~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/jitterentropy-kcapi.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Non-physical true random number generator based on timing jitter --
  3  * Linux Kernel Crypto API specific code
  4  *
  5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
  6  *
  7  * Redistribution and use in source and binary forms, with or without
  8  * modification, are permitted provided that the following conditions
  9  * are met:
 10  * 1. Redistributions of source code must retain the above copyright
 11  *    notice, and the entire permission notice in its entirety,
 12  *    including the disclaimer of warranties.
 13  * 2. Redistributions in binary form must reproduce the above copyright
 14  *    notice, this list of conditions and the following disclaimer in the
 15  *    documentation and/or other materials provided with the distribution.
 16  * 3. The name of the author may not be used to endorse or promote
 17  *    products derived from this software without specific prior
 18  *    written permission.
 19  *
 20  * ALTERNATIVELY, this product may be distributed under the terms of
 21  * the GNU General Public License, in which case the provisions of the GPL2 are
 22  * required INSTEAD OF the above restrictions.  (This clause is
 23  * necessary due to a potential bad interaction between the GPL and
 24  * the restrictions contained in a BSD-style copyright.)
 25  *
 26  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 27  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 28  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 29  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 30  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 32  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 33  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 35  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 36  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 37  * DAMAGE.
 38  */
 39 
 40 #include <crypto/hash.h>
 41 #include <crypto/sha3.h>
 42 #include <linux/fips.h>
 43 #include <linux/kernel.h>
 44 #include <linux/module.h>
 45 #include <linux/slab.h>
 46 #include <linux/time.h>
 47 #include <crypto/internal/rng.h>
 48 
 49 #include "jitterentropy.h"
 50 
 51 #define JENT_CONDITIONING_HASH  "sha3-256-generic"
 52 
 53 /***************************************************************************
 54  * Helper function
 55  ***************************************************************************/
 56 
 57 void *jent_kvzalloc(unsigned int len)
 58 {
 59         return kvzalloc(len, GFP_KERNEL);
 60 }
 61 
 62 void jent_kvzfree(void *ptr, unsigned int len)
 63 {
 64         kvfree_sensitive(ptr, len);
 65 }
 66 
 67 void *jent_zalloc(unsigned int len)
 68 {
 69         return kzalloc(len, GFP_KERNEL);
 70 }
 71 
 72 void jent_zfree(void *ptr)
 73 {
 74         kfree_sensitive(ptr);
 75 }
 76 
 77 /*
 78  * Obtain a high-resolution time stamp value. The time stamp is used to measure
 79  * the execution time of a given code path and its variations. Hence, the time
 80  * stamp must have a sufficiently high resolution.
 81  *
 82  * Note, if the function returns zero because a given architecture does not
 83  * implement a high-resolution time stamp, the RNG code's runtime test
 84  * will detect it and will not produce output.
 85  */
 86 void jent_get_nstime(__u64 *out)
 87 {
 88         __u64 tmp = 0;
 89 
 90         tmp = random_get_entropy();
 91 
 92         /*
 93          * If random_get_entropy does not return a value, i.e. it is not
 94          * implemented for a given architecture, use a clock source.
 95          * hoping that there are timers we can work with.
 96          */
 97         if (tmp == 0)
 98                 tmp = ktime_get_ns();
 99 
100         *out = tmp;
101         jent_raw_hires_entropy_store(tmp);
102 }
103 
104 int jent_hash_time(void *hash_state, __u64 time, u8 *addtl,
105                    unsigned int addtl_len, __u64 hash_loop_cnt,
106                    unsigned int stuck)
107 {
108         struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state;
109         SHASH_DESC_ON_STACK(desc, hash_state_desc->tfm);
110         u8 intermediary[SHA3_256_DIGEST_SIZE];
111         __u64 j = 0;
112         int ret;
113 
114         desc->tfm = hash_state_desc->tfm;
115 
116         if (sizeof(intermediary) != crypto_shash_digestsize(desc->tfm)) {
117                 pr_warn_ratelimited("Unexpected digest size\n");
118                 return -EINVAL;
119         }
120 
121         /*
122          * This loop fills a buffer which is injected into the entropy pool.
123          * The main reason for this loop is to execute something over which we
124          * can perform a timing measurement. The injection of the resulting
125          * data into the pool is performed to ensure the result is used and
126          * the compiler cannot optimize the loop away in case the result is not
127          * used at all. Yet that data is considered "additional information"
128          * considering the terminology from SP800-90A without any entropy.
129          *
130          * Note, it does not matter which or how much data you inject, we are
131          * interested in one Keccack1600 compression operation performed with
132          * the crypto_shash_final.
133          */
134         for (j = 0; j < hash_loop_cnt; j++) {
135                 ret = crypto_shash_init(desc) ?:
136                       crypto_shash_update(desc, intermediary,
137                                           sizeof(intermediary)) ?:
138                       crypto_shash_finup(desc, addtl, addtl_len, intermediary);
139                 if (ret)
140                         goto err;
141         }
142 
143         /*
144          * Inject the data from the previous loop into the pool. This data is
145          * not considered to contain any entropy, but it stirs the pool a bit.
