1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, 109 const struct queue_limits *lim, 110 unsigned *nsegs, struct bio_set *bs) 111 { 112 unsigned int max_discard_sectors, granularity; 113 sector_t tmp; 114 unsigned split_sectors; 115 116 *nsegs = 1; 117 118 granularity = max(lim->discard_granularity >> 9, 1U); 119 120 max_discard_sectors = 121 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 122 max_discard_sectors -= max_discard_sectors % granularity; 123 if (unlikely(!max_discard_sectors)) 124 return NULL; 125 126 if (bio_sectors(bio) <= max_discard_sectors) 127 return NULL; 128 129 split_sectors = max_discard_sectors; 130 131 /* 132 * If the next starting sector would be misaligned, stop the discard at 133 * the previous aligned sector. 134 */ 135 tmp = bio->bi_iter.bi_sector + split_sectors - 136 ((lim->discard_alignment >> 9) % granularity); 137 tmp = sector_div(tmp, granularity); 138 139 if (split_sectors > tmp) 140 split_sectors -= tmp; 141 142 return bio_split(bio, split_sectors, GFP_NOIO, bs); 143 } 144 145 static struct bio *bio_split_write_zeroes(struct bio *bio, 146 const struct queue_limits *lim, 147 unsigned *nsegs, struct bio_set *bs) 148 { 149 *nsegs = 0; 150 if (!lim->max_write_zeroes_sectors) 151 return NULL; 152 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 153 return NULL; 154 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 155 } 156 157 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim, 158 bool is_atomic) 159 { 160 /* 161 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if 162 * both non-zero. 163 */ 164 if (is_atomic && lim->atomic_write_boundary_sectors) 165 return lim->atomic_write_boundary_sectors; 166 167 return lim->chunk_sectors; 168 } 169 170 /* 171 * Return the maximum number of sectors from the start of a bio that may be 172 * submitted as a single request to a block device. If enough sectors remain, 173 * align the end to the physical block size. Otherwise align the end to the 174 * logical block size. This approach minimizes the number of non-aligned 175 * requests that are submitted to a block device if the start of a bio is not 176 * aligned to a physical block boundary. 177 */ 178 static inline unsigned get_max_io_size(struct bio *bio, 179 const struct queue_limits *lim) 180 { 181 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 182 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 183 bool is_atomic = bio->bi_opf & REQ_ATOMIC; 184 unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic); 185 unsigned max_sectors, start, end; 186 187 /* 188 * We ignore lim->max_sectors for atomic writes because it may less 189 * than the actual bio size, which we cannot tolerate. 190 */ 191 if (is_atomic) 192 max_sectors = lim->atomic_write_max_sectors; 193 else 194 max_sectors = lim->max_sectors; 195 196 if (boundary_sectors) { 197 max_sectors = min(max_sectors, 198 blk_boundary_sectors_left(bio->bi_iter.bi_sector, 199 boundary_sectors)); 200 } 201 202 start = bio->bi_iter.bi_sector & (pbs - 1); 203 end = (start + max_sectors) & ~(pbs - 1); 204 if (end > start) 205 return end - start; 206 return max_sectors & ~(lbs - 1); 207 } 208 209 /** 210 * get_max_segment_size() - maximum number of bytes to add as a single segment 211 * @lim: Request queue limits. 212 * @paddr: address of the range to add 213 * @len: maximum length available to add at @paddr 214 * 215 * Returns the maximum number of bytes of the range starting at @paddr that can 216 * be added to a single segment. 217 */ 218 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 219 phys_addr_t paddr, unsigned int len) 220 { 221 /* 222 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 223 * after having calculated the minimum. 