~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/asymmetric_keys/restrict.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* Instantiate a public key crypto key from an X.509 Certificate
  3  *
  4  * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved.
  5  * Written by David Howells (dhowells@redhat.com)
  6  */
  7 
  8 #define pr_fmt(fmt) "ASYM: "fmt
  9 #include <linux/module.h>
 10 #include <linux/kernel.h>
 11 #include <linux/err.h>
 12 #include <crypto/public_key.h>
 13 #include "asymmetric_keys.h"
 14 
 15 static bool use_builtin_keys;
 16 static struct asymmetric_key_id *ca_keyid;
 17 
 18 #ifndef MODULE
 19 static struct {
 20         struct asymmetric_key_id id;
 21         unsigned char data[10];
 22 } cakey;
 23 
 24 static int __init ca_keys_setup(char *str)
 25 {
 26         if (!str)               /* default system keyring */
 27                 return 1;
 28 
 29         if (strncmp(str, "id:", 3) == 0) {
 30                 struct asymmetric_key_id *p = &cakey.id;
 31                 size_t hexlen = (strlen(str) - 3) / 2;
 32                 int ret;
 33 
 34                 if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
 35                         pr_err("Missing or invalid ca_keys id\n");
 36                         return 1;
 37                 }
 38 
 39                 ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
 40                 if (ret < 0)
 41                         pr_err("Unparsable ca_keys id hex string\n");
 42                 else
 43                         ca_keyid = p;   /* owner key 'id:xxxxxx' */
 44         } else if (strcmp(str, "builtin") == 0) {
 45                 use_builtin_keys = true;
 46         }
 47 
 48         return 1;
 49 }
 50 __setup("ca_keys=", ca_keys_setup);
 51 #endif
 52 
 53 /**
 54  * restrict_link_by_signature - Restrict additions to a ring of public keys
 55  * @dest_keyring: Keyring being linked to.
 56  * @type: The type of key being added.
 57  * @payload: The payload of the new key.
 58  * @trust_keyring: A ring of keys that can be used to vouch for the new cert.
 59  *
 60  * Check the new certificate against the ones in the trust keyring.  If one of
 61  * those is the signing key and validates the new certificate, then mark the
 62  * new certificate as being trusted.
 63  *
 64  * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a
 65  * matching parent certificate in the trusted list, -EKEYREJECTED if the
 66  * signature check fails or the key is blacklisted, -ENOPKG if the signature
 67  * uses unsupported crypto, or some other error if there is a matching
 68  * certificate but the signature check cannot be performed.
 69  */
 70 int restrict_link_by_signature(struct key *dest_keyring,
 71                                const struct key_type *type,
 72                                const union key_payload *payload,
 73                                struct key *trust_keyring)
 74 {
 75         const struct public_key_signature *sig;
 76         struct key *key;
 77         int ret;
 78 
 79         pr_devel("==>%s()\n", __func__);
 80 
 81         if (!trust_keyring)
 82                 return -ENOKEY;
 83 
 84         if (type != &key_type_asymmetric)
 85                 return -EOPNOTSUPP;
 86 
 87         sig = payload->data[asym_auth];
 88         if (!sig)
 89                 return -ENOPKG;
 90         if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2])
 91                 return -ENOKEY;
 92 
 93         if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
 94                 return -EPERM;
 95 
 96         /* See if we have a key that signed this one. */
 97         key = find_asymmetric_key(trust_keyring,
 98                                   sig->auth_ids[0], sig->auth_ids[1],
 99                                   sig->auth_ids[2], false);
100         if (IS_ERR(key))
101                 return -ENOKEY;
102 
103         if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags))
104                 ret = -ENOKEY;
105         else if (IS_BUILTIN(CONFIG_SECONDARY_TRUSTED_KEYRING_SIGNED_BY_BUILTIN) &&
106                  !strcmp(dest_keyring->description, ".secondary_trusted_keys") &&
107                  !test_bit(KEY_FLAG_BUILTIN, &key->flags))
108                 ret = -ENOKEY;
109         else
110                 ret = verify_signature(key, sig);
111         key_put(key);
112         return ret;
113 }
114 
115 /**
116  * restrict_link_by_ca - Restrict additions to a ring of CA keys
117  * @dest_keyring: Keyring being linked to.
118  * @type: The type of key being added.
119  * @payload: The payload of the new key.
120  * @trust_keyring: Unused.
121  *
122  * Check if the new certificate is a CA. If it is a CA, then mark the new
123  * certificate as being ok to link.
