~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/ecc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
  3  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
  4  *
  5  * Redistribution and use in source and binary forms, with or without
  6  * modification, are permitted provided that the following conditions are
  7  * met:
  8  *  * Redistributions of source code must retain the above copyright
  9  *   notice, this list of conditions and the following disclaimer.
 10  *  * Redistributions in binary form must reproduce the above copyright
 11  *    notice, this list of conditions and the following disclaimer in the
 12  *    documentation and/or other materials provided with the distribution.
 13  *
 14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 25  */
 26 
 27 #include <crypto/ecc_curve.h>
 28 #include <linux/module.h>
 29 #include <linux/random.h>
 30 #include <linux/slab.h>
 31 #include <linux/swab.h>
 32 #include <linux/fips.h>
 33 #include <crypto/ecdh.h>
 34 #include <crypto/rng.h>
 35 #include <crypto/internal/ecc.h>
 36 #include <asm/unaligned.h>
 37 #include <linux/ratelimit.h>
 38 
 39 #include "ecc_curve_defs.h"
 40 
 41 typedef struct {
 42         u64 m_low;
 43         u64 m_high;
 44 } uint128_t;
 45 
 46 /* Returns curv25519 curve param */
 47 const struct ecc_curve *ecc_get_curve25519(void)
 48 {
 49         return &ecc_25519;
 50 }
 51 EXPORT_SYMBOL(ecc_get_curve25519);
 52 
 53 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
 54 {
 55         switch (curve_id) {
 56         /* In FIPS mode only allow P256 and higher */
 57         case ECC_CURVE_NIST_P192:
 58                 return fips_enabled ? NULL : &nist_p192;
 59         case ECC_CURVE_NIST_P256:
 60                 return &nist_p256;
 61         case ECC_CURVE_NIST_P384:
 62                 return &nist_p384;
 63         case ECC_CURVE_NIST_P521:
 64                 return &nist_p521;
 65         default:
 66                 return NULL;
 67         }
 68 }
 69 EXPORT_SYMBOL(ecc_get_curve);
 70 
 71 void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
 72                            u64 *out, unsigned int ndigits)
 73 {
 74         int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64));
 75         unsigned int o = nbytes & 7;
 76         __be64 msd = 0;
 77 
 78         /* diff > 0: not enough input bytes: set most significant digits to 0 */
 79         if (diff > 0) {
 80                 ndigits -= diff;
 81                 memset(&out[ndigits], 0, diff * sizeof(u64));
 82         }
 83 
 84         if (o) {
 85                 memcpy((u8 *)&msd + sizeof(msd) - o, in, o);
 86                 out[--ndigits] = be64_to_cpu(msd);
 87                 in += o;
 88         }
 89         ecc_swap_digits(in, out, ndigits);
 90 }
 91 EXPORT_SYMBOL(ecc_digits_from_bytes);
 92 
 93 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
 94 {
 95         size_t len = ndigits * sizeof(u64);
 96 
 97         if (!len)
 98                 return NULL;
 99 
100         return kmalloc(len, GFP_KERNEL);
101 }
102 
103 static void ecc_free_digits_space(u64 *space)
104 {
105         kfree_sensitive(space);
106 }
107 
108 struct ecc_point *ecc_alloc_point(unsigned int ndigits)
109 {
110         struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
111 
112         if (!p)
113                 return NULL;
114 
115         p->x = ecc_alloc_digits_space(ndigits);
116         if (!p->x)
117                 goto err_alloc_x;
118 
119         p->y = ecc_alloc_digits_space(ndigits);
120         if (!p->y)
121                 goto err_alloc_y;
122 
123         p->ndigits = ndigits;
124 
125         return p;
126 
127 err_alloc_y:
128         ecc_free_digits_space(p->x);
129 err_alloc_x:
130         kfree(p);
131         return NULL;
132 }
133 EXPORT_SYMBOL(ecc_alloc_point);
134 
135 void ecc_free_point(struct ecc_point *p)
136 {
137         if (!p)
138                 return;
139 
140         kfree_sensitive(p->x);
141         kfree_sensitive(p->y);
142         kfree_sensitive(p);
143 }
144 EXPORT_SYMBOL(ecc_free_point);
145 
146 static void vli_clear(u64 *vli, unsigned int ndigits)
147 {
148         int i;
149 
150         for (i = 0; i < ndigits; i++)
151                 vli[i] = 0;
152 }
153 
154 /* Returns true if vli == 0, false otherwise. */
155 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
156 {
157         int i;
158 
159         for (i = 0; i < ndigits; i++) {
160                 if (vli[i])
161                         return false;
162         }
163 
164         return true;
165 }
166 EXPORT_SYMBOL(vli_is_zero);
167 
168 /* Returns nonzero if bit of vli is set. */
169 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
170 {
171         return (vli[bit / 64] & ((u64)1 << (bit % 64)));
172 }
173 
174 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
175 {
176         return vli_test_bit(vli, ndigits * 64 - 1);
177 }
178 
179 /* Counts the number of 64-bit "digits" in vli. */
180 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
181 {
182         int i;
183 
184         /* Search from the end until we find a non-zero digit.
185          * We do it in reverse because we expect that most digits will
186          * be nonzero.
187          */
188         for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
189 
190         return (i + 1);
191 }
192 
193 /* Counts the number of bits required for vli. */
194 unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
195 {
196         unsigned int i, num_digits;
197         u64 digit;
198 
199         num_digits = vli_num_digits(vli, ndigits);
200         if (num_digits == 0)
201                 return 0;
202 
203         digit = vli[num_digits - 1];
204         for (i = 0; digit; i++)
205                 digit >>= 1;
206 
207         return ((num_digits - 1) * 64 + i);
208 }
209 EXPORT_SYMBOL(vli_num_bits);
210 
211 /* Set dest from unaligned bit string src. */
212 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
213 {
214         int i;
215         const u64 *from = src;
216 
217         for (i = 0; i < ndigits; i++)
218                 dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
219 }
220 EXPORT_SYMBOL(vli_from_be64);
221 
222 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
223 {
224         int i;
225         const u64 *from = src;
226 
227         for (i = 0; i < ndigits; i++)
228                 dest[i] = get_unaligned_le64(&from[i]);
229 }
230 EXPORT_SYMBOL(vli_from_le64);
231 
232 /* Sets dest = src. */
233 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
234 {
235         int i;
236 
237         for (i = 0; i < ndigits; i++)
238                 dest[i] = src[i];
239 }
240 
241 /* Returns sign of left - right. */
242 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
243 {
244         int i;
245 
246         for (i = ndigits - 1; i >= 0; i--) {
247                 if (left[i] > right[i])
248                         return 1;
249                 else if (left[i] < right[i])
250                         return -1;
251         }
252 
253         return 0;
254 }
255 EXPORT_SYMBOL(vli_cmp);
256 
257 /* Computes result = in << c, returning carry. Can modify in place
258  * (if result == in). 0 < shift < 64.
