~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/block/blk-merge.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Functions related to segment and merge handling
  4  */
  5 #include <linux/kernel.h>
  6 #include <linux/module.h>
  7 #include <linux/bio.h>
  8 #include <linux/blkdev.h>
  9 #include <linux/blk-integrity.h>
 10 #include <linux/scatterlist.h>
 11 #include <linux/part_stat.h>
 12 #include <linux/blk-cgroup.h>
 13 
 14 #include <trace/events/block.h>
 15 
 16 #include "blk.h"
 17 #include "blk-mq-sched.h"
 18 #include "blk-rq-qos.h"
 19 #include "blk-throttle.h"
 20 
 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
 22 {
 23         *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
 24 }
 25 
 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
 27 {
 28         struct bvec_iter iter = bio->bi_iter;
 29         int idx;
 30 
 31         bio_get_first_bvec(bio, bv);
 32         if (bv->bv_len == bio->bi_iter.bi_size)
 33                 return;         /* this bio only has a single bvec */
 34 
 35         bio_advance_iter(bio, &iter, iter.bi_size);
 36 
 37         if (!iter.bi_bvec_done)
 38                 idx = iter.bi_idx - 1;
 39         else    /* in the middle of bvec */
 40                 idx = iter.bi_idx;
 41 
 42         *bv = bio->bi_io_vec[idx];
 43 
 44         /*
 45          * iter.bi_bvec_done records actual length of the last bvec
 46          * if this bio ends in the middle of one io vector
 47          */
 48         if (iter.bi_bvec_done)
 49                 bv->bv_len = iter.bi_bvec_done;
 50 }
 51 
 52 static inline bool bio_will_gap(struct request_queue *q,
 53                 struct request *prev_rq, struct bio *prev, struct bio *next)
 54 {
 55         struct bio_vec pb, nb;
 56 
 57         if (!bio_has_data(prev) || !queue_virt_boundary(q))
 58                 return false;
 59 
 60         /*
 61          * Don't merge if the 1st bio starts with non-zero offset, otherwise it
 62          * is quite difficult to respect the sg gap limit.  We work hard to
 63          * merge a huge number of small single bios in case of mkfs.
 64          */
 65         if (prev_rq)
 66                 bio_get_first_bvec(prev_rq->bio, &pb);
 67         else
 68                 bio_get_first_bvec(prev, &pb);
 69         if (pb.bv_offset & queue_virt_boundary(q))
 70                 return true;
 71 
 72         /*
 73          * We don't need to worry about the situation that the merged segment
 74          * ends in unaligned virt boundary:
 75          *
 76          * - if 'pb' ends aligned, the merged segment ends aligned
 77          * - if 'pb' ends unaligned, the next bio must include
 78          *   one single bvec of 'nb', otherwise the 'nb' can't
 79          *   merge with 'pb'
 80          */
 81         bio_get_last_bvec(prev, &pb);
 82         bio_get_first_bvec(next, &nb);
 83         if (biovec_phys_mergeable(q, &pb, &nb))
 84                 return false;
 85         return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
 86 }
 87 
 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
 89 {
 90         return bio_will_gap(req->q, req, req->biotail, bio);
 91 }
 92 
 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
 94 {
 95         return bio_will_gap(req->q, NULL, bio, req->bio);
 96 }
 97 
 98 /*
 99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105         return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
108 static struct bio *bio_split_discard(struct bio *bio,
109                                      const struct queue_limits *lim,
110                                      unsigned *nsegs, struct bio_set *bs)
111 {
112         unsigned int max_discard_sectors, granularity;
113         sector_t tmp;
114         unsigned split_sectors;
115 
116         *nsegs = 1;
117 
118         granularity = max(lim->discard_granularity >> 9, 1U);
119 
120         max_discard_sectors =
121                 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
122         max_discard_sectors -= max_discard_sectors % granularity;
123         if (unlikely(!max_discard_sectors))
124                 return NULL;
125 
126         if (bio_sectors(bio) <= max_discard_sectors)
127                 return NULL;
128 
129         split_sectors = max_discard_sectors;
130 
131         /*
132          * If the next starting sector would be misaligned, stop the discard at
133          * the previous aligned sector.
134          */
135         tmp = bio->bi_iter.bi_sector + split_sectors -
136                 ((lim->discard_alignment >> 9) % granularity);
137         tmp = sector_div(tmp, granularity);
138 
139         if (split_sectors > tmp)
140                 split_sectors -= tmp;
141 
142         return bio_split(bio, split_sectors, GFP_NOIO, bs);
143 }
144 
145 static struct bio *bio_split_write_zeroes(struct bio *bio,
146                                           const struct queue_limits *lim,
147                                           unsigned *nsegs, struct bio_set *bs)
148 {
149         *nsegs = 0;
150         if (!lim->max_write_zeroes_sectors)
151                 return NULL;
152         if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
153                 return NULL;
154         return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
155 }
156 
157 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
158                                                 bool is_atomic)
159 {
160         /*
161          * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
162          * both non-zero.