124  *
125  * Returns 0 if the new certificate was accepted, -ENOKEY if the
126  * certificate is not a CA. -ENOPKG if the signature uses unsupported
127  * crypto, or some other error if there is a matching certificate but
128  * the signature check cannot be performed.
129  */
130 int restrict_link_by_ca(struct key *dest_keyring,
131                         const struct key_type *type,
132                         const union key_payload *payload,
133                         struct key *trust_keyring)
134 {
135         const struct public_key *pkey;
136 
137         if (type != &key_type_asymmetric)
138                 return -EOPNOTSUPP;
139 
140         pkey = payload->data[asym_crypto];
141         if (!pkey)
142                 return -ENOPKG;
143         if (!test_bit(KEY_EFLAG_CA, &pkey->key_eflags))
144                 return -ENOKEY;
145         if (!test_bit(KEY_EFLAG_KEYCERTSIGN, &pkey->key_eflags))
146                 return -ENOKEY;
147         if (!IS_ENABLED(CONFIG_INTEGRITY_CA_MACHINE_KEYRING_MAX))
148                 return 0;
149         if (test_bit(KEY_EFLAG_DIGITALSIG, &pkey->key_eflags))
150                 return -ENOKEY;
151 
152         return 0;
153 }
154 
155 /**
156  * restrict_link_by_digsig - Restrict additions to a ring of digsig keys
157  * @dest_keyring: Keyring being linked to.
158  * @type: The type of key being added.
159  * @payload: The payload of the new key.
160  * @trust_keyring: A ring of keys that can be used to vouch for the new cert.
161  *
162  * Check if the new certificate has digitalSignature usage set. If it is,
163  * then mark the new certificate as being ok to link. Afterwards verify
164  * the new certificate against the ones in the trust_keyring.
165  *
166  * Returns 0 if the new certificate was accepted, -ENOKEY if the
167  * certificate is not a digsig. -ENOPKG if the signature uses unsupported
168  * crypto, or some other error if there is a matching certificate but
169  * the signature check cannot be performed.
170  */
171 int restrict_link_by_digsig(struct key *dest_keyring,
172                             const struct key_type *type,
173                             const union key_payload *payload,
174                             struct key *trust_keyring)
175 {
176         const struct public_key *pkey;
177 
178         if (type != &key_type_asymmetric)
179                 return -EOPNOTSUPP;
180 
181         pkey = payload->data[asym_crypto];
182 
183         if (!pkey)
184                 return -ENOPKG;
185 
186         if (!test_bit(KEY_EFLAG_DIGITALSIG, &pkey->key_eflags))
187                 return -ENOKEY;
188 
189         if (test_bit(KEY_EFLAG_CA, &pkey->key_eflags))
190                 return -ENOKEY;
191 
192         if (test_bit(KEY_EFLAG_KEYCERTSIGN, &pkey->key_eflags))
193                 return -ENOKEY;
194 
195         return restrict_link_by_signature(dest_keyring, type, payload,
196                                           trust_keyring);
197 }
198 
199 static bool match_either_id(const struct asymmetric_key_id **pair,
200                             const struct asymmetric_key_id *single)
201 {
202         return (asymmetric_key_id_same(pair[0], single) ||
203                 asymmetric_key_id_same(pair[1], single));
204 }
205 
206 static int key_or_keyring_common(struct key *dest_keyring,
207                                  const struct key_type *type,
208                                  const union key_payload *payload,
209                                  struct key *trusted, bool check_dest)
210 {
211         const struct public_key_signature *sig;
212         struct key *key = NULL;
213         int ret;
214 
215         pr_devel("==>%s()\n", __func__);
216 
217         if (!dest_keyring)
218                 return -ENOKEY;
219         else if (dest_keyring->type != &key_type_keyring)
220                 return -EOPNOTSUPP;
221 
222         if (!trusted && !check_dest)
223                 return -ENOKEY;
224 
225         if (type != &key_type_asymmetric)
226                 return -EOPNOTSUPP;
227 
228         sig = payload->data[asym_auth];
229         if (!sig)
230                 return -ENOPKG;
231         if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2])
232                 return -ENOKEY;
233 
234         if (trusted) {
235                 if (trusted->type == &key_type_keyring) {
236                         /* See if we have a key that signed this one. */
237                         key = find_asymmetric_key(trusted, sig->auth_ids[0],
238                                                   sig->auth_ids[1],
239                                                   sig->auth_ids[2], false);
240                         if (IS_ERR(key))
241                                 key = NULL;
242                 } else if (trusted->type == &key_type_asymmetric) {
243                         const struct asymmetric_key_id **signer_ids;
244 
245                         signer_ids = (const struct asymmetric_key_id **)
246                                 asymmetric_key_ids(trusted)->id;
247 
248                         /*
249                          * The auth_ids come from the candidate key (the
250                          * one that is being considered for addition to
251                          * dest_keyring) and identify the key that was
252                          * used to sign.