259  */
260 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
261                       unsigned int ndigits)
262 {
263         u64 carry = 0;
264         int i;
265 
266         for (i = 0; i < ndigits; i++) {
267                 u64 temp = in[i];
268 
269                 result[i] = (temp << shift) | carry;
270                 carry = temp >> (64 - shift);
271         }
272 
273         return carry;
274 }
275 
276 /* Computes vli = vli >> 1. */
277 static void vli_rshift1(u64 *vli, unsigned int ndigits)
278 {
279         u64 *end = vli;
280         u64 carry = 0;
281 
282         vli += ndigits;
283 
284         while (vli-- > end) {
285                 u64 temp = *vli;
286                 *vli = (temp >> 1) | carry;
287                 carry = temp << 63;
288         }
289 }
290 
291 /* Computes result = left + right, returning carry. Can modify in place. */
292 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
293                    unsigned int ndigits)
294 {
295         u64 carry = 0;
296         int i;
297 
298         for (i = 0; i < ndigits; i++) {
299                 u64 sum;
300 
301                 sum = left[i] + right[i] + carry;
302                 if (sum != left[i])
303                         carry = (sum < left[i]);
304 
305                 result[i] = sum;
306         }
307 
308         return carry;
309 }
310 
311 /* Computes result = left + right, returning carry. Can modify in place. */
312 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
313                     unsigned int ndigits)
314 {
315         u64 carry = right;
316         int i;
317 
318         for (i = 0; i < ndigits; i++) {
319                 u64 sum;
320 
321                 sum = left[i] + carry;
322                 if (sum != left[i])
323                         carry = (sum < left[i]);
324                 else
325                         carry = !!carry;
326 
327                 result[i] = sum;
328         }
329 
330         return carry;
331 }
332 
333 /* Computes result = left - right, returning borrow. Can modify in place. */
334 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
335                    unsigned int ndigits)
336 {
337         u64 borrow = 0;
338         int i;
339 
340         for (i = 0; i < ndigits; i++) {
341                 u64 diff;
342 
343                 diff = left[i] - right[i] - borrow;
344                 if (diff != left[i])
345                         borrow = (diff > left[i]);
346 
347                 result[i] = diff;
348         }
349 
350         return borrow;
351 }
352 EXPORT_SYMBOL(vli_sub);
353 
354 /* Computes result = left - right, returning borrow. Can modify in place. */
355 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
356              unsigned int ndigits)
357 {
358         u64 borrow = right;
359         int i;
360 
361         for (i = 0; i < ndigits; i++) {
362                 u64 diff;
363 
364                 diff = left[i] - borrow;
365                 if (diff != left[i])
366                         borrow = (diff > left[i]);
367 
368                 result[i] = diff;
369         }
370 
371         return borrow;
372 }
373 
374 static uint128_t mul_64_64(u64 left, u64 right)
375 {
376         uint128_t result;
377 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
378         unsigned __int128 m = (unsigned __int128)left * right;
379 
380         result.m_low  = m;
381         result.m_high = m >> 64;
382 #else
383         u64 a0 = left & 0xffffffffull;
384         u64 a1 = left >> 32;
385         u64 b0 = right & 0xffffffffull;
386         u64 b1 = right >> 32;
387         u64 m0 = a0 * b0;
388         u64 m1 = a0 * b1;
389         u64 m2 = a1 * b0;
390         u64 m3 = a1 * b1;
391 
392         m2 += (m0 >> 32);
393         m2 += m1;
394 
395         /* Overflow */
396         if (m2 < m1)
397                 m3 += 0x100000000ull;
398 
399         result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
400         result.m_high = m3 + (m2 >> 32);
401 #endif
402         return result;
403 }
404 
405 static uint128_t add_128_128(uint128_t a, uint128_t b)
406 {
407         uint128_t result;
408 
409         result.m_low = a.m_low + b.m_low;
410         result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
411 
412         return result;
413 }
414 
415 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
416                      unsigned int ndigits)
417 {
418         uint128_t r01 = { 0, 0 };
419         u64 r2 = 0;
420         unsigned int i, k;
421 
422         /* Compute each digit of result in sequence, maintaining the
423          * carries.
424          */
425         for (k = 0; k < ndigits * 2 - 1; k++) {
426                 unsigned int min;
427 
428                 if (k < ndigits)
429                         min = 0;
430                 else
431                         min = (k + 1) - ndigits;
432 
433                 for (i = min; i <= k && i < ndigits; i++) {
434                         uint128_t product;
435 
436                         product = mul_64_64(left[i], right[k - i]);
437 
438                         r01 = add_128_128(r01, product);
439                         r2 += (r01.m_high < product.m_high);
440                 }
441 
442                 result[k] = r01.m_low;
443                 r01.m_low = r01.m_high;
444                 r01.m_high = r2;
445                 r2 = 0;
446         }
447 
448         result[ndigits * 2 - 1] = r01.m_low;
449 }
450 
451 /* Compute product = left * right, for a small right value. */
452 static void vli_umult(u64 *result, const u64 *left, u32 right,
453                       unsigned int ndigits)
454 {
455         uint128_t r01 = { 0 };
456         unsigned int k;
457 
458         for (k = 0; k < ndigits; k++) {
459                 uint128_t product;
460 
461                 product = mul_64_64(left[k], right);
462                 r01 = add_128_128(r01, product);
463                 /* no carry */
464                 result[k] = r01.m_low;
465                 r01.m_low = r01.m_high;
466                 r01.m_high = 0;
467         }
468         result[k] = r01.m_low;
469         for (++k; k < ndigits * 2; k++)
470                 result[k] = 0;
471 }
472 
473 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
474 {
475         uint128_t r01 = { 0, 0 };
476         u64 r2 = 0;
477         int i, k;
478 
479         for (k = 0; k < ndigits * 2 - 1; k++) {
480                 unsigned int min;
481 
482                 if (k < ndigits)
483                         min = 0;
484                 else
485                         min = (k + 1) - ndigits;
486 
487                 for (i = min; i <= k && i <= k - i; i++) {
488                         uint128_t product;
489 
490                         product = mul_64_64(left[i], left[k - i]);
491 
492                         if (i < k - i) {
493                                 r2 += product.m_high >> 63;
494                                 product.m_high = (product.m_high << 1) |
495                                                  (product.m_low >> 63);
496                                 product.m_low <<= 1;
497                         }
498 
499                         r01 = add_128_128(r01, product);
500                         r2 += (r01.m_high < product.m_high);
501                 }
502 
503                 result[k] = r01.m_low;
504                 r01.m_low = r01.m_high;
505                 r01.m_high = r2;
506                 r2 = 0;
507         }
508 
509         result[ndigits * 2 - 1] = r01.m_low;
510 }
511 
512 /* Computes result = (left + right) % mod.
513  * Assumes that left < mod and right < mod, result != mod.
514  */
515 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
516                         const u64 *mod, unsigned int ndigits)
517 {
518         u64 carry;
519 
520         carry = vli_add(result, left, right, ndigits);
521 
522         /* result > mod (result = mod + remainder), so subtract mod to
523          * get remainder.
524          */
525         if (carry || vli_cmp(result, mod, ndigits) >= 0)
526                 vli_sub(result, result, mod, ndigits);
527 }
528 
529 /* Computes result = (left - right) % mod.
530  * Assumes that left < mod and right < mod, result != mod.
531  */
532 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
533                         const u64 *mod, unsigned int ndigits)
534 {
535         u64 borrow = vli_sub(result, left, right, ndigits);
536 
537         /* In this case, p_result == -diff == (max int) - diff.
