
1402                         iocg->stat.indelay_us += now->now - iocg->indelay_since;
1403                         iocg->indelay_since = 0;
1404                 }
1405                 iocg->delay = 0;
1406                 blkcg_clear_delay(blkg);
1407                 return false;
1408         }
1409 }
1410 
1411 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1412                             struct ioc_now *now)
1413 {
1414         struct iocg_pcpu_stat *gcs;
1415 
1416         lockdep_assert_held(&iocg->ioc->lock);
1417         lockdep_assert_held(&iocg->waitq.lock);
1418         WARN_ON_ONCE(list_empty(&iocg->active_list));
1419 
1420         /*
1421          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1422          * inuse donating all of it share to others until its debt is paid off.
1423          */
1424         if (!iocg->abs_vdebt && abs_cost) {
1425                 iocg->indebt_since = now->now;
1426                 propagate_weights(iocg, iocg->active, 0, false, now);
1427         }
1428 
1429         iocg->abs_vdebt += abs_cost;
1430 
1431         gcs = get_cpu_ptr(iocg->pcpu_stat);
1432         local64_add(abs_cost, &gcs->abs_vusage);
1433         put_cpu_ptr(gcs);
1434 }
1435 
1436 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1437                           struct ioc_now *now)
1438 {
1439         lockdep_assert_held(&iocg->ioc->lock);
1440         lockdep_assert_held(&iocg->waitq.lock);
1441 
1442         /*
1443          * make sure that nobody messed with @iocg. Check iocg->pd.online
1444          * to avoid warn when removing blkcg or disk.
1445          */
1446         WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online);
1447         WARN_ON_ONCE(iocg->inuse > 1);
1448 
1449         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1450 
1451         /* if debt is paid in full, restore inuse */
1452         if (!iocg->abs_vdebt) {
1453                 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1454                 iocg->indebt_since = 0;
1455 
1456                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1457                                   false, now);
1458         }
1459 }
1460 
1461 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1462                         int flags, void *key)
1463 {
1464         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1465         struct iocg_wake_ctx *ctx = key;
1466         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1467 
1468         ctx->vbudget -= cost;
1469 
1470         if (ctx->vbudget < 0)
1471                 return -1;
1472 
1473         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1474         wait->committed = true;
1475 
1476         /*
1477          * autoremove_wake_function() removes the wait entry only when it
1478          * actually changed the task state. We want the wait always removed.
1479          * Remove explicitly and use default_wake_function(). Note that the
1480          * order of operations is important as finish_wait() tests whether
1481          * @wq_entry is removed without grabbing the lock.
1482          */
1483         default_wake_function(wq_entry, mode, flags, key);
1484         list_del_init_careful(&wq_entry->entry);
1485         return 0;
1486 }
1487 
1488 /*
1489  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1490  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1491  * addition to iocg->waitq.lock.
1492  */
1493 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1494                             struct ioc_now *now)
1495 {
1496         struct ioc *ioc = iocg->ioc;
1497         struct iocg_wake_ctx ctx = { .iocg = iocg };
1498         u64 vshortage, expires, oexpires;
1499         s64 vbudget;
1500         u32 hwa;
1501 
1502         lockdep_assert_held(&iocg->waitq.lock);
1503 
1504         current_hweight(iocg, &hwa, NULL);
1505         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1506 
1507         /* pay off debt */
1508         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1509                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1510                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1511                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1512 
1513                 lockdep_assert_held(&ioc->lock);
1514 
1515                 atomic64_add(vpay, &iocg->vtime);
1516                 atomic64_add(vpay, &iocg->done_vtime);
1517                 iocg_pay_debt(iocg, abs_vpay, now);
1518                 vbudget -= vpay;
1519         }
1520 
1521         if (iocg->abs_vdebt || iocg->delay)
1522                 iocg_kick_delay(iocg, now);
1523 
1524         /*
1525          * Debt can still be outstanding if we haven't paid all yet or the
1526          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1527          * under debt. Make sure @vbudget reflects the outstanding amount and is
1528          * not positive.
1529          */
1530         if (iocg->abs_vdebt) {
1531                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1532                 vbudget = min_t(s64, 0, vbudget - vdebt);
1533         }
1534 
1535         /*
1536          * Wake up the ones which are due and see how much vtime we'll need for
1537          * the next one. As paying off debt restores hw_inuse, it must be read
1538          * after the above debt payment.
1539          */
1540         ctx.vbudget = vbudget;
1541         current_hweight(iocg, NULL, &ctx.hw_inuse);
1542 
1543         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1544 
1545         if (!waitqueue_active(&iocg->waitq)) {
1546                 if (iocg->wait_since) {
1547                         iocg->stat.wait_us += now->now - iocg->wait_since;
1548                         iocg->wait_since = 0;
1549                 }
1550                 return;
1551         }
1552 
1553         if (!iocg->wait_since)
1554                 iocg->wait_since = now->now;
1555 
1556         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1557                 return;
1558 
1559         /* determine next wakeup, add a timer margin to guarantee chunking */
1560         vshortage = -ctx.vbudget;
1561         expires = now->now_ns +
1562                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1563                 NSEC_PER_USEC;
1564         expires += ioc->timer_slack_ns;
1565 
1566         /* if already active and close enough, don't bother */
1567         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1568         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1569             abs(oexpires - expires) <= ioc->timer_slack_ns)
1570                 return;
1571 
1572         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1573                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1574 }
1575 
1576 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1577 {
1578         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1579         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1580         struct ioc_now now;
1581         unsigned long flags;
1582 
1583         ioc_now(iocg->ioc, &now);
1584 
1585         iocg_lock(iocg, pay_debt, &flags);
1586         iocg_kick_waitq(iocg, pay_debt, &now);
1587         iocg_unlock(iocg, pay_debt, &flags);
1588 
1589         return HRTIMER_NORESTART;
1590 }
1591 
1592 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1593 {
1594         u32 nr_met[2] = { };
1595         u32 nr_missed[2] = { };
1596         u64 rq_wait_ns = 0;
1597         int cpu, rw;
1598 
1599         for_each_online_cpu(cpu) {
1600                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1601                 u64 this_rq_wait_ns;
1602 
1603                 for (rw = READ; rw <= WRITE; rw++) {
1604                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1605                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1606 
1607                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1608                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1609                         stat->missed[rw].last_met = this_met;
1610                         stat->missed[rw].last_missed = this_missed;
1611                 }
1612 
1613                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1614                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1615                 stat->last_rq_wait_ns = this_rq_wait_ns;
1616         }
1617 
1618         for (rw = READ; rw <= WRITE; rw++) {
1619                 if (nr_met[rw] + nr_missed[rw])
1620                         missed_ppm_ar[rw] =
1621                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1622                                                    nr_met[rw] + nr_missed[rw]);
1623                 else
1624                         missed_ppm_ar[rw] = 0;
1625         }
1626 
1627         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1628                                    ioc->period_us * NSEC_PER_USEC);
1629 }
1630 
1631 /* was iocg idle this period? */
1632 static bool iocg_is_idle(struct ioc_gq *iocg)
1633 {
1634         struct ioc *ioc = iocg->ioc;
1635 
1636         /* did something get issued this period? */
1637         if (atomic64_read(&iocg->active_period) ==
1638             atomic64_read(&ioc->cur_period))
1639                 return false;
1640 
1641         /* is something in flight? */
1642         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1643                 return false;
1644 
1645         return true;
1646 }
1647 
1648 /*
1649  * Call this function on the target leaf @iocg's to build pre-order traversal
1650  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1651  * ->walk_list and the caller is responsible for dissolving the list after use.