253                          *
254                          * The signer_ids are identifiers for the
255                          * signing key specified for dest_keyring.
256                          *
257                          * The first auth_id is the preferred id, 2nd and
258                          * 3rd are the fallbacks. If exactly one of
259                          * auth_ids[0] and auth_ids[1] is present, it may
260                          * match either signer_ids[0] or signed_ids[1].
261                          * If both are present the first one may match
262                          * either signed_id but the second one must match
263                          * the second signer_id. If neither of them is
264                          * available, auth_ids[2] is matched against
265                          * signer_ids[2] as a fallback.
266                          */
267                         if (!sig->auth_ids[0] && !sig->auth_ids[1]) {
268                                 if (asymmetric_key_id_same(signer_ids[2],
269                                                            sig->auth_ids[2]))
270                                         key = __key_get(trusted);
271 
272                         } else if (!sig->auth_ids[0] || !sig->auth_ids[1]) {
273                                 const struct asymmetric_key_id *auth_id;
274 
275                                 auth_id = sig->auth_ids[0] ?: sig->auth_ids[1];
276                                 if (match_either_id(signer_ids, auth_id))
277                                         key = __key_get(trusted);
278 
279                         } else if (asymmetric_key_id_same(signer_ids[1],
280                                                           sig->auth_ids[1]) &&
281                                    match_either_id(signer_ids,
282                                                    sig->auth_ids[0])) {
283                                 key = __key_get(trusted);
284                         }
285                 } else {
286                         return -EOPNOTSUPP;
287                 }
288         }
289 
290         if (check_dest && !key) {
291                 /* See if the destination has a key that signed this one. */
292                 key = find_asymmetric_key(dest_keyring, sig->auth_ids[0],
293                                           sig->auth_ids[1], sig->auth_ids[2],
294                                           false);
295                 if (IS_ERR(key))
296                         key = NULL;
297         }
298 
299         if (!key)
300                 return -ENOKEY;
301 
302         ret = key_validate(key);
303         if (ret == 0)
304                 ret = verify_signature(key, sig);
305 
306         key_put(key);
307         return ret;
308 }
309 
310 /**
311  * restrict_link_by_key_or_keyring - Restrict additions to a ring of public
312  * keys using the restrict_key information stored in the ring.
313  * @dest_keyring: Keyring being linked to.
314  * @type: The type of key being added.
315  * @payload: The payload of the new key.
316  * @trusted: A key or ring of keys that can be used to vouch for the new cert.
317  *
318  * Check the new certificate only against the key or keys passed in the data
319  * parameter. If one of those is the signing key and validates the new
320  * certificate, then mark the new certificate as being ok to link.
321  *
322  * Returns 0 if the new certificate was accepted, -ENOKEY if we
323  * couldn't find a matching parent certificate in the trusted list,
324  * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
325  * unsupported crypto, or some other error if there is a matching certificate
326  * but the signature check cannot be performed.
327  */
328 int restrict_link_by_key_or_keyring(struct key *dest_keyring,
329                                     const struct key_type *type,
330                                     const union key_payload *payload,
331                                     struct key *trusted)
332 {
333         return key_or_keyring_common(dest_keyring, type, payload, trusted,
334                                      false);
335 }
336 
337 /**
338  * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of
339  * public keys using the restrict_key information stored in the ring.
340  * @dest_keyring: Keyring being linked to.
341  * @type: The type of key being added.
342  * @payload: The payload of the new key.
343  * @trusted: A key or ring of keys that can be used to vouch for the new cert.
344  *
345  * Check the new certificate against the key or keys passed in the data
346  * parameter and against the keys already linked to the destination keyring. If
347  * one of those is the signing key and validates the new certificate, then mark
348  * the new certificate as being ok to link.
349  *
350  * Returns 0 if the new certificate was accepted, -ENOKEY if we
351  * couldn't find a matching parent certificate in the trusted list,
352  * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
353  * unsupported crypto, or some other error if there is a matching certificate
354  * but the signature check cannot be performed.
355  */
356 int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring,
357                                           const struct key_type *type,
358                                           const union key_payload *payload,
359                                           struct key *trusted)
360 {
361         return key_or_keyring_common(dest_keyring, type, payload, trusted,
362                                      true);
363 }
364 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php