538          * Since -x % d == d - x, we can get the correct result from
539          * result + mod (with overflow).
540          */
541         if (borrow)
542                 vli_add(result, result, mod, ndigits);
543 }
544 
545 /*
546  * Computes result = product % mod
547  * for special form moduli: p = 2^k-c, for small c (note the minus sign)
548  *
549  * References:
550  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
551  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
552  * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
553  */
554 static void vli_mmod_special(u64 *result, const u64 *product,
555                               const u64 *mod, unsigned int ndigits)
556 {
557         u64 c = -mod[0];
558         u64 t[ECC_MAX_DIGITS * 2];
559         u64 r[ECC_MAX_DIGITS * 2];
560 
561         vli_set(r, product, ndigits * 2);
562         while (!vli_is_zero(r + ndigits, ndigits)) {
563                 vli_umult(t, r + ndigits, c, ndigits);
564                 vli_clear(r + ndigits, ndigits);
565                 vli_add(r, r, t, ndigits * 2);
566         }
567         vli_set(t, mod, ndigits);
568         vli_clear(t + ndigits, ndigits);
569         while (vli_cmp(r, t, ndigits * 2) >= 0)
570                 vli_sub(r, r, t, ndigits * 2);
571         vli_set(result, r, ndigits);
572 }
573 
574 /*
575  * Computes result = product % mod
576  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
577  * where k-1 does not fit into qword boundary by -1 bit (such as 255).
578 
579  * References (loosely based on):
580  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
581  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
582  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
583  *
584  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
585  * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
586  * Algorithm 10.25 Fast reduction for special form moduli
587  */
588 static void vli_mmod_special2(u64 *result, const u64 *product,
589                                const u64 *mod, unsigned int ndigits)
590 {
591         u64 c2 = mod[0] * 2;
592         u64 q[ECC_MAX_DIGITS];
593         u64 r[ECC_MAX_DIGITS * 2];
594         u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
595         int carry; /* last bit that doesn't fit into q */
596         int i;
597 
598         vli_set(m, mod, ndigits);
599         vli_clear(m + ndigits, ndigits);
600 
601         vli_set(r, product, ndigits);
602         /* q and carry are top bits */
603         vli_set(q, product + ndigits, ndigits);
604         vli_clear(r + ndigits, ndigits);
605         carry = vli_is_negative(r, ndigits);
606         if (carry)
607                 r[ndigits - 1] &= (1ull << 63) - 1;
608         for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
609                 u64 qc[ECC_MAX_DIGITS * 2];
610 
611                 vli_umult(qc, q, c2, ndigits);
612                 if (carry)
613                         vli_uadd(qc, qc, mod[0], ndigits * 2);
614                 vli_set(q, qc + ndigits, ndigits);
615                 vli_clear(qc + ndigits, ndigits);
616                 carry = vli_is_negative(qc, ndigits);
617                 if (carry)
618                         qc[ndigits - 1] &= (1ull << 63) - 1;
619                 if (i & 1)
620                         vli_sub(r, r, qc, ndigits * 2);
621                 else
622                         vli_add(r, r, qc, ndigits * 2);
623         }
624         while (vli_is_negative(r, ndigits * 2))
625                 vli_add(r, r, m, ndigits * 2);
626         while (vli_cmp(r, m, ndigits * 2) >= 0)
627                 vli_sub(r, r, m, ndigits * 2);
628 
629         vli_set(result, r, ndigits);
630 }
631 
632 /*
633  * Computes result = product % mod, where product is 2N words long.
634  * Reference: Ken MacKay's micro-ecc.
635  * Currently only designed to work for curve_p or curve_n.
636  */
637 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
638                           unsigned int ndigits)
639 {
640         u64 mod_m[2 * ECC_MAX_DIGITS];
641         u64 tmp[2 * ECC_MAX_DIGITS];
642         u64 *v[2] = { tmp, product };
643         u64 carry = 0;
644         unsigned int i;
645         /* Shift mod so its highest set bit is at the maximum position. */
646         int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
647         int word_shift = shift / 64;
648         int bit_shift = shift % 64;
649 
650         vli_clear(mod_m, word_shift);
651         if (bit_shift > 0) {
652                 for (i = 0; i < ndigits; ++i) {
653                         mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
654                         carry = mod[i] >> (64 - bit_shift);
655                 }
656         } else
657                 vli_set(mod_m + word_shift, mod, ndigits);
658 
659         for (i = 1; shift >= 0; --shift) {
660                 u64 borrow = 0;
661                 unsigned int j;
662 
663                 for (j = 0; j < ndigits * 2; ++j) {
664                         u64 diff = v[i][j] - mod_m[j] - borrow;
665 
666                         if (diff != v[i][j])
667                                 borrow = (diff > v[i][j]);
668                         v[1 - i][j] = diff;
669                 }
670                 i = !(i ^ borrow); /* Swap the index if there was no borrow */
671                 vli_rshift1(mod_m, ndigits);
672                 mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
673                 vli_rshift1(mod_m + ndigits, ndigits);
674         }
675         vli_set(result, v[i], ndigits);
676 }
677 
678 /* Computes result = product % mod using Barrett's reduction with precomputed
679  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
680  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
681  * boundary.
682  *
683  * Reference:
684  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
685  * 2.4.1 Barrett's algorithm. Algorithm 2.5.
686  */
687 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
688                              unsigned int ndigits)
689 {
690         u64 q[ECC_MAX_DIGITS * 2];
691         u64 r[ECC_MAX_DIGITS * 2];
692         const u64 *mu = mod + ndigits;
693 
694         vli_mult(q, product + ndigits, mu, ndigits);
695         if (mu[ndigits])
696                 vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
697         vli_mult(r, mod, q + ndigits, ndigits);
698         vli_sub(r, product, r, ndigits * 2);
699         while (!vli_is_zero(r + ndigits, ndigits) ||
700                vli_cmp(r, mod, ndigits) != -1) {
701                 u64 carry;
702 
703                 carry = vli_sub(r, r, mod, ndigits);
704                 vli_usub(r + ndigits, r + ndigits, carry, ndigits);
705         }
706         vli_set(result, r, ndigits);
707 }
708 
709 /* Computes p_result = p_product % curve_p.