163          */
164         if (is_atomic && lim->atomic_write_boundary_sectors)
165                 return lim->atomic_write_boundary_sectors;
166 
167         return lim->chunk_sectors;
168 }
169 
170 /*
171  * Return the maximum number of sectors from the start of a bio that may be
172  * submitted as a single request to a block device. If enough sectors remain,
173  * align the end to the physical block size. Otherwise align the end to the
174  * logical block size. This approach minimizes the number of non-aligned
175  * requests that are submitted to a block device if the start of a bio is not
176  * aligned to a physical block boundary.
177  */
178 static inline unsigned get_max_io_size(struct bio *bio,
179                                        const struct queue_limits *lim)
180 {
181         unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
182         unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
183         bool is_atomic = bio->bi_opf & REQ_ATOMIC;
184         unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
185         unsigned max_sectors, start, end;
186 
187         /*
188          * We ignore lim->max_sectors for atomic writes because it may less
189          * than the actual bio size, which we cannot tolerate.
190          */
191         if (is_atomic)
192                 max_sectors = lim->atomic_write_max_sectors;
193         else
194                 max_sectors = lim->max_sectors;
195 
196         if (boundary_sectors) {
197                 max_sectors = min(max_sectors,
198                         blk_boundary_sectors_left(bio->bi_iter.bi_sector,
199                                               boundary_sectors));
200         }
201 
202         start = bio->bi_iter.bi_sector & (pbs - 1);
203         end = (start + max_sectors) & ~(pbs - 1);
204         if (end > start)
205                 return end - start;
206         return max_sectors & ~(lbs - 1);
207 }
208 
209 /**
210  * get_max_segment_size() - maximum number of bytes to add as a single segment
211  * @lim: Request queue limits.
212  * @paddr: address of the range to add
213  * @len: maximum length available to add at @paddr
214  *
215  * Returns the maximum number of bytes of the range starting at @paddr that can
216  * be added to a single segment.
217  */
218 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
219                 phys_addr_t paddr, unsigned int len)
220 {
221         /*
222          * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
223          * after having calculated the minimum.
224          */
225         return min_t(unsigned long, len,
226                 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
227                     (unsigned long)lim->max_segment_size - 1) + 1);
228 }
229 
230 /**
231  * bvec_split_segs - verify whether or not a bvec should be split in the middle
232  * @lim:      [in] queue limits to split based on
233  * @bv:       [in] bvec to examine
234  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
235  *            by the number of segments from @bv that may be appended to that
236  *            bio without exceeding @max_segs
237  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
238  *            by the number of bytes from @bv that may be appended to that
239  *            bio without exceeding @max_bytes
240  * @max_segs: [in] upper bound for *@nsegs
241  * @max_bytes: [in] upper bound for *@bytes
242  *
243  * When splitting a bio, it can happen that a bvec is encountered that is too
244  * big to fit in a single segment and hence that it has to be split in the
245  * middle. This function verifies whether or not that should happen. The value
246  * %true is returned if and only if appending the entire @bv to a bio with
247  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
248  * the block driver.
249  */
250 static bool bvec_split_segs(const struct queue_limits *lim,
251                 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
252                 unsigned max_segs, unsigned max_bytes)
253 {
254         unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
255         unsigned len = min(bv->bv_len, max_len);
256         unsigned total_len = 0;
257         unsigned seg_size = 0;
258 
259         while (len && *nsegs < max_segs) {
260                 seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
261 
262                 (*nsegs)++;
263                 total_len += seg_size;
264                 len -= seg_size;
265 
266                 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
267                         break;
268         }
269 
270         *bytes += total_len;
271 
272         /* tell the caller to split the bvec if it is too big to fit */
273         return len > 0 || bv->bv_len > max_len;
274 }
275 
276 /**
277  * bio_split_rw - split a bio in two bios
278  * @bio:  [in] bio to be split
279  * @lim:  [in] queue limits to split based on
280  * @segs: [out] number of segments in the bio with the first half of the sectors
281  * @bs:   [in] bio set to allocate the clone from
282  * @max_bytes: [in] maximum number of bytes per bio
283  *
284  * Clone @bio, update the bi_iter of the clone to represent the first sectors
285  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
286  * following is guaranteed for the cloned bio:
287  * - That it has at most @max_bytes worth of data
288  * - That it has at most queue_max_segments(@q) segments.
289  *
290  * Except for discard requests the cloned bio will point at the bi_io_vec of
291  * the original bio. It is the responsibility of the caller to ensure that the
292  * original bio is not freed before the cloned bio. The caller is also
293  * responsible for ensuring that @bs is only destroyed after processing of the
294  * split bio has finished.