1652  */
1653 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1654                                   struct list_head *inner_walk)
1655 {
1656         int lvl;
1657 
1658         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1659 
1660         /* find the first ancestor which hasn't been visited yet */
1661         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1662                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1663                         break;
1664         }
1665 
1666         /* walk down and visit the inner nodes to get pre-order traversal */
1667         while (++lvl <= iocg->level - 1) {
1668                 struct ioc_gq *inner = iocg->ancestors[lvl];
1669 
1670                 /* record traversal order */
1671                 list_add_tail(&inner->walk_list, inner_walk);
1672         }
1673 }
1674 
1675 /* propagate the deltas to the parent */
1676 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1677 {
1678         if (iocg->level > 0) {
1679                 struct iocg_stat *parent_stat =
1680                         &iocg->ancestors[iocg->level - 1]->stat;
1681 
1682                 parent_stat->usage_us +=
1683                         iocg->stat.usage_us - iocg->last_stat.usage_us;
1684                 parent_stat->wait_us +=
1685                         iocg->stat.wait_us - iocg->last_stat.wait_us;
1686                 parent_stat->indebt_us +=
1687                         iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1688                 parent_stat->indelay_us +=
1689                         iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1690         }
1691 
1692         iocg->last_stat = iocg->stat;
1693 }
1694 
1695 /* collect per-cpu counters and propagate the deltas to the parent */
1696 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1697 {
1698         struct ioc *ioc = iocg->ioc;
1699         u64 abs_vusage = 0;
1700         u64 vusage_delta;
1701         int cpu;
1702 
1703         lockdep_assert_held(&iocg->ioc->lock);
1704 
1705         /* collect per-cpu counters */
1706         for_each_possible_cpu(cpu) {
1707                 abs_vusage += local64_read(
1708                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1709         }
1710         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1711         iocg->last_stat_abs_vusage = abs_vusage;
1712 
1713         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1714         iocg->stat.usage_us += iocg->usage_delta_us;
1715 
1716         iocg_flush_stat_upward(iocg);
1717 }
1718 
1719 /* get stat counters ready for reading on all active iocgs */
1720 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1721 {
1722         LIST_HEAD(inner_walk);
1723         struct ioc_gq *iocg, *tiocg;
1724 
1725         /* flush leaves and build inner node walk list */
1726         list_for_each_entry(iocg, target_iocgs, active_list) {
1727                 iocg_flush_stat_leaf(iocg, now);
1728                 iocg_build_inner_walk(iocg, &inner_walk);
1729         }
1730 
1731         /* keep flushing upwards by walking the inner list backwards */
1732         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1733                 iocg_flush_stat_upward(iocg);
1734                 list_del_init(&iocg->walk_list);
1735         }
1736 }
1737 
1738 /*
1739  * Determine what @iocg's hweight_inuse should be after donating unused
1740  * capacity. @hwm is the upper bound and used to signal no donation. This
1741  * function also throws away @iocg's excess budget.
1742  */
1743 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1744                                   u32 usage, struct ioc_now *now)
1745 {
1746         struct ioc *ioc = iocg->ioc;
1747         u64 vtime = atomic64_read(&iocg->vtime);
1748         s64 excess, delta, target, new_hwi;
1749 
1750         /* debt handling owns inuse for debtors */
1751         if (iocg->abs_vdebt)
1752                 return 1;
1753 
1754         /* see whether minimum margin requirement is met */
1755         if (waitqueue_active(&iocg->waitq) ||
1756             time_after64(vtime, now->vnow - ioc->margins.min))
1757                 return hwm;
1758 
1759         /* throw away excess above target */
1760         excess = now->vnow - vtime - ioc->margins.target;
1761         if (excess > 0) {
1762                 atomic64_add(excess, &iocg->vtime);
1763                 atomic64_add(excess, &iocg->done_vtime);
1764                 vtime += excess;
1765                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1766         }
1767 
1768         /*
1769          * Let's say the distance between iocg's and device's vtimes as a
1770          * fraction of period duration is delta. Assuming that the iocg will
1771          * consume the usage determined above, we want to determine new_hwi so
1772          * that delta equals MARGIN_TARGET at the end of the next period.
1773          *
1774          * We need to execute usage worth of IOs while spending the sum of the
1775          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1776          * (delta):
1777          *
1778          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1779          *
1780          * Therefore, the new_hwi is:
1781          *
1782          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1783          */
1784         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1785                           now->vnow - ioc->period_at_vtime);
1786         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1787         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1788 
1789         return clamp_t(s64, new_hwi, 1, hwm);
1790 }
1791 
1792 /*
1793  * For work-conservation, an iocg which isn't using all of its share should
1794  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1795  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1796  *
1797  * #1 is mathematically simpler but has the drawback of requiring synchronous
1798  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1799  * change due to donation snapbacks as it has the possibility of grossly
1800  * overshooting what's allowed by the model and vrate.
1801  *
1802  * #2 is inherently safe with local operations. The donating iocg can easily
1803  * snap back to higher weights when needed without worrying about impacts on
1804  * other nodes as the impacts will be inherently correct. This also makes idle
1805  * iocg activations safe. The only effect activations have is decreasing
1806  * hweight_inuse of others, the right solution to which is for those iocgs to
1807  * snap back to higher weights.
1808  *
1809  * So, we go with #2. The challenge is calculating how each donating iocg's
1810  * inuse should be adjusted to achieve the target donation amounts. This is done
1811  * using Andy's method described in the following pdf.
1812  *
1813  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1814  *
1815  * Given the weights and target after-donation hweight_inuse values, Andy's
1816  * method determines how the proportional distribution should look like at each
1817  * sibling level to maintain the relative relationship between all non-donating
1818  * pairs. To roughly summarize, it divides the tree into donating and
1819  * non-donating parts, calculates global donation rate which is used to
1820  * determine the target hweight_inuse for each node, and then derives per-level
1821  * proportions.
1822  *
1823  * The following pdf shows that global distribution calculated this way can be
1824  * achieved by scaling inuse weights of donating leaves and propagating the
1825  * adjustments upwards proportionally.
1826  *
1827  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1828  *
1829  * Combining the above two, we can determine how each leaf iocg's inuse should
1830  * be adjusted to achieve the target donation.
1831  *
1832  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1833  *
1834  * The inline comments use symbols from the last pdf.
1835  *
1836  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1837  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1838  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1839  *   w is the weight of the node. w = w_f + w_t
1840  *   w_f is the non-donating portion of w. w_f = w * f / b
1841  *   w_b is the donating portion of w. w_t = w * t / b
1842  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1843  *   s_f and s_t are the non-donating and donating portions of s.
1844  *
1845  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1846  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1847  * after adjustments. Subscript r denotes the root node's values.
1848  */
1849 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1850 {
1851         LIST_HEAD(over_hwa);
1852         LIST_HEAD(inner_walk);
1853         struct ioc_gq *iocg, *tiocg, *root_iocg;
1854         u32 after_sum, over_sum, over_target, gamma;
1855 
1856         /*
1857          * It's pretty unlikely but possible for the total sum of
1858          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1859          * confuse the following calculations. If such condition is detected,
1860          * scale down everyone over its full share equally to keep the sum below
1861          * WEIGHT_ONE.
1862          */
1863         after_sum = 0;
1864         over_sum = 0;
1865         list_for_each_entry(iocg, surpluses, surplus_list) {
1866                 u32 hwa;
1867 
1868                 current_hweight(iocg, &hwa, NULL);
1869                 after_sum += iocg->hweight_after_donation;
1870 
1871                 if (iocg->hweight_after_donation > hwa) {
1872                         over_sum += iocg->hweight_after_donation;
1873                         list_add(&iocg->walk_list, &over_hwa);
1874                 }
1875         }
1876 
1877         if (after_sum >= WEIGHT_ONE) {
1878                 /*
1879                  * The delta should be deducted from the over_sum, calculate
1880                  * target over_sum value.
1881                  */
1882                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1883                 WARN_ON_ONCE(over_sum <= over_delta);
1884                 over_target = over_sum - over_delta;
1885         } else {
1886                 over_target = 0;
1887         }
1888 
1889         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1890                 if (over_target)
1891                         iocg->hweight_after_donation =
1892                                 div_u64((u64)iocg->hweight_after_donation *
1893                                         over_target, over_sum);
1894                 list_del_init(&iocg->walk_list);
1895         }
1896 
1897         /*
1898          * Build pre-order inner node walk list and prepare for donation
1899          * adjustment calculations.
1900          */
1901         list_for_each_entry(iocg, surpluses, surplus_list) {
1902                 iocg_build_inner_walk(iocg, &inner_walk);
1903         }
1904 
1905         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1906         WARN_ON_ONCE(root_iocg->level > 0);
1907 
1908         list_for_each_entry(iocg, &inner_walk, walk_list) {
1909                 iocg->child_adjusted_sum = 0;
1910                 iocg->hweight_donating = 0;
1911                 iocg->hweight_after_donation = 0;
1912         }
1913 
1914         /*
1915          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1916          * up the hierarchy.
1917          */
1918         list_for_each_entry(iocg, surpluses, surplus_list) {
1919                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1920 
1921                 parent->hweight_donating += iocg->hweight_donating;
1922                 parent->hweight_after_donation += iocg->hweight_after_donation;
1923         }
1924 
1925         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1926                 if (iocg->level > 0) {
1927                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1928 
1929                         parent->hweight_donating += iocg->hweight_donating;
1930                         parent->hweight_after_donation += iocg->hweight_after_donation;
1931                 }
1932         }
1933 
1934         /*
1935          * Calculate inner hwa's (b) and make sure the donation values are
1936          * within the accepted ranges as we're doing low res calculations with
1937          * roundups.