710  * See algorithm 5 and 6 from
711  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
712  */
713 static void vli_mmod_fast_192(u64 *result, const u64 *product,
714                               const u64 *curve_prime, u64 *tmp)
715 {
716         const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS;
717         int carry;
718 
719         vli_set(result, product, ndigits);
720 
721         vli_set(tmp, &product[3], ndigits);
722         carry = vli_add(result, result, tmp, ndigits);
723 
724         tmp[0] = 0;
725         tmp[1] = product[3];
726         tmp[2] = product[4];
727         carry += vli_add(result, result, tmp, ndigits);
728 
729         tmp[0] = tmp[1] = product[5];
730         tmp[2] = 0;
731         carry += vli_add(result, result, tmp, ndigits);
732 
733         while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
734                 carry -= vli_sub(result, result, curve_prime, ndigits);
735 }
736 
737 /* Computes result = product % curve_prime
738  * from http://www.nsa.gov/ia/_files/nist-routines.pdf
739  */
740 static void vli_mmod_fast_256(u64 *result, const u64 *product,
741                               const u64 *curve_prime, u64 *tmp)
742 {
743         int carry;
744         const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS;
745 
746         /* t */
747         vli_set(result, product, ndigits);
748 
749         /* s1 */
750         tmp[0] = 0;
751         tmp[1] = product[5] & 0xffffffff00000000ull;
752         tmp[2] = product[6];
753         tmp[3] = product[7];
754         carry = vli_lshift(tmp, tmp, 1, ndigits);
755         carry += vli_add(result, result, tmp, ndigits);
756 
757         /* s2 */
758         tmp[1] = product[6] << 32;
759         tmp[2] = (product[6] >> 32) | (product[7] << 32);
760         tmp[3] = product[7] >> 32;
761         carry += vli_lshift(tmp, tmp, 1, ndigits);
762         carry += vli_add(result, result, tmp, ndigits);
763 
764         /* s3 */
765         tmp[0] = product[4];
766         tmp[1] = product[5] & 0xffffffff;
767         tmp[2] = 0;
768         tmp[3] = product[7];
769         carry += vli_add(result, result, tmp, ndigits);
770 
771         /* s4 */
772         tmp[0] = (product[4] >> 32) | (product[5] << 32);
773         tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
774         tmp[2] = product[7];
775         tmp[3] = (product[6] >> 32) | (product[4] << 32);
776         carry += vli_add(result, result, tmp, ndigits);
777 
778         /* d1 */
779         tmp[0] = (product[5] >> 32) | (product[6] << 32);
780         tmp[1] = (product[6] >> 32);
781         tmp[2] = 0;
782         tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
783         carry -= vli_sub(result, result, tmp, ndigits);
784 
785         /* d2 */
786         tmp[0] = product[6];
787         tmp[1] = product[7];
788         tmp[2] = 0;
789         tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
790         carry -= vli_sub(result, result, tmp, ndigits);
791 
792         /* d3 */
793         tmp[0] = (product[6] >> 32) | (product[7] << 32);
794         tmp[1] = (product[7] >> 32) | (product[4] << 32);
795         tmp[2] = (product[4] >> 32) | (product[5] << 32);
796         tmp[3] = (product[6] << 32);
797         carry -= vli_sub(result, result, tmp, ndigits);
798 
799         /* d4 */
800         tmp[0] = product[7];
801         tmp[1] = product[4] & 0xffffffff00000000ull;
802         tmp[2] = product[5];
803         tmp[3] = product[6] & 0xffffffff00000000ull;
804         carry -= vli_sub(result, result, tmp, ndigits);
805 
806         if (carry < 0) {
807                 do {
808                         carry += vli_add(result, result, curve_prime, ndigits);
809                 } while (carry < 0);
810         } else {
811                 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
812                         carry -= vli_sub(result, result, curve_prime, ndigits);
813         }
814 }
815 
816 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
817 #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
818 #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
819 
820 /* Computes result = product % curve_prime
821  * from "Mathematical routines for the NIST prime elliptic curves"
822  */
823 static void vli_mmod_fast_384(u64 *result, const u64 *product,
824                                 const u64 *curve_prime, u64 *tmp)
825 {
826         int carry;
827         const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS;
828 
829         /* t */
830         vli_set(result, product, ndigits);
831 
832         /* s1 */
833         tmp[0] = 0;             // 0 || 0
834         tmp[1] = 0;             // 0 || 0
835         tmp[2] = SL32OR32(product[11], (product[10]>>32));      //a22||a21
836         tmp[3] = product[11]>>32;       // 0 ||a23
837         tmp[4] = 0;             // 0 || 0
838         tmp[5] = 0;             // 0 || 0
839         carry = vli_lshift(tmp, tmp, 1, ndigits);
840         carry += vli_add(result, result, tmp, ndigits);
841 
842         /* s2 */
843         tmp[0] = product[6];    //a13||a12
844         tmp[1] = product[7];    //a15||a14
845         tmp[2] = product[8];    //a17||a16
846         tmp[3] = product[9];    //a19||a18
847         tmp[4] = product[10];   //a21||a20
848         tmp[5] = product[11];   //a23||a22
849         carry += vli_add(result, result, tmp, ndigits);
850 
851         /* s3 */
852         tmp[0] = SL32OR32(product[11], (product[10]>>32));      //a22||a21
853         tmp[1] = SL32OR32(product[6], (product[11]>>32));       //a12||a23
854         tmp[2] = SL32OR32(product[7], (product[6])>>32);        //a14||a13
855         tmp[3] = SL32OR32(product[8], (product[7]>>32));        //a16||a15
856         tmp[4] = SL32OR32(product[9], (product[8]>>32));        //a18||a17
857         tmp[5] = SL32OR32(product[10], (product[9]>>32));       //a20||a19
858         carry += vli_add(result, result, tmp, ndigits);
859 
860         /* s4 */
861         tmp[0] = AND64H(product[11]);   //a23|| 0
862         tmp[1] = (product[10]<<32);     //a20|| 0
863         tmp[2] = product[6];    //a13||a12
864         tmp[3] = product[7];    //a15||a14
865         tmp[4] = product[8];    //a17||a16
866         tmp[5] = product[9];    //a19||a18
867         carry += vli_add(result, result, tmp, ndigits);
868 
869         /* s5 */
870         tmp[0] = 0;             //  0|| 0
871         tmp[1] = 0;             //  0|| 0
872         tmp[2] = product[10];   //a21||a20
873         tmp[3] = product[11];   //a23||a22
874         tmp[4] = 0;             //  0|| 0
875         tmp[5] = 0;             //  0|| 0
876         carry += vli_add(result, result, tmp, ndigits);
877 
878         /* s6 */
879         tmp[0] = AND64L(product[10]);   // 0 ||a20
880         tmp[1] = AND64H(product[10]);   //a21|| 0
881         tmp[2] = product[11];   //a23||a22
882         tmp[3] = 0;             // 0 || 0
883         tmp[4] = 0;             // 0 || 0
884         tmp[5] = 0;             // 0 || 0
885         carry += vli_add(result, result, tmp, ndigits);
886 
887         /* d1 */
888         tmp[0] = SL32OR32(product[6], (product[11]>>32));       //a12||a23
889         tmp[1] = SL32OR32(product[7], (product[6]>>32));        //a14||a13
890         tmp[2] = SL32OR32(product[8], (product[7]>>32));        //a16||a15
891         tmp[3] = SL32OR32(product[9], (product[8]>>32));        //a18||a17
892         tmp[4] = SL32OR32(product[10], (product[9]>>32));       //a20||a19
893         tmp[5] = SL32OR32(product[11], (product[10]>>32));      //a22||a21
894         carry -= vli_sub(result, result, tmp, ndigits);
895 
896         /* d2 */
897         tmp[0] = (product[10]<<32);     //a20|| 0
898         tmp[1] = SL32OR32(product[11], (product[10]>>32));      //a22||a21
899         tmp[2] = (product[11]>>32);     // 0 ||a23
900         tmp[3] = 0;             // 0 || 0
901         tmp[4] = 0;             // 0 || 0
902         tmp[5] = 0;             // 0 || 0
903         carry -= vli_sub(result, result, tmp, ndigits);
904 
905         /* d3 */
906         tmp[0] = 0;             // 0 || 0
907         tmp[1] = AND64H(product[11]);   //a23|| 0
908         tmp[2] = product[11]>>32;       // 0 ||a23
909         tmp[3] = 0;             // 0 || 0
910         tmp[4] = 0;             // 0 || 0
911         tmp[5] = 0;             // 0 || 0
912         carry -= vli_sub(result, result, tmp, ndigits);
913 
914         if (carry < 0) {
915                 do {
916                         carry += vli_add(result, result, curve_prime, ndigits);
917                 } while (carry < 0);
918         } else {
919                 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
920                         carry -= vli_sub(result, result, curve_prime, ndigits);
921         }
922 
923 }
924 
925 #undef SL32OR32
926 #undef AND64H
927 #undef AND64L
928 
929 /*
930  * Computes result = product % curve_prime
931  * from "Recommendations for Discrete Logarithm-Based Cryptography:
932  *       Elliptic Curve Domain Parameters" section G.1.4
933  */
934 static void vli_mmod_fast_521(u64 *result, const u64 *product,
935                               const u64 *curve_prime, u64 *tmp)
936 {
937         const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS;
938         size_t i;
939 
940         /* Initialize result with lowest 521 bits from product */
941         vli_set(result, product, ndigits);
942         result[8] &= 0x1ff;
943 
944         for (i = 0; i < ndigits; i++)
945                 tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55);
946         tmp[8] &= 0x1ff;
947 
948         vli_mod_add(result, result, tmp, curve_prime, ndigits);
949 }
950 
951 /* Computes result = product % curve_prime for different curve_primes.
