1 /* 2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. 3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <crypto/ecc_curve.h> 28 #include <linux/module.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/swab.h> 32 #include <linux/fips.h> 33 #include <crypto/ecdh.h> 34 #include <crypto/rng.h> 35 #include <crypto/internal/ecc.h> 36 #include <asm/unaligned.h> 37 #include <linux/ratelimit.h> 38 39 #include "ecc_curve_defs.h" 40 41 typedef struct { 42 u64 m_low; 43 u64 m_high; 44 } uint128_t; 45 46 /* Returns curv25519 curve param */ 47 const struct ecc_curve *ecc_get_curve25519(void) 48 { 49 return &ecc_25519; 50 } 51 EXPORT_SYMBOL(ecc_get_curve25519); 52 53 const struct ecc_curve *ecc_get_curve(unsigned int curve_id) 54 { 55 switch (curve_id) { 56 /* In FIPS mode only allow P256 and higher */ 57 case ECC_CURVE_NIST_P192: 58 return fips_enabled ? NULL : &nist_p192; 59 case ECC_CURVE_NIST_P256: 60 return &nist_p256; 61 case ECC_CURVE_NIST_P384: 62 return &nist_p384; 63 case ECC_CURVE_NIST_P521: 64 return &nist_p521; 65 default: 66 return NULL; 67 } 68 } 69 EXPORT_SYMBOL(ecc_get_curve); 70 71 void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes, 72 u64 *out, unsigned int ndigits) 73 { 74 int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64)); 75 unsigned int o = nbytes & 7; 76 __be64 msd = 0; 77 78 /* diff > 0: not enough input bytes: set most significant digits to 0 */ 79 if (diff > 0) { 80 ndigits -= diff; 81 memset(&out[ndigits], 0, diff * sizeof(u64)); 82 } 83 84 if (o) { 85 memcpy((u8 *)&msd + sizeof(msd) - o, in, o); 86 out[--ndigits] = be64_to_cpu(msd); 87 in += o; 88 } 89 ecc_swap_digits(in, out, ndigits); 90 } 91 EXPORT_SYMBOL(ecc_digits_from_bytes); 92 93 static u64 *ecc_alloc_digits_space(unsigned int ndigits) 94 { 95 size_t len = ndigits * sizeof(u64); 96 97 if (!len) 98 return NULL; 99 100 return kmalloc(len, GFP_KERNEL); 101 } 102 103 static void ecc_free_digits_space(u64 *space) 104 { 105 kfree_sensitive(space); 106 } 107 108 struct ecc_point *ecc_alloc_point(unsigned int ndigits) 109 { 110 struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); 111 112 if (!p) 113 return NULL; 114 115 p->x = ecc_alloc_digits_space(ndigits); 116 if (!p->x) 117 goto err_alloc_x; 118 119 p->y = ecc_alloc_digits_space(ndigits); 120 if (!p->y) 121 goto err_alloc_y; 122 123 p->ndigits = ndigits; 124 125 return p; 126 127 err_alloc_y: 128 ecc_free_digits_space(p->x); 129 err_alloc_x: 130 kfree(p); 131 return NULL; 132 } 133 EXPORT_SYMBOL(ecc_alloc_point); 134 135 void ecc_free_point(struct ecc_point *p) 136 { 137 if (!p) 138 return; 139 140 kfree_sensitive(p->x); 141 kfree_sensitive(p->y); 142 kfree_sensitive(p); 143 } 144 EXPORT_SYMBOL(ecc_free_point); 145 146 static void vli_clear(u64 *vli, unsigned int ndigits) 147 { 148 int i; 149 150 for (i = 0; i < ndigits; i++) 151 vli[i] = 0; 152 } 153 154 /* Returns true if vli == 0, false otherwise. */ 155 bool vli_is_zero(const u64 *vli, unsigned int ndigits) 156 { 157 int i; 158 159 for (i = 0; i < ndigits; i++) { 160 if (vli[i]) 161 return false; 162 } 163 164 return true; 165 } 166 EXPORT_SYMBOL(vli_is_zero); 167 168 /* Returns nonzero if bit of vli is set. */ 169 static u64 vli_test_bit(const u64 *vli, unsigned int bit) 170 { 171 return (vli[bit / 64] & ((u64)1 << (bit % 64))); 172 } 173 174 static bool vli_is_negative(const u64 *vli, unsigned int ndigits) 175 { 176 return vli_test_bit(vli, ndigits * 64 - 1); 177 } 178 179 /* Counts the number of 64-bit "digits" in vli. */ 180 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) 181 { 182 int i; 183 184 /* Search from the end until we find a non-zero digit. 185 * We do it in reverse because we expect that most digits will 186 * be nonzero. 187 */ 188 for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); 189 190 return (i + 1); 191 } 192 193 /* Counts the number of bits required for vli. */ 194 unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) 195 { 196 unsigned int i, num_digits; 197 u64 digit; 198 199 num_digits = vli_num_digits(vli, ndigits); 200 if (num_digits == 0) 201 return 0; 202 203 digit = vli[num_digits - 1]; 204 for (i = 0; digit; i++) 205 digit >>= 1; 206 207 return ((num_digits - 1) * 64 + i); 208 } 209 EXPORT_SYMBOL(vli_num_bits); 210 211 /* Set dest from unaligned bit string src. */ 212 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) 213 { 214 int i; 215 const u64 *from = src; 216 217 for (i = 0; i < ndigits; i++) 218 dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); 219 } 220 EXPORT_SYMBOL(vli_from_be64); 221 222 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) 223 { 224 int i; 225 const u64 *from = src; 226 227 for (i = 0; i < ndigits; i++) 228 dest[i] = get_unaligned_le64(&from[i]); 229 } 230 EXPORT_SYMBOL(vli_from_le64); 231 232 /* Sets dest = src. */ 233 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) 234 { 235 int i; 236 237 for (i = 0; i < ndigits; i++) 238 dest[i] = src[i]; 239 } 240 241 /* Returns sign of left - right. */ 242 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) 243 { 244 int i; 245 246 for (i = ndigits - 1; i >= 0; i--) { 247 if (left[i] > right[i]) 248 return 1; 249 else if (left[i] < right[i]) 250 return -1; 251 } 252 253 return 0; 254 } 255 EXPORT_SYMBOL(vli_cmp); 256 257 /* Computes result = in << c, returning carry. Can modify in place 258 * (if result == in). 0 < shift < 64. 