1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Zoned block device handling 4 * 5 * Copyright (c) 2015, Hannes Reinecke 6 * Copyright (c) 2015, SUSE Linux GmbH 7 * 8 * Copyright (c) 2016, Damien Le Moal 9 * Copyright (c) 2016, Western Digital 10 * Copyright (c) 2024, Western Digital Corporation or its affiliates. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/mm.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sched/mm.h> 20 #include <linux/spinlock.h> 21 #include <linux/atomic.h> 22 #include <linux/mempool.h> 23 24 #include "blk.h" 25 #include "blk-mq-sched.h" 26 #include "blk-mq-debugfs.h" 27 28 #define ZONE_COND_NAME(name) [BLK_ZONE_COND_##name] = #name 29 static const char *const zone_cond_name[] = { 30 ZONE_COND_NAME(NOT_WP), 31 ZONE_COND_NAME(EMPTY), 32 ZONE_COND_NAME(IMP_OPEN), 33 ZONE_COND_NAME(EXP_OPEN), 34 ZONE_COND_NAME(CLOSED), 35 ZONE_COND_NAME(READONLY), 36 ZONE_COND_NAME(FULL), 37 ZONE_COND_NAME(OFFLINE), 38 }; 39 #undef ZONE_COND_NAME 40 41 /* 42 * Per-zone write plug. 43 * @node: hlist_node structure for managing the plug using a hash table. 44 * @link: To list the plug in the zone write plug error list of the disk. 45 * @ref: Zone write plug reference counter. A zone write plug reference is 46 * always at least 1 when the plug is hashed in the disk plug hash table. 47 * The reference is incremented whenever a new BIO needing plugging is 48 * submitted and when a function needs to manipulate a plug. The 49 * reference count is decremented whenever a plugged BIO completes and 50 * when a function that referenced the plug returns. The initial 51 * reference is dropped whenever the zone of the zone write plug is reset, 52 * finished and when the zone becomes full (last write BIO to the zone 53 * completes). 54 * @lock: Spinlock to atomically manipulate the plug. 55 * @flags: Flags indicating the plug state. 56 * @zone_no: The number of the zone the plug is managing. 57 * @wp_offset: The zone write pointer location relative to the start of the zone 58 * as a number of 512B sectors. 59 * @bio_list: The list of BIOs that are currently plugged. 60 * @bio_work: Work struct to handle issuing of plugged BIOs 61 * @rcu_head: RCU head to free zone write plugs with an RCU grace period. 62 * @disk: The gendisk the plug belongs to. 63 */ 64 struct blk_zone_wplug { 65 struct hlist_node node; 66 struct list_head link; 67 atomic_t ref; 68 spinlock_t lock; 69 unsigned int flags; 70 unsigned int zone_no; 71 unsigned int wp_offset; 72 struct bio_list bio_list; 73 struct work_struct bio_work; 74 struct rcu_head rcu_head; 75 struct gendisk *disk; 76 }; 77 78 /* 79 * Zone write plug flags bits: 80 * - BLK_ZONE_WPLUG_PLUGGED: Indicates that the zone write plug is plugged, 81 * that is, that write BIOs are being throttled due to a write BIO already 82 * being executed or the zone write plug bio list is not empty. 83 * - BLK_ZONE_WPLUG_ERROR: Indicates that a write error happened which will be 84 * recovered with a report zone to update the zone write pointer offset. 85 * - BLK_ZONE_WPLUG_UNHASHED: Indicates that the zone write plug was removed 86 * from the disk hash table and that the initial reference to the zone 87 * write plug set when the plug was first added to the hash table has been 88 * dropped. This flag is set when a zone is reset, finished or become full, 89 * to prevent new references to the zone write plug to be taken for 90 * newly incoming BIOs. A zone write plug flagged with this flag will be 91 * freed once all remaining references from BIOs or functions are dropped. 92 */ 93 #define BLK_ZONE_WPLUG_PLUGGED (1U << 0) 94 #define BLK_ZONE_WPLUG_ERROR (1U << 1) 95 #define BLK_ZONE_WPLUG_UNHASHED (1U << 2) 96 97 #define BLK_ZONE_WPLUG_BUSY (BLK_ZONE_WPLUG_PLUGGED | BLK_ZONE_WPLUG_ERROR) 98 99 /** 100 * blk_zone_cond_str - Return string XXX in BLK_ZONE_COND_XXX. 101 * @zone_cond: BLK_ZONE_COND_XXX. 102 * 103 * Description: Centralize block layer function to convert BLK_ZONE_COND_XXX 104 * into string format. Useful in the debugging and tracing zone conditions. For 105 * invalid BLK_ZONE_COND_XXX it returns string "UNKNOWN". 106 */ 107 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond) 108 { 109 static const char *zone_cond_str = "UNKNOWN"; 110 111 if (zone_cond < ARRAY_SIZE(zone_cond_name) && zone_cond_name[zone_cond]) 112 zone_cond_str = zone_cond_name[zone_cond]; 113 114 return zone_cond_str; 115 } 116 EXPORT_SYMBOL_GPL(blk_zone_cond_str); 117 118 /** 119 * blkdev_report_zones - Get zones information 120 * @bdev: Target block device 121 * @sector: Sector from which to report zones 122 * @nr_zones: Maximum number of zones to report 123 * @cb: Callback function called for each reported zone 124 * @data: Private data for the callback 125 * 126 * Description: 127 * Get zone information starting from the zone containing @sector for at most 128 * @nr_zones, and call @cb for each zone reported by the device. 129 * To report all zones in a device starting from @sector, the BLK_ALL_ZONES 130 * constant can be passed to @nr_zones. 131 * Returns the number of zones reported by the device, or a negative errno 132 * value in case of failure. 133 * 134 * Note: The caller must use memalloc_noXX_save/restore() calls to control 135 * memory allocations done within this function. 136 */ 137 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 138 unsigned int nr_zones, report_zones_cb cb, void *data) 139 { 140 struct gendisk *disk = bdev->bd_disk; 141 sector_t capacity = get_capacity(disk); 142 143 if (!bdev_is_zoned(bdev) || WARN_ON_ONCE(!disk->fops->report_zones)) 144 return -EOPNOTSUPP; 145 146 if (!nr_zones || sector >= capacity) 147 return 0; 148 149 return disk->fops->report_zones(disk, sector, nr_zones, cb, data); 150 } 151 EXPORT_SYMBOL_GPL(blkdev_report_zones); 152 153 static int blkdev_zone_reset_all(struct block_device *bdev) 154 { 155 struct bio bio; 156 157 bio_init(&bio, bdev, NULL, 0, REQ_OP_ZONE_RESET_ALL | REQ_SYNC); 158 return submit_bio_wait(&bio); 159 } 160 161 /** 162 * blkdev_zone_mgmt - Execute a zone management operation on a range of zones 163 * @bdev: Target block device 164 * @op: Operation to be performed on the zones 165 * @sector: Start sector of the first zone to operate on 166 * @nr_sectors: Number of sectors, should be at least the length of one zone and 167 * must be zone size aligned. 168 * 169 * Description: 170 * Perform the specified operation on the range of zones specified by 171 * @sector..@sector+@nr_sectors. Specifying the entire disk sector range 172 * is valid, but the specified range should not contain conventional zones. 173 * The operation to execute on each zone can be a zone reset, open, close 174 * or finish request. 