1938          */
1939         list_for_each_entry(iocg, &inner_walk, walk_list) {
1940                 if (iocg->level) {
1941                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1942 
1943                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1944                                 (u64)parent->hweight_active * iocg->active,
1945                                 parent->child_active_sum);
1946 
1947                 }
1948 
1949                 iocg->hweight_donating = min(iocg->hweight_donating,
1950                                              iocg->hweight_active);
1951                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1952                                                    iocg->hweight_donating - 1);
1953                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1954                                  iocg->hweight_donating <= 1 ||
1955                                  iocg->hweight_after_donation == 0)) {
1956                         pr_warn("iocg: invalid donation weights in ");
1957                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1958                         pr_cont(": active=%u donating=%u after=%u\n",
1959                                 iocg->hweight_active, iocg->hweight_donating,
1960                                 iocg->hweight_after_donation);
1961                 }
1962         }
1963 
1964         /*
1965          * Calculate the global donation rate (gamma) - the rate to adjust
1966          * non-donating budgets by.
1967          *
1968          * No need to use 64bit multiplication here as the first operand is
1969          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1970          *
1971          * We know that there are beneficiary nodes and the sum of the donating
1972          * hweights can't be whole; however, due to the round-ups during hweight
1973          * calculations, root_iocg->hweight_donating might still end up equal to
1974          * or greater than whole. Limit the range when calculating the divider.
1975          *
1976          * gamma = (1 - t_r') / (1 - t_r)
1977          */
1978         gamma = DIV_ROUND_UP(
1979                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1980                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1981 
1982         /*
1983          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1984          * nodes.
1985          */
1986         list_for_each_entry(iocg, &inner_walk, walk_list) {
1987                 struct ioc_gq *parent;
1988                 u32 inuse, wpt, wptp;
1989                 u64 st, sf;
1990 
1991                 if (iocg->level == 0) {
1992                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1993                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1994                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1995                                 WEIGHT_ONE - iocg->hweight_after_donation);
1996                         continue;
1997                 }
1998 
1999                 parent = iocg->ancestors[iocg->level - 1];
2000 
2001                 /* b' = gamma * b_f + b_t' */
2002                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
2003                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
2004                         WEIGHT_ONE) + iocg->hweight_after_donation;
2005 
2006                 /* w' = s' * b' / b'_p */
2007                 inuse = DIV64_U64_ROUND_UP(
2008                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
2009                         parent->hweight_inuse);
2010 
2011                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2012                 st = DIV64_U64_ROUND_UP(
2013                         iocg->child_active_sum * iocg->hweight_donating,
2014                         iocg->hweight_active);
2015                 sf = iocg->child_active_sum - st;
2016                 wpt = DIV64_U64_ROUND_UP(
2017                         (u64)iocg->active * iocg->hweight_donating,
2018                         iocg->hweight_active);
2019                 wptp = DIV64_U64_ROUND_UP(
2020                         (u64)inuse * iocg->hweight_after_donation,
2021                         iocg->hweight_inuse);
2022 
2023                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2024         }
2025 
2026         /*
2027          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2028          * we can finally determine leaf adjustments.
2029          */
2030         list_for_each_entry(iocg, surpluses, surplus_list) {
2031                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2032                 u32 inuse;
2033 
2034                 /*
2035                  * In-debt iocgs participated in the donation calculation with
2036                  * the minimum target hweight_inuse. Configuring inuse
2037                  * accordingly would work fine but debt handling expects
2038                  * @iocg->inuse stay at the minimum and we don't wanna
2039                  * interfere.
2040                  */
2041                 if (iocg->abs_vdebt) {
2042                         WARN_ON_ONCE(iocg->inuse > 1);
2043                         continue;
2044                 }
2045 
2046                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2047                 inuse = DIV64_U64_ROUND_UP(
2048                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2049                         parent->hweight_inuse);
2050 
2051                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2052                                 iocg->inuse, inuse,
2053                                 iocg->hweight_inuse,
2054                                 iocg->hweight_after_donation);
2055 
2056                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2057         }
2058 
2059         /* walk list should be dissolved after use */
2060         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2061                 list_del_init(&iocg->walk_list);
2062 }
2063 
2064 /*
2065  * A low weight iocg can amass a large amount of debt, for example, when
2066  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2067  * memory paired with a slow IO device, the debt can span multiple seconds or
2068  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2069  * up blocked paying its debt while the IO device is idle.
2070  *
2071  * The following protects against such cases. If the device has been
2072  * sufficiently idle for a while, the debts are halved and delays are
2073  * recalculated.
2074  */
2075 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2076                               struct ioc_now *now)
2077 {
2078         struct ioc_gq *iocg;
2079         u64 dur, usage_pct, nr_cycles, nr_cycles_shift;
2080 
2081         /* if no debtor, reset the cycle */
2082         if (!nr_debtors) {
2083                 ioc->dfgv_period_at = now->now;
2084                 ioc->dfgv_period_rem = 0;
2085                 ioc->dfgv_usage_us_sum = 0;
2086                 return;
2087         }
2088 
2089         /*
2090          * Debtors can pass through a lot of writes choking the device and we
2091          * don't want to be forgiving debts while the device is struggling from
2092          * write bursts. If we're missing latency targets, consider the device
2093          * fully utilized.
2094          */
2095         if (ioc->busy_level > 0)
2096                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2097 
2098         ioc->dfgv_usage_us_sum += usage_us_sum;
2099         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2100                 return;
2101 
2102         /*
2103          * At least DFGV_PERIOD has passed since the last period. Calculate the
2104          * average usage and reset the period counters.
2105          */
2106         dur = now->now - ioc->dfgv_period_at;
2107         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2108 
2109         ioc->dfgv_period_at = now->now;
2110         ioc->dfgv_usage_us_sum = 0;
2111 
2112         /* if was too busy, reset everything */
2113         if (usage_pct > DFGV_USAGE_PCT) {
2114                 ioc->dfgv_period_rem = 0;
2115                 return;
2116         }
2117 
2118         /*
2119          * Usage is lower than threshold. Let's forgive some debts. Debt
2120          * forgiveness runs off of the usual ioc timer but its period usually
2121          * doesn't match ioc's. Compensate the difference by performing the
2122          * reduction as many times as would fit in the duration since the last
2123          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2124          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2125          * reductions is doubled.
2126          */
2127         nr_cycles = dur + ioc->dfgv_period_rem;
2128         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2129 
2130         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2131                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2132 
2133                 if (!iocg->abs_vdebt && !iocg->delay)
2134                         continue;
2135 
2136                 spin_lock(&iocg->waitq.lock);
2137 
2138                 old_debt = iocg->abs_vdebt;
2139                 old_delay = iocg->delay;
2140 
2141                 nr_cycles_shift = min_t(u64, nr_cycles, BITS_PER_LONG - 1);
2142                 if (iocg->abs_vdebt)
2143                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles_shift ?: 1;
2144 
2145                 if (iocg->delay)
2146                         iocg->delay = iocg->delay >> nr_cycles_shift ?: 1;
2147 
2148                 iocg_kick_waitq(iocg, true, now);
2149 
2150                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2151                                 old_debt, iocg->abs_vdebt,
2152                                 old_delay, iocg->delay);
2153 
2154                 spin_unlock(&iocg->waitq.lock);
2155         }
2156 }
2157 
2158 /*
2159  * Check the active iocgs' state to avoid oversleeping and deactive
2160  * idle iocgs.
2161  *
2162  * Since waiters determine the sleep durations based on the vrate
2163  * they saw at the time of sleep, if vrate has increased, some
2164  * waiters could be sleeping for too long. Wake up tardy waiters
2165  * which should have woken up in the last period and expire idle
2166  * iocgs.
2167  */
2168 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2169 {
2170         int nr_debtors = 0;
2171         struct ioc_gq *iocg, *tiocg;
2172 
2173         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2174                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2175                     !iocg->delay && !iocg_is_idle(iocg))
2176                         continue;
2177 
2178                 spin_lock(&iocg->waitq.lock);
2179 
2180                 /* flush wait and indebt stat deltas */
2181                 if (iocg->wait_since) {
2182                         iocg->stat.wait_us += now->now - iocg->wait_since;
2183                         iocg->wait_since = now->now;
2184                 }
2185                 if (iocg->indebt_since) {
2186                         iocg->stat.indebt_us +=
2187                                 now->now - iocg->indebt_since;
2188                         iocg->indebt_since = now->now;
2189                 }
2190                 if (iocg->indelay_since) {
2191                         iocg->stat.indelay_us +=
2192                                 now->now - iocg->indelay_since;
2193                         iocg->indelay_since = now->now;
2194                 }
2195 
2196                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2197                     iocg->delay) {
2198                         /* might be oversleeping vtime / hweight changes, kick */
2199                         iocg_kick_waitq(iocg, true, now);
2200                         if (iocg->abs_vdebt || iocg->delay)
2201                                 nr_debtors++;
2202                 } else if (iocg_is_idle(iocg)) {
2203                         /* no waiter and idle, deactivate */
2204                         u64 vtime = atomic64_read(&iocg->vtime);
2205                         s64 excess;
2206 
2207                         /*
2208                          * @iocg has been inactive for a full duration and will
2209                          * have a high budget. Account anything above target as
2210                          * error and throw away. On reactivation, it'll start
2211                          * with the target budget.