259 */ 260 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, 261 unsigned int ndigits) 262 { 263 u64 carry = 0; 264 int i; 265 266 for (i = 0; i < ndigits; i++) { 267 u64 temp = in[i]; 268 269 result[i] = (temp << shift) | carry; 270 carry = temp >> (64 - shift); 271 } 272 273 return carry; 274 } 275 276 /* Computes vli = vli >> 1. */ 277 static void vli_rshift1(u64 *vli, unsigned int ndigits) 278 { 279 u64 *end = vli; 280 u64 carry = 0; 281 282 vli += ndigits; 283 284 while (vli-- > end) { 285 u64 temp = *vli; 286 *vli = (temp >> 1) | carry; 287 carry = temp << 63; 288 } 289 } 290 291 /* Computes result = left + right, returning carry. Can modify in place. */ 292 static u64 vli_add(u64 *result, const u64 *left, const u64 *right, 293 unsigned int ndigits) 294 { 295 u64 carry = 0; 296 int i; 297 298 for (i = 0; i < ndigits; i++) { 299 u64 sum; 300 301 sum = left[i] + right[i] + carry; 302 if (sum != left[i]) 303 carry = (sum < left[i]); 304 305 result[i] = sum; 306 } 307 308 return carry; 309 } 310 311 /* Computes result = left + right, returning carry. Can modify in place. */ 312 static u64 vli_uadd(u64 *result, const u64 *left, u64 right, 313 unsigned int ndigits) 314 { 315 u64 carry = right; 316 int i; 317 318 for (i = 0; i < ndigits; i++) { 319 u64 sum; 320 321 sum = left[i] + carry; 322 if (sum != left[i]) 323 carry = (sum < left[i]); 324 else 325 carry = !!carry; 326 327 result[i] = sum; 328 } 329 330 return carry; 331 } 332 333 /* Computes result = left - right, returning borrow. Can modify in place. */ 334 u64 vli_sub(u64 *result, const u64 *left, const u64 *right, 335 unsigned int ndigits) 336 { 337 u64 borrow = 0; 338 int i; 339 340 for (i = 0; i < ndigits; i++) { 341 u64 diff; 342 343 diff = left[i] - right[i] - borrow; 344 if (diff != left[i]) 345 borrow = (diff > left[i]); 346 347 result[i] = diff; 348 } 349 350 return borrow; 351 } 352 EXPORT_SYMBOL(vli_sub); 353 354 /* Computes result = left - right, returning borrow. Can modify in place. */ 355 static u64 vli_usub(u64 *result, const u64 *left, u64 right, 356 unsigned int ndigits) 357 { 358 u64 borrow = right; 359 int i; 360 361 for (i = 0; i < ndigits; i++) { 362 u64 diff; 363 364 diff = left[i] - borrow; 365 if (diff != left[i]) 366 borrow = (diff > left[i]); 367 368 result[i] = diff; 369 } 370 371 return borrow; 372 } 373 374 static uint128_t mul_64_64(u64 left, u64 right) 375 { 376 uint128_t result; 377 #if defined(CONFIG_ARCH_SUPPORTS_INT128) 378 unsigned __int128 m = (unsigned __int128)left * right; 379 380 result.m_low = m; 381 result.m_high = m >> 64; 382 #else 383 u64 a0 = left & 0xffffffffull; 384 u64 a1 = left >> 32; 385 u64 b0 = right & 0xffffffffull; 386 u64 b1 = right >> 32; 387 u64 m0 = a0 * b0; 388 u64 m1 = a0 * b1; 389 u64 m2 = a1 * b0; 390 u64 m3 = a1 * b1; 391 392 m2 += (m0 >> 32); 393 m2 += m1; 394 395 /* Overflow */ 396 if (m2 < m1) 397 m3 += 0x100000000ull; 398 399 result.m_low = (m0 & 0xffffffffull) | (m2 << 32); 400 result.m_high = m3 + (m2 >> 32); 401 #endif 402 return result; 403 } 404 405 static uint128_t add_128_128(uint128_t a, uint128_t b) 406 { 407 uint128_t result; 408 409 result.m_low = a.m_low + b.m_low; 410 result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); 411 412 return result; 413 } 414 415 static void vli_mult(u64 *result, const u64 *left, const u64 *right, 416 unsigned int ndigits) 417 { 418 uint128_t r01 = { 0, 0 }; 419 u64 r2 = 0; 420 unsigned int i, k; 421 422 /* Compute each digit of result in sequence, maintaining the 423 * carries. 424 */ 425 for (k = 0; k < ndigits * 2 - 1; k++) { 426 unsigned int min; 427 428 if (k < ndigits) 429 min = 0; 430 else 431 min = (k + 1) - ndigits; 432 433 for (i = min; i <= k && i < ndigits; i++) { 434 uint128_t product; 435 436 product = mul_64_64(left[i], right[k - i]); 437 438 r01 = add_128_128(r01, product); 439 r2 += (r01.m_high < product.m_high); 440 } 441 442 result[k] = r01.m_low; 443 r01.m_low = r01.m_high; 444 r01.m_high = r2; 445 r2 = 0; 446 } 447 448 result[ndigits * 2 - 1] = r01.m_low; 449 } 450 451 /* Compute product = left * right, for a small right value. */ 452 static void vli_umult(u64 *result, const u64 *left, u32 right, 453 unsigned int ndigits) 454 { 455 uint128_t r01 = { 0 }; 456 unsigned int k; 457 458 for (k = 0; k < ndigits; k++) { 459 uint128_t product; 460 461 product = mul_64_64(left[k], right); 462 r01 = add_128_128(r01, product); 463 /* no carry */ 464 result[k] = r01.m_low; 465 r01.m_low = r01.m_high; 466 r01.m_high = 0; 467 } 468 result[k] = r01.m_low; 469 for (++k; k < ndigits * 2; k++) 470 result[k] = 0; 471 } 472 473 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) 474 { 475 uint128_t r01 = { 0, 0 }; 476 u64 r2 = 0; 477 int i, k; 478 479 for (k = 0; k < ndigits * 2 - 1; k++) { 480 unsigned int min; 481 482 if (k < ndigits) 483 min = 0; 484 else 485 min = (k + 1) - ndigits; 486 487 for (i = min; i <= k && i <= k - i; i++) { 488 uint128_t product; 489 490 product = mul_64_64(left[i], left[k - i]); 491 492 if (i < k - i) { 493 r2 += product.m_high >> 63; 494 product.m_high = (product.m_high << 1) | 495 (product.m_low >> 63); 496 product.m_low <<= 1; 497 } 498 499 r01 = add_128_128(r01, product); 500 r2 += (r01.m_high < product.m_high); 501 } 502 503 result[k] = r01.m_low; 504 r01.m_low = r01.m_high; 505 r01.m_high = r2; 506 r2 = 0; 507 } 508 509 result[ndigits * 2 - 1] = r01.m_low; 510 } 511 512 /* Computes result = (left + right) % mod. 513 * Assumes that left < mod and right < mod, result != mod. 514 */ 515 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, 516 const u64 *mod, unsigned int ndigits) 517 { 518 u64 carry; 519 520 carry = vli_add(result, left, right, ndigits); 521 522 /* result > mod (result = mod + remainder), so subtract mod to 523 * get remainder. 524 */ 525 if (carry || vli_cmp(result, mod, ndigits) >= 0) 526 vli_sub(result, result, mod, ndigits); 527 } 528 529 /* Computes result = (left - right) % mod. 530 * Assumes that left < mod and right < mod, result != mod. 531 */ 532 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, 533 const u64 *mod, unsigned int ndigits) 534 { 535 u64 borrow = vli_sub(result, left, right, ndigits); 536 537 /* In this case, p_result == -diff == (max int) - diff. 538 * Since -x % d == d - x, we can get the correct result from 539 * result + mod (with overflow). 540 */ 541 if (borrow) 542 vli_add(result, result, mod, ndigits); 543 } 544 545 /* 546 * Computes result = product % mod 547 * for special form moduli: p = 2^k-c, for small c (note the minus sign) 548 * 549 * References: 550 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. 