224 */ 225 return min_t(unsigned long, len, 226 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr), 227 (unsigned long)lim->max_segment_size - 1) + 1); 228 } 229 230 /** 231 * bvec_split_segs - verify whether or not a bvec should be split in the middle 232 * @lim: [in] queue limits to split based on 233 * @bv: [in] bvec to examine 234 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 235 * by the number of segments from @bv that may be appended to that 236 * bio without exceeding @max_segs 237 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 238 * by the number of bytes from @bv that may be appended to that 239 * bio without exceeding @max_bytes 240 * @max_segs: [in] upper bound for *@nsegs 241 * @max_bytes: [in] upper bound for *@bytes 242 * 243 * When splitting a bio, it can happen that a bvec is encountered that is too 244 * big to fit in a single segment and hence that it has to be split in the 245 * middle. This function verifies whether or not that should happen. The value 246 * %true is returned if and only if appending the entire @bv to a bio with 247 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 248 * the block driver. 249 */ 250 static bool bvec_split_segs(const struct queue_limits *lim, 251 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 252 unsigned max_segs, unsigned max_bytes) 253 { 254 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 255 unsigned len = min(bv->bv_len, max_len); 256 unsigned total_len = 0; 257 unsigned seg_size = 0; 258 259 while (len && *nsegs < max_segs) { 260 seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len); 261 262 (*nsegs)++; 263 total_len += seg_size; 264 len -= seg_size; 265 266 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 267 break; 268 } 269 270 *bytes += total_len; 271 272 /* tell the caller to split the bvec if it is too big to fit */ 273 return len > 0 || bv->bv_len > max_len; 274 } 275 276 /** 277 * bio_split_rw - split a bio in two bios 278 * @bio: [in] bio to be split 279 * @lim: [in] queue limits to split based on 280 * @segs: [out] number of segments in the bio with the first half of the sectors 281 * @bs: [in] bio set to allocate the clone from 282 * @max_bytes: [in] maximum number of bytes per bio 283 * 284 * Clone @bio, update the bi_iter of the clone to represent the first sectors 285 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 286 * following is guaranteed for the cloned bio: 287 * - That it has at most @max_bytes worth of data 288 * - That it has at most queue_max_segments(@q) segments. 289 * 290 * Except for discard requests the cloned bio will point at the bi_io_vec of 291 * the original bio. It is the responsibility of the caller to ensure that the 292 * original bio is not freed before the cloned bio. The caller is also 293 * responsible for ensuring that @bs is only destroyed after processing of the 294 * split bio has finished. 295 */ 296 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 297 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 298 { 299 struct bio_vec bv, bvprv, *bvprvp = NULL; 300 struct bvec_iter iter; 301 unsigned nsegs = 0, bytes = 0; 302 303 bio_for_each_bvec(bv, bio, iter) { 304 /* 305 * If the queue doesn't support SG gaps and adding this 306 * offset would create a gap, disallow it. 307 */ 308 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 309 goto split; 310 311 if (nsegs < lim->max_segments && 312 bytes + bv.bv_len <= max_bytes && 313 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 314 nsegs++; 315 bytes += bv.bv_len; 316 } else { 317 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 318 lim->max_segments, max_bytes)) 319 goto split; 320 } 321 322 bvprv = bv; 323 bvprvp = &bvprv; 324 } 325 326 *segs = nsegs; 327 return NULL; 328 split: 329 if (bio->bi_opf & REQ_ATOMIC) { 330 bio->bi_status = BLK_STS_INVAL; 331 bio_endio(bio); 332 return ERR_PTR(-EINVAL); 333 } 334 /* 335 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 336 * with EAGAIN if splitting is required and return an error pointer. 337 */ 338 if (bio->bi_opf & REQ_NOWAIT) { 339 bio->bi_status = BLK_STS_AGAIN; 340 bio_endio(bio); 341 return ERR_PTR(-EAGAIN); 342 } 343 344 *segs = nsegs; 345 346 /* 347 * Individual bvecs might not be logical block aligned. Round down the 348 * split size so that each bio is properly block size aligned, even if 349 * we do not use the full hardware limits. 350 */ 351 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 352 353 /* 354 * Bio splitting may cause subtle trouble such as hang when doing sync 355 * iopoll in direct IO routine. Given performance gain of iopoll for 356 * big IO can be trival, disable iopoll when split needed. 