2212                          */
2213                         excess = now->vnow - vtime - ioc->margins.target;
2214                         if (excess > 0) {
2215                                 u32 old_hwi;
2216 
2217                                 current_hweight(iocg, NULL, &old_hwi);
2218                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2219                                                             WEIGHT_ONE);
2220                         }
2221 
2222                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2223                                         atomic64_read(&iocg->active_period),
2224                                         atomic64_read(&ioc->cur_period), vtime);
2225                         __propagate_weights(iocg, 0, 0, false, now);
2226                         list_del_init(&iocg->active_list);
2227                 }
2228 
2229                 spin_unlock(&iocg->waitq.lock);
2230         }
2231 
2232         commit_weights(ioc);
2233         return nr_debtors;
2234 }
2235 
2236 static void ioc_timer_fn(struct timer_list *timer)
2237 {
2238         struct ioc *ioc = container_of(timer, struct ioc, timer);
2239         struct ioc_gq *iocg, *tiocg;
2240         struct ioc_now now;
2241         LIST_HEAD(surpluses);
2242         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2243         u64 usage_us_sum = 0;
2244         u32 ppm_rthr;
2245         u32 ppm_wthr;
2246         u32 missed_ppm[2], rq_wait_pct;
2247         u64 period_vtime;
2248         int prev_busy_level;
2249 
2250         /* how were the latencies during the period? */
2251         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2252 
2253         /* take care of active iocgs */
2254         spin_lock_irq(&ioc->lock);
2255 
2256         ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2257         ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2258         ioc_now(ioc, &now);
2259 
2260         period_vtime = now.vnow - ioc->period_at_vtime;
2261         if (WARN_ON_ONCE(!period_vtime)) {
2262                 spin_unlock_irq(&ioc->lock);
2263                 return;
2264         }
2265 
2266         nr_debtors = ioc_check_iocgs(ioc, &now);
2267 
2268         /*
2269          * Wait and indebt stat are flushed above and the donation calculation
2270          * below needs updated usage stat. Let's bring stat up-to-date.
2271          */
2272         iocg_flush_stat(&ioc->active_iocgs, &now);
2273 
2274         /* calc usage and see whether some weights need to be moved around */
2275         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2276                 u64 vdone, vtime, usage_us;
2277                 u32 hw_active, hw_inuse;
2278 
2279                 /*
2280                  * Collect unused and wind vtime closer to vnow to prevent
2281                  * iocgs from accumulating a large amount of budget.
2282                  */
2283                 vdone = atomic64_read(&iocg->done_vtime);
2284                 vtime = atomic64_read(&iocg->vtime);
2285                 current_hweight(iocg, &hw_active, &hw_inuse);
2286 
2287                 /*
2288                  * Latency QoS detection doesn't account for IOs which are
2289                  * in-flight for longer than a period.  Detect them by
2290                  * comparing vdone against period start.  If lagging behind
2291                  * IOs from past periods, don't increase vrate.
2292                  */
2293                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2294                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2295                     time_after64(vtime, vdone) &&
2296                     time_after64(vtime, now.vnow -
2297                                  MAX_LAGGING_PERIODS * period_vtime) &&
2298                     time_before64(vdone, now.vnow - period_vtime))
2299                         nr_lagging++;
2300 
2301                 /*
2302                  * Determine absolute usage factoring in in-flight IOs to avoid
2303                  * high-latency completions appearing as idle.
2304                  */
2305                 usage_us = iocg->usage_delta_us;
2306                 usage_us_sum += usage_us;
2307 
2308                 /* see whether there's surplus vtime */
2309                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2310                 if (hw_inuse < hw_active ||
2311                     (!waitqueue_active(&iocg->waitq) &&
2312                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2313                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2314                         u64 usage_dur;
2315 
2316                         if (vdone != vtime) {
2317                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2318                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2319                                         ioc->vtime_base_rate);
2320 
2321                                 usage_us = max(usage_us, inflight_us);
2322                         }
2323 
2324                         /* convert to hweight based usage ratio */
2325                         if (time_after64(iocg->activated_at, ioc->period_at))
2326                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2327                         else
2328                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2329 
2330                         usage = clamp_t(u32,
2331                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2332                                                    usage_dur),
2333                                 1, WEIGHT_ONE);
2334 
2335                         /*
2336                          * Already donating or accumulated enough to start.
2337                          * Determine the donation amount.
2338                          */
2339                         current_hweight(iocg, &hwa, &old_hwi);
2340                         hwm = current_hweight_max(iocg);
2341                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2342                                                          usage, &now);
2343                         /*
2344                          * Donation calculation assumes hweight_after_donation
2345                          * to be positive, a condition that a donor w/ hwa < 2
2346                          * can't meet. Don't bother with donation if hwa is
2347                          * below 2. It's not gonna make a meaningful difference
2348                          * anyway.
2349                          */
2350                         if (new_hwi < hwm && hwa >= 2) {
2351                                 iocg->hweight_donating = hwa;
2352                                 iocg->hweight_after_donation = new_hwi;
2353                                 list_add(&iocg->surplus_list, &surpluses);
2354                         } else if (!iocg->abs_vdebt) {
2355                                 /*
2356                                  * @iocg doesn't have enough to donate. Reset
2357                                  * its inuse to active.
2358                                  *
2359                                  * Don't reset debtors as their inuse's are
2360                                  * owned by debt handling. This shouldn't affect
2361                                  * donation calculuation in any meaningful way
2362                                  * as @iocg doesn't have a meaningful amount of
2363                                  * share anyway.
2364                                  */
2365                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2366                                                 iocg->inuse, iocg->active,
2367                                                 iocg->hweight_inuse, new_hwi);
2368 
2369                                 __propagate_weights(iocg, iocg->active,
2370                                                     iocg->active, true, &now);
2371                                 nr_shortages++;
2372                         }
2373                 } else {
2374                         /* genuinely short on vtime */
2375                         nr_shortages++;
2376                 }
2377         }
2378 
2379         if (!list_empty(&surpluses) && nr_shortages)
2380                 transfer_surpluses(&surpluses, &now);
2381 
2382         commit_weights(ioc);
2383 
2384         /* surplus list should be dissolved after use */
2385         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2386                 list_del_init(&iocg->surplus_list);
2387 
2388         /*
2389          * If q is getting clogged or we're missing too much, we're issuing
2390          * too much IO and should lower vtime rate.  If we're not missing
2391          * and experiencing shortages but not surpluses, we're too stingy
2392          * and should increase vtime rate.
2393          */
2394         prev_busy_level = ioc->busy_level;
2395         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2396             missed_ppm[READ] > ppm_rthr ||
2397             missed_ppm[WRITE] > ppm_wthr) {
2398                 /* clearly missing QoS targets, slow down vrate */
2399                 ioc->busy_level = max(ioc->busy_level, 0);
2400                 ioc->busy_level++;
2401         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2402                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2403                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2404                 /* QoS targets are being met with >25% margin */
2405                 if (nr_shortages) {
2406                         /*
2407                          * We're throttling while the device has spare
2408                          * capacity.  If vrate was being slowed down, stop.
2409                          */
2410                         ioc->busy_level = min(ioc->busy_level, 0);
2411 
2412                         /*
2413                          * If there are IOs spanning multiple periods, wait
2414                          * them out before pushing the device harder.
2415                          */
2416                         if (!nr_lagging)
2417                                 ioc->busy_level--;
2418                 } else {
2419                         /*
2420                          * Nobody is being throttled and the users aren't
2421                          * issuing enough IOs to saturate the device.  We
2422                          * simply don't know how close the device is to
2423                          * saturation.  Coast.
2424                          */
2425                         ioc->busy_level = 0;
2426                 }
2427         } else {
2428                 /* inside the hysterisis margin, we're good */
2429                 ioc->busy_level = 0;
2430         }
2431 
2432         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2433 
2434         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2435                               prev_busy_level, missed_ppm);
2436 
2437         ioc_refresh_params(ioc, false);
2438 
2439         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2440 
2441         /*
2442          * This period is done.  Move onto the next one.  If nothing's
2443          * going on with the device, stop the timer.