295  */
296 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
297                 unsigned *segs, struct bio_set *bs, unsigned max_bytes)
298 {
299         struct bio_vec bv, bvprv, *bvprvp = NULL;
300         struct bvec_iter iter;
301         unsigned nsegs = 0, bytes = 0;
302 
303         bio_for_each_bvec(bv, bio, iter) {
304                 /*
305                  * If the queue doesn't support SG gaps and adding this
306                  * offset would create a gap, disallow it.
307                  */
308                 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
309                         goto split;
310 
311                 if (nsegs < lim->max_segments &&
312                     bytes + bv.bv_len <= max_bytes &&
313                     bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
314                         nsegs++;
315                         bytes += bv.bv_len;
316                 } else {
317                         if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
318                                         lim->max_segments, max_bytes))
319                                 goto split;
320                 }
321 
322                 bvprv = bv;
323                 bvprvp = &bvprv;
324         }
325 
326         *segs = nsegs;
327         return NULL;
328 split:
329         if (bio->bi_opf & REQ_ATOMIC) {
330                 bio->bi_status = BLK_STS_INVAL;
331                 bio_endio(bio);
332                 return ERR_PTR(-EINVAL);
333         }
334         /*
335          * We can't sanely support splitting for a REQ_NOWAIT bio. End it
336          * with EAGAIN if splitting is required and return an error pointer.
337          */
338         if (bio->bi_opf & REQ_NOWAIT) {
339                 bio->bi_status = BLK_STS_AGAIN;
340                 bio_endio(bio);
341                 return ERR_PTR(-EAGAIN);
342         }
343 
344         *segs = nsegs;
345 
346         /*
347          * Individual bvecs might not be logical block aligned. Round down the
348          * split size so that each bio is properly block size aligned, even if
349          * we do not use the full hardware limits.
350          */
351         bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
352 
353         /*
354          * Bio splitting may cause subtle trouble such as hang when doing sync
355          * iopoll in direct IO routine. Given performance gain of iopoll for
356          * big IO can be trival, disable iopoll when split needed.
357          */
358         bio_clear_polled(bio);
359         return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
360 }
361 EXPORT_SYMBOL_GPL(bio_split_rw);
362 
363 /**
364  * __bio_split_to_limits - split a bio to fit the queue limits
365  * @bio:     bio to be split
366  * @lim:     queue limits to split based on
367  * @nr_segs: returns the number of segments in the returned bio
368  *
369  * Check if @bio needs splitting based on the queue limits, and if so split off
370  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
371  * shortened to the remainder and re-submitted.
372  *
373  * The split bio is allocated from @q->bio_split, which is provided by the
374  * block layer.
375  */
376 struct bio *__bio_split_to_limits(struct bio *bio,
377                                   const struct queue_limits *lim,
378                                   unsigned int *nr_segs)
379 {
380         struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
381         struct bio *split;
382 
383         switch (bio_op(bio)) {
384         case REQ_OP_DISCARD:
385         case REQ_OP_SECURE_ERASE:
386                 split = bio_split_discard(bio, lim, nr_segs, bs);
387                 break;
388         case REQ_OP_WRITE_ZEROES:
389                 split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
390                 break;
391         default:
392                 split = bio_split_rw(bio, lim, nr_segs, bs,
393                                 get_max_io_size(bio, lim) << SECTOR_SHIFT);
394                 if (IS_ERR(split))
395                         return NULL;
396                 break;
397         }
398 
399         if (split) {
400                 /* there isn't chance to merge the split bio */
401                 split->bi_opf |= REQ_NOMERGE;
402 
403                 blkcg_bio_issue_init(split);
404                 bio_chain(split, bio);
405                 trace_block_split(split, bio->bi_iter.bi_sector);
406                 WARN_ON_ONCE(bio_zone_write_plugging(bio));
407                 submit_bio_noacct(bio);
408                 return split;
409         }
410         return bio;
411 }
412 
413 /**
414  * bio_split_to_limits - split a bio to fit the queue limits
415  * @bio:     bio to be split
416  *
417  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
418  * if so split off a bio fitting the limits from the beginning of @bio and
419  * return it.  @bio is shortened to the remainder and re-submitted.
420  *
421  * The split bio is allocated from @q->bio_split, which is provided by the
422  * block layer.