357 */ 358 bio_clear_polled(bio); 359 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 360 } 361 EXPORT_SYMBOL_GPL(bio_split_rw); 362 363 /** 364 * __bio_split_to_limits - split a bio to fit the queue limits 365 * @bio: bio to be split 366 * @lim: queue limits to split based on 367 * @nr_segs: returns the number of segments in the returned bio 368 * 369 * Check if @bio needs splitting based on the queue limits, and if so split off 370 * a bio fitting the limits from the beginning of @bio and return it. @bio is 371 * shortened to the remainder and re-submitted. 372 * 373 * The split bio is allocated from @q->bio_split, which is provided by the 374 * block layer. 375 */ 376 struct bio *__bio_split_to_limits(struct bio *bio, 377 const struct queue_limits *lim, 378 unsigned int *nr_segs) 379 { 380 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 381 struct bio *split; 382 383 switch (bio_op(bio)) { 384 case REQ_OP_DISCARD: 385 case REQ_OP_SECURE_ERASE: 386 split = bio_split_discard(bio, lim, nr_segs, bs); 387 break; 388 case REQ_OP_WRITE_ZEROES: 389 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 390 break; 391 default: 392 split = bio_split_rw(bio, lim, nr_segs, bs, 393 get_max_io_size(bio, lim) << SECTOR_SHIFT); 394 if (IS_ERR(split)) 395 return NULL; 396 break; 397 } 398 399 if (split) { 400 /* there isn't chance to merge the split bio */ 401 split->bi_opf |= REQ_NOMERGE; 402 403 blkcg_bio_issue_init(split); 404 bio_chain(split, bio); 405 trace_block_split(split, bio->bi_iter.bi_sector); 406 WARN_ON_ONCE(bio_zone_write_plugging(bio)); 407 submit_bio_noacct(bio); 408 return split; 409 } 410 return bio; 411 } 412 413 /** 414 * bio_split_to_limits - split a bio to fit the queue limits 415 * @bio: bio to be split 416 * 417 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 418 * if so split off a bio fitting the limits from the beginning of @bio and 419 * return it. @bio is shortened to the remainder and re-submitted. 420 * 421 * The split bio is allocated from @q->bio_split, which is provided by the 422 * block layer. 423 */ 424 struct bio *bio_split_to_limits(struct bio *bio) 425 { 426 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 427 unsigned int nr_segs; 428 429 if (bio_may_exceed_limits(bio, lim)) 430 return __bio_split_to_limits(bio, lim, &nr_segs); 431 return bio; 432 } 433 EXPORT_SYMBOL(bio_split_to_limits); 434 435 unsigned int blk_recalc_rq_segments(struct request *rq) 436 { 437 unsigned int nr_phys_segs = 0; 438 unsigned int bytes = 0; 439 struct req_iterator iter; 440 struct bio_vec bv; 441 442 if (!rq->bio) 443 return 0; 444 445 switch (bio_op(rq->bio)) { 446 case REQ_OP_DISCARD: 447 case REQ_OP_SECURE_ERASE: 448 if (queue_max_discard_segments(rq->q) > 1) { 449 struct bio *bio = rq->bio; 450 451 for_each_bio(bio) 452 nr_phys_segs++; 453 return nr_phys_segs; 454 } 455 return 1; 456 case REQ_OP_WRITE_ZEROES: 457 return 0; 458 default: 459 break; 460 } 461 462 rq_for_each_bvec(bv, rq, iter) 463 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 464 UINT_MAX, UINT_MAX); 465 return nr_phys_segs; 466 } 467 468 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 469 struct scatterlist *sglist) 470 { 471 if (!*sg) 472 return sglist; 473 474 /* 475 * If the driver previously mapped a shorter list, we could see a 476 * termination bit prematurely unless it fully inits the sg table 477 * on each mapping. We KNOW that there must be more entries here 478 * or the driver would be buggy, so force clear the termination bit 479 * to avoid doing a full sg_init_table() in drivers for each command. 480 */ 481 sg_unmark_end(*sg); 482 return sg_next(*sg); 483 } 484 485 static unsigned blk_bvec_map_sg(struct request_queue *q, 486 struct bio_vec *bvec, struct scatterlist *sglist, 487 struct scatterlist **sg) 488 { 489 unsigned nbytes = bvec->bv_len; 490 unsigned nsegs = 0, total = 0; 491 492 while (nbytes > 0) { 493 unsigned offset = bvec->bv_offset + total; 494 unsigned len = get_max_segment_size(&q->limits, 495 bvec_phys(bvec) + total, nbytes); 496 struct page *page = bvec->bv_page; 497 498 /* 499 * Unfortunately a fair number of drivers barf on scatterlists 500 * that have an offset larger than PAGE_SIZE, despite other 501 * subsystems dealing with that invariant just fine. For now 502 * stick to the legacy format where we never present those from 503 * the block layer, but the code below should be removed once 504 * these offenders (mostly MMC/SD drivers) are fixed. 