952  *
953  * Note that curve_primes are distinguished just by heuristic check and
954  * not by complete conformance check.
955  */
956 static bool vli_mmod_fast(u64 *result, u64 *product,
957                           const struct ecc_curve *curve)
958 {
959         u64 tmp[2 * ECC_MAX_DIGITS];
960         const u64 *curve_prime = curve->p;
961         const unsigned int ndigits = curve->g.ndigits;
962 
963         /* All NIST curves have name prefix 'nist_' */
964         if (strncmp(curve->name, "nist_", 5) != 0) {
965                 /* Try to handle Pseudo-Marsenne primes. */
966                 if (curve_prime[ndigits - 1] == -1ull) {
967                         vli_mmod_special(result, product, curve_prime,
968                                          ndigits);
969                         return true;
970                 } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
971                            curve_prime[ndigits - 2] == 0) {
972                         vli_mmod_special2(result, product, curve_prime,
973                                           ndigits);
974                         return true;
975                 }
976                 vli_mmod_barrett(result, product, curve_prime, ndigits);
977                 return true;
978         }
979 
980         switch (ndigits) {
981         case ECC_CURVE_NIST_P192_DIGITS:
982                 vli_mmod_fast_192(result, product, curve_prime, tmp);
983                 break;
984         case ECC_CURVE_NIST_P256_DIGITS:
985                 vli_mmod_fast_256(result, product, curve_prime, tmp);
986                 break;
987         case ECC_CURVE_NIST_P384_DIGITS:
988                 vli_mmod_fast_384(result, product, curve_prime, tmp);
989                 break;
990         case ECC_CURVE_NIST_P521_DIGITS:
991                 vli_mmod_fast_521(result, product, curve_prime, tmp);
992                 break;
993         default:
994                 pr_err_ratelimited("ecc: unsupported digits size!\n");
995                 return false;
996         }
997 
998         return true;
999 }
1000 
1001 /* Computes result = (left * right) % mod.
1002  * Assumes that mod is big enough curve order.
1003  */
1004 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
1005                        const u64 *mod, unsigned int ndigits)
1006 {
1007         u64 product[ECC_MAX_DIGITS * 2];
1008 
1009         vli_mult(product, left, right, ndigits);
1010         vli_mmod_slow(result, product, mod, ndigits);
1011 }
1012 EXPORT_SYMBOL(vli_mod_mult_slow);
1013 
1014 /* Computes result = (left * right) % curve_prime. */
1015 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
1016                               const struct ecc_curve *curve)
1017 {
1018         u64 product[2 * ECC_MAX_DIGITS];
1019 
1020         vli_mult(product, left, right, curve->g.ndigits);
1021         vli_mmod_fast(result, product, curve);
1022 }
1023 
1024 /* Computes result = left^2 % curve_prime. */
1025 static void vli_mod_square_fast(u64 *result, const u64 *left,
1026                                 const struct ecc_curve *curve)
1027 {
1028         u64 product[2 * ECC_MAX_DIGITS];
1029 
1030         vli_square(product, left, curve->g.ndigits);
1031         vli_mmod_fast(result, product, curve);
1032 }
1033 
1034 #define EVEN(vli) (!(vli[0] & 1))
1035 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
1036  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1037  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
1038  */
1039 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
1040                         unsigned int ndigits)
1041 {
1042         u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
1043         u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
1044         u64 carry;
1045         int cmp_result;
1046 
1047         if (vli_is_zero(input, ndigits)) {
1048                 vli_clear(result, ndigits);
1049                 return;
1050         }
1051 
1052         vli_set(a, input, ndigits);
1053         vli_set(b, mod, ndigits);
1054         vli_clear(u, ndigits);
1055         u[0] = 1;
1056         vli_clear(v, ndigits);
1057 
1058         while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1059                 carry = 0;
1060 
1061                 if (EVEN(a)) {
1062                         vli_rshift1(a, ndigits);
1063 
1064                         if (!EVEN(u))
1065                                 carry = vli_add(u, u, mod, ndigits);
1066 
1067                         vli_rshift1(u, ndigits);
1068                         if (carry)
1069                                 u[ndigits - 1] |= 0x8000000000000000ull;
1070                 } else if (EVEN(b)) {
1071                         vli_rshift1(b, ndigits);
1072 
1073                         if (!EVEN(v))
1074                                 carry = vli_add(v, v, mod, ndigits);
1075 
1076                         vli_rshift1(v, ndigits);
1077                         if (carry)
1078                                 v[ndigits - 1] |= 0x8000000000000000ull;
1079                 } else if (cmp_result > 0) {
1080                         vli_sub(a, a, b, ndigits);
1081                         vli_rshift1(a, ndigits);
1082 
1083                         if (vli_cmp(u, v, ndigits) < 0)
1084                                 vli_add(u, u, mod, ndigits);
1085 
1086                         vli_sub(u, u, v, ndigits);
1087                         if (!EVEN(u))
1088                                 carry = vli_add(u, u, mod, ndigits);
1089 
1090                         vli_rshift1(u, ndigits);
1091                         if (carry)
1092                                 u[ndigits - 1] |= 0x8000000000000000ull;
1093                 } else {
1094                         vli_sub(b, b, a, ndigits);
1095                         vli_rshift1(b, ndigits);
1096 
1097                         if (vli_cmp(v, u, ndigits) < 0)
1098                                 vli_add(v, v, mod, ndigits);
1099 
1100                         vli_sub(v, v, u, ndigits);
1101                         if (!EVEN(v))
1102                                 carry = vli_add(v, v, mod, ndigits);
1103 
1104                         vli_rshift1(v, ndigits);
1105                         if (carry)
1106                                 v[ndigits - 1] |= 0x8000000000000000ull;
1107                 }
1108         }
1109 
1110         vli_set(result, u, ndigits);
1111 }
1112 EXPORT_SYMBOL(vli_mod_inv);
1113 
1114 /* ------ Point operations ------ */
1115 
1116 /* Returns true if p_point is the point at infinity, false otherwise. */
1117 bool ecc_point_is_zero(const struct ecc_point *point)
1118 {
1119         return (vli_is_zero(point->x, point->ndigits) &&
1120                 vli_is_zero(point->y, point->ndigits));
1121 }
1122 EXPORT_SYMBOL(ecc_point_is_zero);
1123 
1124 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1125  * coordinates. From https://eprint.iacr.org/2011/338.pdf
1126  */
1127 
1128 /* Double in place */