423  */
424 struct bio *bio_split_to_limits(struct bio *bio)
425 {
426         const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
427         unsigned int nr_segs;
428 
429         if (bio_may_exceed_limits(bio, lim))
430                 return __bio_split_to_limits(bio, lim, &nr_segs);
431         return bio;
432 }
433 EXPORT_SYMBOL(bio_split_to_limits);
434 
435 unsigned int blk_recalc_rq_segments(struct request *rq)
436 {
437         unsigned int nr_phys_segs = 0;
438         unsigned int bytes = 0;
439         struct req_iterator iter;
440         struct bio_vec bv;
441 
442         if (!rq->bio)
443                 return 0;
444 
445         switch (bio_op(rq->bio)) {
446         case REQ_OP_DISCARD:
447         case REQ_OP_SECURE_ERASE:
448                 if (queue_max_discard_segments(rq->q) > 1) {
449                         struct bio *bio = rq->bio;
450 
451                         for_each_bio(bio)
452                                 nr_phys_segs++;
453                         return nr_phys_segs;
454                 }
455                 return 1;
456         case REQ_OP_WRITE_ZEROES:
457                 return 0;
458         default:
459                 break;
460         }
461 
462         rq_for_each_bvec(bv, rq, iter)
463                 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
464                                 UINT_MAX, UINT_MAX);
465         return nr_phys_segs;
466 }
467 
468 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
469                 struct scatterlist *sglist)
470 {
471         if (!*sg)
472                 return sglist;
473 
474         /*
475          * If the driver previously mapped a shorter list, we could see a
476          * termination bit prematurely unless it fully inits the sg table
477          * on each mapping. We KNOW that there must be more entries here
478          * or the driver would be buggy, so force clear the termination bit
479          * to avoid doing a full sg_init_table() in drivers for each command.
480          */
481         sg_unmark_end(*sg);
482         return sg_next(*sg);
483 }
484 
485 static unsigned blk_bvec_map_sg(struct request_queue *q,
486                 struct bio_vec *bvec, struct scatterlist *sglist,
487                 struct scatterlist **sg)
488 {
489         unsigned nbytes = bvec->bv_len;
490         unsigned nsegs = 0, total = 0;
491 
492         while (nbytes > 0) {
493                 unsigned offset = bvec->bv_offset + total;
494                 unsigned len = get_max_segment_size(&q->limits,
495                                 bvec_phys(bvec) + total, nbytes);
496                 struct page *page = bvec->bv_page;
497 
498                 /*
499                  * Unfortunately a fair number of drivers barf on scatterlists
500                  * that have an offset larger than PAGE_SIZE, despite other
501                  * subsystems dealing with that invariant just fine.  For now
502                  * stick to the legacy format where we never present those from
503                  * the block layer, but the code below should be removed once
504                  * these offenders (mostly MMC/SD drivers) are fixed.
505                  */
506                 page += (offset >> PAGE_SHIFT);
507                 offset &= ~PAGE_MASK;
508 
509                 *sg = blk_next_sg(sg, sglist);
510                 sg_set_page(*sg, page, len, offset);
511 
512                 total += len;
513                 nbytes -= len;
514                 nsegs++;
515         }
516 
517         return nsegs;
518 }
519 
520 static inline int __blk_bvec_map_sg(struct bio_vec bv,
521                 struct scatterlist *sglist, struct scatterlist **sg)
522 {
523         *sg = blk_next_sg(sg, sglist);
524         sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
525         return 1;
526 }
527 
528 /* only try to merge bvecs into one sg if they are from two bios */
529 static inline bool
530 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
531                            struct bio_vec *bvprv, struct scatterlist **sg)
532 {
533 
534         int nbytes = bvec->bv_len;
535 
536         if (!*sg)
537                 return false;
538 
539         if ((*sg)->length + nbytes > queue_max_segment_size(q))
540                 return false;
541 
542         if (!biovec_phys_mergeable(q, bvprv, bvec))
543                 return false;
544 
545         (*sg)->length += nbytes;
546 
547         return true;
548 }
549 
550 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
551                              struct scatterlist *sglist,
552                              struct scatterlist **sg)
553 {
554         struct bio_vec bvec, bvprv = { NULL };
555         struct bvec_iter iter;
556         int nsegs = 0;
557         bool new_bio = false;
558 
559         for_each_bio(bio) {
560                 bio_for_each_bvec(bvec, bio, iter) {
561                         /*
562                          * Only try to merge bvecs from two bios given we
563                          * have done bio internal merge when adding pages
564                          * to bio
565                          */
566                         if (new_bio &&
567                             __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
568                                 goto next_bvec;
569 
570                         if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
571                                 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
572                         else
573                                 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
574  next_bvec:
575                         new_bio = false;
576                 }
577                 if (likely(bio->bi_iter.bi_size)) {
578                         bvprv = bvec;
579                         new_bio = true;
580                 }
581         }
582 
583         return nsegs;
584 }
585 
586 /*
587  * map a request to scatterlist, return number of sg entries setup. Caller
588  * must make sure sg can hold rq->nr_phys_segments entries
589  */
590 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
591                 struct scatterlist *sglist, struct scatterlist **last_sg)
592 {
593         int nsegs = 0;
594 
595         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
596                 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
597         else if (rq->bio)
598                 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
599 
600         if (*last_sg)
601                 sg_mark_end(*last_sg);
602 
603         /*
604          * Something must have been wrong if the figured number of
605          * segment is bigger than number of req's physical segments
606          */
607         WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
608 
609         return nsegs;
610 }
611 EXPORT_SYMBOL(__blk_rq_map_sg);
612 
613 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
614                                                   sector_t offset)
615 {
616         struct request_queue *q = rq->q;
617         struct queue_limits *lim = &q->limits;
618         unsigned int max_sectors, boundary_sectors;
619         bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
620 
621         if (blk_rq_is_passthrough(rq))
622                 return q->limits.max_hw_sectors;
623 
624         boundary_sectors = blk_boundary_sectors(lim, is_atomic);
625         max_sectors = blk_queue_get_max_sectors(rq);
626 
627         if (!boundary_sectors ||
628             req_op(rq) == REQ_OP_DISCARD ||
629             req_op(rq) == REQ_OP_SECURE_ERASE)
630                 return max_sectors;
631         return min(max_sectors,
632                    blk_boundary_sectors_left(offset, boundary_sectors));
633 }
634 
635 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
636                 unsigned int nr_phys_segs)
637 {
638         if (!blk_cgroup_mergeable(req, bio))
639                 goto no_merge;
640 
641         if (blk_integrity_merge_bio(req->q, req, bio) == false)
642                 goto no_merge;
643 
644         /* discard request merge won't add new segment */
645         if (req_op(req) == REQ_OP_DISCARD)
646                 return 1;
647 
648         if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
649                 goto no_merge;
650 
651         /*
652          * This will form the start of a new hw segment.  Bump both
653          * counters.