2444          */
2445         atomic64_inc(&ioc->cur_period);
2446 
2447         if (ioc->running != IOC_STOP) {
2448                 if (!list_empty(&ioc->active_iocgs)) {
2449                         ioc_start_period(ioc, &now);
2450                 } else {
2451                         ioc->busy_level = 0;
2452                         ioc->vtime_err = 0;
2453                         ioc->running = IOC_IDLE;
2454                 }
2455 
2456                 ioc_refresh_vrate(ioc, &now);
2457         }
2458 
2459         spin_unlock_irq(&ioc->lock);
2460 }
2461 
2462 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2463                                       u64 abs_cost, struct ioc_now *now)
2464 {
2465         struct ioc *ioc = iocg->ioc;
2466         struct ioc_margins *margins = &ioc->margins;
2467         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2468         u32 hwi, adj_step;
2469         s64 margin;
2470         u64 cost, new_inuse;
2471         unsigned long flags;
2472 
2473         current_hweight(iocg, NULL, &hwi);
2474         old_hwi = hwi;
2475         cost = abs_cost_to_cost(abs_cost, hwi);
2476         margin = now->vnow - vtime - cost;
2477 
2478         /* debt handling owns inuse for debtors */
2479         if (iocg->abs_vdebt)
2480                 return cost;
2481 
2482         /*
2483          * We only increase inuse during period and do so if the margin has
2484          * deteriorated since the previous adjustment.
2485          */
2486         if (margin >= iocg->saved_margin || margin >= margins->low ||
2487             iocg->inuse == iocg->active)
2488                 return cost;
2489 
2490         spin_lock_irqsave(&ioc->lock, flags);
2491 
2492         /* we own inuse only when @iocg is in the normal active state */
2493         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2494                 spin_unlock_irqrestore(&ioc->lock, flags);
2495                 return cost;
2496         }
2497 
2498         /*
2499          * Bump up inuse till @abs_cost fits in the existing budget.
2500          * adj_step must be determined after acquiring ioc->lock - we might
2501          * have raced and lost to another thread for activation and could
2502          * be reading 0 iocg->active before ioc->lock which will lead to
2503          * infinite loop.
2504          */
2505         new_inuse = iocg->inuse;
2506         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2507         do {
2508                 new_inuse = new_inuse + adj_step;
2509                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2510                 current_hweight(iocg, NULL, &hwi);
2511                 cost = abs_cost_to_cost(abs_cost, hwi);
2512         } while (time_after64(vtime + cost, now->vnow) &&
2513                  iocg->inuse != iocg->active);
2514 
2515         spin_unlock_irqrestore(&ioc->lock, flags);
2516 
2517         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2518                         old_inuse, iocg->inuse, old_hwi, hwi);
2519 
2520         return cost;
2521 }
2522 
2523 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2524                                     bool is_merge, u64 *costp)
2525 {
2526         struct ioc *ioc = iocg->ioc;
2527         u64 coef_seqio, coef_randio, coef_page;
2528         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2529         u64 seek_pages = 0;
2530         u64 cost = 0;
2531 
2532         /* Can't calculate cost for empty bio */
2533         if (!bio->bi_iter.bi_size)
2534                 goto out;
2535 
2536         switch (bio_op(bio)) {
2537         case REQ_OP_READ:
2538                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2539                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2540                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2541                 break;
2542         case REQ_OP_WRITE:
2543                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2544                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2545                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2546                 break;
2547         default:
2548                 goto out;
2549         }
2550 
2551         if (iocg->cursor) {
2552                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2553                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2554         }
2555 
2556         if (!is_merge) {
2557                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2558                         cost += coef_randio;
2559                 } else {
2560                         cost += coef_seqio;
2561                 }
2562         }
2563         cost += pages * coef_page;
2564 out:
2565         *costp = cost;
2566 }
2567 
2568 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2569 {
2570         u64 cost;
2571 
2572         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2573         return cost;
2574 }
2575 
2576 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2577                                          u64 *costp)
2578 {
2579         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2580 
2581         switch (req_op(rq)) {
2582         case REQ_OP_READ:
2583                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2584                 break;
2585         case REQ_OP_WRITE:
2586                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2587                 break;
2588         default:
2589                 *costp = 0;
2590         }
2591 }
2592 
2593 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2594 {
2595         u64 cost;
2596 
2597         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2598         return cost;
2599 }
2600 
2601 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2602 {
2603         struct blkcg_gq *blkg = bio->bi_blkg;
2604         struct ioc *ioc = rqos_to_ioc(rqos);
2605         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2606         struct ioc_now now;
2607         struct iocg_wait wait;
2608         u64 abs_cost, cost, vtime;
2609         bool use_debt, ioc_locked;
2610         unsigned long flags;
2611 
2612         /* bypass IOs if disabled, still initializing, or for root cgroup */
2613         if (!ioc->enabled || !iocg || !iocg->level)
2614                 return;
2615 
2616         /* calculate the absolute vtime cost */
2617         abs_cost = calc_vtime_cost(bio, iocg, false);
2618         if (!abs_cost)
2619                 return;
2620 
2621         if (!iocg_activate(iocg, &now))
2622                 return;
2623 
2624         iocg->cursor = bio_end_sector(bio);
2625         vtime = atomic64_read(&iocg->vtime);
2626         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2627 
2628         /*
2629          * If no one's waiting and within budget, issue right away.  The
2630          * tests are racy but the races aren't systemic - we only miss once
2631          * in a while which is fine.
2632          */
2633         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2634             time_before_eq64(vtime + cost, now.vnow)) {
2635                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2636                 return;
2637         }
2638 
2639         /*
2640          * We're over budget. This can be handled in two ways. IOs which may
2641          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2642          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2643          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2644          * whether debt handling is needed and acquire locks accordingly.
2645          */
2646         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2647         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2648 retry_lock:
2649         iocg_lock(iocg, ioc_locked, &flags);
2650 
2651         /*
2652          * @iocg must stay activated for debt and waitq handling. Deactivation
2653          * is synchronized against both ioc->lock and waitq.lock and we won't
2654          * get deactivated as long as we're waiting or has debt, so we're good
2655          * if we're activated here. In the unlikely cases that we aren't, just
2656          * issue the IO.
2657          */
2658         if (unlikely(list_empty(&iocg->active_list))) {
2659                 iocg_unlock(iocg, ioc_locked, &flags);
2660                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2661                 return;
2662         }
2663 
2664         /*
2665          * We're over budget. If @bio has to be issued regardless, remember
2666          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2667          * off the debt before waking more IOs.
2668          *
2669          * This way, the debt is continuously paid off each period with the
2670          * actual budget available to the cgroup. If we just wound vtime, we
2671          * would incorrectly use the current hw_inuse for the entire amount
2672          * which, for example, can lead to the cgroup staying blocked for a
2673          * long time even with substantially raised hw_inuse.
2674          *
2675          * An iocg with vdebt should stay online so that the timer can keep
2676          * deducting its vdebt and [de]activate use_delay mechanism
2677          * accordingly. We don't want to race against the timer trying to
2678          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2679          * penalizing the cgroup and its descendants.
2680          */
2681         if (use_debt) {
2682                 iocg_incur_debt(iocg, abs_cost, &now);
2683                 if (iocg_kick_delay(iocg, &now))
2684                         blkcg_schedule_throttle(rqos->disk,
2685                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2686                 iocg_unlock(iocg, ioc_locked, &flags);
2687                 return;
2688         }
2689 
2690         /* guarantee that iocgs w/ waiters have maximum inuse */
2691         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2692                 if (!ioc_locked) {
2693                         iocg_unlock(iocg, false, &flags);
2694                         ioc_locked = true;
2695                         goto retry_lock;
2696                 }
2697                 propagate_weights(iocg, iocg->active, iocg->active, true,
2698                                   &now);
2699         }
2700 
2701         /*
2702          * Append self to the waitq and schedule the wakeup timer if we're
2703          * the first waiter.  The timer duration is calculated based on the
2704          * current vrate.  vtime and hweight changes can make it too short
2705          * or too long.  Each wait entry records the absolute cost it's
2706          * waiting for to allow re-evaluation using a custom wait entry.
2707          *
2708          * If too short, the timer simply reschedules itself.  If too long,
2709          * the period timer will notice and trigger wakeups.
2710          *
2711          * All waiters are on iocg->waitq and the wait states are
2712          * synchronized using waitq.lock.
