1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Asynchronous RAID-6 recovery calculations ASYNC_TX API. 4 * Copyright(c) 2009 Intel Corporation 5 * 6 * based on raid6recov.c: 7 * Copyright 2002 H. Peter Anvin 8 */ 9 #include <linux/kernel.h> 10 #include <linux/interrupt.h> 11 #include <linux/module.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/raid/pq.h> 14 #include <linux/async_tx.h> 15 #include <linux/dmaengine.h> 16 17 static struct dma_async_tx_descriptor * 18 async_sum_product(struct page *dest, unsigned int d_off, 19 struct page **srcs, unsigned int *src_offs, unsigned char *coef, 20 size_t len, struct async_submit_ctl *submit) 21 { 22 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ, 23 &dest, 1, srcs, 2, len); 24 struct dma_device *dma = chan ? chan->device : NULL; 25 struct dmaengine_unmap_data *unmap = NULL; 26 const u8 *amul, *bmul; 27 u8 ax, bx; 28 u8 *a, *b, *c; 29 30 if (dma) 31 unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT); 32 33 if (unmap) { 34 struct device *dev = dma->dev; 35 dma_addr_t pq[2]; 36 struct dma_async_tx_descriptor *tx; 37 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P; 38 39 if (submit->flags & ASYNC_TX_FENCE) 40 dma_flags |= DMA_PREP_FENCE; 41 unmap->addr[0] = dma_map_page(dev, srcs[0], src_offs[0], 42 len, DMA_TO_DEVICE); 43 unmap->addr[1] = dma_map_page(dev, srcs[1], src_offs[1], 44 len, DMA_TO_DEVICE); 45 unmap->to_cnt = 2; 46 47 unmap->addr[2] = dma_map_page(dev, dest, d_off, 48 len, DMA_BIDIRECTIONAL); 49 unmap->bidi_cnt = 1; 50 /* engine only looks at Q, but expects it to follow P */ 51 pq[1] = unmap->addr[2]; 52 53 unmap->len = len; 54 tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef, 55 len, dma_flags); 56 if (tx) { 57 dma_set_unmap(tx, unmap); 58 async_tx_submit(chan, tx, submit); 59 dmaengine_unmap_put(unmap); 60 return tx; 61 } 62 63 /* could not get a descriptor, unmap and fall through to 64 * the synchronous path 65 */ 66 dmaengine_unmap_put(unmap); 67 } 68 69 /* run the operation synchronously */ 70 async_tx_quiesce(&submit->depend_tx); 71 amul = raid6_gfmul[coef[0]]; 72 bmul = raid6_gfmul[coef[1]]; 73 a = page_address(srcs[0]) + src_offs[0]; 74 b = page_address(srcs[1]) + src_offs[1]; 75 c = page_address(dest) + d_off; 76 77 while (len--) { 78 ax = amul[*a++]; 79 bx = bmul[*b++]; 80 *c++ = ax ^ bx; 81 } 82 83 return NULL; 84 } 85 86 static struct dma_async_tx_descriptor * 87 async_mult(struct page *dest, unsigned int d_off, struct page *src, 88 unsigned int s_off, u8 coef, size_t len, 89 struct async_submit_ctl *submit) 90 { 91 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ, 92 &dest, 1, &src, 1, len); 93 struct dma_device *dma = chan ? chan->device : NULL; 94 struct dmaengine_unmap_data *unmap = NULL; 95 const u8 *qmul; /* Q multiplier table */ 96 u8 *d, *s; 97 98 if (dma) 99 unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT); 100 101 if (unmap) { 102 dma_addr_t dma_dest[2]; 103 struct device *dev = dma->dev; 104 struct dma_async_tx_descriptor *tx; 105 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P; 106 107 if (submit->flags & ASYNC_TX_FENCE) 108 dma_flags |= DMA_PREP_FENCE; 109 unmap->addr[0] = dma_map_page(dev, src, s_off, 110 len, DMA_TO_DEVICE); 111 unmap->to_cnt++; 112 unmap->addr[1] = dma_map_page(dev, dest, d_off, 113 len, DMA_BIDIRECTIONAL); 114 dma_dest[1] = unmap->addr[1]; 115 unmap->bidi_cnt++; 116 unmap->len = len; 117 118 /* this looks funny, but the engine looks for Q at 119 * dma_dest[1] and ignores dma_dest[0] as a dest 120 * due to DMA_PREP_PQ_DISABLE_P 121 */ 122 tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr, 123 1, &coef, len, dma_flags); 124 125 if (tx) { 126 dma_set_unmap(tx, unmap); 127 dmaengine_unmap_put(unmap); 128 async_tx_submit(chan, tx, submit); 129 return tx; 130 } 131 132 /* could not get a descriptor, unmap and fall through to 133 * the synchronous path 134 */ 135 dmaengine_unmap_put(unmap); 136 } 137 138 /* no channel available, or failed to allocate a descriptor, so 139 * perform the operation synchronously 140 */ 141 async_tx_quiesce(&submit->depend_tx); 142 qmul = raid6_gfmul[coef]; 143 d = page_address(dest) + d_off; 144 s = page_address(src) + s_off; 145 146 while (len--) 147 *d++ = qmul[*s++]; 148 149 return NULL; 150 } 151 152 static struct dma_async_tx_descriptor * 153 __2data_recov_4(int disks, size_t bytes, int faila, int failb, 154 struct page **blocks, unsigned int *offs, 155 struct async_submit_ctl *submit) 156 { 157 struct dma_async_tx_descriptor *tx = NULL; 158 struct page *p, *q, *a, *b; 159 unsigned int p_off, q_off, a_off, b_off; 160 struct page *srcs[2]; 161 unsigned int src_offs[2]; 162 unsigned char coef[2]; 163 enum async_tx_flags flags = submit->flags; 164 dma_async_tx_callback cb_fn = submit->cb_fn; 165 void *cb_param = submit->cb_param; 166 void *scribble = submit->scribble; 167 168 p = blocks[disks-2]; 169 p_off = offs[disks-2]; 170 q = blocks[disks-1]; 171 q_off = offs[disks-1]; 172 173 a = blocks[faila]; 174 a_off = offs[faila]; 175 b = blocks[failb]; 176 b_off = offs[failb]; 177 178 /* in the 4 disk case P + Pxy == P and Q + Qxy == Q */ 179 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ 180 srcs[0] = p; 181 src_offs[0] = p_off; 182 srcs[1] = q; 183 src_offs[1] = q_off; 184 coef[0] = raid6_gfexi[failb-faila]; 185 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; 186 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); 187 tx = async_sum_product(b, b_off, srcs, src_offs, coef, bytes, submit); 188 189 /* Dy = P+Pxy+Dx */ 190 srcs[0] = p; 191 src_offs[0] = p_off; 192 srcs[1] = b; 193 src_offs[1] = b_off; 194 init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn, 195 cb_param, scribble); 196 tx = async_xor_offs(a, a_off, srcs, src_offs, 2, bytes, submit); 197 198 return tx; 199 200 } 201 202 static struct dma_async_tx_descriptor * 203 __2data_recov_5(int disks, size_t bytes, int faila, int failb, 204 struct page **blocks, unsigned int *offs, 205 struct async_submit_ctl *submit) 206 { 207 struct dma_async_tx_descriptor *tx = NULL; 208 struct page *p, *q, *g, *dp, *dq; 209 unsigned int p_off, q_off, g_off, dp_off, dq_off; 210 struct page *srcs[2]; 211 unsigned int src_offs[2]; 212 unsigned char coef[2]; 213 enum async_tx_flags flags = submit->flags; 214 dma_async_tx_callback cb_fn = submit->cb_fn; 215 void *cb_param = submit->cb_param; 216 void *scribble = submit->scribble; 217 int good_srcs, good, i; 218 219 good_srcs = 0; 220 good = -1; 221 for (i = 0; i < disks-2; i++) { 222 if (blocks[i] == NULL) 223 continue; 224 if (i == faila || i == failb) 225 continue; 226 good = i; 227 good_srcs++; 228 } 229 BUG_ON(good_srcs > 1); 230 231 p = blocks[disks-2]; 232 p_off = offs[disks-2]; 233 q = blocks[disks-1]; 234 q_off = offs[disks-1]; 235 g = blocks[good]; 236 g_off = offs[good]; 237 238 /* Compute syndrome with zero for the missing data pages 239 * Use the dead data pages as temporary storage for delta p and 240 * delta q 241 */ 242 dp = blocks[faila]; 243 dp_off = offs[faila]; 244 dq = blocks[failb]; 245 dq_off = offs[failb]; 246 247 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); 248 tx = async_memcpy(dp, g, dp_off, g_off, bytes, submit); 