1129 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1130                                         const struct ecc_curve *curve)
1131 {
1132         /* t1 = x, t2 = y, t3 = z */
1133         u64 t4[ECC_MAX_DIGITS];
1134         u64 t5[ECC_MAX_DIGITS];
1135         const u64 *curve_prime = curve->p;
1136         const unsigned int ndigits = curve->g.ndigits;
1137 
1138         if (vli_is_zero(z1, ndigits))
1139                 return;
1140 
1141         /* t4 = y1^2 */
1142         vli_mod_square_fast(t4, y1, curve);
1143         /* t5 = x1*y1^2 = A */
1144         vli_mod_mult_fast(t5, x1, t4, curve);
1145         /* t4 = y1^4 */
1146         vli_mod_square_fast(t4, t4, curve);
1147         /* t2 = y1*z1 = z3 */
1148         vli_mod_mult_fast(y1, y1, z1, curve);
1149         /* t3 = z1^2 */
1150         vli_mod_square_fast(z1, z1, curve);
1151 
1152         /* t1 = x1 + z1^2 */
1153         vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1154         /* t3 = 2*z1^2 */
1155         vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1156         /* t3 = x1 - z1^2 */
1157         vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1158         /* t1 = x1^2 - z1^4 */
1159         vli_mod_mult_fast(x1, x1, z1, curve);
1160 
1161         /* t3 = 2*(x1^2 - z1^4) */
1162         vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1163         /* t1 = 3*(x1^2 - z1^4) */
1164         vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1165         if (vli_test_bit(x1, 0)) {
1166                 u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1167 
1168                 vli_rshift1(x1, ndigits);
1169                 x1[ndigits - 1] |= carry << 63;
1170         } else {
1171                 vli_rshift1(x1, ndigits);
1172         }
1173         /* t1 = 3/2*(x1^2 - z1^4) = B */
1174 
1175         /* t3 = B^2 */
1176         vli_mod_square_fast(z1, x1, curve);
1177         /* t3 = B^2 - A */
1178         vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1179         /* t3 = B^2 - 2A = x3 */
1180         vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1181         /* t5 = A - x3 */
1182         vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1183         /* t1 = B * (A - x3) */
1184         vli_mod_mult_fast(x1, x1, t5, curve);
1185         /* t4 = B * (A - x3) - y1^4 = y3 */
1186         vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1187 
1188         vli_set(x1, z1, ndigits);
1189         vli_set(z1, y1, ndigits);
1190         vli_set(y1, t4, ndigits);
1191 }
1192 
1193 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1194 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1195 {
1196         u64 t1[ECC_MAX_DIGITS];
1197 
1198         vli_mod_square_fast(t1, z, curve);              /* z^2 */
1199         vli_mod_mult_fast(x1, x1, t1, curve);   /* x1 * z^2 */
1200         vli_mod_mult_fast(t1, t1, z, curve);    /* z^3 */
1201         vli_mod_mult_fast(y1, y1, t1, curve);   /* y1 * z^3 */
1202 }
1203 
1204 /* P = (x1, y1) => 2P, (x2, y2) => P' */
1205 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1206                                 u64 *p_initial_z, const struct ecc_curve *curve)
1207 {
1208         u64 z[ECC_MAX_DIGITS];
1209         const unsigned int ndigits = curve->g.ndigits;
1210 
1211         vli_set(x2, x1, ndigits);
1212         vli_set(y2, y1, ndigits);
1213 
1214         vli_clear(z, ndigits);
1215         z[0] = 1;
1216 
1217         if (p_initial_z)
1218                 vli_set(z, p_initial_z, ndigits);
1219 
1220         apply_z(x1, y1, z, curve);
1221 
1222         ecc_point_double_jacobian(x1, y1, z, curve);
1223 
1224         apply_z(x2, y2, z, curve);
1225 }
1226 
1227 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1228  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1229  * or P => P', Q => P + Q
1230  */
1231 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1232                         const struct ecc_curve *curve)
1233 {
1234         /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1235         u64 t5[ECC_MAX_DIGITS];
1236         const u64 *curve_prime = curve->p;
1237         const unsigned int ndigits = curve->g.ndigits;
1238 
1239         /* t5 = x2 - x1 */
1240         vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1241         /* t5 = (x2 - x1)^2 = A */
1242         vli_mod_square_fast(t5, t5, curve);
1243         /* t1 = x1*A = B */
1244         vli_mod_mult_fast(x1, x1, t5, curve);
1245         /* t3 = x2*A = C */
1246         vli_mod_mult_fast(x2, x2, t5, curve);
1247         /* t4 = y2 - y1 */
1248         vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1249         /* t5 = (y2 - y1)^2 = D */
1250         vli_mod_square_fast(t5, y2, curve);
1251 
1252         /* t5 = D - B */
1253         vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1254         /* t5 = D - B - C = x3 */
1255         vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1256         /* t3 = C - B */
1257         vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1258         /* t2 = y1*(C - B) */
1259         vli_mod_mult_fast(y1, y1, x2, curve);
1260         /* t3 = B - x3 */
1261         vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1262         /* t4 = (y2 - y1)*(B - x3) */
1263         vli_mod_mult_fast(y2, y2, x2, curve);
1264         /* t4 = y3 */
1265         vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1266 
1267         vli_set(x2, t5, ndigits);
1268 }
1269 
1270 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1271  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1272  * or P => P - Q, Q => P + Q
1273  */
1274 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1275                         const struct ecc_curve *curve)
1276 {
1277         /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1278         u64 t5[ECC_MAX_DIGITS];
1279         u64 t6[ECC_MAX_DIGITS];
1280         u64 t7[ECC_MAX_DIGITS];
1281         const u64 *curve_prime = curve->p;
1282         const unsigned int ndigits = curve->g.ndigits;
1283 
1284         /* t5 = x2 - x1 */
1285         vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1286         /* t5 = (x2 - x1)^2 = A */
1287         vli_mod_square_fast(t5, t5, curve);
1288         /* t1 = x1*A = B */
1289         vli_mod_mult_fast(x1, x1, t5, curve);
1290         /* t3 = x2*A = C */
1291         vli_mod_mult_fast(x2, x2, t5, curve);
1292         /* t4 = y2 + y1 */
1293         vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1294         /* t4 = y2 - y1 */
1295         vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1296 
1297         /* t6 = C - B */
1298         vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1299         /* t2 = y1 * (C - B) */
1300         vli_mod_mult_fast(y1, y1, t6, curve);
1301         /* t6 = B + C */
1302         vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1303         /* t3 = (y2 - y1)^2 */
1304         vli_mod_square_fast(x2, y2, curve);