175 */ 176 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 177 sector_t sector, sector_t nr_sectors) 178 { 179 sector_t zone_sectors = bdev_zone_sectors(bdev); 180 sector_t capacity = bdev_nr_sectors(bdev); 181 sector_t end_sector = sector + nr_sectors; 182 struct bio *bio = NULL; 183 int ret = 0; 184 185 if (!bdev_is_zoned(bdev)) 186 return -EOPNOTSUPP; 187 188 if (bdev_read_only(bdev)) 189 return -EPERM; 190 191 if (!op_is_zone_mgmt(op)) 192 return -EOPNOTSUPP; 193 194 if (end_sector <= sector || end_sector > capacity) 195 /* Out of range */ 196 return -EINVAL; 197 198 /* Check alignment (handle eventual smaller last zone) */ 199 if (!bdev_is_zone_start(bdev, sector)) 200 return -EINVAL; 201 202 if (!bdev_is_zone_start(bdev, nr_sectors) && end_sector != capacity) 203 return -EINVAL; 204 205 /* 206 * In the case of a zone reset operation over all zones, use 207 * REQ_OP_ZONE_RESET_ALL. 208 */ 209 if (op == REQ_OP_ZONE_RESET && sector == 0 && nr_sectors == capacity) 210 return blkdev_zone_reset_all(bdev); 211 212 while (sector < end_sector) { 213 bio = blk_next_bio(bio, bdev, 0, op | REQ_SYNC, GFP_KERNEL); 214 bio->bi_iter.bi_sector = sector; 215 sector += zone_sectors; 216 217 /* This may take a while, so be nice to others */ 218 cond_resched(); 219 } 220 221 ret = submit_bio_wait(bio); 222 bio_put(bio); 223 224 return ret; 225 } 226 EXPORT_SYMBOL_GPL(blkdev_zone_mgmt); 227 228 struct zone_report_args { 229 struct blk_zone __user *zones; 230 }; 231 232 static int blkdev_copy_zone_to_user(struct blk_zone *zone, unsigned int idx, 233 void *data) 234 { 235 struct zone_report_args *args = data; 236 237 if (copy_to_user(&args->zones[idx], zone, sizeof(struct blk_zone))) 238 return -EFAULT; 239 return 0; 240 } 241 242 /* 243 * BLKREPORTZONE ioctl processing. 244 * Called from blkdev_ioctl. 245 */ 246 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 247 unsigned long arg) 248 { 249 void __user *argp = (void __user *)arg; 250 struct zone_report_args args; 251 struct blk_zone_report rep; 252 int ret; 253 254 if (!argp) 255 return -EINVAL; 256 257 if (!bdev_is_zoned(bdev)) 258 return -ENOTTY; 259 260 if (copy_from_user(&rep, argp, sizeof(struct blk_zone_report))) 261 return -EFAULT; 262 263 if (!rep.nr_zones) 264 return -EINVAL; 265 266 args.zones = argp + sizeof(struct blk_zone_report); 267 ret = blkdev_report_zones(bdev, rep.sector, rep.nr_zones, 268 blkdev_copy_zone_to_user, &args); 269 if (ret < 0) 270 return ret; 271 272 rep.nr_zones = ret; 273 rep.flags = BLK_ZONE_REP_CAPACITY; 274 if (copy_to_user(argp, &rep, sizeof(struct blk_zone_report))) 275 return -EFAULT; 276 return 0; 277 } 278 279 static int blkdev_truncate_zone_range(struct block_device *bdev, 280 blk_mode_t mode, const struct blk_zone_range *zrange) 281 { 282 loff_t start, end; 283 284 if (zrange->sector + zrange->nr_sectors <= zrange->sector || 285 zrange->sector + zrange->nr_sectors > get_capacity(bdev->bd_disk)) 286 /* Out of range */ 287 return -EINVAL; 288 289 start = zrange->sector << SECTOR_SHIFT; 290 end = ((zrange->sector + zrange->nr_sectors) << SECTOR_SHIFT) - 1; 291 292 return truncate_bdev_range(bdev, mode, start, end); 293 } 294 295 /* 296 * BLKRESETZONE, BLKOPENZONE, BLKCLOSEZONE and BLKFINISHZONE ioctl processing. 297 * Called from blkdev_ioctl. 298 */ 299 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 300 unsigned int cmd, unsigned long arg) 301 { 302 void __user *argp = (void __user *)arg; 303 struct blk_zone_range zrange; 304 enum req_op op; 305 int ret; 306 307 if (!argp) 308 return -EINVAL; 309 310 if (!bdev_is_zoned(bdev)) 311 return -ENOTTY; 312 313 if (!(mode & BLK_OPEN_WRITE)) 314 return -EBADF; 315 316 if (copy_from_user(&zrange, argp, sizeof(struct blk_zone_range))) 317 return -EFAULT; 318 319 switch (cmd) { 320 case BLKRESETZONE: 321 op = REQ_OP_ZONE_RESET; 322 323 /* Invalidate the page cache, including dirty pages. */ 324 filemap_invalidate_lock(bdev->bd_mapping); 325 ret = blkdev_truncate_zone_range(bdev, mode, &zrange); 326 if (ret) 327 goto fail; 328 break; 329 case BLKOPENZONE: 330 op = REQ_OP_ZONE_OPEN; 331 break; 332 case BLKCLOSEZONE: 333 op = REQ_OP_ZONE_CLOSE; 334 break; 335 case BLKFINISHZONE: 336 op = REQ_OP_ZONE_FINISH; 337 break; 338 default: 339 return -ENOTTY; 340 } 341 342 ret = blkdev_zone_mgmt(bdev, op, zrange.sector, zrange.nr_sectors); 343 344 fail: 345 if (cmd == BLKRESETZONE) 346 filemap_invalidate_unlock(bdev->bd_mapping); 347 348 return ret; 349 } 350 351 static inline bool disk_zone_is_conv(struct gendisk *disk, sector_t sector) 352 { 353 if (!disk->conv_zones_bitmap) 354 return false; 355 return test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 356 } 357 358 static bool disk_zone_is_last(struct gendisk *disk, struct blk_zone *zone) 359 { 360 return zone->start + zone->len >= get_capacity(disk); 361 } 362 363 static bool disk_zone_is_full(struct gendisk *disk, 364 unsigned int zno, unsigned int offset_in_zone) 365 { 366 if (zno < disk->nr_zones - 1) 367 return offset_in_zone >= disk->zone_capacity; 368 return offset_in_zone >= disk->last_zone_capacity; 369 } 370 371 static bool disk_zone_wplug_is_full(struct gendisk *disk, 372 struct blk_zone_wplug *zwplug) 373 { 374 return disk_zone_is_full(disk, zwplug->zone_no, zwplug->wp_offset); 375 } 376 377 static bool disk_insert_zone_wplug(struct gendisk *disk, 378 struct blk_zone_wplug *zwplug) 379 { 380 struct blk_zone_wplug *zwplg; 381 unsigned long flags; 382 unsigned int idx = 383 hash_32(zwplug->zone_no, disk->zone_wplugs_hash_bits); 384 385 /* 386 * Add the new zone write plug to the hash table, but carefully as we 387 * are racing with other submission context, so we may already have a 388 * zone write plug for the same zone. 389 */ 390 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 391 hlist_for_each_entry_rcu(zwplg, &disk->zone_wplugs_hash[idx], node) { 392 if (zwplg->zone_no == zwplug->zone_no) { 393 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 394 return false; 395 } 396 } 397 hlist_add_head_rcu(&zwplug->node, &disk->zone_wplugs_hash[idx]); 398 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 399 400 return true; 401 } 402 403 static struct blk_zone_wplug *disk_get_zone_wplug(struct gendisk *disk, 404 sector_t sector) 405 { 406 unsigned int zno = disk_zone_no(disk, sector); 407 unsigned int idx = hash_32(zno, disk->zone_wplugs_hash_bits); 408 struct blk_zone_wplug *zwplug; 409 410 rcu_read_lock(); 411 412 hlist_for_each_entry_rcu(zwplug, &disk->zone_wplugs_hash[idx], node) { 413 if (zwplug->zone_no == zno && 414 atomic_inc_not_zero(&zwplug->ref)) { 415 rcu_read_unlock(); 416 return zwplug; 417 } 418 } 419 420 rcu_read_unlock(); 421 422 return NULL; 423 } 424 425 static void disk_free_zone_wplug_rcu(struct rcu_head *rcu_head) 426 { 427 struct blk_zone_wplug *zwplug = 428 container_of(rcu_head, struct blk_zone_wplug, rcu_head); 429 430 mempool_free(zwplug, zwplug->disk->zone_wplugs_pool); 431 } 432 433 static inline void disk_put_zone_wplug(struct blk_zone_wplug *zwplug) 434 { 435 if (atomic_dec_and_test(&zwplug->ref)) { 436 WARN_ON_ONCE(!bio_list_empty(&zwplug->bio_list)); 437 WARN_ON_ONCE(!list_empty(&zwplug->link)); 438 WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_UNHASHED)); 439 440 call_rcu(&zwplug->rcu_head, disk_free_zone_wplug_rcu); 441 } 442 } 443 444 static inline bool disk_should_remove_zone_wplug(struct gendisk *disk, 445 struct blk_zone_wplug *zwplug) 446 { 447 /* If the zone write plug was already removed, we are done. */ 448 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) 449 return false; 450 451 /* If the zone write plug is still busy, it cannot be removed. */ 452 if (zwplug->flags & BLK_ZONE_WPLUG_BUSY) 453 return false; 454 455 /* 456 * Completions of BIOs with blk_zone_write_plug_bio_endio() may 457 * happen after handling a request completion with 458 * blk_zone_write_plug_finish_request() (e.g. with split BIOs 459 * that are chained). In such case, disk_zone_wplug_unplug_bio() 460 * should not attempt to remove the zone write plug until all BIO 461 * completions are seen. Check by looking at the zone write plug 462 * reference count, which is 2 when the plug is unused (one reference 463 * taken when the plug was allocated and another reference taken by the 464 * caller context). 