654          */
655         req->nr_phys_segments += nr_phys_segs;
656         return 1;
657 
658 no_merge:
659         req_set_nomerge(req->q, req);
660         return 0;
661 }
662 
663 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
664 {
665         if (req_gap_back_merge(req, bio))
666                 return 0;
667         if (blk_integrity_rq(req) &&
668             integrity_req_gap_back_merge(req, bio))
669                 return 0;
670         if (!bio_crypt_ctx_back_mergeable(req, bio))
671                 return 0;
672         if (blk_rq_sectors(req) + bio_sectors(bio) >
673             blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
674                 req_set_nomerge(req->q, req);
675                 return 0;
676         }
677 
678         return ll_new_hw_segment(req, bio, nr_segs);
679 }
680 
681 static int ll_front_merge_fn(struct request *req, struct bio *bio,
682                 unsigned int nr_segs)
683 {
684         if (req_gap_front_merge(req, bio))
685                 return 0;
686         if (blk_integrity_rq(req) &&
687             integrity_req_gap_front_merge(req, bio))
688                 return 0;
689         if (!bio_crypt_ctx_front_mergeable(req, bio))
690                 return 0;
691         if (blk_rq_sectors(req) + bio_sectors(bio) >
692             blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
693                 req_set_nomerge(req->q, req);
694                 return 0;
695         }
696 
697         return ll_new_hw_segment(req, bio, nr_segs);
698 }
699 
700 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
701                 struct request *next)
702 {
703         unsigned short segments = blk_rq_nr_discard_segments(req);
704 
705         if (segments >= queue_max_discard_segments(q))
706                 goto no_merge;
707         if (blk_rq_sectors(req) + bio_sectors(next->bio) >
708             blk_rq_get_max_sectors(req, blk_rq_pos(req)))
709                 goto no_merge;
710 
711         req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
712         return true;
713 no_merge:
714         req_set_nomerge(q, req);
715         return false;
716 }
717 
718 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
719                                 struct request *next)
720 {
721         int total_phys_segments;
722 
723         if (req_gap_back_merge(req, next->bio))
724                 return 0;
725 
726         /*
727          * Will it become too large?
728          */
729         if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
730             blk_rq_get_max_sectors(req, blk_rq_pos(req)))
731                 return 0;
732 
733         total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
734         if (total_phys_segments > blk_rq_get_max_segments(req))
735                 return 0;
736 
737         if (!blk_cgroup_mergeable(req, next->bio))
738                 return 0;
739 
740         if (blk_integrity_merge_rq(q, req, next) == false)
741                 return 0;
742 
743         if (!bio_crypt_ctx_merge_rq(req, next))
744                 return 0;
745 
746         /* Merge is OK... */
747         req->nr_phys_segments = total_phys_segments;
748         return 1;
749 }
750 
751 /**
752  * blk_rq_set_mixed_merge - mark a request as mixed merge
753  * @rq: request to mark as mixed merge
754  *
755  * Description:
756  *     @rq is about to be mixed merged.  Make sure the attributes
757  *     which can be mixed are set in each bio and mark @rq as mixed
758  *     merged.
759  */
760 static void blk_rq_set_mixed_merge(struct request *rq)
761 {
762         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
763         struct bio *bio;
764 
765         if (rq->rq_flags & RQF_MIXED_MERGE)
766                 return;
767 
768         /*
769          * @rq will no longer represent mixable attributes for all the
770          * contained bios.  It will just track those of the first one.
771          * Distributes the attributs to each bio.