505 */ 506 page += (offset >> PAGE_SHIFT); 507 offset &= ~PAGE_MASK; 508 509 *sg = blk_next_sg(sg, sglist); 510 sg_set_page(*sg, page, len, offset); 511 512 total += len; 513 nbytes -= len; 514 nsegs++; 515 } 516 517 return nsegs; 518 } 519 520 static inline int __blk_bvec_map_sg(struct bio_vec bv, 521 struct scatterlist *sglist, struct scatterlist **sg) 522 { 523 *sg = blk_next_sg(sg, sglist); 524 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 525 return 1; 526 } 527 528 /* only try to merge bvecs into one sg if they are from two bios */ 529 static inline bool 530 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 531 struct bio_vec *bvprv, struct scatterlist **sg) 532 { 533 534 int nbytes = bvec->bv_len; 535 536 if (!*sg) 537 return false; 538 539 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 540 return false; 541 542 if (!biovec_phys_mergeable(q, bvprv, bvec)) 543 return false; 544 545 (*sg)->length += nbytes; 546 547 return true; 548 } 549 550 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 551 struct scatterlist *sglist, 552 struct scatterlist **sg) 553 { 554 struct bio_vec bvec, bvprv = { NULL }; 555 struct bvec_iter iter; 556 int nsegs = 0; 557 bool new_bio = false; 558 559 for_each_bio(bio) { 560 bio_for_each_bvec(bvec, bio, iter) { 561 /* 562 * Only try to merge bvecs from two bios given we 563 * have done bio internal merge when adding pages 564 * to bio 565 */ 566 if (new_bio && 567 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 568 goto next_bvec; 569 570 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 571 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 572 else 573 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 574 next_bvec: 575 new_bio = false; 576 } 577 if (likely(bio->bi_iter.bi_size)) { 578 bvprv = bvec; 579 new_bio = true; 580 } 581 } 582 583 return nsegs; 584 } 585 586 /* 587 * map a request to scatterlist, return number of sg entries setup. Caller 588 * must make sure sg can hold rq->nr_phys_segments entries 589 */ 590 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 591 struct scatterlist *sglist, struct scatterlist **last_sg) 592 { 593 int nsegs = 0; 594 595 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 596 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 597 else if (rq->bio) 598 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 599 600 if (*last_sg) 601 sg_mark_end(*last_sg); 602 603 /* 604 * Something must have been wrong if the figured number of 605 * segment is bigger than number of req's physical segments 606 */ 607 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 608 609 return nsegs; 610 } 611 EXPORT_SYMBOL(__blk_rq_map_sg); 612 613 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 614 sector_t offset) 615 { 616 struct request_queue *q = rq->q; 617 struct queue_limits *lim = &q->limits; 618 unsigned int max_sectors, boundary_sectors; 619 bool is_atomic = rq->cmd_flags & REQ_ATOMIC; 620 621 if (blk_rq_is_passthrough(rq)) 622 return q->limits.max_hw_sectors; 623 624 boundary_sectors = blk_boundary_sectors(lim, is_atomic); 625 max_sectors = blk_queue_get_max_sectors(rq); 626 627 if (!boundary_sectors || 628 req_op(rq) == REQ_OP_DISCARD || 629 req_op(rq) == REQ_OP_SECURE_ERASE) 630 return max_sectors; 631 return min(max_sectors, 632 blk_boundary_sectors_left(offset, boundary_sectors)); 633 } 634 635 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 636 unsigned int nr_phys_segs) 637 { 638 if (!blk_cgroup_mergeable(req, bio)) 639 goto no_merge; 640 641 if (blk_integrity_merge_bio(req->q, req, bio) == false) 642 goto no_merge; 643 644 /* discard request merge won't add new segment */ 645 if (req_op(req) == REQ_OP_DISCARD) 646 return 1; 647 648 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 649 goto no_merge; 650 651 /* 652 * This will form the start of a new hw segment. Bump both 653 * counters. 