551 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form 552 * Algorithm 9.2.13 (Fast mod operation for special-form moduli). 553 */ 554 static void vli_mmod_special(u64 *result, const u64 *product, 555 const u64 *mod, unsigned int ndigits) 556 { 557 u64 c = -mod[0]; 558 u64 t[ECC_MAX_DIGITS * 2]; 559 u64 r[ECC_MAX_DIGITS * 2]; 560 561 vli_set(r, product, ndigits * 2); 562 while (!vli_is_zero(r + ndigits, ndigits)) { 563 vli_umult(t, r + ndigits, c, ndigits); 564 vli_clear(r + ndigits, ndigits); 565 vli_add(r, r, t, ndigits * 2); 566 } 567 vli_set(t, mod, ndigits); 568 vli_clear(t + ndigits, ndigits); 569 while (vli_cmp(r, t, ndigits * 2) >= 0) 570 vli_sub(r, r, t, ndigits * 2); 571 vli_set(result, r, ndigits); 572 } 573 574 /* 575 * Computes result = product % mod 576 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) 577 * where k-1 does not fit into qword boundary by -1 bit (such as 255). 578 579 * References (loosely based on): 580 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. 581 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. 582 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf 583 * 584 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. 585 * Handbook of Elliptic and Hyperelliptic Curve Cryptography. 586 * Algorithm 10.25 Fast reduction for special form moduli 587 */ 588 static void vli_mmod_special2(u64 *result, const u64 *product, 589 const u64 *mod, unsigned int ndigits) 590 { 591 u64 c2 = mod[0] * 2; 592 u64 q[ECC_MAX_DIGITS]; 593 u64 r[ECC_MAX_DIGITS * 2]; 594 u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ 595 int carry; /* last bit that doesn't fit into q */ 596 int i; 597 598 vli_set(m, mod, ndigits); 599 vli_clear(m + ndigits, ndigits); 600 601 vli_set(r, product, ndigits); 602 /* q and carry are top bits */ 603 vli_set(q, product + ndigits, ndigits); 604 vli_clear(r + ndigits, ndigits); 605 carry = vli_is_negative(r, ndigits); 606 if (carry) 607 r[ndigits - 1] &= (1ull << 63) - 1; 608 for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { 609 u64 qc[ECC_MAX_DIGITS * 2]; 610 611 vli_umult(qc, q, c2, ndigits); 612 if (carry) 613 vli_uadd(qc, qc, mod[0], ndigits * 2); 614 vli_set(q, qc + ndigits, ndigits); 615 vli_clear(qc + ndigits, ndigits); 616 carry = vli_is_negative(qc, ndigits); 617 if (carry) 618 qc[ndigits - 1] &= (1ull << 63) - 1; 619 if (i & 1) 620 vli_sub(r, r, qc, ndigits * 2); 621 else 622 vli_add(r, r, qc, ndigits * 2); 623 } 624 while (vli_is_negative(r, ndigits * 2)) 625 vli_add(r, r, m, ndigits * 2); 626 while (vli_cmp(r, m, ndigits * 2) >= 0) 627 vli_sub(r, r, m, ndigits * 2); 628 629 vli_set(result, r, ndigits); 630 } 631 632 /* 633 * Computes result = product % mod, where product is 2N words long. 634 * Reference: Ken MacKay's micro-ecc. 635 * Currently only designed to work for curve_p or curve_n. 636 */ 637 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, 638 unsigned int ndigits) 639 { 640 u64 mod_m[2 * ECC_MAX_DIGITS]; 641 u64 tmp[2 * ECC_MAX_DIGITS]; 642 u64 *v[2] = { tmp, product }; 643 u64 carry = 0; 644 unsigned int i; 645 /* Shift mod so its highest set bit is at the maximum position. */ 646 int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); 647 int word_shift = shift / 64; 648 int bit_shift = shift % 64; 649 650 vli_clear(mod_m, word_shift); 651 if (bit_shift > 0) { 652 for (i = 0; i < ndigits; ++i) { 653 mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; 654 carry = mod[i] >> (64 - bit_shift); 655 } 656 } else 657 vli_set(mod_m + word_shift, mod, ndigits); 658 659 for (i = 1; shift >= 0; --shift) { 660 u64 borrow = 0; 661 unsigned int j; 662 663 for (j = 0; j < ndigits * 2; ++j) { 664 u64 diff = v[i][j] - mod_m[j] - borrow; 665 666 if (diff != v[i][j]) 667 borrow = (diff > v[i][j]); 668 v[1 - i][j] = diff; 669 } 670 i = !(i ^ borrow); /* Swap the index if there was no borrow */ 671 vli_rshift1(mod_m, ndigits); 672 mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); 673 vli_rshift1(mod_m + ndigits, ndigits); 674 } 675 vli_set(result, v[i], ndigits); 676 } 677 678 /* Computes result = product % mod using Barrett's reduction with precomputed 679 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have 680 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits 681 * boundary. 682 * 683 * Reference: 684 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. 685 * 2.4.1 Barrett's algorithm. Algorithm 2.5. 686 */ 687 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, 688 unsigned int ndigits) 689 { 690 u64 q[ECC_MAX_DIGITS * 2]; 691 u64 r[ECC_MAX_DIGITS * 2]; 692 const u64 *mu = mod + ndigits; 693 694 vli_mult(q, product + ndigits, mu, ndigits); 695 if (mu[ndigits]) 696 vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); 697 vli_mult(r, mod, q + ndigits, ndigits); 698 vli_sub(r, product, r, ndigits * 2); 699 while (!vli_is_zero(r + ndigits, ndigits) || 700 vli_cmp(r, mod, ndigits) != -1) { 701 u64 carry; 702 703 carry = vli_sub(r, r, mod, ndigits); 704 vli_usub(r + ndigits, r + ndigits, carry, ndigits); 705 } 706 vli_set(result, r, ndigits); 707 } 708 709 /* Computes p_result = p_product % curve_p. 710 * See algorithm 5 and 6 from 711 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf 712 */ 713 static void vli_mmod_fast_192(u64 *result, const u64 *product, 714 const u64 *curve_prime, u64 *tmp) 715 { 716 const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS; 717 int carry; 718 719 vli_set(result, product, ndigits); 720 721 vli_set(tmp, &product[3], ndigits); 722 carry = vli_add(result, result, tmp, ndigits); 723 724 tmp[0] = 0; 725 tmp[1] = product[3]; 726 tmp[2] = product[4]; 727 carry += vli_add(result, result, tmp, ndigits); 728 729 tmp[0] = tmp[1] = product[5]; 730 tmp[2] = 0; 731 carry += vli_add(result, result, tmp, ndigits); 732 733 while (carry || vli_cmp(curve_prime, result, ndigits) != 1) 734 carry -= vli_sub(result, result, curve_prime, ndigits); 735 } 736 737 /* Computes result = product % curve_prime 738 * from http://www.nsa.gov/ia/_files/nist-routines.pdf 739 */ 740 static void vli_mmod_fast_256(u64 *result, const