1305         /* t3 = x3 */
1306         vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1307 
1308         /* t7 = B - x3 */
1309         vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1310         /* t4 = (y2 - y1)*(B - x3) */
1311         vli_mod_mult_fast(y2, y2, t7, curve);
1312         /* t4 = y3 */
1313         vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1314 
1315         /* t7 = (y2 + y1)^2 = F */
1316         vli_mod_square_fast(t7, t5, curve);
1317         /* t7 = x3' */
1318         vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1319         /* t6 = x3' - B */
1320         vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1321         /* t6 = (y2 + y1)*(x3' - B) */
1322         vli_mod_mult_fast(t6, t6, t5, curve);
1323         /* t2 = y3' */
1324         vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1325 
1326         vli_set(x1, t7, ndigits);
1327 }
1328 
1329 static void ecc_point_mult(struct ecc_point *result,
1330                            const struct ecc_point *point, const u64 *scalar,
1331                            u64 *initial_z, const struct ecc_curve *curve,
1332                            unsigned int ndigits)
1333 {
1334         /* R0 and R1 */
1335         u64 rx[2][ECC_MAX_DIGITS];
1336         u64 ry[2][ECC_MAX_DIGITS];
1337         u64 z[ECC_MAX_DIGITS];
1338         u64 sk[2][ECC_MAX_DIGITS];
1339         u64 *curve_prime = curve->p;
1340         int i, nb;
1341         int num_bits;
1342         int carry;
1343 
1344         carry = vli_add(sk[0], scalar, curve->n, ndigits);
1345         vli_add(sk[1], sk[0], curve->n, ndigits);
1346         scalar = sk[!carry];
1347         if (curve->nbits == 521)        /* NIST P521 */
1348                 num_bits = curve->nbits + 2;
1349         else
1350                 num_bits = sizeof(u64) * ndigits * 8 + 1;
1351 
1352         vli_set(rx[1], point->x, ndigits);
1353         vli_set(ry[1], point->y, ndigits);
1354 
1355         xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1356 
1357         for (i = num_bits - 2; i > 0; i--) {
1358                 nb = !vli_test_bit(scalar, i);
1359                 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1360                 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1361         }
1362 
1363         nb = !vli_test_bit(scalar, 0);
1364         xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1365 
1366         /* Find final 1/Z value. */
1367         /* X1 - X0 */
1368         vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1369         /* Yb * (X1 - X0) */
1370         vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1371         /* xP * Yb * (X1 - X0) */
1372         vli_mod_mult_fast(z, z, point->x, curve);
1373 
1374         /* 1 / (xP * Yb * (X1 - X0)) */
1375         vli_mod_inv(z, z, curve_prime, point->ndigits);
1376 
1377         /* yP / (xP * Yb * (X1 - X0)) */
1378         vli_mod_mult_fast(z, z, point->y, curve);
1379         /* Xb * yP / (xP * Yb * (X1 - X0)) */
1380         vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1381         /* End 1/Z calculation */
1382 
1383         xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1384 
1385         apply_z(rx[0], ry[0], z, curve);
1386 
1387         vli_set(result->x, rx[0], ndigits);
1388         vli_set(result->y, ry[0], ndigits);
1389 }
1390 
1391 /* Computes R = P + Q mod p */
1392 static void ecc_point_add(const struct ecc_point *result,
1393                    const struct ecc_point *p, const struct ecc_point *q,
1394                    const struct ecc_curve *curve)
1395 {
1396         u64 z[ECC_MAX_DIGITS];
1397         u64 px[ECC_MAX_DIGITS];
1398         u64 py[ECC_MAX_DIGITS];
1399         unsigned int ndigits = curve->g.ndigits;
1400 
1401         vli_set(result->x, q->x, ndigits);
1402         vli_set(result->y, q->y, ndigits);
1403         vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1404         vli_set(px, p->x, ndigits);
1405         vli_set(py, p->y, ndigits);
1406         xycz_add(px, py, result->x, result->y, curve);
1407         vli_mod_inv(z, z, curve->p, ndigits);
1408         apply_z(result->x, result->y, z, curve);
1409 }
1410 
1411 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1412  * Based on: Kenneth MacKay's micro-ecc (2014).
1413  */
1414 void ecc_point_mult_shamir(const struct ecc_point *result,
1415                            const u64 *u1, const struct ecc_point *p,
1416                            const u64 *u2, const struct ecc_point *q,
1417                            const struct ecc_curve *curve)
1418 {
1419         u64 z[ECC_MAX_DIGITS];
1420         u64 sump[2][ECC_MAX_DIGITS];
1421         u64 *rx = result->x;
1422         u64 *ry = result->y;
1423         unsigned int ndigits = curve->g.ndigits;
1424         unsigned int num_bits;
1425         struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1426         const struct ecc_point *points[4];
1427         const struct ecc_point *point;
1428         unsigned int idx;
1429         int i;
1430 
1431         ecc_point_add(&sum, p, q, curve);
1432         points[0] = NULL;
1433         points[1] = p;
1434         points[2] = q;
1435         points[3] = &sum;
1436 
1437         num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1438         i = num_bits - 1;
1439         idx = !!vli_test_bit(u1, i);
1440         idx |= (!!vli_test_bit(u2, i)) << 1;
1441         point = points[idx];
1442 
1443         vli_set(rx, point->x, ndigits);
1444         vli_set(ry, point->y, ndigits);
1445         vli_clear(z + 1, ndigits - 1);
1446         z[0] = 1;
1447 
1448         for (--i; i >= 0; i--) {
1449                 ecc_point_double_jacobian(rx, ry, z, curve);
1450                 idx = !!vli_test_bit(u1, i);
1451                 idx |= (!!vli_test_bit(u2, i)) << 1;
1452                 point = points[idx];
1453                 if (point) {
1454                         u64 tx[ECC_MAX_DIGITS];
1455                         u64 ty[ECC_MAX_DIGITS];
1456                         u64 tz[ECC_MAX_DIGITS];
1457 
1458                         vli_set(tx, point->x, ndigits);
1459                         vli_set(ty, point->y, ndigits);
1460                         apply_z(tx, ty, z, curve);
1461                         vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1462                         xycz_add(tx, ty, rx, ry, curve);
1463                         vli_mod_mult_fast(z, z, tz, curve);
1464                 }
1465         }
1466         vli_mod_inv(z, z, curve->p, ndigits);
1467         apply_z(rx, ry, z, curve);
1468 }
1469 EXPORT_SYMBOL(ecc_point_mult_shamir);
1470 
1471 /*
1472  * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5.
1473  * Whereas A.4.2 results in an integer in the interval [1, n-1], this function
1474  * ensures that the integer is in the range of [2, n-3]. We are slightly
1475  * stricter because of the currently used scalar multiplication algorithm.