654 */ 655 req->nr_phys_segments += nr_phys_segs; 656 return 1; 657 658 no_merge: 659 req_set_nomerge(req->q, req); 660 return 0; 661 } 662 663 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 664 { 665 if (req_gap_back_merge(req, bio)) 666 return 0; 667 if (blk_integrity_rq(req) && 668 integrity_req_gap_back_merge(req, bio)) 669 return 0; 670 if (!bio_crypt_ctx_back_mergeable(req, bio)) 671 return 0; 672 if (blk_rq_sectors(req) + bio_sectors(bio) > 673 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 674 req_set_nomerge(req->q, req); 675 return 0; 676 } 677 678 return ll_new_hw_segment(req, bio, nr_segs); 679 } 680 681 static int ll_front_merge_fn(struct request *req, struct bio *bio, 682 unsigned int nr_segs) 683 { 684 if (req_gap_front_merge(req, bio)) 685 return 0; 686 if (blk_integrity_rq(req) && 687 integrity_req_gap_front_merge(req, bio)) 688 return 0; 689 if (!bio_crypt_ctx_front_mergeable(req, bio)) 690 return 0; 691 if (blk_rq_sectors(req) + bio_sectors(bio) > 692 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 693 req_set_nomerge(req->q, req); 694 return 0; 695 } 696 697 return ll_new_hw_segment(req, bio, nr_segs); 698 } 699 700 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 701 struct request *next) 702 { 703 unsigned short segments = blk_rq_nr_discard_segments(req); 704 705 if (segments >= queue_max_discard_segments(q)) 706 goto no_merge; 707 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 708 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 709 goto no_merge; 710 711 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 712 return true; 713 no_merge: 714 req_set_nomerge(q, req); 715 return false; 716 } 717 718 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 719 struct request *next) 720 { 721 int total_phys_segments; 722 723 if (req_gap_back_merge(req, next->bio)) 724 return 0; 725 726 /* 727 * Will it become too large? 728 */ 729 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 730 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 731 return 0; 732 733 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 734 if (total_phys_segments > blk_rq_get_max_segments(req)) 735 return 0; 736 737 if (!blk_cgroup_mergeable(req, next->bio)) 738 return 0; 739 740 if (blk_integrity_merge_rq(q, req, next) == false) 741 return 0; 742 743 if (!bio_crypt_ctx_merge_rq(req, next)) 744 return 0; 745 746 /* Merge is OK... */ 747 req->nr_phys_segments = total_phys_segments; 748 return 1; 749 } 750 751 /** 752 * blk_rq_set_mixed_merge - mark a request as mixed merge 753 * @rq: request to mark as mixed merge 754 * 755 * Description: 756 * @rq is about to be mixed merged. Make sure the attributes 757 * which can be mixed are set in each bio and mark @rq as mixed 758 * merged. 759 */ 760 static void blk_rq_set_mixed_merge(struct request *rq) 761 { 762 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 763 struct bio *bio; 764 765 if (rq->rq_flags & RQF_MIXED_MERGE) 766 return; 767 768 /* 769 * @rq will no longer represent mixable attributes for all the 770 * contained bios. It will just track those of the first one. 771 * Distributes the attributs to each bio. 772 */ 773 for (bio = rq->bio; bio; bio = bio->bi_next) { 774 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 775 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 776 bio->bi_opf |= ff; 777 } 778 rq->rq_flags |= RQF_MIXED_MERGE; 779 } 780 781 static inline blk_opf_t bio_failfast(const struct bio *bio) 782 { 783 if (bio->bi_opf & REQ_RAHEAD) 784 return REQ_FAILFAST_MASK; 785 786 return bio->bi_opf & REQ_FAILFAST_MASK; 787 } 788 789 /* 790 * After we are marked as MIXED_MERGE, any new RA bio has to be updated 791 * as failfast, and request's failfast has to be updated in case of 792 * front merge. 