2713          */
2714         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2715         wait.wait.private = current;
2716         wait.bio = bio;
2717         wait.abs_cost = abs_cost;
2718         wait.committed = false; /* will be set true by waker */
2719 
2720         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2721         iocg_kick_waitq(iocg, ioc_locked, &now);
2722 
2723         iocg_unlock(iocg, ioc_locked, &flags);
2724 
2725         while (true) {
2726                 set_current_state(TASK_UNINTERRUPTIBLE);
2727                 if (wait.committed)
2728                         break;
2729                 io_schedule();
2730         }
2731 
2732         /* waker already committed us, proceed */
2733         finish_wait(&iocg->waitq, &wait.wait);
2734 }
2735 
2736 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2737                            struct bio *bio)
2738 {
2739         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2740         struct ioc *ioc = rqos_to_ioc(rqos);
2741         sector_t bio_end = bio_end_sector(bio);
2742         struct ioc_now now;
2743         u64 vtime, abs_cost, cost;
2744         unsigned long flags;
2745 
2746         /* bypass if disabled, still initializing, or for root cgroup */
2747         if (!ioc->enabled || !iocg || !iocg->level)
2748                 return;
2749 
2750         abs_cost = calc_vtime_cost(bio, iocg, true);
2751         if (!abs_cost)
2752                 return;
2753 
2754         ioc_now(ioc, &now);
2755 
2756         vtime = atomic64_read(&iocg->vtime);
2757         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2758 
2759         /* update cursor if backmerging into the request at the cursor */
2760         if (blk_rq_pos(rq) < bio_end &&
2761             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2762                 iocg->cursor = bio_end;
2763 
2764         /*
2765          * Charge if there's enough vtime budget and the existing request has
2766          * cost assigned.
2767          */
2768         if (rq->bio && rq->bio->bi_iocost_cost &&
2769             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2770                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2771                 return;
2772         }
2773 
2774         /*
2775          * Otherwise, account it as debt if @iocg is online, which it should
2776          * be for the vast majority of cases. See debt handling in
2777          * ioc_rqos_throttle() for details.
2778          */
2779         spin_lock_irqsave(&ioc->lock, flags);
2780         spin_lock(&iocg->waitq.lock);
2781 
2782         if (likely(!list_empty(&iocg->active_list))) {
2783                 iocg_incur_debt(iocg, abs_cost, &now);
2784                 if (iocg_kick_delay(iocg, &now))
2785                         blkcg_schedule_throttle(rqos->disk,
2786                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2787         } else {
2788                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2789         }
2790 
2791         spin_unlock(&iocg->waitq.lock);
2792         spin_unlock_irqrestore(&ioc->lock, flags);
2793 }
2794 
2795 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2796 {
2797         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2798 
2799         if (iocg && bio->bi_iocost_cost)
2800                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2801 }
2802 
2803 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2804 {
2805         struct ioc *ioc = rqos_to_ioc(rqos);
2806         struct ioc_pcpu_stat *ccs;
2807         u64 on_q_ns, rq_wait_ns, size_nsec;
2808         int pidx, rw;
2809 
2810         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2811                 return;
2812 
2813         switch (req_op(rq)) {
2814         case REQ_OP_READ:
2815                 pidx = QOS_RLAT;
2816                 rw = READ;
2817                 break;
2818         case REQ_OP_WRITE:
2819                 pidx = QOS_WLAT;
2820                 rw = WRITE;
2821                 break;
2822         default:
2823                 return;
2824         }
2825 
2826         on_q_ns = blk_time_get_ns() - rq->alloc_time_ns;
2827         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2828         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2829 
2830         ccs = get_cpu_ptr(ioc->pcpu_stat);
2831 
2832         if (on_q_ns <= size_nsec ||
2833             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2834                 local_inc(&ccs->missed[rw].nr_met);
2835         else
2836                 local_inc(&ccs->missed[rw].nr_missed);
2837 
2838         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2839 
2840         put_cpu_ptr(ccs);
2841 }
2842 
2843 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2844 {
2845         struct ioc *ioc = rqos_to_ioc(rqos);
2846 
2847         spin_lock_irq(&ioc->lock);
2848         ioc_refresh_params(ioc, false);
2849         spin_unlock_irq(&ioc->lock);
2850 }
2851 
2852 static void ioc_rqos_exit(struct rq_qos *rqos)
2853 {
2854         struct ioc *ioc = rqos_to_ioc(rqos);
2855 
2856         blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2857 
2858         spin_lock_irq(&ioc->lock);
2859         ioc->running = IOC_STOP;
2860         spin_unlock_irq(&ioc->lock);
2861 
2862         timer_shutdown_sync(&ioc->timer);
2863         free_percpu(ioc->pcpu_stat);
2864         kfree(ioc);
2865 }
2866 
2867 static const struct rq_qos_ops ioc_rqos_ops = {
2868         .throttle = ioc_rqos_throttle,
2869         .merge = ioc_rqos_merge,
2870         .done_bio = ioc_rqos_done_bio,
2871         .done = ioc_rqos_done,
2872         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2873         .exit = ioc_rqos_exit,
2874 };
2875 
2876 static int blk_iocost_init(struct gendisk *disk)
2877 {
2878         struct ioc *ioc;
2879         int i, cpu, ret;
2880 
2881         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2882         if (!ioc)
2883                 return -ENOMEM;
2884 
2885         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2886         if (!ioc->pcpu_stat) {
2887                 kfree(ioc);
2888                 return -ENOMEM;
2889         }
2890 
2891         for_each_possible_cpu(cpu) {
2892                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2893 
2894                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2895                         local_set(&ccs->missed[i].nr_met, 0);
2896                         local_set(&ccs->missed[i].nr_missed, 0);
2897                 }
2898                 local64_set(&ccs->rq_wait_ns, 0);
2899         }
2900 
2901         spin_lock_init(&ioc->lock);
2902         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2903         INIT_LIST_HEAD(&ioc->active_iocgs);
2904 
2905         ioc->running = IOC_IDLE;
2906         ioc->vtime_base_rate = VTIME_PER_USEC;
2907         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2908         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2909         ioc->period_at = ktime_to_us(blk_time_get());
2910         atomic64_set(&ioc->cur_period, 0);
2911         atomic_set(&ioc->hweight_gen, 0);
2912 
2913         spin_lock_irq(&ioc->lock);
2914         ioc->autop_idx = AUTOP_INVALID;
2915         ioc_refresh_params_disk(ioc, true, disk);
2916         spin_unlock_irq(&ioc->lock);
2917 
2918         /*
2919          * rqos must be added before activation to allow ioc_pd_init() to
2920          * lookup the ioc from q. This means that the rqos methods may get
2921          * called before policy activation completion, can't assume that the
2922          * target bio has an iocg associated and need to test for NULL iocg.