249 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); 250 tx = async_mult(dq, dq_off, g, g_off, 251 raid6_gfexp[good], bytes, submit); 252 253 /* compute P + Pxy */ 254 srcs[0] = dp; 255 src_offs[0] = dp_off; 256 srcs[1] = p; 257 src_offs[1] = p_off; 258 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 259 NULL, NULL, scribble); 260 tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit); 261 262 /* compute Q + Qxy */ 263 srcs[0] = dq; 264 src_offs[0] = dq_off; 265 srcs[1] = q; 266 src_offs[1] = q_off; 267 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 268 NULL, NULL, scribble); 269 tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit); 270 271 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ 272 srcs[0] = dp; 273 src_offs[0] = dp_off; 274 srcs[1] = dq; 275 src_offs[1] = dq_off; 276 coef[0] = raid6_gfexi[failb-faila]; 277 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; 278 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); 279 tx = async_sum_product(dq, dq_off, srcs, src_offs, coef, bytes, submit); 280 281 /* Dy = P+Pxy+Dx */ 282 srcs[0] = dp; 283 src_offs[0] = dp_off; 284 srcs[1] = dq; 285 src_offs[1] = dq_off; 286 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, 287 cb_param, scribble); 288 tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit); 289 290 return tx; 291 } 292 293 static struct dma_async_tx_descriptor * 294 __2data_recov_n(int disks, size_t bytes, int faila, int failb, 295 struct page **blocks, unsigned int *offs, 296 struct async_submit_ctl *submit) 297 { 298 struct dma_async_tx_descriptor *tx = NULL; 299 struct page *p, *q, *dp, *dq; 300 unsigned int p_off, q_off, dp_off, dq_off; 301 struct page *srcs[2]; 302 unsigned int src_offs[2]; 303 unsigned char coef[2]; 304 enum async_tx_flags flags = submit->flags; 305 dma_async_tx_callback cb_fn = submit->cb_fn; 306 void *cb_param = submit->cb_param; 307 void *scribble = submit->scribble; 308 309 p = blocks[disks-2]; 310 p_off = offs[disks-2]; 311 q = blocks[disks-1]; 312 q_off = offs[disks-1]; 313 314 /* Compute syndrome with zero for the missing data pages 315 * Use the dead data pages as temporary storage for 316 * delta p and delta q 317 */ 318 dp = blocks[faila]; 319 dp_off = offs[faila]; 320 blocks[faila] = NULL; 321 blocks[disks-2] = dp; 322 offs[disks-2] = dp_off; 323 dq = blocks[failb]; 324 dq_off = offs[failb]; 325 blocks[failb] = NULL; 326 blocks[disks-1] = dq; 327 offs[disks-1] = dq_off; 328 329 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); 330 tx = async_gen_syndrome(blocks, offs, disks, bytes, submit); 331 332 /* Restore pointer table */ 333 blocks[faila] = dp; 334 offs[faila] = dp_off; 335 blocks[failb] = dq; 336 offs[failb] = dq_off; 337 blocks[disks-2] = p; 338 offs[disks-2] = p_off; 339 blocks[disks-1] = q; 340 offs[disks-1] = q_off; 341 342 /* compute P + Pxy */ 343 srcs[0] = dp; 344 src_offs[0] = dp_off; 345 srcs[1] = p; 346 src_offs[1] = p_off; 347 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 348 NULL, NULL, scribble); 349 tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit); 350 351 /* compute Q + Qxy */ 352 srcs[0] = dq; 353 src_offs[0] = dq_off; 354 srcs[1] = q; 355 src_offs[1] = q_off; 356 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 357 NULL, NULL, scribble); 358 tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit); 359 360 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ 361 srcs[0] = dp; 362 src_offs[0] = dp_off; 363 srcs[1] = dq; 364 src_offs[1] = dq_off; 365 coef[0] = raid6_gfexi[failb-faila]; 366 