793 */ 794 static inline void blk_update_mixed_merge(struct request *req, 795 struct bio *bio, bool front_merge) 796 { 797 if (req->rq_flags & RQF_MIXED_MERGE) { 798 if (bio->bi_opf & REQ_RAHEAD) 799 bio->bi_opf |= REQ_FAILFAST_MASK; 800 801 if (front_merge) { 802 req->cmd_flags &= ~REQ_FAILFAST_MASK; 803 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; 804 } 805 } 806 } 807 808 static void blk_account_io_merge_request(struct request *req) 809 { 810 if (blk_do_io_stat(req)) { 811 part_stat_lock(); 812 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 813 part_stat_local_dec(req->part, 814 in_flight[op_is_write(req_op(req))]); 815 part_stat_unlock(); 816 } 817 } 818 819 static enum elv_merge blk_try_req_merge(struct request *req, 820 struct request *next) 821 { 822 if (blk_discard_mergable(req)) 823 return ELEVATOR_DISCARD_MERGE; 824 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 825 return ELEVATOR_BACK_MERGE; 826 827 return ELEVATOR_NO_MERGE; 828 } 829 830 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq, 831 struct bio *bio) 832 { 833 return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC); 834 } 835 836 static bool blk_atomic_write_mergeable_rqs(struct request *rq, 837 struct request *next) 838 { 839 return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC); 840 } 841 842 /* 843 * For non-mq, this has to be called with the request spinlock acquired. 844 * For mq with scheduling, the appropriate queue wide lock should be held. 845 */ 846 static struct request *attempt_merge(struct request_queue *q, 847 struct request *req, struct request *next) 848 { 849 if (!rq_mergeable(req) || !rq_mergeable(next)) 850 return NULL; 851 852 if (req_op(req) != req_op(next)) 853 return NULL; 854 855 if (rq_data_dir(req) != rq_data_dir(next)) 856 return NULL; 857 858 /* Don't merge requests with different write hints. */ 859 if (req->write_hint != next->write_hint) 860 return NULL; 861 862 if (req->ioprio != next->ioprio) 863 return NULL; 864 865 if (!blk_atomic_write_mergeable_rqs(req, next)) 866 return NULL; 867 868 /* 869 * If we are allowed to merge, then append bio list 870 * from next to rq and release next. merge_requests_fn 871 * will have updated segment counts, update sector 872 * counts here. Handle DISCARDs separately, as they 873 * have separate settings. 874 */ 875 876 switch (blk_try_req_merge(req, next)) { 877 case ELEVATOR_DISCARD_MERGE: 878 if (!req_attempt_discard_merge(q, req, next)) 879 return NULL; 880 break; 881 case ELEVATOR_BACK_MERGE: 882 if (!ll_merge_requests_fn(q, req, next)) 883 return NULL; 884 break; 885 default: 886 return NULL; 887 } 888 889 /* 890 * If failfast settings disagree or any of the two is already 891 * a mixed merge, mark both as mixed before proceeding. This 892 * makes sure that all involved bios have mixable attributes 893 * set properly. 894 */ 895 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 896 (req->cmd_flags & REQ_FAILFAST_MASK) != 897 (next->cmd_flags & REQ_FAILFAST_MASK)) { 898 blk_rq_set_mixed_merge(req); 899 blk_rq_set_mixed_merge(next); 900 } 901 902 /* 903 * At this point we have either done a back merge or front merge. We 904 * need the smaller start_time_ns of the merged requests to be the 905 * current request for accounting purposes. 906 */ 907 if (next->start_time_ns < req->start_time_ns) 908 req->start_time_ns = next->start_time_ns; 909 910 req->biotail->bi_next = next->bio; 911 req->biotail = next->biotail; 912 913 req->__data_len += blk_rq_bytes(next); 914 915 if (!blk_discard_mergable(req)) 916 elv_merge_requests(q, req, next); 917 918 blk_crypto_rq_put_keyslot(next); 919 920 /* 921 * 'next' is going away, so update stats accordingly 922 */ 923 blk_account_io_merge_request(next); 924 925 trace_block_rq_merge(next); 926 927 /* 928 * ownership of bio passed from next to req, return 'next' for 929 * the caller to free 930 */ 931 next->bio = NULL; 932 return next; 933 } 934 935 static struct request *attempt_back_merge(struct request_queue *q, 936 struct request *rq) 937 { 938 struct request *next = elv_latter_request(q, rq); 939 940 if (next) 941 return attempt_merge(q, rq, next); 942 943 return NULL; 944 } 945 946 static struct request *attempt_front_merge(struct request_queue *q, 947 struct request *rq) 948 { 949 struct request *prev = elv_former_request(q, rq); 950 951 if (prev) 952 return attempt_merge(q, prev, rq); 953 954 return NULL; 955 } 956 957 /* 958 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 959 * otherwise. The caller is responsible for freeing 'next' if the merge 960 * happened. 