772          */
773         for (bio = rq->bio; bio; bio = bio->bi_next) {
774                 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
775                              (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
776                 bio->bi_opf |= ff;
777         }
778         rq->rq_flags |= RQF_MIXED_MERGE;
779 }
780 
781 static inline blk_opf_t bio_failfast(const struct bio *bio)
782 {
783         if (bio->bi_opf & REQ_RAHEAD)
784                 return REQ_FAILFAST_MASK;
785 
786         return bio->bi_opf & REQ_FAILFAST_MASK;
787 }
788 
789 /*
790  * After we are marked as MIXED_MERGE, any new RA bio has to be updated
791  * as failfast, and request's failfast has to be updated in case of
792  * front merge.
793  */
794 static inline void blk_update_mixed_merge(struct request *req,
795                 struct bio *bio, bool front_merge)
796 {
797         if (req->rq_flags & RQF_MIXED_MERGE) {
798                 if (bio->bi_opf & REQ_RAHEAD)
799                         bio->bi_opf |= REQ_FAILFAST_MASK;
800 
801                 if (front_merge) {
802                         req->cmd_flags &= ~REQ_FAILFAST_MASK;
803                         req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
804                 }
805         }
806 }
807 
808 static void blk_account_io_merge_request(struct request *req)
809 {
810         if (blk_do_io_stat(req)) {
811                 part_stat_lock();
812                 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
813                 part_stat_local_dec(req->part,
814                                     in_flight[op_is_write(req_op(req))]);
815                 part_stat_unlock();
816         }
817 }
818 
819 static enum elv_merge blk_try_req_merge(struct request *req,
820                                         struct request *next)
821 {
822         if (blk_discard_mergable(req))
823                 return ELEVATOR_DISCARD_MERGE;
824         else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
825                 return ELEVATOR_BACK_MERGE;
826 
827         return ELEVATOR_NO_MERGE;
828 }
829 
830 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
831                                               struct bio *bio)
832 {
833         return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
834 }
835 
836 static bool blk_atomic_write_mergeable_rqs(struct request *rq,
837                                            struct request *next)
838 {
839         return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
840 }
841 
842 /*
843  * For non-mq, this has to be called with the request spinlock acquired.
844  * For mq with scheduling, the appropriate queue wide lock should be held.
845  */
846 static struct request *attempt_merge(struct request_queue *q,
847                                      struct request *req, struct request *next)
848 {
849         if (!rq_mergeable(req) || !rq_mergeable(next))
850                 return NULL;
851 
852         if (req_op(req) != req_op(next))
853                 return NULL;
854 
855         if (rq_data_dir(req) != rq_data_dir(next))
856                 return NULL;
857 
858         /* Don't merge requests with different write hints. */
859         if (req->write_hint != next->write_hint)
860                 return NULL;
861 
862         if (req->ioprio != next->ioprio)
863                 return NULL;
864 
865         if (!blk_atomic_write_mergeable_rqs(req, next))
866                 return NULL;
867 
868         /*
869          * If we are allowed to merge, then append bio list
870          * from next to rq and release next. merge_requests_fn
871          * will have updated segment counts, update sector
872          * counts here. Handle DISCARDs separately, as they
873          * have separate settings.
874          */
875 
876         switch (blk_try_req_merge(req, next)) {
877         case ELEVATOR_DISCARD_MERGE:
878                 if (!req_attempt_discard_merge(q, req, next))
879                         return NULL;
880                 break;
881         case ELEVATOR_BACK_MERGE:
882                 if (!ll_merge_requests_fn(q, req, next))
883                         return NULL;
884                 break;
885         default:
886                 return NULL;
887         }
888 
889         /*
890          * If failfast settings disagree or any of the two is already
891          * a mixed merge, mark both as mixed before proceeding.  This
892          * makes sure that all involved bios have mixable attributes
893          * set properly.
894          */
895         if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
896             (req->cmd_flags & REQ_FAILFAST_MASK) !=
897             (next->cmd_flags & REQ_FAILFAST_MASK)) {
898                 blk_rq_set_mixed_merge(req);
899                 blk_rq_set_mixed_merge(next);
900         }
901 
902         /*
903          * At this point we have either done a back merge or front merge. We
904          * need the smaller start_time_ns of the merged requests to be the
905          * current request for accounting purposes.