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; 367 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); 368 tx = async_sum_product(dq, dq_off, srcs, src_offs, coef, bytes, submit); 369 370 /* Dy = P+Pxy+Dx */ 371 srcs[0] = dp; 372 src_offs[0] = dp_off; 373 srcs[1] = dq; 374 src_offs[1] = dq_off; 375 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, 376 cb_param, scribble); 377 tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit); 378 379 return tx; 380 } 381 382 /** 383 * async_raid6_2data_recov - asynchronously calculate two missing data blocks 384 * @disks: number of disks in the RAID-6 array 385 * @bytes: block size 386 * @faila: first failed drive index 387 * @failb: second failed drive index 388 * @blocks: array of source pointers where the last two entries are p and q 389 * @offs: array of offset for pages in blocks 390 * @submit: submission/completion modifiers 391 */ 392 struct dma_async_tx_descriptor * 393 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb, 394 struct page **blocks, unsigned int *offs, 395 struct async_submit_ctl *submit) 396 { 397 void *scribble = submit->scribble; 398 int non_zero_srcs, i; 399 400 BUG_ON(faila == failb); 401 if (failb < faila) 402 swap(faila, failb); 403 404 pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes); 405 406 /* if a dma resource is not available or a scribble buffer is not 407 * available punt to the synchronous path. In the 'dma not 408 * available' case be sure to use the scribble buffer to 409 * preserve the content of 'blocks' as the caller intended. 410 */ 411 if (!async_dma_find_channel(DMA_PQ) || !scribble) { 412 void **ptrs = scribble ? scribble : (void **) blocks; 413 414 async_tx_quiesce(&submit->depend_tx); 415 for (i = 0; i < disks; i++) 416 if (blocks[i] == NULL) 417 ptrs[i] = (void *) raid6_empty_zero_page; 418 else 419 ptrs[i] = page_address(blocks[i]) + offs[i]; 420 421 raid6_2data_recov(disks, bytes, faila, failb, ptrs); 422 423 async_tx_sync_epilog(submit); 424 425 return NULL; 426 } 427 428 non_zero_srcs = 0; 429 for (i = 0; i < disks-2 && non_zero_srcs < 4; i++) 430 if (blocks[i]) 431 non_zero_srcs++; 432 switch (non_zero_srcs) { 433 case 0: 434 case 1: 435 /* There must be at least 2 sources - the failed devices. */ 436 BUG(); 437 438 case 2: 439 /* dma devices do not uniformly understand a zero source pq 440 * operation (in contrast to the synchronous case), so 441 * explicitly handle the special case of a 4 disk array with 442 * both data disks missing. 443 */ 444 return __2data_recov_4(disks, bytes, faila, failb, 445 blocks, offs, submit); 446 case 3: 447 /* dma devices do not uniformly understand a single 448 * source pq operation (in contrast to the synchronous 449 * case), so explicitly handle the special case of a 5 disk 450 * array with 2 of 3 data disks missing. 451 */ 452 return __2data_recov_5(disks, bytes, faila, failb, 453 blocks, offs, submit); 454 default: 455 return __2data_recov_n(disks, bytes, faila, failb, 456 blocks, offs, submit); 457 } 458 } 459 EXPORT_SYMBOL_GPL(async_raid6_2data_recov); 460 461 /** 462 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block 463 * @disks: number of disks in the RAID-6 array 464 * @bytes: block size 465 * @faila: failed drive index 466 * @blocks: array of source pointers where the last two entries are p and q 467 * @offs: array of offset for pages in blocks 468 * @submit: submission/completion modifiers 469 */ 470 struct dma_async_tx_descriptor * 471 async_raid6_datap_recov(int disks, size_t bytes, int faila, 472 struct page **blocks, unsigned int *offs, 473 struct async_submit_ctl *submit) 474 { 475 struct dma_async_tx_descriptor *tx = NULL; 476 struct page *p, *q, *dq; 477 unsigned int p_off, q_off, dq_off; 478 u8 coef; 479 enum async_tx_flags flags = submit->flags; 480 dma_async_tx_callback cb_fn = submit->cb_fn; 481 void *cb_param = submit->cb_param; 482 void *scribble = submit->scribble; 483 int good_srcs, good, i; 484 struct page *srcs[2]; 485 unsigned int src_offs[2]; 486 487 pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes); 488 489 /* if a dma resource is not available or a scribble buffer is not 490 * available punt to the synchronous path. In the 'dma not 491 * available' case be sure to use the scribble buffer to 492 * preserve the content of 'blocks' as the caller intended. 493 */ 494 if (!async_dma_find_channel(DMA_PQ) || !scribble) { 495 void **ptrs = scribble ? scribble : (void **) blocks; 496 497 async_tx_quiesce(&submit->depend_tx); 498 for (i = 0; i < disks; i++) 499 if (blocks[i] == NULL) 500 ptrs[i] = (void*)raid6_empty_zero_page; 501 else 502 ptrs[i] = page_address(blocks[i]) + offs[i]; 503 504 raid6_datap_recov(disks, bytes, faila, ptrs); 505 506 async_tx_sync_epilog(submit); 507 508 return NULL; 509 } 510 511 good_srcs = 0; 512 good = -1; 513 for (i = 0; i < disks-2; i++) { 514 if (i == faila) 515 continue; 516 if (blocks[i]) { 517 good = i; 518 good_srcs++; 519 if (good_srcs > 1) 520 break; 521 } 522 } 523 BUG_ON(good_srcs == 0); 524 525 p = blocks[disks-2]; 526 p_off = offs[disks-2]; 527 q = blocks[disks-1]; 528 q_off = offs[disks-1]; 529 530 /* Compute syndrome with zero for the missing data page 531 * Use the dead data page as temporary storage for delta q 532 */ 533 dq = blocks[faila]; 534 dq_off = offs[faila]; 535 blocks[faila] = NULL; 536 blocks[disks-1] = dq; 537 offs[disks-1] = dq_off; 538 539 /* in the 4-disk case we only need to perform a single source 540 * multiplication with the one good data block. 541 */ 542 if (good_srcs == 1) { 543 struct page *g = blocks[good]; 544 unsigned int g_off = offs[good]; 545 546 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, 547 scribble); 548 tx = async_memcpy(p, g, p_off, g_off, bytes, submit); 549 550 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, 551 scribble); 552 tx = async_mult(dq, dq_off, g, g_off, 553 raid6_gfexp[good], bytes, submit); 554 } else { 555 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, 556 scribble); 557 tx = async_gen_syndrome(blocks, offs, disks, bytes, submit); 558 } 559 560 /* Restore pointer table */ 561 blocks[faila] = dq; 562 offs[faila] = dq_off; 563 blocks[disks-1] = q; 564 offs[disks-1] = q_off; 565 566 /* calculate g^{-faila} */ 567 coef = raid6_gfinv[raid6_gfexp[faila]]; 568 569 srcs[0] = dq; 570 src_offs[0] = dq_off; 571 srcs[1] = q; 572 src_offs[1] = q_off; 573 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 574 NULL, NULL, scribble); 575 tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit); 576 577 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); 578 tx = async_mult(dq, dq_off, dq, dq_off, coef, bytes, submit); 579 580 srcs[0] = p; 581 src_offs[0] = p_off; 582 srcs[1] = dq; 583 src_offs[1] = dq_off; 584 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, 585 cb_param, scribble); 586 tx = async_xor_offs(p, p_off, srcs, src_offs, 2, bytes, submit); 587 588 return tx; 589 } 590 EXPORT_SYMBOL_GPL(async_raid6_datap_recov); 591 592 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>"); 593 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api"); 594 MODULE_LICENSE("GPL"); 595
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.