961 */ 962 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 963 struct request *next) 964 { 965 return attempt_merge(q, rq, next); 966 } 967 968 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 969 { 970 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 971 return false; 972 973 if (req_op(rq) != bio_op(bio)) 974 return false; 975 976 /* different data direction or already started, don't merge */ 977 if (bio_data_dir(bio) != rq_data_dir(rq)) 978 return false; 979 980 /* don't merge across cgroup boundaries */ 981 if (!blk_cgroup_mergeable(rq, bio)) 982 return false; 983 984 /* only merge integrity protected bio into ditto rq */ 985 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 986 return false; 987 988 /* Only merge if the crypt contexts are compatible */ 989 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 990 return false; 991 992 /* Don't merge requests with different write hints. */ 993 if (rq->write_hint != bio->bi_write_hint) 994 return false; 995 996 if (rq->ioprio != bio_prio(bio)) 997 return false; 998 999 if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false) 1000 return false; 1001 1002 return true; 1003 } 1004 1005 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 1006 { 1007 if (blk_discard_mergable(rq)) 1008 return ELEVATOR_DISCARD_MERGE; 1009 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 1010 return ELEVATOR_BACK_MERGE; 1011 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 1012 return ELEVATOR_FRONT_MERGE; 1013 return ELEVATOR_NO_MERGE; 1014 } 1015 1016 static void blk_account_io_merge_bio(struct request *req) 1017 { 1018 if (!blk_do_io_stat(req)) 1019 return; 1020 1021 part_stat_lock(); 1022 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 1023 part_stat_unlock(); 1024 } 1025 1026 enum bio_merge_status bio_attempt_back_merge(struct request *req, 1027 struct bio *bio, unsigned int nr_segs) 1028 { 1029 const blk_opf_t ff = bio_failfast(bio); 1030 1031 if (!ll_back_merge_fn(req, bio, nr_segs)) 1032 return BIO_MERGE_FAILED; 1033 1034 trace_block_bio_backmerge(bio); 1035 rq_qos_merge(req->q, req, bio); 1036 1037 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1038 blk_rq_set_mixed_merge(req); 1039 1040 blk_update_mixed_merge(req, bio, false); 1041 1042 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) 1043 blk_zone_write_plug_bio_merged(bio); 1044 1045 req->biotail->bi_next = bio; 1046 req->biotail = bio; 1047 req->__data_len += bio->bi_iter.bi_size; 1048 1049 bio_crypt_free_ctx(bio); 1050 1051 blk_account_io_merge_bio(req); 1052 return BIO_MERGE_OK; 1053 } 1054 1055 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 1056 struct bio *bio, unsigned int nr_segs) 1057 { 1058 const blk_opf_t ff = bio_failfast(bio); 1059 1060 /* 1061 * A front merge for writes to sequential zones of a zoned block device 1062 * can happen only if the user submitted writes out of order. Do not 1063 * merge such write to let it fail. 1064 */ 1065 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) 1066 return BIO_MERGE_FAILED; 1067 1068 if (!ll_front_merge_fn(req, bio, nr_segs)) 1069 return BIO_MERGE_FAILED; 1070 1071 trace_block_bio_frontmerge(bio); 1072 rq_qos_merge(req->q, req, bio); 1073 1074 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1075 blk_rq_set_mixed_merge(req); 1076 1077 blk_update_mixed_merge(req, bio, true); 1078 1079 bio->bi_next = req->bio; 1080 req->bio = bio; 1081 1082 req->__sector = bio->bi_iter.bi_sector; 1083 req->__data_len += bio->bi_iter.bi_size; 1084 1085 bio_crypt_do_front_merge(req, bio); 1086 1087 blk_account_io_merge_bio(req); 1088 return BIO_MERGE_OK; 1089 } 1090 1091 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1092 struct request *req, struct bio *bio) 1093 { 1094 unsigned short segments = blk_rq_nr_discard_segments(req); 1095 1096 if (segments >= queue_max_discard_segments(q)) 1097 goto no_merge; 1098 if (blk_rq_sectors(req) + bio_sectors(bio) > 1099 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1100 goto no_merge; 1101 1102 rq_qos_merge(q, req, bio); 1103 1104 req->biotail->bi_next = bio; 1105 req->biotail = bio; 1106 req->__data_len += bio->bi_iter.bi_size; 1107 req->nr_phys_segments = segments + 1; 1108 1109 blk_account_io_merge_bio(req); 1110 return BIO_MERGE_OK; 1111 no_merge: 1112 req_set_nomerge(q, req); 