u64 *product, 741 const u64 *curve_prime, u64 *tmp) 742 { 743 int carry; 744 const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS; 745 746 /* t */ 747 vli_set(result, product, ndigits); 748 749 /* s1 */ 750 tmp[0] = 0; 751 tmp[1] = product[5] & 0xffffffff00000000ull; 752 tmp[2] = product[6]; 753 tmp[3] = product[7]; 754 carry = vli_lshift(tmp, tmp, 1, ndigits); 755 carry += vli_add(result, result, tmp, ndigits); 756 757 /* s2 */ 758 tmp[1] = product[6] << 32; 759 tmp[2] = (product[6] >> 32) | (product[7] << 32); 760 tmp[3] = product[7] >> 32; 761 carry += vli_lshift(tmp, tmp, 1, ndigits); 762 carry += vli_add(result, result, tmp, ndigits); 763 764 /* s3 */ 765 tmp[0] = product[4]; 766 tmp[1] = product[5] & 0xffffffff; 767 tmp[2] = 0; 768 tmp[3] = product[7]; 769 carry += vli_add(result, result, tmp, ndigits); 770 771 /* s4 */ 772 tmp[0] = (product[4] >> 32) | (product[5] << 32); 773 tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); 774 tmp[2] = product[7]; 775 tmp[3] = (product[6] >> 32) | (product[4] << 32); 776 carry += vli_add(result, result, tmp, ndigits); 777 778 /* d1 */ 779 tmp[0] = (product[5] >> 32) | (product[6] << 32); 780 tmp[1] = (product[6] >> 32); 781 tmp[2] = 0; 782 tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); 783 carry -= vli_sub(result, result, tmp, ndigits); 784 785 /* d2 */ 786 tmp[0] = product[6]; 787 tmp[1] = product[7]; 788 tmp[2] = 0; 789 tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); 790 carry -= vli_sub(result, result, tmp, ndigits); 791 792 /* d3 */ 793 tmp[0] = (product[6] >> 32) | (product[7] << 32); 794 tmp[1] = (product[7] >> 32) | (product[4] << 32); 795 tmp[2] = (product[4] >> 32) | (product[5] << 32); 796 tmp[3] = (product[6] << 32); 797 carry -= vli_sub(result, result, tmp, ndigits); 798 799 /* d4 */ 800 tmp[0] = product[7]; 801 tmp[1] = product[4] & 0xffffffff00000000ull; 802 tmp[2] = product[5]; 803 tmp[3] = product[6] & 0xffffffff00000000ull; 804 carry -= vli_sub(result, result, tmp, ndigits); 805 806 if (carry < 0) { 807 do { 808 carry += vli_add(result, result, curve_prime, ndigits); 809 } while (carry < 0); 810 } else { 811 while (carry || vli_cmp(curve_prime, result, ndigits) != 1) 812 carry -= vli_sub(result, result, curve_prime, ndigits); 813 } 814 } 815 816 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32) 817 #define AND64H(x64) (x64 & 0xffFFffFF00000000ull) 818 #define AND64L(x64) (x64 & 0x00000000ffFFffFFull) 819 820 /* Computes result = product % curve_prime 821 * from "Mathematical routines for the NIST prime elliptic curves" 822 */ 823 static void vli_mmod_fast_384(u64 *result, const u64 *product, 824 const u64 *curve_prime, u64 *tmp) 825 { 826 int carry; 827 const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS; 828 829 /* t */ 830 vli_set(result, product, ndigits); 831 832 /* s1 */ 833 tmp[0] = 0; // 0 || 0 834 tmp[1] = 0; // 0 || 0 835 tmp[2] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 836 tmp[3] = product[11]>>32; // 0 ||a23 837 tmp[4] = 0; // 0 || 0 838 tmp[5] = 0; // 0 || 0 839 carry = vli_lshift(tmp, tmp, 1, ndigits); 840 carry += vli_add(result, result, tmp, ndigits); 841 842 /* s2 */ 843 tmp[0] = product[6]; //a13||a12 844 tmp[1] = product[7]; //a15||a14 845 tmp[2] = product[8]; //a17||a16 846 tmp[3] = product[9]; //a19||a18 847 tmp[4] = product[10]; //a21||a20 848 tmp[5] = product[11]; //a23||a22 849 carry += vli_add(result, result, tmp, ndigits); 850 851 /* s3 */ 852 tmp[0] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 853 tmp[1] = SL32OR32(product[6], (product[11]>>32)); //a12||a23 854 tmp[2] = SL32OR32(product[7], (product[6])>>32); //a14||a13 855 tmp[3] = SL32OR32(product[8], (product[7]>>32)); //a16||a15 856 tmp[4] = SL32OR32(product[9], (product[8]>>32)); //a18||a17 857 tmp[5] = SL32OR32(product[10], (product[9]>>32)); //a20||a19 858 carry += vli_add(result, result, tmp, ndigits); 859 860 /* s4 */ 861 tmp[0] = AND64H(product[11]); //a23|| 0 862 tmp[1] = (product[10]<<32); //a20|| 0 863 tmp[2] = product[6]; //a13||a12 864 tmp[3] = product[7]; //a15||a14 865 tmp[4] = product[8]; //a17||a16 866 tmp[5] = product[9]; //a19||a18 867 carry += vli_add(result, result, tmp, ndigits); 868 869 /* s5 */ 870 tmp[0] = 0; // 0|| 0 871 tmp[1] = 0; // 0|| 0 872 tmp[2] = product[10]; //a21||a20 873 tmp[3] = product[11]; //a23||a22 874 tmp[4] = 0; // 0|| 0 875 tmp[5] = 0; // 0|| 0 876 carry += vli_add(result, result, tmp, ndigits); 877 878 /* s6 */ 879 tmp[0] = AND64L(product[10]); // 0 ||a20 880 tmp[1] = AND64H(product[10]); //a21|| 0 881 tmp[2] = product[11]; //a23||a22 882 tmp[3] = 0; // 0 || 0 883 tmp[4] = 0; // 0 || 0 884 tmp[5] = 0; // 0 || 0 885 carry += vli_add(result, result, tmp, ndigits); 886 887 /* d1 */ 888 tmp[0] = SL32OR32(product[6], (product[11]>>32)); //a12||a23 889 tmp[1] = SL32OR32(product[7], (product[6]>>32)); //a14||a13 890 tmp[2] = SL32OR32(product[8], (product[7]>>32)); //a16||a15 891 tmp[3] = SL32OR32(product[9], (product[8]>>32)); //a18||a17 892 tmp[4] = SL32OR32(product[10], (product[9]>>32)); //a20||a19 893 tmp[5] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 894 carry -= vli_sub(result, result, tmp, ndigits); 895 896 /* d2 */ 897 tmp[0] = (product[10]<<32); //a20|| 0 898 tmp[1] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 899 tmp[2] = (product[11]>>32); // 0 ||a23 900 tmp[3] = 0; // 0 || 0 901 tmp[4] = 0; // 0 || 0 902 tmp[5] = 0; // 0 || 0 903 carry -= vli_sub(result, result, tmp, ndigits); 904 905 /* d3 */ 906 tmp[0] = 0; // 0 || 0 907 tmp[1] = AND64H(product[11]); //a23|| 0 908 tmp[2] = product[11]>>32; // 0 ||a23 909 tmp[3] = 0; // 0 || 0 910 tmp[4] = 0; // 0 || 0 911 tmp[5] = 0; // 0 || 0 912 carry -= vli_sub(result, result, tmp, ndigits); 913 914 if (carry < 0) { 915 do { 916 carry += vli_add(result, result, curve_prime, ndigits); 917 } while (carry < 0); 918 } else { 919 while (carry || vli_cmp(curve_prime, result, ndigits) != 1) 920 carry -= vli_sub(result, result, curve_prime, ndigits); 921 } 922 923 } 924 925 #undef SL32OR32 926 #undef AND64H 927 #undef AND64L 928 929 /* 930 * Computes result = product % curve_prime 931 * from "Recommendations for Discrete Logarithm-Based Cryptography: 932 * Elliptic Curve Domain Parameters" section G.1.4 933 */ 934 static void vli_mmod_fast_521(u64 *result, const u64 *product, 935 const u64 *curve_prime, u64 *tmp) 936 { 937 const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS; 938 size_t i; 939 940 /* Initialize result with lowest 521 bits from product */ 941 vli_set(result, product, ndigits); 942 result[8] &= 0x1ff; 943 944 for (i = 0; i < ndigits; i++) 945 tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55); 946 tmp[8] &= 0x1ff; 947 948 vli_mod_add(result, result, tmp, curve_prime, ndigits); 949 } 950 951 /* Computes result = product % curve_prime for different curve_primes. 