906          */
907         if (next->start_time_ns < req->start_time_ns)
908                 req->start_time_ns = next->start_time_ns;
909 
910         req->biotail->bi_next = next->bio;
911         req->biotail = next->biotail;
912 
913         req->__data_len += blk_rq_bytes(next);
914 
915         if (!blk_discard_mergable(req))
916                 elv_merge_requests(q, req, next);
917 
918         blk_crypto_rq_put_keyslot(next);
919 
920         /*
921          * 'next' is going away, so update stats accordingly
922          */
923         blk_account_io_merge_request(next);
924 
925         trace_block_rq_merge(next);
926 
927         /*
928          * ownership of bio passed from next to req, return 'next' for
929          * the caller to free
930          */
931         next->bio = NULL;
932         return next;
933 }
934 
935 static struct request *attempt_back_merge(struct request_queue *q,
936                 struct request *rq)
937 {
938         struct request *next = elv_latter_request(q, rq);
939 
940         if (next)
941                 return attempt_merge(q, rq, next);
942 
943         return NULL;
944 }
945 
946 static struct request *attempt_front_merge(struct request_queue *q,
947                 struct request *rq)
948 {
949         struct request *prev = elv_former_request(q, rq);
950 
951         if (prev)
952                 return attempt_merge(q, prev, rq);
953 
954         return NULL;
955 }
956 
957 /*
958  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
959  * otherwise. The caller is responsible for freeing 'next' if the merge
960  * happened.
961  */
962 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
963                            struct request *next)
964 {
965         return attempt_merge(q, rq, next);
966 }
967 
968 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
969 {
970         if (!rq_mergeable(rq) || !bio_mergeable(bio))
971                 return false;
972 
973         if (req_op(rq) != bio_op(bio))
974                 return false;
975 
976         /* different data direction or already started, don't merge */
977         if (bio_data_dir(bio) != rq_data_dir(rq))
978                 return false;
979 
980         /* don't merge across cgroup boundaries */
981         if (!blk_cgroup_mergeable(rq, bio))
982                 return false;
983 
984         /* only merge integrity protected bio into ditto rq */
985         if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
986                 return false;
987 
988         /* Only merge if the crypt contexts are compatible */
989         if (!bio_crypt_rq_ctx_compatible(rq, bio))
990                 return false;
991 
992         /* Don't merge requests with different write hints. */
993         if (rq->write_hint != bio->bi_write_hint)
994                 return false;
995 
996         if (rq->ioprio != bio_prio(bio))
997                 return false;
998 
999         if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
1000                 return false;
1001 
1002         return true;
1003 }
1004 
1005 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
1006 {
1007         if (blk_discard_mergable(rq))
1008                 return ELEVATOR_DISCARD_MERGE;
1009         else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
1010                 return ELEVATOR_BACK_MERGE;
1011         else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
1012                 return ELEVATOR_FRONT_MERGE;
1013         return ELEVATOR_NO_MERGE;
1014 }
1015 
1016 static void blk_account_io_merge_bio(struct request *req)
1017 {
1018         if (!blk_do_io_stat(req))
1019                 return;
1020 
1021         part_stat_lock();
1022         part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
1023         part_stat_unlock();
1024 }
1025 
1026 enum bio_merge_status bio_attempt_back_merge(struct request *req,
1027                 struct bio *bio, unsigned int nr_segs)
1028 {
1029         const blk_opf_t ff = bio_failfast(bio);
1030 
1031         if (!ll_back_merge_fn(req, bio, nr_segs))
1032                 return BIO_MERGE_FAILED;
1033 
1034         trace_block_bio_backmerge(bio);
1035         rq_qos_merge(req->q, req, bio);
1036 
1037         if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1038                 blk_rq_set_mixed_merge(req);
1039 
1040         blk_update_mixed_merge(req, bio, false);
1041 
1042         if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1043                 blk_zone_write_plug_bio_merged(bio);
1044 
1045         req->biotail->bi_next = bio;
1046         req->biotail = bio;
1047         req->__data_len += bio->bi_iter.bi_size;
1048 
1049         bio_crypt_free_ctx(bio);
1050 
1051         blk_account_io_merge_bio(req);
1052         return BIO_MERGE_OK;
1053 }
1054 
1055 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1056                 struct bio *bio, unsigned int nr_segs)
1057 {
1058         const blk_opf_t ff = bio_failfast(bio);
1059 
1060         /*
1061          * A front merge for writes to sequential zones of a zoned block device
1062          * can happen only if the user submitted writes out of order. Do not
1063          * merge such write to let it fail.