2923          */
2924         ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2925         if (ret)
2926                 goto err_free_ioc;
2927 
2928         ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2929         if (ret)
2930                 goto err_del_qos;
2931         return 0;
2932 
2933 err_del_qos:
2934         rq_qos_del(&ioc->rqos);
2935 err_free_ioc:
2936         free_percpu(ioc->pcpu_stat);
2937         kfree(ioc);
2938         return ret;
2939 }
2940 
2941 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2942 {
2943         struct ioc_cgrp *iocc;
2944 
2945         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2946         if (!iocc)
2947                 return NULL;
2948 
2949         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2950         return &iocc->cpd;
2951 }
2952 
2953 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2954 {
2955         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2956 }
2957 
2958 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2959                 struct blkcg *blkcg, gfp_t gfp)
2960 {
2961         int levels = blkcg->css.cgroup->level + 1;
2962         struct ioc_gq *iocg;
2963 
2964         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2965                             disk->node_id);
2966         if (!iocg)
2967                 return NULL;
2968 
2969         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2970         if (!iocg->pcpu_stat) {
2971                 kfree(iocg);
2972                 return NULL;
2973         }
2974 
2975         return &iocg->pd;
2976 }
2977 
2978 static void ioc_pd_init(struct blkg_policy_data *pd)
2979 {
2980         struct ioc_gq *iocg = pd_to_iocg(pd);
2981         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2982         struct ioc *ioc = q_to_ioc(blkg->q);
2983         struct ioc_now now;
2984         struct blkcg_gq *tblkg;
2985         unsigned long flags;
2986 
2987         ioc_now(ioc, &now);
2988 
2989         iocg->ioc = ioc;
2990         atomic64_set(&iocg->vtime, now.vnow);
2991         atomic64_set(&iocg->done_vtime, now.vnow);
2992         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2993         INIT_LIST_HEAD(&iocg->active_list);
2994         INIT_LIST_HEAD(&iocg->walk_list);
2995         INIT_LIST_HEAD(&iocg->surplus_list);
2996         iocg->hweight_active = WEIGHT_ONE;
2997         iocg->hweight_inuse = WEIGHT_ONE;
2998 
2999         init_waitqueue_head(&iocg->waitq);
3000         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
3001         iocg->waitq_timer.function = iocg_waitq_timer_fn;
3002 
3003         iocg->level = blkg->blkcg->css.cgroup->level;
3004 
3005         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
3006                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
3007                 iocg->ancestors[tiocg->level] = tiocg;
3008         }
3009 
3010         spin_lock_irqsave(&ioc->lock, flags);
3011         weight_updated(iocg, &now);
3012         spin_unlock_irqrestore(&ioc->lock, flags);
3013 }
3014 
3015 static void ioc_pd_free(struct blkg_policy_data *pd)
3016 {
3017         struct ioc_gq *iocg = pd_to_iocg(pd);
3018         struct ioc *ioc = iocg->ioc;
3019         unsigned long flags;
3020 
3021         if (ioc) {
3022                 spin_lock_irqsave(&ioc->lock, flags);
3023 
3024                 if (!list_empty(&iocg->active_list)) {
3025                         struct ioc_now now;
3026 
3027                         ioc_now(ioc, &now);
3028                         propagate_weights(iocg, 0, 0, false, &now);
3029                         list_del_init(&iocg->active_list);
3030                 }
3031 
3032                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3033                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3034 
3035                 spin_unlock_irqrestore(&ioc->lock, flags);
3036 
3037                 hrtimer_cancel(&iocg->waitq_timer);
3038         }
3039         free_percpu(iocg->pcpu_stat);
3040         kfree(iocg);
3041 }
3042 
3043 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3044 {
3045         struct ioc_gq *iocg = pd_to_iocg(pd);
3046         struct ioc *ioc = iocg->ioc;
3047 
3048         if (!ioc->enabled)
3049                 return;
3050 
3051         if (iocg->level == 0) {
3052                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3053                         ioc->vtime_base_rate * 10000,
3054                         VTIME_PER_USEC);
3055                 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3056         }
3057 
3058         seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3059 
3060         if (blkcg_debug_stats)
3061                 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3062                         iocg->last_stat.wait_us,
3063                         iocg->last_stat.indebt_us,
3064                         iocg->last_stat.indelay_us);
3065 }
3066 
3067 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3068                              int off)
3069 {
3070         const char *dname = blkg_dev_name(pd->blkg);
3071         struct ioc_gq *iocg = pd_to_iocg(pd);
3072 
3073         if (dname && iocg->cfg_weight)
3074                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3075         return 0;
3076 }
3077 
3078 
3079 static int ioc_weight_show(struct seq_file *sf, void *v)
3080 {
3081         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3082         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3083 
3084         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3085         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3086                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3087         return 0;
3088 }
3089 
3090 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3091                                 size_t nbytes, loff_t off)
3092 {
3093         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3094         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3095         struct blkg_conf_ctx ctx;
3096         struct ioc_now now;
3097         struct ioc_gq *iocg;
3098         u32 v;
3099         int ret;
3100 
3101         if (!strchr(buf, ':')) {
3102                 struct blkcg_gq *blkg;
3103 
3104                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3105                         return -EINVAL;
3106 
3107                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3108                         return -EINVAL;
3109 
3110                 spin_lock_irq(&blkcg->lock);
3111                 iocc->dfl_weight = v * WEIGHT_ONE;
3112                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3113                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3114 
3115                         if (iocg) {
3116                                 spin_lock(&iocg->ioc->lock);
3117                                 ioc_now(iocg->ioc, &now);
3118                                 weight_updated(iocg, &now);
3119                                 spin_unlock(&iocg->ioc->lock);
3120                         }
3121                 }
3122                 spin_unlock_irq(&blkcg->lock);
3123 
3124                 return nbytes;
3125         }
3126 
3127         blkg_conf_init(&ctx, buf);
3128 
3129         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
3130         if (ret)
3131                 goto err;
3132 
3133         iocg = blkg_to_iocg(ctx.blkg);
3134 
3135         if (!strncmp(ctx.body, "default", 7)) {
3136                 v = 0;
3137         } else {
3138                 if (!sscanf(ctx.body, "%u", &v))
3139                         goto einval;
3140                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3141                         goto einval;
3142         }
3143 
3144         spin_lock(&iocg->ioc->lock);
3145         iocg->cfg_weight = v * WEIGHT_ONE;
3146         ioc_now(iocg->ioc, &now);
3147         weight_updated(iocg, &now);
3148         spin_unlock(&iocg->ioc->lock);
3149 
3150         blkg_conf_exit(&ctx);
3151         return nbytes;
3152 
3153 einval:
3154         ret = -EINVAL;
3155 err:
3156         blkg_conf_exit(&ctx);
3157         return ret;
3158 }
3159 
3160 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3161                           int off)
3162 {
3163         const char *dname = blkg_dev_name(pd->blkg);
3164         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3165 
3166         if (!dname)
3167                 return 0;
3168 
3169         spin_lock_irq(&ioc->lock);
3170         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3171                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3172                    ioc->params.qos[QOS_RPPM] / 10000,
3173                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3174                    ioc->params.qos[QOS_RLAT],
3175                    ioc->params.qos[QOS_WPPM] / 10000,
3176                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3177                    ioc->params.qos[QOS_WLAT],
3178                    ioc->params.qos[QOS_MIN] / 10000,
3179                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3180                    ioc->params.qos[QOS_MAX] / 10000,
3181                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3182         spin_unlock_irq(&ioc->lock);
3183         return 0;
3184 }
3185 
3186 static int ioc_qos_show(struct seq_file *sf, void *v)
3187 {
3188         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3189 
3190         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3191                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3192         return 0;
3193 }
3194 
3195 static const match_table_t qos_ctrl_tokens = {
3196         { QOS_ENABLE,           "enable=%u"     },
3197         { QOS_CTRL,             "ctrl=%s"       },
3198         { NR_QOS_CTRL_PARAMS,   NULL            },
3199 };
3200 
3201 static const match_table_t qos_tokens = {
3202         { QOS_RPPM,             "rpct=%s"       },
3203         { QOS_RLAT,             "rlat=%u"       },
3204         { QOS_WPPM,             "wpct=%s"       },
3205         { QOS_WLAT,             "wlat=%u"       },
3206         { QOS_MIN,              "min=%s"        },
3207         { QOS_MAX,              "max=%s"        },
3208         { NR_QOS_PARAMS,        NULL            },
3209 };
3210 
3211 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3212                              size_t nbytes, loff_t off)
3213 {
3214         struct blkg_conf_ctx ctx;
3215         struct gendisk *disk;
3216         struct ioc *ioc;
3217         u32 qos[NR_QOS_PARAMS];
3218         bool enable, user;
3219         char *body, *p;
3220         int ret;
3221 
3222         blkg_conf_init(&ctx, input);
3223 
3224         ret = blkg_conf_open_bdev(&ctx);
3225         if (ret)
3226                 goto err;
3227 
3228         body = ctx.body;
3229         disk = ctx.bdev->bd_disk;
3230         if (!queue_is_mq(disk->queue)) {
3231                 ret = -EOPNOTSUPP;
3232                 goto err;
3233         }
3234 
3235         ioc = q_to_ioc(disk->queue);
3236         if (!ioc) {
3237                 ret = blk_iocost_init(disk);
3238                 if (ret)
3239                         goto err;