952 * 953 * Note that curve_primes are distinguished just by heuristic check and 954 * not by complete conformance check. 955 */ 956 static bool vli_mmod_fast(u64 *result, u64 *product, 957 const struct ecc_curve *curve) 958 { 959 u64 tmp[2 * ECC_MAX_DIGITS]; 960 const u64 *curve_prime = curve->p; 961 const unsigned int ndigits = curve->g.ndigits; 962 963 /* All NIST curves have name prefix 'nist_' */ 964 if (strncmp(curve->name, "nist_", 5) != 0) { 965 /* Try to handle Pseudo-Marsenne primes. */ 966 if (curve_prime[ndigits - 1] == -1ull) { 967 vli_mmod_special(result, product, curve_prime, 968 ndigits); 969 return true; 970 } else if (curve_prime[ndigits - 1] == 1ull << 63 && 971 curve_prime[ndigits - 2] == 0) { 972 vli_mmod_special2(result, product, curve_prime, 973 ndigits); 974 return true; 975 } 976 vli_mmod_barrett(result, product, curve_prime, ndigits); 977 return true; 978 } 979 980 switch (ndigits) { 981 case ECC_CURVE_NIST_P192_DIGITS: 982 vli_mmod_fast_192(result, product, curve_prime, tmp); 983 break; 984 case ECC_CURVE_NIST_P256_DIGITS: 985 vli_mmod_fast_256(result, product, curve_prime, tmp); 986 break; 987 case ECC_CURVE_NIST_P384_DIGITS: 988 vli_mmod_fast_384(result, product, curve_prime, tmp); 989 break; 990 case ECC_CURVE_NIST_P521_DIGITS: 991 vli_mmod_fast_521(result, product, curve_prime, tmp); 992 break; 993 default: 994 pr_err_ratelimited("ecc: unsupported digits size!\n"); 995 return false; 996 } 997 998 return true; 999 } 1000 1001 /* Computes result = (left * right) % mod. 1002 * Assumes that mod is big enough curve order. 1003 */ 1004 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, 1005 const u64 *mod, unsigned int ndigits) 1006 { 1007 u64 product[ECC_MAX_DIGITS * 2]; 1008 1009 vli_mult(product, left, right, ndigits); 1010 vli_mmod_slow(result, product, mod, ndigits); 1011 } 1012 EXPORT_SYMBOL(vli_mod_mult_slow); 1013 1014 /* Computes result = (left * right) % curve_prime. */ 1015 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, 1016 const struct ecc_curve *curve) 1017 { 1018 u64 product[2 * ECC_MAX_DIGITS]; 1019 1020 vli_mult(product, left, right, curve->g.ndigits); 1021 vli_mmod_fast(result, product, curve); 1022 } 1023 1024 /* Computes result = left^2 % curve_prime. */ 1025 static void vli_mod_square_fast(u64 *result, const u64 *left, 1026 const struct ecc_curve *curve) 1027 { 1028 u64 product[2 * ECC_MAX_DIGITS]; 1029 1030 vli_square(product, left, curve->g.ndigits); 1031 vli_mmod_fast(result, product, curve); 1032 } 1033 1034 #define EVEN(vli) (!(vli[0] & 1)) 1035 /* Computes result = (1 / p_input) % mod. All VLIs are the same size. 1036 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" 1037 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf 1038 */ 1039 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, 1040 unsigned int ndigits) 1041 { 1042 u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; 1043 u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; 1044 u64 carry; 1045 int cmp_result; 1046 1047 if (vli_is_zero(input, ndigits)) { 1048 vli_clear(result, ndigits); 1049 return; 1050 } 1051 1052 vli_set(a, input, ndigits); 1053 vli_set(b, mod, ndigits); 1054 vli_clear(u, ndigits); 1055 u[0] = 1; 1056 vli_clear(v, ndigits); 1057 1058 while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { 1059 carry = 0; 1060 1061 if (EVEN(a)) { 1062 vli_rshift1(a, ndigits); 1063 1064 if (!EVEN(u)) 1065 carry = vli_add(u, u, mod, ndigits); 1066 1067 vli_rshift1(u, ndigits); 1068 if (carry) 1069 u[ndigits - 1] |= 0x8000000000000000ull; 1070 } else if (EVEN(b)) { 1071 vli_rshift1(b, ndigits); 1072 1073 if (!EVEN(v)) 1074 carry = vli_add(v, v, mod, ndigits); 1075 1076 vli_rshift1(v, ndigits); 1077 if (carry) 1078 v[ndigits - 1] |= 0x8000000000000000ull; 1079 } else if (cmp_result > 0) { 1080 vli_sub(a, a, b, ndigits); 1081 vli_rshift1(a, ndigits); 1082 1083 if (vli_cmp(u, v, ndigits) < 0) 1084 vli_add(u, u, mod, ndigits); 1085 1086 vli_sub(u, u, v, ndigits); 1087 if (!EVEN(u)) 1088 carry = vli_add(u, u, mod, ndigits); 1089 1090 vli_rshift1(u, ndigits); 1091 if (carry) 1092 u[ndigits - 1] |= 0x8000000000000000ull; 1093 } else { 1094 vli_sub(b, b, a, ndigits); 1095 vli_rshift1(b, ndigits); 1096 1097 if (vli_cmp(v, u, ndigits) < 0) 1098 vli_add(v, v, mod, ndigits); 1099 1100 vli_sub(v, v, u, ndigits); 1101 if (!EVEN(v)) 1102 carry = vli_add(v, v, mod, ndigits); 1103 1104 vli_rshift1(v, ndigits); 1105 if (carry) 1106 v[ndigits - 1] |= 0x8000000000000000ull; 1107 } 1108 } 1109 1110 vli_set(result, u, ndigits); 1111 } 1112 EXPORT_SYMBOL(vli_mod_inv); 1113 1114 /* ------ Point operations ------ */ 1115 1116 /* Returns true if p_point is the point at infinity, false otherwise. */ 1117 bool ecc_point_is_zero(const struct ecc_point *point) 1118 { 1119 return (vli_is_zero(point->x, point->ndigits) && 1120 vli_is_zero(point->y, point->ndigits)); 1121 } 1122 EXPORT_SYMBOL(ecc_point_is_zero); 1123 1124 /* Point multiplication algorithm using Montgomery's ladder with co-Z 1125 * coordinates. From https://eprint.iacr.org/2011/338.pdf 1126 */ 1127 1128 /* Double in place */ 1129 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, 1130 const struct ecc_curve *curve) 1131 { 1132 /* t1 = x, t2 = y, t3 = z */ 1133 u64 t4[ECC_MAX_DIGITS]; 1134 u64 t5[ECC_MAX_DIGITS]; 1135 const u64 *curve_prime = curve->p; 1136 const unsigned int ndigits = curve->g.ndigits; 1137 1138 if (vli_is_zero(z1, ndigits)) 1139 return; 1140 1141 /* t4 = y1^2 */ 1142 vli_mod_square_fast(t4, y1, curve); 1143 /* t5 = x1*y1^2 = A */ 1144 vli_mod_mult_fast(t5, x1, t4, curve); 1145 /* t4 = y1^4 */ 1146 vli_mod_square_fast(t4, t4, curve); 1147 /* t2 = y1*z1 = z3 */ 1148 vli_mod_mult_fast(y1, y1, z1, curve); 1149 /* t3 = z1^2 */ 1150 vli_mod_square_fast(z1, z1, curve); 1151 1152 /* t1 = x1 + z1^2 */ 1153 vli_mod_add(x1, x1, z1, curve_prime, ndigits); 1154 /* t3 = 2*z1^2 */ 1155 vli_mod_add(z1, z1, z1, curve_prime, ndigits); 1156 /* t3 = x1 - z1^2 */ 1157 vli_mod_sub(z1, x1, z1, curve_prime, ndigits); 1158 /* t1 = x1^2 - z1^4 */ 1159 vli_mod_mult_fast(x1, x1, z1, curve); 1160 1161 /* t3 = 2*(x1^2 - z1^4) */ 1162 vli_mod_add(z1, x1, x1, curve_prime, ndigits); 1163 /* t1 = 3*(x1^2 - z1^4) */ 1164 vli_mod_add(x1, x1, z1, curve_prime, ndigits); 1165 if (vli_test_bit(x1, 0)) { 1166 u64 carry = vli_add(x1, x1, curve_prime, ndigits); 1167 1168 vli_rshift1(x1, ndigits); 1169 x1[ndigits - 1] |= carry << 63; 1170 } else { 1171 vli_rshift1(x1, ndigits); 1172 } 1173 /* t1 = 3/2*(x1^2 - z1^4) = B */ 1174 1175 /* t3 = B^2 */ 1176 vli_mod_square_fast(z1, x1, curve); 1177 /* t3 = B^2 - A */ 1178 vli_mod_sub(z1, z1, t5, curve_prime, ndigits); 1179 /* t3 = B^2 - 2A = x3 */ 1180 vli_mod_sub(z1, z1, t5, curve_prime, ndigits); 1181 /* t5 = A - x3 */ 1182 vli_mod_sub(t5, t5, z1, curve_prime, ndigits); 1183 /* t1 = B * (A - x3) */ 1184 vli_mod_mult_fast(x1, x1, t5, curve); 1185 /* t4 = B * (A - x3) - y1^4 = y3 */ 1186 vli_mod_sub(t4, x1, t4, curve_prime, ndigits); 1187 1188 vli_set(x1, z1, ndigits); 1189 vli_set(z1, y1, ndigits); 1190 vli_set(y1, t4, ndigits); 1191 } 1192 1193 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ 1194 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve) 1195 { 1196 u64 t1[ECC_MAX_DIGITS]; 1197 1198 vli_mod_square_fast(t1, z, curve); /* z^2 */ 1199 vli_mod_mult_fast(x1, x1, t1, curve); /* x1 * z^2 */ 1200 vli_mod_mult_fast(t1, t1, z, curve); /* z^3 */ 1201 vli_mod_mult_fast(y1, y1, t1, curve); /* y1 * z^3 */ 1202 } 1203 1204 /* P = (x1, y1) => 2P, (x2, y2) => P' */ 1205 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, 1206 u64 *p_initial_z, const struct ecc_curve *curve) 1207 { 1208 u64 z[ECC_MAX_DIGITS]; 1209 const unsigned int ndigits = curve->g.ndigits; 1210 1211 vli_set(x2, x1, ndigits); 1212 vli_set(y2, y1, ndigits); 1213 1214 vli_clear(z, ndigits); 1215 z[0] = 1; 1216 1217 if (p_initial_z) 1218 vli_set(z, p_initial_z, ndigits); 1219 1220 apply_z(x1, y1, z, curve); 1221 1222 ecc_point_double_jacobian(x1, y1, z, curve); 1223 1224 apply_z(x2, y2, z, curve); 1225 } 1226 1227 /* Input P = (x1, y1, Z), Q = (x2, y2, Z) 1228 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) 1229 * or P => P', Q => P + Q 1230 */ 1231 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, 1232 const struct ecc_curve *curve) 1233 { 1234 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ 1235 u64 t5[ECC_MAX_DIGITS]; 1236 const u64 *curve_prime = curve->p; 1237 const unsigned int ndigits = curve->g.ndigits; 1238 1239 /* t5 = x2 - x1 */ 1240 vli_mod_sub(t5, x2, x1, curve_prime, ndigits); 1241 /* t5 = (x2 - x1)^2 = A */ 1242 vli_mod_square_fast(t5, t5, curve); 1243 /* t1 = x1*A = B */ 1244 vli_mod_mult_fast(x1, x1, t5, curve); 1245 /* t3 = x2*A = C */ 1246 vli_mod_mult_fast(x2, x2, t5, curve); 1247 /* t4 = y2 - y1 */ 1248 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1249 /* t5 = (y2 - y1)^2 = D */ 1250 vli_mod_square_fast(t5, y2, curve); 1251 1252 /* t5 = D - B */ 1253 vli_mod_sub(t5, t5, x1, curve_prime, ndigits); 1254 /* t5 = D - B - C = x3 */ 1255 vli_mod_sub(t5, t5, x2, curve_prime, ndigits); 1256 /* t3 = C - B */ 1257 vli_mod_sub(x2, x2, x1, curve_prime, ndigits); 1258 /* t2 = y1*(C - B) */ 1259 vli_mod_mult_fast(y1, y1, x2, curve); 1260 /* t3 = B - x3 */ 1261 vli_mod_sub(x2, x1, t5, curve_prime, ndigits); 1262 /* t4 = (y2 - y1)*(B - x3) */ 1263 vli_mod_mult_fast(y2, y2, x2, curve); 1264 /* t4 = y3 */ 1265 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1266 1267 vli_set(x2, t5, ndigits); 1268 } 1269 1270 /* Input P = (x1, y1, Z), Q = (x2, y2, Z) 1271 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) 1272 * or P => P - Q, Q => P + Q 1273 */ 1274 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, 1275 const struct ecc_curve *curve) 1276 { 1277 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ 1278 u64 t5[ECC_MAX_DIGITS]; 1279 u64 t6[ECC_MAX_DIGITS]; 1280 u64 t7[ECC_MAX_DIGITS]; 1281 const u64 *curve_prime = curve->p; 1282 const unsigned int ndigits = curve->g.ndigits; 1283 1284 /* t5 = x2 - x1 */ 1285 vli_mod_sub(t5, x2, x1, curve_prime, ndigits); 1286 /* t5 = (x2 - x1)^2 = A */ 1287 vli_mod_square_fast(t5, t5, curve); 1288 /* t1 = x1*A = B */ 1289 vli_mod_mult_fast(x1, x1, t5, curve); 1290 /* t3 = x2*A = C */ 1291 vli_mod_mult_fast(x2, x2, t5, curve); 1292 /* t4 = y2 + y1 */ 1293 vli_mod_add(t5, y2, y1, curve_prime, ndigits); 1294 /* t4 = y2 - y1 */ 1295 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1296 1297 /* t6 = C - B */ 1298 vli_mod_sub(t6, x2, x1, curve_prime, ndigits); 1299 /* t2 = y1 * (C - B) */ 1300 vli_mod_mult_fast(y1, y1, t6, curve); 1301 /* t6 = B + C */ 1302 vli_mod_add(t6, x1, x2, curve_prime, ndigits); 1303 /* t3 = (y2 - y1)^2 */ 1304 vli_mod_square_fast(x2, y2, curve); 1305 /* t3 = x3 */ 1306 vli_mod_sub(x2, x2, t6, curve_prime, ndigits); 1307 1308 /* t7 = B - x3 */ 1309 vli_mod_sub(t7, x1, x2, curve_prime, ndigits); 1310 /* t4 = (y2 - y1)*(B - x3) */ 1311 vli_mod_mult_fast(y2, y2, t7, curve); 1312 /* t4 = y3 */ 1313 vli_mod_sub(y2, y2, y1, curve_prime, ndigits); 1314 1315 /* t7 = (y2 + y1)^2 = F */ 1316 vli_mod_square_fast(t7, t5, curve); 1317 /* t7 = x3' */ 1318 vli_mod_sub(t7, t7, t6, curve_prime, ndigits); 1319 /* t6 = x3' - B */ 1320 vli_mod_sub(t6, t7, x1, curve_prime, ndigits); 