1113 return BIO_MERGE_FAILED; 1114 } 1115 1116 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1117 struct request *rq, 1118 struct bio *bio, 1119 unsigned int nr_segs, 1120 bool sched_allow_merge) 1121 { 1122 if (!blk_rq_merge_ok(rq, bio)) 1123 return BIO_MERGE_NONE; 1124 1125 switch (blk_try_merge(rq, bio)) { 1126 case ELEVATOR_BACK_MERGE: 1127 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1128 return bio_attempt_back_merge(rq, bio, nr_segs); 1129 break; 1130 case ELEVATOR_FRONT_MERGE: 1131 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1132 return bio_attempt_front_merge(rq, bio, nr_segs); 1133 break; 1134 case ELEVATOR_DISCARD_MERGE: 1135 return bio_attempt_discard_merge(q, rq, bio); 1136 default: 1137 return BIO_MERGE_NONE; 1138 } 1139 1140 return BIO_MERGE_FAILED; 1141 } 1142 1143 /** 1144 * blk_attempt_plug_merge - try to merge with %current's plugged list 1145 * @q: request_queue new bio is being queued at 1146 * @bio: new bio being queued 1147 * @nr_segs: number of segments in @bio 1148 * from the passed in @q already in the plug list 1149 * 1150 * Determine whether @bio being queued on @q can be merged with the previous 1151 * request on %current's plugged list. Returns %true if merge was successful, 1152 * otherwise %false. 1153 * 1154 * Plugging coalesces IOs from the same issuer for the same purpose without 1155 * going through @q->queue_lock. As such it's more of an issuing mechanism 1156 * than scheduling, and the request, while may have elvpriv data, is not 1157 * added on the elevator at this point. In addition, we don't have 1158 * reliable access to the elevator outside queue lock. Only check basic 1159 * merging parameters without querying the elevator. 1160 * 1161 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1162 */ 1163 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1164 unsigned int nr_segs) 1165 { 1166 struct blk_plug *plug = current->plug; 1167 struct request *rq; 1168 1169 if (!plug || rq_list_empty(plug->mq_list)) 1170 return false; 1171 1172 rq_list_for_each(&plug->mq_list, rq) { 1173 if (rq->q == q) { 1174 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1175 BIO_MERGE_OK) 1176 return true; 1177 break; 1178 } 1179 1180 /* 1181 * Only keep iterating plug list for merges if we have multiple 1182 * queues 1183 */ 1184 if (!plug->multiple_queues) 1185 break; 1186 } 1187 return false; 1188 } 1189 1190 /* 1191 * Iterate list of requests and see if we can merge this bio with any 1192 * of them. 1193 */ 1194 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1195 struct bio *bio, unsigned int nr_segs) 1196 { 1197 struct request *rq; 1198 int checked = 8; 1199 1200 list_for_each_entry_reverse(rq, list, queuelist) { 1201 if (!checked--) 1202 break; 1203 1204 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1205 case BIO_MERGE_NONE: 1206 continue; 1207 case BIO_MERGE_OK: 1208 return true; 1209 case BIO_MERGE_FAILED: 1210 return false; 1211 } 1212 1213 } 1214 1215 return false; 1216 } 1217 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1218 1219 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1220 unsigned int nr_segs, struct request **merged_request) 1221 { 1222 struct request *rq; 1223 1224 switch (elv_merge(q, &rq, bio)) { 1225 case ELEVATOR_BACK_MERGE: 1226 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1227 return false; 1228 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1229 return false; 1230 *merged_request = attempt_back_merge(q, rq); 1231 if (!*merged_request) 1232 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1233 return true; 1234 case ELEVATOR_FRONT_MERGE: 1235 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1236 return false; 1237 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1238 return false; 1239 *merged_request = attempt_front_merge(q, rq); 1240 if (!*merged_request) 1241 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1242 return true; 1243 case ELEVATOR_DISCARD_MERGE: 1244 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1245 default: 1246 return false; 1247 } 1248 } 1249 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1250
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.