3240                 ioc = q_to_ioc(disk->queue);
3241         }
3242 
3243         blk_mq_freeze_queue(disk->queue);
3244         blk_mq_quiesce_queue(disk->queue);
3245 
3246         spin_lock_irq(&ioc->lock);
3247         memcpy(qos, ioc->params.qos, sizeof(qos));
3248         enable = ioc->enabled;
3249         user = ioc->user_qos_params;
3250 
3251         while ((p = strsep(&body, " \t\n"))) {
3252                 substring_t args[MAX_OPT_ARGS];
3253                 char buf[32];
3254                 int tok;
3255                 s64 v;
3256 
3257                 if (!*p)
3258                         continue;
3259 
3260                 switch (match_token(p, qos_ctrl_tokens, args)) {
3261                 case QOS_ENABLE:
3262                         if (match_u64(&args[0], &v))
3263                                 goto einval;
3264                         enable = v;
3265                         continue;
3266                 case QOS_CTRL:
3267                         match_strlcpy(buf, &args[0], sizeof(buf));
3268                         if (!strcmp(buf, "auto"))
3269                                 user = false;
3270                         else if (!strcmp(buf, "user"))
3271                                 user = true;
3272                         else
3273                                 goto einval;
3274                         continue;
3275                 }
3276 
3277                 tok = match_token(p, qos_tokens, args);
3278                 switch (tok) {
3279                 case QOS_RPPM:
3280                 case QOS_WPPM:
3281                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3282                             sizeof(buf))
3283                                 goto einval;
3284                         if (cgroup_parse_float(buf, 2, &v))
3285                                 goto einval;
3286                         if (v < 0 || v > 10000)
3287                                 goto einval;
3288                         qos[tok] = v * 100;
3289                         break;
3290                 case QOS_RLAT:
3291                 case QOS_WLAT:
3292                         if (match_u64(&args[0], &v))
3293                                 goto einval;
3294                         qos[tok] = v;
3295                         break;
3296                 case QOS_MIN:
3297                 case QOS_MAX:
3298                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3299                             sizeof(buf))
3300                                 goto einval;
3301                         if (cgroup_parse_float(buf, 2, &v))
3302                                 goto einval;
3303                         if (v < 0)
3304                                 goto einval;
3305                         qos[tok] = clamp_t(s64, v * 100,
3306                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3307                         break;
3308                 default:
3309                         goto einval;
3310                 }
3311                 user = true;
3312         }
3313 
3314         if (qos[QOS_MIN] > qos[QOS_MAX])
3315                 goto einval;
3316 
3317         if (enable && !ioc->enabled) {
3318                 blk_stat_enable_accounting(disk->queue);
3319                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3320                 ioc->enabled = true;
3321         } else if (!enable && ioc->enabled) {
3322                 blk_stat_disable_accounting(disk->queue);
3323                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3324                 ioc->enabled = false;
3325         }
3326 
3327         if (user) {
3328                 memcpy(ioc->params.qos, qos, sizeof(qos));
3329                 ioc->user_qos_params = true;
3330         } else {
3331                 ioc->user_qos_params = false;
3332         }
3333 
3334         ioc_refresh_params(ioc, true);
3335         spin_unlock_irq(&ioc->lock);
3336 
3337         if (enable)
3338                 wbt_disable_default(disk);
3339         else
3340                 wbt_enable_default(disk);
3341 
3342         blk_mq_unquiesce_queue(disk->queue);
3343         blk_mq_unfreeze_queue(disk->queue);
3344 
3345         blkg_conf_exit(&ctx);
3346         return nbytes;
3347 einval:
3348         spin_unlock_irq(&ioc->lock);
3349 
3350         blk_mq_unquiesce_queue(disk->queue);
3351         blk_mq_unfreeze_queue(disk->queue);
3352 
3353         ret = -EINVAL;
3354 err:
3355         blkg_conf_exit(&ctx);
3356         return ret;
3357 }
3358 
3359 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3360                                  struct blkg_policy_data *pd, int off)
3361 {
3362         const char *dname = blkg_dev_name(pd->blkg);
3363         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3364         u64 *u = ioc->params.i_lcoefs;
3365 
3366         if (!dname)
3367                 return 0;
3368 
3369         spin_lock_irq(&ioc->lock);
3370         seq_printf(sf, "%s ctrl=%s model=linear "
3371                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3372                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3373                    dname, ioc->user_cost_model ? "user" : "auto",
3374                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3375                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3376         spin_unlock_irq(&ioc->lock);
3377         return 0;
3378 }
3379 
3380 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3381 {
3382         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3383 
3384         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3385                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3386         return 0;
3387 }
3388 
3389 static const match_table_t cost_ctrl_tokens = {
3390         { COST_CTRL,            "ctrl=%s"       },
3391         { COST_MODEL,           "model=%s"      },
3392         { NR_COST_CTRL_PARAMS,  NULL            },
3393 };
3394 
3395 static const match_table_t i_lcoef_tokens = {
3396         { I_LCOEF_RBPS,         "rbps=%u"       },
3397         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3398         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3399         { I_LCOEF_WBPS,         "wbps=%u"       },
3400         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3401         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3402         { NR_I_LCOEFS,          NULL            },
3403 };
3404 
3405 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3406                                     size_t nbytes, loff_t off)
3407 {
3408         struct blkg_conf_ctx ctx;
3409         struct request_queue *q;
3410         struct ioc *ioc;
3411         u64 u[NR_I_LCOEFS];
3412         bool user;
3413         char *body, *p;
3414         int ret;
3415 
3416         blkg_conf_init(&ctx, input);
3417 
3418         ret = blkg_conf_open_bdev(&ctx);
3419         if (ret)
3420                 goto err;
3421 
3422         body = ctx.body;
3423         q = bdev_get_queue(ctx.bdev);
3424         if (!queue_is_mq(q)) {
3425                 ret = -EOPNOTSUPP;
3426                 goto err;
3427         }
3428 
3429         ioc = q_to_ioc(q);
3430         if (!ioc) {
3431                 ret = blk_iocost_init(ctx.bdev->bd_disk);
3432                 if (ret)
3433                         goto err;
3434                 ioc = q_to_ioc(q);
3435         }
3436 
3437         blk_mq_freeze_queue(q);
3438         blk_mq_quiesce_queue(q);
3439 
3440         spin_lock_irq(&ioc->lock);
3441         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3442         user = ioc->user_cost_model;
3443 
3444         while ((p = strsep(&body, " \t\n"))) {
3445                 substring_t args[MAX_OPT_ARGS];
3446                 char buf[32];
3447                 int tok;
3448                 u64 v;
3449 
3450                 if (!*p)
3451                         continue;
3452 
3453                 switch (match_token(p, cost_ctrl_tokens, args)) {
3454                 case COST_CTRL:
3455                         match_strlcpy(buf, &args[0], sizeof(buf));
3456                         if (!strcmp(buf, "auto"))
3457                                 user = false;
3458                         else if (!strcmp(buf, "user"))
3459                                 user = true;
3460                         else
3461                                 goto einval;
3462                         continue;
3463                 case COST_MODEL:
3464                         match_strlcpy(buf, &args[0], sizeof(buf));
3465                         if (strcmp(buf, "linear"))
3466                                 goto einval;
3467                         continue;
3468                 }
3469 
3470                 tok = match_token(p, i_lcoef_tokens, args);
3471                 if (tok == NR_I_LCOEFS)
3472                         goto einval;
3473                 if (match_u64(&args[0], &v))
3474                         goto einval;
3475                 u[tok] = v;
3476                 user = true;
3477         }
3478 
3479         if (user) {
3480                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3481                 ioc->user_cost_model = true;
3482         } else {
3483                 ioc->user_cost_model = false;
3484         }
3485         ioc_refresh_params(ioc, true);
3486         spin_unlock_irq(&ioc->lock);
3487 
3488         blk_mq_unquiesce_queue(q);
3489         blk_mq_unfreeze_queue(q);
3490 
3491         blkg_conf_exit(&ctx);
3492         return nbytes;
3493 
3494 einval:
3495         spin_unlock_irq(&ioc->lock);
3496 
3497         blk_mq_unquiesce_queue(q);
3498         blk_mq_unfreeze_queue(q);
3499 
3500         ret = -EINVAL;
3501 err:
3502         blkg_conf_exit(&ctx);
3503         return ret;
3504 }
3505 
3506 static struct cftype ioc_files[] = {
3507         {
3508                 .name = "weight",
3509                 .flags = CFTYPE_NOT_ON_ROOT,
3510                 .seq_show = ioc_weight_show,
3511                 .write = ioc_weight_write,
3512         },
3513         {
3514                 .name = "cost.qos",
3515                 .flags = CFTYPE_ONLY_ON_ROOT,
3516                 .seq_show = ioc_qos_show,
3517                 .write = ioc_qos_write,
3518         },
3519         {
3520                 .name = "cost.model",
3521                 .flags = CFTYPE_ONLY_ON_ROOT,
3522                 .seq_show = ioc_cost_model_show,
3523                 .write = ioc_cost_model_write,
3524         },
3525         {}
3526 };
3527 
3528 static struct blkcg_policy blkcg_policy_iocost = {
3529         .dfl_cftypes    = ioc_files,
3530         .cpd_alloc_fn   = ioc_cpd_alloc,
3531         .cpd_free_fn    = ioc_cpd_free,
3532         .pd_alloc_fn    = ioc_pd_alloc,
3533         .pd_init_fn     = ioc_pd_init,
3534         .pd_free_fn     = ioc_pd_free,
3535         .pd_stat_fn     = ioc_pd_stat,
3536 };
3537 
3538 static int __init ioc_init(void)
3539 {
3540         return blkcg_policy_register(&blkcg_policy_iocost);
3541 }
3542 
3543 static void __exit ioc_exit(void)
3544 {
3545         blkcg_policy_unregister(&blkcg_policy_iocost);
3546 }
3547 
3548 module_init(ioc_init);
3549 module_exit(ioc_exit);
3550 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php