465 */ 466 if (atomic_read(&zwplug->ref) > 2) 467 return false; 468 469 /* We can remove zone write plugs for zones that are empty or full. */ 470 return !zwplug->wp_offset || disk_zone_wplug_is_full(disk, zwplug); 471 } 472 473 static void disk_remove_zone_wplug(struct gendisk *disk, 474 struct blk_zone_wplug *zwplug) 475 { 476 unsigned long flags; 477 478 /* If the zone write plug was already removed, we have nothing to do. */ 479 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) 480 return; 481 482 /* 483 * Mark the zone write plug as unhashed and drop the extra reference we 484 * took when the plug was inserted in the hash table. 485 */ 486 zwplug->flags |= BLK_ZONE_WPLUG_UNHASHED; 487 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 488 hlist_del_init_rcu(&zwplug->node); 489 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 490 disk_put_zone_wplug(zwplug); 491 } 492 493 static void blk_zone_wplug_bio_work(struct work_struct *work); 494 495 /* 496 * Get a reference on the write plug for the zone containing @sector. 497 * If the plug does not exist, it is allocated and hashed. 498 * Return a pointer to the zone write plug with the plug spinlock held. 499 */ 500 static struct blk_zone_wplug *disk_get_and_lock_zone_wplug(struct gendisk *disk, 501 sector_t sector, gfp_t gfp_mask, 502 unsigned long *flags) 503 { 504 unsigned int zno = disk_zone_no(disk, sector); 505 struct blk_zone_wplug *zwplug; 506 507 again: 508 zwplug = disk_get_zone_wplug(disk, sector); 509 if (zwplug) { 510 /* 511 * Check that a BIO completion or a zone reset or finish 512 * operation has not already removed the zone write plug from 513 * the hash table and dropped its reference count. In such case, 514 * we need to get a new plug so start over from the beginning. 515 */ 516 spin_lock_irqsave(&zwplug->lock, *flags); 517 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) { 518 spin_unlock_irqrestore(&zwplug->lock, *flags); 519 disk_put_zone_wplug(zwplug); 520 goto again; 521 } 522 return zwplug; 523 } 524 525 /* 526 * Allocate and initialize a zone write plug with an extra reference 527 * so that it is not freed when the zone write plug becomes idle without 528 * the zone being full. 529 */ 530 zwplug = mempool_alloc(disk->zone_wplugs_pool, gfp_mask); 531 if (!zwplug) 532 return NULL; 533 534 INIT_HLIST_NODE(&zwplug->node); 535 INIT_LIST_HEAD(&zwplug->link); 536 atomic_set(&zwplug->ref, 2); 537 spin_lock_init(&zwplug->lock); 538 zwplug->flags = 0; 539 zwplug->zone_no = zno; 540 zwplug->wp_offset = sector & (disk->queue->limits.chunk_sectors - 1); 541 bio_list_init(&zwplug->bio_list); 542 INIT_WORK(&zwplug->bio_work, blk_zone_wplug_bio_work); 543 zwplug->disk = disk; 544 545 spin_lock_irqsave(&zwplug->lock, *flags); 546 547 /* 548 * Insert the new zone write plug in the hash table. This can fail only 549 * if another context already inserted a plug. Retry from the beginning 550 * in such case. 551 */ 552 if (!disk_insert_zone_wplug(disk, zwplug)) { 553 spin_unlock_irqrestore(&zwplug->lock, *flags); 554 mempool_free(zwplug, disk->zone_wplugs_pool); 555 goto again; 556 } 557 558 return zwplug; 559 } 560 561 static inline void blk_zone_wplug_bio_io_error(struct blk_zone_wplug *zwplug, 562 struct bio *bio) 563 { 564 struct request_queue *q = zwplug->disk->queue; 565 566 bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING); 567 bio_io_error(bio); 568 disk_put_zone_wplug(zwplug); 569 blk_queue_exit(q); 570 } 571 572 /* 573 * Abort (fail) all plugged BIOs of a zone write plug. 574 */ 575 static void disk_zone_wplug_abort(struct blk_zone_wplug *zwplug) 576 { 577 struct bio *bio; 578 579 while ((bio = bio_list_pop(&zwplug->bio_list))) 580 blk_zone_wplug_bio_io_error(zwplug, bio); 581 } 582 583 /* 584 * Abort (fail) all plugged BIOs of a zone write plug that are not aligned 585 * with the assumed write pointer location of the zone when the BIO will 586 * be unplugged. 587 */ 588 static void disk_zone_wplug_abort_unaligned(struct gendisk *disk, 589 struct blk_zone_wplug *zwplug) 590 { 591 unsigned int wp_offset = zwplug->wp_offset; 592 struct bio_list bl = BIO_EMPTY_LIST; 593 struct bio *bio; 594 595 while ((bio = bio_list_pop(&zwplug->bio_list))) { 596 if (disk_zone_is_full(disk, zwplug->zone_no, wp_offset) || 597 (bio_op(bio) != REQ_OP_ZONE_APPEND && 598 bio_offset_from_zone_start(bio) != wp_offset)) { 599 blk_zone_wplug_bio_io_error(zwplug, bio); 600 continue; 601 } 602 603 wp_offset += bio_sectors(bio); 604 bio_list_add(&bl, bio); 605 } 606 607 bio_list_merge(&zwplug->bio_list, &bl); 608 } 609 610 static inline void disk_zone_wplug_set_error(struct gendisk *disk, 611 struct blk_zone_wplug *zwplug) 612 { 613 unsigned long flags; 614 615 if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) 616 return; 617 618 /* 619 * At this point, we already have a reference on the zone write plug. 620 * However, since we are going to add the plug to the disk zone write 621 * plugs work list, increase its reference count. This reference will 622 * be dropped in disk_zone_wplugs_work() once the error state is 623 * handled, or in disk_zone_wplug_clear_error() if the zone is reset or 624 * finished. 625 */ 626 zwplug->flags |= BLK_ZONE_WPLUG_ERROR; 627 atomic_inc(&zwplug->ref); 628 629 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 630 list_add_tail(&zwplug->link, &disk->zone_wplugs_err_list); 631 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 632 } 633 634 static inline void disk_zone_wplug_clear_error(struct gendisk *disk, 635 struct blk_zone_wplug *zwplug) 636 { 637 unsigned long flags; 638 639 if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) 640 return; 641 642 /* 643 * We are racing with the error handling work which drops the reference 644 * on the zone write plug after handling the error state. So remove the 645 * plug from the error list and drop its reference count only if the 646 * error handling has not yet started, that is, if the zone write plug 647 * is still listed. 648 */ 649 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 650 if (!list_empty(&zwplug->link)) { 651 list_del_init(&zwplug->link); 652 zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR; 653 disk_put_zone_wplug(zwplug); 654 } 655 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 656 } 657 658 /* 659 * Set a zone write plug write pointer offset to either 0 (zone reset case) 660 * or to the zone size (zone finish case). This aborts all plugged BIOs, which 661 * is fine to do as doing a zone reset or zone finish while writes are in-flight 662 * is a mistake from the user which will most likely cause all plugged BIOs to 663 * fail anyway. 664 */ 665 static void disk_zone_wplug_set_wp_offset(struct gendisk *disk, 666 struct blk_zone_wplug *zwplug, 667 unsigned int wp_offset) 668 { 669 unsigned long flags; 670 671 spin_lock_irqsave(&zwplug->lock, flags); 672 673 /* 674 * Make sure that a BIO completion or another zone reset or finish 675 * operation has not already removed the plug from the hash table. 676 */ 677 if (zwplug->flags & BLK_ZONE_WPLUG_UNHASHED) { 678 spin_unlock_irqrestore(&zwplug->lock, flags); 679 return; 680 } 681 682 /* Update the zone write pointer and abort all plugged BIOs. */ 683 zwplug->wp_offset = wp_offset; 684 disk_zone_wplug_abort(zwplug); 685 686 /* 687 * Updating the write pointer offset puts back the zone 688 * in a good state. So clear the error flag and decrement the 689 * error count if we were in error state. 690 */ 691 disk_zone_wplug_clear_error(disk, zwplug); 692 693 /* 694 * The zone write plug now has no BIO plugged: remove it from the 695 * hash table so that it cannot be seen. The plug will be freed 696 * when the last reference is dropped. 