1476  */
1477 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1478                               const u64 *private_key, unsigned int ndigits)
1479 {
1480         u64 one[ECC_MAX_DIGITS] = { 1, };
1481         u64 res[ECC_MAX_DIGITS];
1482 
1483         if (!private_key)
1484                 return -EINVAL;
1485 
1486         if (curve->g.ndigits != ndigits)
1487                 return -EINVAL;
1488 
1489         /* Make sure the private key is in the range [2, n-3]. */
1490         if (vli_cmp(one, private_key, ndigits) != -1)
1491                 return -EINVAL;
1492         vli_sub(res, curve->n, one, ndigits);
1493         vli_sub(res, res, one, ndigits);
1494         if (vli_cmp(res, private_key, ndigits) != 1)
1495                 return -EINVAL;
1496 
1497         return 0;
1498 }
1499 
1500 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1501                      const u64 *private_key, unsigned int private_key_len)
1502 {
1503         int nbytes;
1504         const struct ecc_curve *curve = ecc_get_curve(curve_id);
1505 
1506         nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1507 
1508         if (private_key_len != nbytes)
1509                 return -EINVAL;
1510 
1511         return __ecc_is_key_valid(curve, private_key, ndigits);
1512 }
1513 EXPORT_SYMBOL(ecc_is_key_valid);
1514 
1515 /*
1516  * ECC private keys are generated using the method of rejection sampling,
1517  * equivalent to that described in FIPS 186-5, Appendix A.2.2.
1518  *
1519  * This method generates a private key uniformly distributed in the range
1520  * [2, n-3].
1521  */
1522 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits,
1523                     u64 *private_key)
1524 {
1525         const struct ecc_curve *curve = ecc_get_curve(curve_id);
1526         unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1527         unsigned int nbits = vli_num_bits(curve->n, ndigits);
1528         int err;
1529 
1530         /*
1531          * Step 1 & 2: check that N is included in Table 1 of FIPS 186-5,
1532          * section 6.1.1.
1533          */
1534         if (nbits < 224)
1535                 return -EINVAL;
1536 
1537         /*
1538          * FIPS 186-5 recommends that the private key should be obtained from a
1539          * RBG with a security strength equal to or greater than the security
1540          * strength associated with N.
1541          *
1542          * The maximum security strength identified by NIST SP800-57pt1r4 for
1543          * ECC is 256 (N >= 512).
1544          *
1545          * This condition is met by the default RNG because it selects a favored
1546          * DRBG with a security strength of 256.
1547          */
1548         if (crypto_get_default_rng())
1549                 return -EFAULT;
1550 
1551         /* Step 3: obtain N returned_bits from the DRBG. */
1552         err = crypto_rng_get_bytes(crypto_default_rng,
1553                                    (u8 *)private_key, nbytes);
1554         crypto_put_default_rng();
1555         if (err)
1556                 return err;
1557 
1558         /* Step 4: make sure the private key is in the valid range. */
1559         if (__ecc_is_key_valid(curve, private_key, ndigits))
1560                 return -EINVAL;
1561 
1562         return 0;
1563 }
1564 EXPORT_SYMBOL(ecc_gen_privkey);
1565 
1566 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1567                      const u64 *private_key, u64 *public_key)
1568 {
1569         int ret = 0;
1570         struct ecc_point *pk;
1571         const struct ecc_curve *curve = ecc_get_curve(curve_id);
1572 
1573         if (!private_key) {
1574                 ret = -EINVAL;
1575                 goto out;
1576         }
1577 
1578         pk = ecc_alloc_point(ndigits);
1579         if (!pk) {
1580                 ret = -ENOMEM;
1581                 goto out;
1582         }
1583 
1584         ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits);
1585 
1586         /* SP800-56A rev 3 5.6.2.1.3 key check */
1587         if (ecc_is_pubkey_valid_full(curve, pk)) {
1588                 ret = -EAGAIN;
1589                 goto err_free_point;
1590         }
1591 
1592         ecc_swap_digits(pk->x, public_key, ndigits);
1593         ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1594 
1595 err_free_point:
1596         ecc_free_point(pk);
1597 out:
1598         return ret;
1599 }
1600 EXPORT_SYMBOL(ecc_make_pub_key);
1601 
1602 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1603 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1604                                 struct ecc_point *pk)
1605 {
1606         u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1607 
1608         if (WARN_ON(pk->ndigits != curve->g.ndigits))
1609                 return -EINVAL;
1610 
1611         /* Check 1: Verify key is not the zero point. */
1612         if (ecc_point_is_zero(pk))
1613                 return -EINVAL;
1614 
1615         /* Check 2: Verify key is in the range [1, p-1]. */
1616         if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1617                 return -EINVAL;
1618         if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1619                 return -EINVAL;
1620 
1621         /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1622         vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1623         vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1624         vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1625         vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1626         vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1627         vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1628         if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1629                 return -EINVAL;
1630 
1631         return 0;
1632 }
1633 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1634 
1635 /* SP800-56A section 5.6.2.3.3 full verification */
1636 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1637                              struct ecc_point *pk)
1638 {
1639         struct ecc_point *nQ;
1640 
1641         /* Checks 1 through 3 */
1642         int ret = ecc_is_pubkey_valid_partial(curve, pk);
1643 
1644         if (ret)
1645                 return ret;
1646 
1647         /* Check 4: Verify that nQ is the zero point. */
1648         nQ = ecc_alloc_point(pk->ndigits);
1649         if (!nQ)
1650                 return -ENOMEM;
1651 
1652         ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1653         if (!ecc_point_is_zero(nQ))
1654                 ret = -EINVAL;
1655 
1656         ecc_free_point(nQ);
1657 
1658         return ret;
1659 }
1660 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1661 
1662 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1663                               const u64 *private_key, const u64 *public_key,
1664                               u64 *secret)
1665 {
1666         int ret = 0;
1667         struct ecc_point *product, *pk;
1668         u64 rand_z[ECC_MAX_DIGITS];
1669         unsigned int nbytes;
1670         const struct ecc_curve *curve = ecc_get_curve(curve_id);
1671 
1672         if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) {
1673                 ret = -EINVAL;
1674                 goto out;
1675         }
1676 
1677         nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1678 
1679         get_random_bytes(rand_z, nbytes);
1680 
1681         pk = ecc_alloc_point(ndigits);
1682         if (!pk) {
1683                 ret = -ENOMEM;
1684                 goto out;
1685         }
1686 
1687         ecc_swap_digits(public_key, pk->x, ndigits);
1688         ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1689         ret = ecc_is_pubkey_valid_partial(curve, pk);
1690         if (ret)
1691                 goto err_alloc_product;
1692 
1693         product = ecc_alloc_point(ndigits);
1694         if (!product) {
1695                 ret = -ENOMEM;
1696                 goto err_alloc_product;
1697         }
1698 
1699         ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits);
1700 
1701         if (ecc_point_is_zero(product)) {
1702                 ret = -EFAULT;
1703                 goto err_validity;
1704         }
1705 
1706         ecc_swap_digits(product->x, secret, ndigits);
1707 
1708 err_validity:
1709         memzero_explicit(rand_z, sizeof(rand_z));
1710         ecc_free_point(product);
1711 err_alloc_product:
1712         ecc_free_point(pk);
1713 out:
1714         return ret;
1715 }
1716 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1717 
1718 MODULE_DESCRIPTION("core elliptic curve module");
1719 MODULE_LICENSE("Dual BSD/GPL");
1720 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php