1064          */
1065         if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1066                 return BIO_MERGE_FAILED;
1067 
1068         if (!ll_front_merge_fn(req, bio, nr_segs))
1069                 return BIO_MERGE_FAILED;
1070 
1071         trace_block_bio_frontmerge(bio);
1072         rq_qos_merge(req->q, req, bio);
1073 
1074         if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1075                 blk_rq_set_mixed_merge(req);
1076 
1077         blk_update_mixed_merge(req, bio, true);
1078 
1079         bio->bi_next = req->bio;
1080         req->bio = bio;
1081 
1082         req->__sector = bio->bi_iter.bi_sector;
1083         req->__data_len += bio->bi_iter.bi_size;
1084 
1085         bio_crypt_do_front_merge(req, bio);
1086 
1087         blk_account_io_merge_bio(req);
1088         return BIO_MERGE_OK;
1089 }
1090 
1091 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1092                 struct request *req, struct bio *bio)
1093 {
1094         unsigned short segments = blk_rq_nr_discard_segments(req);
1095 
1096         if (segments >= queue_max_discard_segments(q))
1097                 goto no_merge;
1098         if (blk_rq_sectors(req) + bio_sectors(bio) >
1099             blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1100                 goto no_merge;
1101 
1102         rq_qos_merge(q, req, bio);
1103 
1104         req->biotail->bi_next = bio;
1105         req->biotail = bio;
1106         req->__data_len += bio->bi_iter.bi_size;
1107         req->nr_phys_segments = segments + 1;
1108 
1109         blk_account_io_merge_bio(req);
1110         return BIO_MERGE_OK;
1111 no_merge:
1112         req_set_nomerge(q, req);
1113         return BIO_MERGE_FAILED;
1114 }
1115 
1116 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1117                                                    struct request *rq,
1118                                                    struct bio *bio,
1119                                                    unsigned int nr_segs,
1120                                                    bool sched_allow_merge)
1121 {
1122         if (!blk_rq_merge_ok(rq, bio))
1123                 return BIO_MERGE_NONE;
1124 
1125         switch (blk_try_merge(rq, bio)) {
1126         case ELEVATOR_BACK_MERGE:
1127                 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1128                         return bio_attempt_back_merge(rq, bio, nr_segs);
1129                 break;
1130         case ELEVATOR_FRONT_MERGE:
1131                 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1132                         return bio_attempt_front_merge(rq, bio, nr_segs);
1133                 break;
1134         case ELEVATOR_DISCARD_MERGE:
1135                 return bio_attempt_discard_merge(q, rq, bio);
1136         default:
1137                 return BIO_MERGE_NONE;
1138         }
1139 
1140         return BIO_MERGE_FAILED;
1141 }
1142 
1143 /**
1144  * blk_attempt_plug_merge - try to merge with %current's plugged list
1145  * @q: request_queue new bio is being queued at
1146  * @bio: new bio being queued
1147  * @nr_segs: number of segments in @bio
1148  * from the passed in @q already in the plug list
1149  *
1150  * Determine whether @bio being queued on @q can be merged with the previous
1151  * request on %current's plugged list.  Returns %true if merge was successful,
1152  * otherwise %false.
1153  *
1154  * Plugging coalesces IOs from the same issuer for the same purpose without
1155  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1156  * than scheduling, and the request, while may have elvpriv data, is not
1157  * added on the elevator at this point.  In addition, we don't have
1158  * reliable access to the elevator outside queue lock.  Only check basic
1159  * merging parameters without querying the elevator.
1160  *
1161  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1162  */
1163 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1164                 unsigned int nr_segs)
1165 {
1166         struct blk_plug *plug = current->plug;
1167         struct request *rq;
1168 
1169         if (!plug || rq_list_empty(plug->mq_list))
1170                 return false;
1171 
1172         rq_list_for_each(&plug->mq_list, rq) {
1173                 if (rq->q == q) {
1174                         if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1175                             BIO_MERGE_OK)
1176                                 return true;
1177                         break;
1178                 }
1179 
1180                 /*
1181                  * Only keep iterating plug list for merges if we have multiple
1182                  * queues
1183                  */
1184                 if (!plug->multiple_queues)
1185                         break;
1186         }
1187         return false;
1188 }
1189 
1190 /*
1191  * Iterate list of requests and see if we can merge this bio with any
1192  * of them.
1193  */
1194 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1195                         struct bio *bio, unsigned int nr_segs)
1196 {
1197         struct request *rq;
1198         int checked = 8;
1199 
1200         list_for_each_entry_reverse(rq, list, queuelist) {
1201                 if (!checked--)
1202                         break;
1203 
1204                 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1205                 case BIO_MERGE_NONE:
1206                         continue;
1207                 case BIO_MERGE_OK:
1208                         return true;
1209                 case BIO_MERGE_FAILED:
1210                         return false;
1211                 }
1212 
1213         }
1214 
1215         return false;
1216 }
1217 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1218 
1219 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1220                 unsigned int nr_segs, struct request **merged_request)
1221 {
1222         struct request *rq;
1223 
1224         switch (elv_merge(q, &rq, bio)) {
1225         case ELEVATOR_BACK_MERGE:
1226                 if (!blk_mq_sched_allow_merge(q, rq, bio))
1227                         return false;
1228                 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1229                         return false;
1230                 *merged_request = attempt_back_merge(q, rq);
1231                 if (!*merged_request)
1232                         elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1233                 return true;
1234         case ELEVATOR_FRONT_MERGE:
1235                 if (!blk_mq_sched_allow_merge(q, rq, bio))
1236                         return false;
1237                 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1238                         return false;
1239                 *merged_request = attempt_front_merge(q, rq);
1240                 if (!*merged_request)
1241                         elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1242                 return true;
1243         case ELEVATOR_DISCARD_MERGE:
1244                 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1245         default:
1246                 return false;
1247         }
1248 }
1249 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1250 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php