697 */ 698 if (disk_should_remove_zone_wplug(disk, zwplug)) 699 disk_remove_zone_wplug(disk, zwplug); 700 701 spin_unlock_irqrestore(&zwplug->lock, flags); 702 } 703 704 static bool blk_zone_wplug_handle_reset_or_finish(struct bio *bio, 705 unsigned int wp_offset) 706 { 707 struct gendisk *disk = bio->bi_bdev->bd_disk; 708 sector_t sector = bio->bi_iter.bi_sector; 709 struct blk_zone_wplug *zwplug; 710 711 /* Conventional zones cannot be reset nor finished. */ 712 if (disk_zone_is_conv(disk, sector)) { 713 bio_io_error(bio); 714 return true; 715 } 716 717 /* 718 * If we have a zone write plug, set its write pointer offset to 0 719 * (reset case) or to the zone size (finish case). This will abort all 720 * BIOs plugged for the target zone. It is fine as resetting or 721 * finishing zones while writes are still in-flight will result in the 722 * writes failing anyway. 723 */ 724 zwplug = disk_get_zone_wplug(disk, sector); 725 if (zwplug) { 726 disk_zone_wplug_set_wp_offset(disk, zwplug, wp_offset); 727 disk_put_zone_wplug(zwplug); 728 } 729 730 return false; 731 } 732 733 static bool blk_zone_wplug_handle_reset_all(struct bio *bio) 734 { 735 struct gendisk *disk = bio->bi_bdev->bd_disk; 736 struct blk_zone_wplug *zwplug; 737 sector_t sector; 738 739 /* 740 * Set the write pointer offset of all zone write plugs to 0. This will 741 * abort all plugged BIOs. It is fine as resetting zones while writes 742 * are still in-flight will result in the writes failing anyway. 743 */ 744 for (sector = 0; sector < get_capacity(disk); 745 sector += disk->queue->limits.chunk_sectors) { 746 zwplug = disk_get_zone_wplug(disk, sector); 747 if (zwplug) { 748 disk_zone_wplug_set_wp_offset(disk, zwplug, 0); 749 disk_put_zone_wplug(zwplug); 750 } 751 } 752 753 return false; 754 } 755 756 static inline void blk_zone_wplug_add_bio(struct blk_zone_wplug *zwplug, 757 struct bio *bio, unsigned int nr_segs) 758 { 759 /* 760 * Grab an extra reference on the BIO request queue usage counter. 761 * This reference will be reused to submit a request for the BIO for 762 * blk-mq devices and dropped when the BIO is failed and after 763 * it is issued in the case of BIO-based devices. 764 */ 765 percpu_ref_get(&bio->bi_bdev->bd_disk->queue->q_usage_counter); 766 767 /* 768 * The BIO is being plugged and thus will have to wait for the on-going 769 * write and for all other writes already plugged. So polling makes 770 * no sense. 771 */ 772 bio_clear_polled(bio); 773 774 /* 775 * Reuse the poll cookie field to store the number of segments when 776 * split to the hardware limits. 777 */ 778 bio->__bi_nr_segments = nr_segs; 779 780 /* 781 * We always receive BIOs after they are split and ready to be issued. 782 * The block layer passes the parts of a split BIO in order, and the 783 * user must also issue write sequentially. So simply add the new BIO 784 * at the tail of the list to preserve the sequential write order. 785 */ 786 bio_list_add(&zwplug->bio_list, bio); 787 } 788 789 /* 790 * Called from bio_attempt_back_merge() when a BIO was merged with a request. 791 */ 792 void blk_zone_write_plug_bio_merged(struct bio *bio) 793 { 794 struct blk_zone_wplug *zwplug; 795 unsigned long flags; 796 797 /* 798 * If the BIO was already plugged, then we were called through 799 * blk_zone_write_plug_init_request() -> blk_attempt_bio_merge(). 800 * For this case, we already hold a reference on the zone write plug for 801 * the BIO and blk_zone_write_plug_init_request() will handle the 802 * zone write pointer offset update. 803 */ 804 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) 805 return; 806 807 bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING); 808 809 /* 810 * Get a reference on the zone write plug of the target zone and advance 811 * the zone write pointer offset. Given that this is a merge, we already 812 * have at least one request and one BIO referencing the zone write 813 * plug. So this should not fail. 814 */ 815 zwplug = disk_get_zone_wplug(bio->bi_bdev->bd_disk, 816 bio->bi_iter.bi_sector); 817 if (WARN_ON_ONCE(!zwplug)) 818 return; 819 820 spin_lock_irqsave(&zwplug->lock, flags); 821 zwplug->wp_offset += bio_sectors(bio); 822 spin_unlock_irqrestore(&zwplug->lock, flags); 823 } 824 825 /* 826 * Attempt to merge plugged BIOs with a newly prepared request for a BIO that 827 * already went through zone write plugging (either a new BIO or one that was 828 * unplugged). 829 */ 830 void blk_zone_write_plug_init_request(struct request *req) 831 { 832 sector_t req_back_sector = blk_rq_pos(req) + blk_rq_sectors(req); 833 struct request_queue *q = req->q; 834 struct gendisk *disk = q->disk; 835 struct blk_zone_wplug *zwplug = 836 disk_get_zone_wplug(disk, blk_rq_pos(req)); 837 unsigned long flags; 838 struct bio *bio; 839 840 if (WARN_ON_ONCE(!zwplug)) 841 return; 842 843 /* 844 * Indicate that completion of this request needs to be handled with 845 * blk_zone_write_plug_finish_request(), which will drop the reference 846 * on the zone write plug we took above on entry to this function. 847 */ 848 req->rq_flags |= RQF_ZONE_WRITE_PLUGGING; 849 850 if (blk_queue_nomerges(q)) 851 return; 852 853 /* 854 * Walk through the list of plugged BIOs to check if they can be merged 855 * into the back of the request. 856 */ 857 spin_lock_irqsave(&zwplug->lock, flags); 858 while (!disk_zone_wplug_is_full(disk, zwplug)) { 859 bio = bio_list_peek(&zwplug->bio_list); 860 if (!bio) 861 break; 862 863 if (bio->bi_iter.bi_sector != req_back_sector || 864 !blk_rq_merge_ok(req, bio)) 865 break; 866 867 WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE_ZEROES && 868 !bio->__bi_nr_segments); 869 870 bio_list_pop(&zwplug->bio_list); 871 if (bio_attempt_back_merge(req, bio, bio->__bi_nr_segments) != 872 BIO_MERGE_OK) { 873 bio_list_add_head(&zwplug->bio_list, bio); 874 break; 875 } 876 877 /* 878 * Drop the extra reference on the queue usage we got when 879 * plugging the BIO and advance the write pointer offset. 880 */ 881 blk_queue_exit(q); 882 zwplug->wp_offset += bio_sectors(bio); 883 884 req_back_sector += bio_sectors(bio); 885 } 886 spin_unlock_irqrestore(&zwplug->lock, flags); 887 } 888 889 /* 890 * Check and prepare a BIO for submission by incrementing the write pointer 891 * offset of its zone write plug and changing zone append operations into 892 * regular write when zone append emulation is needed. 893 */ 894 static bool blk_zone_wplug_prepare_bio(struct blk_zone_wplug *zwplug, 895 struct bio *bio) 896 { 897 struct gendisk *disk = bio->bi_bdev->bd_disk; 898 899 /* 900 * Check that the user is not attempting to write to a full zone. 901 * We know such BIO will fail, and that would potentially overflow our 902 * write pointer offset beyond the end of the zone. 903 */ 904 if (disk_zone_wplug_is_full(disk, zwplug)) 905 goto err; 906 907 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 908 /* 909 * Use a regular write starting at the current write pointer. 910 * Similarly to native zone append operations, do not allow 911 * merging. 912 */ 913 bio->bi_opf &= ~REQ_OP_MASK; 914 bio->bi_opf |= REQ_OP_WRITE | REQ_NOMERGE; 915 bio->bi_iter.bi_sector += zwplug->wp_offset; 916 917 /* 918 * Remember that this BIO is in fact a zone append operation 919 * so that we can restore its operation code on completion. 920 */ 921 bio_set_flag(bio, BIO_EMULATES_ZONE_APPEND); 922 } else { 923 /* 924 * Check for non-sequential writes early because we avoid a 925 * whole lot of error handling trouble if we don't send it off 926 * to the driver. 