1321 /* t6 = (y2 + y1)*(x3' - B) */ 1322 vli_mod_mult_fast(t6, t6, t5, curve); 1323 /* t2 = y3' */ 1324 vli_mod_sub(y1, t6, y1, curve_prime, ndigits); 1325 1326 vli_set(x1, t7, ndigits); 1327 } 1328 1329 static void ecc_point_mult(struct ecc_point *result, 1330 const struct ecc_point *point, const u64 *scalar, 1331 u64 *initial_z, const struct ecc_curve *curve, 1332 unsigned int ndigits) 1333 { 1334 /* R0 and R1 */ 1335 u64 rx[2][ECC_MAX_DIGITS]; 1336 u64 ry[2][ECC_MAX_DIGITS]; 1337 u64 z[ECC_MAX_DIGITS]; 1338 u64 sk[2][ECC_MAX_DIGITS]; 1339 u64 *curve_prime = curve->p; 1340 int i, nb; 1341 int num_bits; 1342 int carry; 1343 1344 carry = vli_add(sk[0], scalar, curve->n, ndigits); 1345 vli_add(sk[1], sk[0], curve->n, ndigits); 1346 scalar = sk[!carry]; 1347 if (curve->nbits == 521) /* NIST P521 */ 1348 num_bits = curve->nbits + 2; 1349 else 1350 num_bits = sizeof(u64) * ndigits * 8 + 1; 1351 1352 vli_set(rx[1], point->x, ndigits); 1353 vli_set(ry[1], point->y, ndigits); 1354 1355 xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve); 1356 1357 for (i = num_bits - 2; i > 0; i--) { 1358 nb = !vli_test_bit(scalar, i); 1359 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve); 1360 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve); 1361 } 1362 1363 nb = !vli_test_bit(scalar, 0); 1364 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve); 1365 1366 /* Find final 1/Z value. */ 1367 /* X1 - X0 */ 1368 vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); 1369 /* Yb * (X1 - X0) */ 1370 vli_mod_mult_fast(z, z, ry[1 - nb], curve); 1371 /* xP * Yb * (X1 - X0) */ 1372 vli_mod_mult_fast(z, z, point->x, curve); 1373 1374 /* 1 / (xP * Yb * (X1 - X0)) */ 1375 vli_mod_inv(z, z, curve_prime, point->ndigits); 1376 1377 /* yP / (xP * Yb * (X1 - X0)) */ 1378 vli_mod_mult_fast(z, z, point->y, curve); 1379 /* Xb * yP / (xP * Yb * (X1 - X0)) */ 1380 vli_mod_mult_fast(z, z, rx[1 - nb], curve); 1381 /* End 1/Z calculation */ 1382 1383 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve); 1384 1385 apply_z(rx[0], ry[0], z, curve); 1386 1387 vli_set(result->x, rx[0], ndigits); 1388 vli_set(result->y, ry[0], ndigits); 1389 } 1390 1391 /* Computes R = P + Q mod p */ 1392 static void ecc_point_add(const struct ecc_point *result, 1393 const struct ecc_point *p, const struct ecc_point *q, 1394 const struct ecc_curve *curve) 1395 { 1396 u64 z[ECC_MAX_DIGITS]; 1397 u64 px[ECC_MAX_DIGITS]; 1398 u64 py[ECC_MAX_DIGITS]; 1399 unsigned int ndigits = curve->g.ndigits; 1400 1401 vli_set(result->x, q->x, ndigits); 1402 vli_set(result->y, q->y, ndigits); 1403 vli_mod_sub(z, result->x, p->x, curve->p, ndigits); 1404 vli_set(px, p->x, ndigits); 1405 vli_set(py, p->y, ndigits); 1406 xycz_add(px, py, result->x, result->y, curve); 1407 vli_mod_inv(z, z, curve->p, ndigits); 1408 apply_z(result->x, result->y, z, curve); 1409 } 1410 1411 /* Computes R = u1P + u2Q mod p using Shamir's trick. 1412 * Based on: Kenneth MacKay's micro-ecc (2014). 1413 */ 1414 void ecc_point_mult_shamir(const struct ecc_point *result, 1415 const u64 *u1, const struct ecc_point *p, 1416 const u64 *u2, const struct ecc_point *q, 1417 const struct ecc_curve *curve) 1418 { 1419 u64 z[ECC_MAX_DIGITS]; 1420 u64 sump[2][ECC_MAX_DIGITS]; 1421 u64 *rx = result->x; 1422 u64 *ry = result->y; 1423 unsigned int ndigits = curve->g.ndigits; 1424 unsigned int num_bits; 1425 struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); 1426 const struct ecc_point *points[4]; 1427 const struct ecc_point *point; 1428 unsigned int idx; 1429 int i; 1430 1431 ecc_point_add(&sum, p, q, curve); 1432 points[0] = NULL; 1433 points[1] = p; 1434 points[2] = q; 1435 points[3] = ∑ 1436 1437 num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits)); 1438 i = num_bits - 1; 1439 idx = !!vli_test_bit(u1, i); 1440 idx |= (!!vli_test_bit(u2, i)) << 1; 1441 point = points[idx]; 1442 1443 vli_set(rx, point->x, ndigits); 1444 vli_set(ry, point->y, ndigits); 1445 vli_clear(z + 1, ndigits - 1); 1446 z[0] = 1; 1447 1448 for (--i; i >= 0; i--) { 1449 ecc_point_double_jacobian(rx, ry, z, curve); 1450 idx = !!vli_test_bit(u1, i); 1451 idx |= (!!vli_test_bit(u2, i)) << 1; 1452 point = points[idx]; 1453 if (point) { 1454 u64 tx[ECC_MAX_DIGITS]; 1455 u64 ty[ECC_MAX_DIGITS]; 1456 u64 tz[ECC_MAX_DIGITS]; 1457 1458 vli_set(tx, point->x, ndigits); 1459 vli_set(ty, point->y, ndigits); 1460 apply_z(tx, ty, z, curve); 1461 vli_mod_sub(tz, rx, tx, curve->p, ndigits); 1462 xycz_add(tx, ty, rx, ry, curve); 1463 vli_mod_mult_fast(z, z, tz, curve); 1464 } 1465 } 1466 vli_mod_inv(z, z, curve->p, ndigits); 1467 apply_z(rx, ry, z, curve); 1468 } 1469 EXPORT_SYMBOL(ecc_point_mult_shamir); 1470 1471 /* 1472 * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5. 1473 * Whereas A.4.2 results in an integer in the interval [1, n-1], this function 1474 * ensures that the integer is in the range of [2, n-3]. We are slightly 1475 * stricter because of the currently used scalar multiplication algorithm. 1476 */ 1477 static int __ecc_is_key_valid(const struct ecc_curve *curve, 1478 const u64 *private_key, unsigned int ndigits) 1479 { 1480 u64 one[ECC_MAX_DIGITS] = { 1, }; 1481 u64 res[ECC_MAX_DIGITS]; 1482 1483 if (!private_key) 1484 return -EINVAL; 1485 1486 if (curve->g.ndigits != ndigits) 1487 return -EINVAL; 1488 1489 /* Make sure the private key is in the range [2, n-3]. */ 1490 if (vli_cmp(one, private_key, ndigits) != -1) 1491 return -EINVAL; 1492 vli_sub(res, curve->n, one, ndigits); 1493 vli_sub(res, res, one, ndigits); 1494 if (vli_cmp(res, private_key, ndigits) != 1) 1495 return -EINVAL; 1496 1497 return 0; 1498 } 1499 1500 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, 1501 const u64 *private_key, unsigned int private_key_len) 1502 { 1503 int nbytes; 1504 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1505 1506 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1507 1508 if (private_key_len != nbytes) 1509 return -EINVAL; 1510 1511 return __ecc_is_key_valid(curve, private_key, ndigits); 1512 } 1513 EXPORT_SYMBOL(ecc_is_key_valid); 1514 1515 /* 1516 * ECC private keys are generated using the method of rejection sampling, 1517 * equivalent to that described in FIPS 186-5, Appendix A.2.2. 