927 */ 928 if (bio_offset_from_zone_start(bio) != zwplug->wp_offset) 929 goto err; 930 } 931 932 /* Advance the zone write pointer offset. */ 933 zwplug->wp_offset += bio_sectors(bio); 934 935 return true; 936 937 err: 938 /* We detected an invalid write BIO: schedule error recovery. */ 939 disk_zone_wplug_set_error(disk, zwplug); 940 kblockd_schedule_work(&disk->zone_wplugs_work); 941 return false; 942 } 943 944 static bool blk_zone_wplug_handle_write(struct bio *bio, unsigned int nr_segs) 945 { 946 struct gendisk *disk = bio->bi_bdev->bd_disk; 947 sector_t sector = bio->bi_iter.bi_sector; 948 struct blk_zone_wplug *zwplug; 949 gfp_t gfp_mask = GFP_NOIO; 950 unsigned long flags; 951 952 /* 953 * BIOs must be fully contained within a zone so that we use the correct 954 * zone write plug for the entire BIO. For blk-mq devices, the block 955 * layer should already have done any splitting required to ensure this 956 * and this BIO should thus not be straddling zone boundaries. For 957 * BIO-based devices, it is the responsibility of the driver to split 958 * the bio before submitting it. 959 */ 960 if (WARN_ON_ONCE(bio_straddles_zones(bio))) { 961 bio_io_error(bio); 962 return true; 963 } 964 965 /* Conventional zones do not need write plugging. */ 966 if (disk_zone_is_conv(disk, sector)) { 967 /* Zone append to conventional zones is not allowed. */ 968 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 969 bio_io_error(bio); 970 return true; 971 } 972 return false; 973 } 974 975 if (bio->bi_opf & REQ_NOWAIT) 976 gfp_mask = GFP_NOWAIT; 977 978 zwplug = disk_get_and_lock_zone_wplug(disk, sector, gfp_mask, &flags); 979 if (!zwplug) { 980 bio_io_error(bio); 981 return true; 982 } 983 984 /* Indicate that this BIO is being handled using zone write plugging. */ 985 bio_set_flag(bio, BIO_ZONE_WRITE_PLUGGING); 986 987 /* 988 * If the zone is already plugged or has a pending error, add the BIO 989 * to the plug BIO list. Otherwise, plug and let the BIO execute. 990 */ 991 if (zwplug->flags & BLK_ZONE_WPLUG_BUSY) 992 goto plug; 993 994 /* 995 * If an error is detected when preparing the BIO, add it to the BIO 996 * list so that error recovery can deal with it. 997 */ 998 if (!blk_zone_wplug_prepare_bio(zwplug, bio)) 999 goto plug; 1000 1001 zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED; 1002 1003 spin_unlock_irqrestore(&zwplug->lock, flags); 1004 1005 return false; 1006 1007 plug: 1008 zwplug->flags |= BLK_ZONE_WPLUG_PLUGGED; 1009 blk_zone_wplug_add_bio(zwplug, bio, nr_segs); 1010 1011 spin_unlock_irqrestore(&zwplug->lock, flags); 1012 1013 return true; 1014 } 1015 1016 /** 1017 * blk_zone_plug_bio - Handle a zone write BIO with zone write plugging 1018 * @bio: The BIO being submitted 1019 * @nr_segs: The number of physical segments of @bio 1020 * 1021 * Handle write, write zeroes and zone append operations requiring emulation 1022 * using zone write plugging. 1023 * 1024 * Return true whenever @bio execution needs to be delayed through the zone 1025 * write plug. Otherwise, return false to let the submission path process 1026 * @bio normally. 1027 */ 1028 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) 1029 { 1030 struct block_device *bdev = bio->bi_bdev; 1031 1032 if (!bdev->bd_disk->zone_wplugs_hash) 1033 return false; 1034 1035 /* 1036 * If the BIO already has the plugging flag set, then it was already 1037 * handled through this path and this is a submission from the zone 1038 * plug bio submit work. 1039 */ 1040 if (bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING)) 1041 return false; 1042 1043 /* 1044 * We do not need to do anything special for empty flush BIOs, e.g 1045 * BIOs such as issued by blkdev_issue_flush(). The is because it is 1046 * the responsibility of the user to first wait for the completion of 1047 * write operations for flush to have any effect on the persistence of 1048 * the written data. 1049 */ 1050 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 1051 return false; 1052 1053 /* 1054 * Regular writes and write zeroes need to be handled through the target 1055 * zone write plug. This includes writes with REQ_FUA | REQ_PREFLUSH 1056 * which may need to go through the flush machinery depending on the 1057 * target device capabilities. Plugging such writes is fine as the flush 1058 * machinery operates at the request level, below the plug, and 1059 * completion of the flush sequence will go through the regular BIO 1060 * completion, which will handle zone write plugging. 1061 * Zone append operations for devices that requested emulation must 1062 * also be plugged so that these BIOs can be changed into regular 1063 * write BIOs. 1064 * Zone reset, reset all and finish commands need special treatment 1065 * to correctly track the write pointer offset of zones. These commands 1066 * are not plugged as we do not need serialization with write 1067 * operations. It is the responsibility of the user to not issue reset 1068 * and finish commands when write operations are in flight. 1069 */ 1070 switch (bio_op(bio)) { 1071 case REQ_OP_ZONE_APPEND: 1072 if (!bdev_emulates_zone_append(bdev)) 1073 return false; 1074 fallthrough; 1075 case REQ_OP_WRITE: 1076 case REQ_OP_WRITE_ZEROES: 1077 return blk_zone_wplug_handle_write(bio, nr_segs); 1078 case REQ_OP_ZONE_RESET: 1079 return blk_zone_wplug_handle_reset_or_finish(bio, 0); 1080 case REQ_OP_ZONE_FINISH: 1081 return blk_zone_wplug_handle_reset_or_finish(bio, 1082 bdev_zone_sectors(bdev)); 1083 case REQ_OP_ZONE_RESET_ALL: 1084 return blk_zone_wplug_handle_reset_all(bio); 1085 default: 1086 return false; 1087 } 1088 1089 return false; 1090 } 1091 EXPORT_SYMBOL_GPL(blk_zone_plug_bio); 1092 1093 static void disk_zone_wplug_schedule_bio_work(struct gendisk *disk, 1094 struct blk_zone_wplug *zwplug) 1095 { 1096 /* 1097 * Take a reference on the zone write plug and schedule the submission 1098 * of the next plugged BIO. blk_zone_wplug_bio_work() will release the 1099 * reference we take here. 1100 */ 1101 WARN_ON_ONCE(!(zwplug->flags & BLK_ZONE_WPLUG_PLUGGED)); 1102 atomic_inc(&zwplug->ref); 1103 queue_work(disk->zone_wplugs_wq, &zwplug->bio_work); 1104 } 1105 1106 static void disk_zone_wplug_unplug_bio(struct gendisk *disk, 1107 struct blk_zone_wplug *zwplug) 1108 { 1109 unsigned long flags; 1110 1111 spin_lock_irqsave(&zwplug->lock, flags); 1112 1113 /* 1114 * If we had an error, schedule error recovery. The recovery work 1115 * will restart submission of plugged BIOs. 1116 */ 1117 if (zwplug->flags & BLK_ZONE_WPLUG_ERROR) { 1118 spin_unlock_irqrestore(&zwplug->lock, flags); 1119 kblockd_schedule_work(&disk->zone_wplugs_work); 1120 return; 1121 } 1122 1123 /* Schedule submission of the next plugged BIO if we have one. */ 1124 if (!bio_list_empty(&zwplug->bio_list)) { 1125 disk_zone_wplug_schedule_bio_work(disk, zwplug); 1126 spin_unlock_irqrestore(&zwplug->lock, flags); 1127 return; 1128 } 1129 1130 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1131 1132 /* 1133 * If the zone is full (it was fully written or finished, or empty 1134 * (it was reset), remove its zone write plug from the hash table. 1135 */ 1136 if (disk_should_remove_zone_wplug(disk, zwplug)) 1137 disk_remove_zone_wplug(disk, zwplug); 1138 1139 spin_unlock_irqrestore(&zwplug->lock, flags); 1140 } 1141 1142 void blk_zone_write_plug_bio_endio(struct bio *bio) 1143 { 1144 struct gendisk *disk = bio->bi_bdev->bd_disk; 1145 struct blk_zone_wplug *zwplug = 1146 disk_get_zone_wplug(disk, bio->bi_iter.bi_sector); 1147 unsigned long flags; 1148 1149 if (WARN_ON_ONCE(!zwplug)) 1150 return; 1151 1152 /* Make sure we do not see this BIO again by clearing the plug flag. */ 1153 bio_clear_flag(bio, BIO_ZONE_WRITE_PLUGGING); 1154 1155 /* 1156 * If this is a regular write emulating a zone append operation, 1157 * restore the original operation code. 1158 */ 1159 if (bio_flagged(bio, BIO_EMULATES_ZONE_APPEND)) { 1160 bio->bi_opf &= ~REQ_OP_MASK; 1161 bio->bi_opf |= REQ_OP_ZONE_APPEND; 1162 } 1163 1164 /* 1165 * If the BIO failed, mark the plug as having an error to trigger 1166 * recovery. 1167 */ 1168 if (bio->bi_status != BLK_STS_OK) { 1169 spin_lock_irqsave(&zwplug->lock, flags); 1170 disk_zone_wplug_set_error(disk, zwplug); 1171 spin_unlock_irqrestore(&zwplug->lock, flags); 1172 } 1173 1174 /* Drop the reference we took when the BIO was issued. */ 1175 disk_put_zone_wplug(zwplug); 1176 1177 /* 1178 * For BIO-based devices, blk_zone_write_plug_finish_request() 1179 * is not called. So we need to schedule execution of the next 1180 * plugged BIO here. 1181 */ 1182 if (bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) 1183 disk_zone_wplug_unplug_bio(disk, zwplug); 1184 1185 /* Drop the reference we took when entering this function. */ 1186 disk_put_zone_wplug(zwplug); 1187 } 1188 1189 void blk_zone_write_plug_finish_request(struct request *req) 1190 { 1191 struct gendisk *disk = req->q->disk; 1192 struct blk_zone_wplug *zwplug; 1193 1194 zwplug = disk_get_zone_wplug(disk, req->__sector); 1195 if (WARN_ON_ONCE(!zwplug)) 1196 return; 1197 1198 req->rq_flags &= ~RQF_ZONE_WRITE_PLUGGING; 1199 1200 /* 1201 * Drop the reference we took when the request was initialized in 1202 * blk_zone_write_plug_init_request(). 1203 */ 1204 disk_put_zone_wplug(zwplug); 1205 1206 disk_zone_wplug_unplug_bio(disk, zwplug); 1207 1208 /* Drop the reference we took when entering this function. */ 1209 disk_put_zone_wplug(zwplug); 1210 } 1211 1212 static void blk_zone_wplug_bio_work(struct work_struct *work) 1213 { 1214 struct blk_zone_wplug *zwplug = 1215 container_of(work, struct blk_zone_wplug, bio_work); 1216 struct block_device *bdev; 1217 unsigned long flags; 1218 struct bio *bio; 1219 1220 /* 1221 * Submit the next plugged BIO. If we do not have any, clear 1222 * the plugged flag. 1223 */ 1224 spin_lock_irqsave(&zwplug->lock, flags); 1225 1226 bio = bio_list_pop(&zwplug->bio_list); 1227 if (!bio) { 1228 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1229 spin_unlock_irqrestore(&zwplug->lock, flags); 1230 goto put_zwplug; 1231 } 1232 1233 if (!blk_zone_wplug_prepare_bio(zwplug, bio)) { 1234 /* Error recovery will decide what to do with the BIO. */ 1235 bio_list_add_head(&zwplug->bio_list, bio); 1236 spin_unlock_irqrestore(&zwplug->lock, flags); 1237 goto put_zwplug; 1238 } 1239 1240 spin_unlock_irqrestore(&zwplug->lock, flags); 1241 1242 bdev = bio->bi_bdev; 1243 submit_bio_noacct_nocheck(bio); 1244 1245 /* 1246 * blk-mq devices will reuse the extra reference on the request queue 1247 * usage counter we took when the BIO was plugged, but the submission 1248 * path for BIO-based devices will not do that. So drop this extra 1249 * reference here. 1250 */ 1251 if (bdev_test_flag(bdev, BD_HAS_SUBMIT_BIO)) 1252 blk_queue_exit(bdev->bd_disk->queue); 1253 1254 put_zwplug: 1255 /* Drop the reference we took in disk_zone_wplug_schedule_bio_work(). */ 1256 disk_put_zone_wplug(zwplug); 1257 } 1258 1259 static unsigned int blk_zone_wp_offset(struct blk_zone *zone) 1260 { 1261 switch (zone->cond) { 1262 case BLK_ZONE_COND_IMP_OPEN: 1263 case BLK_ZONE_COND_EXP_OPEN: 1264 case BLK_ZONE_COND_CLOSED: 1265 return zone->wp - zone->start; 1266 case BLK_ZONE_COND_FULL: 1267 return zone->len; 1268 case BLK_ZONE_COND_EMPTY: 1269 return 0; 1270 case BLK_ZONE_COND_NOT_WP: 1271 case BLK_ZONE_COND_OFFLINE: 1272 case BLK_ZONE_COND_READONLY: 1273 default: 1274 /* 1275 * Conventional, offline and read-only zones do not have a valid 1276 * write pointer. 1277 */ 1278 return UINT_MAX; 1279 } 1280 } 1281 1282 static int blk_zone_wplug_report_zone_cb(struct blk_zone *zone, 1283 unsigned int idx, void *data) 1284 { 1285 struct blk_zone *zonep = data; 1286 1287 *zonep = *zone; 1288 return 0; 1289 } 1290 1291 static void disk_zone_wplug_handle_error(struct gendisk *disk, 1292 struct blk_zone_wplug *zwplug) 1293 { 1294 sector_t zone_start_sector = 1295 bdev_zone_sectors(disk->part0) * zwplug->zone_no; 1296 unsigned int noio_flag; 1297 struct blk_zone zone; 1298 unsigned long flags; 1299 int ret; 1300 1301 /* Get the current zone information from the device. */ 1302 noio_flag = memalloc_noio_save(); 1303 ret = disk->fops->report_zones(disk, zone_start_sector, 1, 1304 blk_zone_wplug_report_zone_cb, &zone); 1305 memalloc_noio_restore(noio_flag); 1306 1307 spin_lock_irqsave(&zwplug->lock, flags); 1308 1309 /* 1310 * A zone reset or finish may have cleared the error already. In such 1311 * case, do nothing as the report zones may have seen the "old" write 1312 * pointer value before the reset/finish operation completed. 1313 */ 1314 if (!(zwplug->flags & BLK_ZONE_WPLUG_ERROR)) 1315 goto unlock; 1316 1317 zwplug->flags &= ~BLK_ZONE_WPLUG_ERROR; 1318 1319 if (ret != 1) { 1320 /* 1321 * We failed to get the zone information, meaning that something 1322 * is likely really wrong with the device. Abort all remaining 1323 * plugged BIOs as otherwise we could endup waiting forever on 1324 * plugged BIOs to complete if there is a queue freeze on-going. 1325 */ 1326 disk_zone_wplug_abort(zwplug); 1327 goto unplug; 1328 } 1329 1330 /* Update the zone write pointer offset. */ 1331 zwplug->wp_offset = blk_zone_wp_offset(&zone); 1332 disk_zone_wplug_abort_unaligned(disk, zwplug); 1333 1334 /* Restart BIO submission if we still have any BIO left. */ 1335 if (!bio_list_empty(&zwplug->bio_list)) { 1336 disk_zone_wplug_schedule_bio_work(disk, zwplug); 1337 goto unlock; 1338 } 1339 1340 unplug: 1341 zwplug->flags &= ~BLK_ZONE_WPLUG_PLUGGED; 1342 if (disk_should_remove_zone_wplug(disk, zwplug)) 1343 disk_remove_zone_wplug(disk, zwplug); 1344 1345 unlock: 1346 spin_unlock_irqrestore(&zwplug->lock, flags); 1347 } 1348 1349 static void disk_zone_wplugs_work(struct work_struct *work) 1350 { 1351 struct gendisk *disk = 1352 container_of(work, struct gendisk, zone_wplugs_work); 1353 struct blk_zone_wplug *zwplug; 1354 unsigned long flags; 1355 1356 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 1357 1358 while (!list_empty(&disk->zone_wplugs_err_list)) { 1359 zwplug = list_first_entry(&disk->zone_wplugs_err_list, 1360 struct blk_zone_wplug, link); 1361 list_del_init(&zwplug->link); 1362 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 1363 1364 disk_zone_wplug_handle_error(disk, zwplug); 1365 disk_put_zone_wplug(zwplug); 1366 1367 spin_lock_irqsave(&disk->zone_wplugs_lock, flags); 1368 } 1369 1370 spin_unlock_irqrestore(&disk->zone_wplugs_lock, flags); 1371 } 1372 1373 static inline unsigned int disk_zone_wplugs_hash_size(struct gendisk *disk) 1374 { 1375 return 1U << disk->zone_wplugs_hash_bits; 1376 } 1377 1378 void disk_init_zone_resources(struct gendisk *disk) 1379 { 1380 spin_lock_init(&disk->zone_wplugs_lock); 1381 INIT_LIST_HEAD(&disk->zone_wplugs_err_list); 1382 INIT_WORK(&disk->zone_wplugs_work, disk_zone_wplugs_work); 1383 } 1384 1385 /* 1386 * For the size of a disk zone write plug hash table, use the size of the 1387 * zone write plug mempool, which is the maximum of the disk open zones and 1388 * active zones limits. But do not exceed 4KB (512 hlist head entries), that is, 1389 * 9 bits. For a disk that has no limits, mempool size defaults to 128. 