1518 * 1519 * This method generates a private key uniformly distributed in the range 1520 * [2, n-3]. 1521 */ 1522 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, 1523 u64 *private_key) 1524 { 1525 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1526 unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1527 unsigned int nbits = vli_num_bits(curve->n, ndigits); 1528 int err; 1529 1530 /* 1531 * Step 1 & 2: check that N is included in Table 1 of FIPS 186-5, 1532 * section 6.1.1. 1533 */ 1534 if (nbits < 224) 1535 return -EINVAL; 1536 1537 /* 1538 * FIPS 186-5 recommends that the private key should be obtained from a 1539 * RBG with a security strength equal to or greater than the security 1540 * strength associated with N. 1541 * 1542 * The maximum security strength identified by NIST SP800-57pt1r4 for 1543 * ECC is 256 (N >= 512). 1544 * 1545 * This condition is met by the default RNG because it selects a favored 1546 * DRBG with a security strength of 256. 1547 */ 1548 if (crypto_get_default_rng()) 1549 return -EFAULT; 1550 1551 /* Step 3: obtain N returned_bits from the DRBG. */ 1552 err = crypto_rng_get_bytes(crypto_default_rng, 1553 (u8 *)private_key, nbytes); 1554 crypto_put_default_rng(); 1555 if (err) 1556 return err; 1557 1558 /* Step 4: make sure the private key is in the valid range. */ 1559 if (__ecc_is_key_valid(curve, private_key, ndigits)) 1560 return -EINVAL; 1561 1562 return 0; 1563 } 1564 EXPORT_SYMBOL(ecc_gen_privkey); 1565 1566 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, 1567 const u64 *private_key, u64 *public_key) 1568 { 1569 int ret = 0; 1570 struct ecc_point *pk; 1571 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1572 1573 if (!private_key) { 1574 ret = -EINVAL; 1575 goto out; 1576 } 1577 1578 pk = ecc_alloc_point(ndigits); 1579 if (!pk) { 1580 ret = -ENOMEM; 1581 goto out; 1582 } 1583 1584 ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits); 1585 1586 /* SP800-56A rev 3 5.6.2.1.3 key check */ 1587 if (ecc_is_pubkey_valid_full(curve, pk)) { 1588 ret = -EAGAIN; 1589 goto err_free_point; 1590 } 1591 1592 ecc_swap_digits(pk->x, public_key, ndigits); 1593 ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); 1594 1595 err_free_point: 1596 ecc_free_point(pk); 1597 out: 1598 return ret; 1599 } 1600 EXPORT_SYMBOL(ecc_make_pub_key); 1601 1602 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ 1603 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, 1604 struct ecc_point *pk) 1605 { 1606 u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; 1607 1608 if (WARN_ON(pk->ndigits != curve->g.ndigits)) 1609 return -EINVAL; 1610 1611 /* Check 1: Verify key is not the zero point. */ 1612 if (ecc_point_is_zero(pk)) 1613 return -EINVAL; 1614 1615 /* Check 2: Verify key is in the range [1, p-1]. */ 1616 if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) 1617 return -EINVAL; 1618 if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) 1619 return -EINVAL; 1620 1621 /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ 1622 vli_mod_square_fast(yy, pk->y, curve); /* y^2 */ 1623 vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */ 1624 vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */ 1625 vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */ 1626 vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ 1627 vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ 1628 if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ 1629 return -EINVAL; 1630 1631 return 0; 1632 } 1633 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); 1634 1635 /* SP800-56A section 5.6.2.3.3 full verification */ 1636 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, 1637 struct ecc_point *pk) 1638 { 1639 struct ecc_point *nQ; 1640 1641 /* Checks 1 through 3 */ 1642 int ret = ecc_is_pubkey_valid_partial(curve, pk); 1643 1644 if (ret) 1645 return ret; 1646 1647 /* Check 4: Verify that nQ is the zero point. */ 1648 nQ = ecc_alloc_point(pk->ndigits); 1649 if (!nQ) 1650 return -ENOMEM; 1651 1652 ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits); 1653 if (!ecc_point_is_zero(nQ)) 1654 ret = -EINVAL; 1655 1656 ecc_free_point(nQ); 1657 1658 return ret; 1659 } 1660 EXPORT_SYMBOL(ecc_is_pubkey_valid_full); 1661 1662 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, 1663 const u64 *private_key, const u64 *public_key, 1664 u64 *secret) 1665 { 1666 int ret = 0; 1667 struct ecc_point *product, *pk; 1668 u64 rand_z[ECC_MAX_DIGITS]; 1669 unsigned int nbytes; 1670 const struct ecc_curve *curve = ecc_get_curve(curve_id); 1671 1672 if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) { 1673 ret = -EINVAL; 1674 goto out; 1675 } 1676 1677 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; 1678 1679 get_random_bytes(rand_z, nbytes); 1680 1681 pk = ecc_alloc_point(ndigits); 1682 if (!pk) { 1683 ret = -ENOMEM; 1684 goto out; 1685 } 1686 1687 ecc_swap_digits(public_key, pk->x, ndigits); 1688 ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); 1689 ret = ecc_is_pubkey_valid_partial(curve, pk); 1690 if (ret) 1691 goto err_alloc_product; 1692 1693 product = ecc_alloc_point(ndigits); 1694 if (!product) { 1695 ret = -ENOMEM; 1696 goto err_alloc_product; 1697 } 1698 1699 ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits); 1700 1701 if (ecc_point_is_zero(product)) { 1702 ret = -EFAULT; 1703 goto err_validity; 1704 } 1705 1706 ecc_swap_digits(product->x, secret, ndigits); 1707 1708 err_validity: 1709 memzero_explicit(rand_z, sizeof(rand_z)); 1710 ecc_free_point(product); 1711 err_alloc_product: 1712 ecc_free_point(pk); 1713 out: 1714 return ret; 1715 } 1716 EXPORT_SYMBOL(crypto_ecdh_shared_secret); 1717 1718 MODULE_DESCRIPTION("core elliptic curve module"); 1719 MODULE_LICENSE("Dual BSD/GPL"); 1720
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.