1390 */ 1391 #define BLK_ZONE_WPLUG_MAX_HASH_BITS 9 1392 #define BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE 128 1393 1394 static int disk_alloc_zone_resources(struct gendisk *disk, 1395 unsigned int pool_size) 1396 { 1397 unsigned int i; 1398 1399 disk->zone_wplugs_hash_bits = 1400 min(ilog2(pool_size) + 1, BLK_ZONE_WPLUG_MAX_HASH_BITS); 1401 1402 disk->zone_wplugs_hash = 1403 kcalloc(disk_zone_wplugs_hash_size(disk), 1404 sizeof(struct hlist_head), GFP_KERNEL); 1405 if (!disk->zone_wplugs_hash) 1406 return -ENOMEM; 1407 1408 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) 1409 INIT_HLIST_HEAD(&disk->zone_wplugs_hash[i]); 1410 1411 disk->zone_wplugs_pool = mempool_create_kmalloc_pool(pool_size, 1412 sizeof(struct blk_zone_wplug)); 1413 if (!disk->zone_wplugs_pool) 1414 goto free_hash; 1415 1416 disk->zone_wplugs_wq = 1417 alloc_workqueue("%s_zwplugs", WQ_MEM_RECLAIM | WQ_HIGHPRI, 1418 pool_size, disk->disk_name); 1419 if (!disk->zone_wplugs_wq) 1420 goto destroy_pool; 1421 1422 return 0; 1423 1424 destroy_pool: 1425 mempool_destroy(disk->zone_wplugs_pool); 1426 disk->zone_wplugs_pool = NULL; 1427 free_hash: 1428 kfree(disk->zone_wplugs_hash); 1429 disk->zone_wplugs_hash = NULL; 1430 disk->zone_wplugs_hash_bits = 0; 1431 return -ENOMEM; 1432 } 1433 1434 static void disk_destroy_zone_wplugs_hash_table(struct gendisk *disk) 1435 { 1436 struct blk_zone_wplug *zwplug; 1437 unsigned int i; 1438 1439 if (!disk->zone_wplugs_hash) 1440 return; 1441 1442 /* Free all the zone write plugs we have. */ 1443 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) { 1444 while (!hlist_empty(&disk->zone_wplugs_hash[i])) { 1445 zwplug = hlist_entry(disk->zone_wplugs_hash[i].first, 1446 struct blk_zone_wplug, node); 1447 atomic_inc(&zwplug->ref); 1448 disk_remove_zone_wplug(disk, zwplug); 1449 disk_put_zone_wplug(zwplug); 1450 } 1451 } 1452 1453 kfree(disk->zone_wplugs_hash); 1454 disk->zone_wplugs_hash = NULL; 1455 disk->zone_wplugs_hash_bits = 0; 1456 } 1457 1458 void disk_free_zone_resources(struct gendisk *disk) 1459 { 1460 if (!disk->zone_wplugs_pool) 1461 return; 1462 1463 cancel_work_sync(&disk->zone_wplugs_work); 1464 1465 if (disk->zone_wplugs_wq) { 1466 destroy_workqueue(disk->zone_wplugs_wq); 1467 disk->zone_wplugs_wq = NULL; 1468 } 1469 1470 disk_destroy_zone_wplugs_hash_table(disk); 1471 1472 /* 1473 * Wait for the zone write plugs to be RCU-freed before 1474 * destorying the mempool. 1475 */ 1476 rcu_barrier(); 1477 1478 mempool_destroy(disk->zone_wplugs_pool); 1479 disk->zone_wplugs_pool = NULL; 1480 1481 bitmap_free(disk->conv_zones_bitmap); 1482 disk->conv_zones_bitmap = NULL; 1483 disk->zone_capacity = 0; 1484 disk->last_zone_capacity = 0; 1485 disk->nr_zones = 0; 1486 } 1487 1488 static inline bool disk_need_zone_resources(struct gendisk *disk) 1489 { 1490 /* 1491 * All mq zoned devices need zone resources so that the block layer 1492 * can automatically handle write BIO plugging. BIO-based device drivers 1493 * (e.g. DM devices) are normally responsible for handling zone write 1494 * ordering and do not need zone resources, unless the driver requires 1495 * zone append emulation. 1496 */ 1497 return queue_is_mq(disk->queue) || 1498 queue_emulates_zone_append(disk->queue); 1499 } 1500 1501 static int disk_revalidate_zone_resources(struct gendisk *disk, 1502 unsigned int nr_zones) 1503 { 1504 struct queue_limits *lim = &disk->queue->limits; 1505 unsigned int pool_size; 1506 1507 if (!disk_need_zone_resources(disk)) 1508 return 0; 1509 1510 /* 1511 * If the device has no limit on the maximum number of open and active 1512 * zones, use BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE. 1513 */ 1514 pool_size = max(lim->max_open_zones, lim->max_active_zones); 1515 if (!pool_size) 1516 pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_zones); 1517 1518 if (!disk->zone_wplugs_hash) 1519 return disk_alloc_zone_resources(disk, pool_size); 1520 1521 return 0; 1522 } 1523 1524 struct blk_revalidate_zone_args { 1525 struct gendisk *disk; 1526 unsigned long *conv_zones_bitmap; 1527 unsigned int nr_zones; 1528 unsigned int zone_capacity; 1529 unsigned int last_zone_capacity; 1530 sector_t sector; 1531 }; 1532 1533 /* 1534 * Update the disk zone resources information and device queue limits. 1535 * The disk queue is frozen when this is executed. 1536 */ 1537 static int disk_update_zone_resources(struct gendisk *disk, 1538 struct blk_revalidate_zone_args *args) 1539 { 1540 struct request_queue *q = disk->queue; 1541 unsigned int nr_seq_zones, nr_conv_zones = 0; 1542 unsigned int pool_size; 1543 struct queue_limits lim; 1544 1545 disk->nr_zones = args->nr_zones; 1546 disk->zone_capacity = args->zone_capacity; 1547 disk->last_zone_capacity = args->last_zone_capacity; 1548 swap(disk->conv_zones_bitmap, args->conv_zones_bitmap); 1549 if (disk->conv_zones_bitmap) 1550 nr_conv_zones = bitmap_weight(disk->conv_zones_bitmap, 1551 disk->nr_zones); 1552 if (nr_conv_zones >= disk->nr_zones) { 1553 pr_warn("%s: Invalid number of conventional zones %u / %u\n", 1554 disk->disk_name, nr_conv_zones, disk->nr_zones); 1555 return -ENODEV; 1556 } 1557 1558 lim = queue_limits_start_update(q); 1559 1560 /* 1561 * Some devices can advertize zone resource limits that are larger than 1562 * the number of sequential zones of the zoned block device, e.g. a 1563 * small ZNS namespace. For such case, assume that the zoned device has 1564 * no zone resource limits. 1565 */ 1566 nr_seq_zones = disk->nr_zones - nr_conv_zones; 1567 if (lim.max_open_zones >= nr_seq_zones) 1568 lim.max_open_zones = 0; 1569 if (lim.max_active_zones >= nr_seq_zones) 1570 lim.max_active_zones = 0; 1571 1572 if (!disk->zone_wplugs_pool) 1573 goto commit; 1574 1575 /* 1576 * If the device has no limit on the maximum number of open and active 1577 * zones, set its max open zone limit to the mempool size to indicate 1578 * to the user that there is a potential performance impact due to 1579 * dynamic zone write plug allocation when simultaneously writing to 1580 * more zones than the size of the mempool. 1581 */ 1582 pool_size = max(lim.max_open_zones, lim.max_active_zones); 1583 if (!pool_size) 1584 pool_size = min(BLK_ZONE_WPLUG_DEFAULT_POOL_SIZE, nr_seq_zones); 1585 1586 mempool_resize(disk->zone_wplugs_pool, pool_size); 1587 1588 if (!lim.max_open_zones && !lim.max_active_zones) { 1589 if (pool_size < nr_seq_zones) 1590 lim.max_open_zones = pool_size; 1591 else 1592 lim.max_open_zones = 0; 1593 } 1594 1595 commit: 1596 return queue_limits_commit_update(q, &lim); 1597 } 1598 1599 static int blk_revalidate_conv_zone(struct blk_zone *zone, unsigned int idx, 1600 struct blk_revalidate_zone_args *args) 1601 { 1602 struct gendisk *disk = args->disk; 1603 1604 if (zone->capacity != zone->len) { 1605 pr_warn("%s: Invalid conventional zone capacity\n", 1606 disk->disk_name); 1607 return -ENODEV; 1608 } 1609 1610 if (disk_zone_is_last(disk, zone)) 1611 args->last_zone_capacity = zone->capacity; 1612 1613 if (!disk_need_zone_resources(disk)) 1614 return 0; 1615 1616 if (!args->conv_zones_bitmap) { 1617 args->conv_zones_bitmap = 1618 bitmap_zalloc(args->nr_zones, GFP_NOIO); 1619 if (!args->conv_zones_bitmap) 1620 return -ENOMEM; 1621 } 1622 1623 set_bit(idx, args->conv_zones_bitmap); 1624 1625 return 0; 1626 } 1627 1628 static int blk_revalidate_seq_zone(struct blk_zone *zone, unsigned int idx, 1629 struct blk_revalidate_zone_args *args) 1630 { 1631 struct gendisk *disk = args->disk; 1632 struct blk_zone_wplug *zwplug; 1633 unsigned int wp_offset; 1634 unsigned long flags; 1635 1636 /* 1637 * Remember the capacity of the first sequential zone and check 1638 * if it is constant for all zones, ignoring the last zone as it can be 1639 * smaller. 1640 */ 1641 if (!args->zone_capacity) 1642 args->zone_capacity = zone->capacity; 1643 if (disk_zone_is_last(disk, zone)) { 1644 args->last_zone_capacity = zone->capacity; 1645 } else if (zone->capacity != args->zone_capacity) { 1646 pr_warn("%s: Invalid variable zone capacity\n", 1647 disk->disk_name); 1648 return -ENODEV; 1649 } 1650 1651 /* 1652 * We need to track the write pointer of all zones that are not 1653 * empty nor full. So make sure we have a zone write plug for 1654 * such zone if the device has a zone write plug hash table. 1655 */ 1656 if (!disk->zone_wplugs_hash) 1657 return 0; 1658 1659 wp_offset = blk_zone_wp_offset(zone); 1660 if (!wp_offset || wp_offset >= zone->capacity) 1661 return 0; 1662 1663 zwplug = disk_get_and_lock_zone_wplug(disk, zone->wp, GFP_NOIO, &flags); 1664 if (!zwplug) 1665 return -ENOMEM; 1666 spin_unlock_irqrestore(&zwplug->lock, flags); 1667 disk_put_zone_wplug(zwplug); 1668 1669 return 0; 1670 } 1671 1672 /* 1673 * Helper function to check the validity of zones of a zoned block device. 1674 */ 1675 static int blk_revalidate_zone_cb(struct blk_zone *zone, unsigned int idx, 1676 void *data) 1677 { 1678 struct blk_revalidate_zone_args *args = data; 1679 struct gendisk *disk = args->disk; 1680 sector_t zone_sectors = disk->queue->limits.chunk_sectors; 1681 int ret; 1682 1683 /* Check for bad zones and holes in the zone report */ 1684 if (zone->start != args->sector) { 1685 pr_warn("%s: Zone gap at sectors %llu..%llu\n", 1686 disk->disk_name, args->sector, zone->start); 1687 return -ENODEV; 1688 } 1689 1690 if (zone->start >= get_capacity(disk) || !zone->len) { 1691 pr_warn("%s: Invalid zone start %llu, length %llu\n", 1692 disk->disk_name, zone->start, zone->len); 1693 return -ENODEV; 1694 } 1695 1696 /* 1697 * All zones must have the same size, with the exception on an eventual 1698 * smaller last zone. 1699 */ 1700 if (!disk_zone_is_last(disk, zone)) { 1701 if (zone->len != zone_sectors) { 1702 pr_warn("%s: Invalid zoned device with non constant zone size\n", 1703 disk->disk_name); 1704 return -ENODEV; 1705 } 1706 } else if (zone->len > zone_sectors) { 1707 pr_warn("%s: Invalid zoned device with larger last zone size\n", 1708 disk->disk_name); 1709 return -ENODEV; 1710 } 1711 1712 if (!zone->capacity || zone->capacity > zone->len) { 1713 pr_warn("%s: Invalid zone capacity\n", 1714 disk->disk_name); 1715 return -ENODEV; 1716 } 1717 1718 /* Check zone type */ 1719 switch (zone->type) { 1720 case BLK_ZONE_TYPE_CONVENTIONAL: 1721 ret = blk_revalidate_conv_zone(zone, idx, args); 1722 break; 1723 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1724 ret = blk_revalidate_seq_zone(zone, idx, args); 1725 break; 1726 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1727 default: 1728 pr_warn("%s: Invalid zone type 0x%x at sectors %llu\n", 1729 disk->disk_name, (int)zone->type, zone->start); 1730 ret = -ENODEV; 1731 } 1732 1733 if (!ret) 1734 args->sector += zone->len; 1735 1736 return ret; 1737 } 1738 1739 /** 1740 * blk_revalidate_disk_zones - (re)allocate and initialize zone write plugs 1741 * @disk: Target disk 1742 * 1743 * Helper function for low-level device drivers to check, (re) allocate and 1744 * initialize resources used for managing zoned disks. This function should 1745 * normally be called by blk-mq based drivers when a zoned gendisk is probed 1746 * and when the zone configuration of the gendisk changes (e.g. after a format). 1747 * Before calling this function, the device driver must already have set the 1748 * device zone size (chunk_sector limit) and the max zone append limit. 1749 * BIO based drivers can also use this function as long as the device queue 1750 * can be safely frozen. 1751 */ 1752 int blk_revalidate_disk_zones(struct gendisk *disk) 1753 { 1754 struct request_queue *q = disk->queue; 1755 sector_t zone_sectors = q->limits.chunk_sectors; 1756 sector_t capacity = get_capacity(disk); 1757 struct blk_revalidate_zone_args args = { }; 1758 unsigned int noio_flag; 1759 int ret = -ENOMEM; 1760 1761 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 1762 return -EIO; 1763 1764 if (!capacity) 1765 return -ENODEV; 1766 1767 /* 1768 * Checks that the device driver indicated a valid zone size and that 1769 * the max zone append limit is set. 1770 */ 1771 if (!zone_sectors || !is_power_of_2(zone_sectors)) { 1772 pr_warn("%s: Invalid non power of two zone size (%llu)\n", 1773 disk->disk_name, zone_sectors); 1774 return -ENODEV; 1775 } 1776 1777 if (!queue_max_zone_append_sectors(q)) { 1778 pr_warn("%s: Invalid 0 maximum zone append limit\n", 1779 disk->disk_name); 1780 return -ENODEV; 1781 } 1782 1783 /* 1784 * Ensure that all memory allocations in this context are done as if 1785 * GFP_NOIO was specified. 1786 */ 1787 args.disk = disk; 1788 args.nr_zones = (capacity + zone_sectors - 1) >> ilog2(zone_sectors); 1789 noio_flag = memalloc_noio_save(); 1790 ret = disk_revalidate_zone_resources(disk, args.nr_zones); 1791 if (ret) { 1792 memalloc_noio_restore(noio_flag); 1793 return ret; 1794 } 1795 ret = disk->fops->report_zones(disk, 0, UINT_MAX, 1796 blk_revalidate_zone_cb, &args); 1797 if (!ret) { 1798 pr_warn("%s: No zones reported\n", disk->disk_name); 1799 ret = -ENODEV; 1800 } 1801 memalloc_noio_restore(noio_flag); 1802 1803 /* 1804 * If zones where reported, make sure that the entire disk capacity 1805 * has been checked. 1806 */ 1807 if (ret > 0 && args.sector != capacity) { 1808 pr_warn("%s: Missing zones from sector %llu\n", 1809 disk->disk_name, args.sector); 1810 ret = -ENODEV; 1811 } 1812 1813 /* 1814 * Set the new disk zone parameters only once the queue is frozen and 1815 * all I/Os are completed. 1816 */ 1817 blk_mq_freeze_queue(q); 1818 if (ret > 0) 1819 ret = disk_update_zone_resources(disk, &args); 1820 else 1821 pr_warn("%s: failed to revalidate zones\n", disk->disk_name); 1822 if (ret) 1823 disk_free_zone_resources(disk); 1824 blk_mq_unfreeze_queue(q); 1825 1826 kfree(args.conv_zones_bitmap); 1827 1828 return ret; 1829 } 1830 EXPORT_SYMBOL_GPL(blk_revalidate_disk_zones); 1831 1832 #ifdef CONFIG_BLK_DEBUG_FS 1833 1834 int queue_zone_wplugs_show(void *data, struct seq_file *m) 1835 { 1836 struct request_queue *q = data; 1837 struct gendisk *disk = q->disk; 1838 struct blk_zone_wplug *zwplug; 1839 unsigned int zwp_wp_offset, zwp_flags; 1840 unsigned int zwp_zone_no, zwp_ref; 1841 unsigned int zwp_bio_list_size, i; 1842 unsigned long flags; 1843 1844 if (!disk->zone_wplugs_hash) 1845 return 0; 1846 1847 rcu_read_lock(); 1848 for (i = 0; i < disk_zone_wplugs_hash_size(disk); i++) { 1849 hlist_for_each_entry_rcu(zwplug, 1850 &disk->zone_wplugs_hash[i], node) { 1851 spin_lock_irqsave(&zwplug->lock, flags); 1852 zwp_zone_no = zwplug->zone_no; 1853 zwp_flags = zwplug->flags; 1854 zwp_ref = atomic_read(&zwplug->ref); 1855 zwp_wp_offset = zwplug->wp_offset; 1856 zwp_bio_list_size = bio_list_size(&zwplug->bio_list); 1857 spin_unlock_irqrestore(&zwplug->lock, flags); 1858 1859 seq_printf(m, "%u 0x%x %u %u %u\n", 1860 zwp_zone_no, zwp_flags, zwp_ref, 1861 zwp_wp_offset, zwp_bio_list_size); 1862 } 1863 } 1864 rcu_read_unlock(); 1865 1866 return 0; 1867 } 1868 1869 #endif 1870
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.