146          */
147         ret = crypto_shash_update(desc, intermediary, sizeof(intermediary));
148         if (ret)
149                 goto err;
150 
151         /*
152          * Insert the time stamp into the hash context representing the pool.
153          *
154          * If the time stamp is stuck, do not finally insert the value into the
155          * entropy pool. Although this operation should not do any harm even
156          * when the time stamp has no entropy, SP800-90B requires that any
157          * conditioning operation to have an identical amount of input data
158          * according to section 3.1.5.
159          */
160         if (!stuck) {
161                 ret = crypto_shash_update(hash_state_desc, (u8 *)&time,
162                                           sizeof(__u64));
163         }
164 
165 err:
166         shash_desc_zero(desc);
167         memzero_explicit(intermediary, sizeof(intermediary));
168 
169         return ret;
170 }
171 
172 int jent_read_random_block(void *hash_state, char *dst, unsigned int dst_len)
173 {
174         struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state;
175         u8 jent_block[SHA3_256_DIGEST_SIZE];
176         /* Obtain data from entropy pool and re-initialize it */
177         int ret = crypto_shash_final(hash_state_desc, jent_block) ?:
178                   crypto_shash_init(hash_state_desc) ?:
179                   crypto_shash_update(hash_state_desc, jent_block,
180                                       sizeof(jent_block));
181 
182         if (!ret && dst_len)
183                 memcpy(dst, jent_block, dst_len);
184 
185         memzero_explicit(jent_block, sizeof(jent_block));
186         return ret;
187 }
188 
189 /***************************************************************************
190  * Kernel crypto API interface
191  ***************************************************************************/
192 
193 struct jitterentropy {
194         spinlock_t jent_lock;
195         struct rand_data *entropy_collector;
196         struct crypto_shash *tfm;
197         struct shash_desc *sdesc;
198 };
199 
200 static void jent_kcapi_cleanup(struct crypto_tfm *tfm)
201 {
202         struct jitterentropy *rng = crypto_tfm_ctx(tfm);
203 
204         spin_lock(&rng->jent_lock);
205 
206         if (rng->sdesc) {
207                 shash_desc_zero(rng->sdesc);
208                 kfree(rng->sdesc);
209         }
210         rng->sdesc = NULL;
211 
212         if (rng->tfm)
213                 crypto_free_shash(rng->tfm);
214         rng->tfm = NULL;
215 
216         if (rng->entropy_collector)
217                 jent_entropy_collector_free(rng->entropy_collector);
218         rng->entropy_collector = NULL;
219         spin_unlock(&rng->jent_lock);
220 }
221 
222 static int jent_kcapi_init(struct crypto_tfm *tfm)
223 {
224         struct jitterentropy *rng = crypto_tfm_ctx(tfm);
225         struct crypto_shash *hash;
226         struct shash_desc *sdesc;
227         int size, ret = 0;
228 
229         spin_lock_init(&rng->jent_lock);
230 
231         /*
232          * Use SHA3-256 as conditioner. We allocate only the generic
233          * implementation as we are not interested in high-performance. The
234          * execution time of the SHA3 operation is measured and adds to the
235          * Jitter RNG's unpredictable behavior. If we have a slower hash
236          * implementation, the execution timing variations are larger. When
237          * using a fast implementation, we would need to call it more often
238          * as its variations are lower.
239          */
240         hash = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0);
241         if (IS_ERR(hash)) {
242                 pr_err("Cannot allocate conditioning digest\n");
243                 return PTR_ERR(hash);
244         }
245         rng->tfm = hash;
246 
247         size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
248         sdesc = kmalloc(size, GFP_KERNEL);
249         if (!sdesc) {
250                 ret = -ENOMEM;
251                 goto err;
252         }
253 
254         sdesc->tfm = hash;
255         crypto_shash_init(sdesc);
256         rng->sdesc = sdesc;
257 
258         rng->entropy_collector =
259                 jent_entropy_collector_alloc(CONFIG_CRYPTO_JITTERENTROPY_OSR, 0,
260                                              sdesc);
261         if (!rng->entropy_collector) {
262                 ret = -ENOMEM;
263                 goto err;
264         }
265 
266         spin_lock_init(&rng->jent_lock);
267         return 0;
268 
269 err:
270         jent_kcapi_cleanup(tfm);
271         return ret;
272 }
273 
274 static int jent_kcapi_random(struct crypto_rng *tfm,
275                              const u8 *src, unsigned int slen,
276                              u8 *rdata, unsigned int dlen)
277 {
278         struct jitterentropy *rng = crypto_rng_ctx(tfm);
279         int ret = 0;
280 
281         spin_lock(&rng->jent_lock);
282 
283         ret = jent_read_entropy(rng->entropy_collector, rdata, dlen);
284 
285         if (ret == -3) {
286                 /* Handle permanent health test error */
287                 /*
288                  * If the kernel was booted with fips=1, it implies that
289                  * the entire kernel acts as a FIPS 140 module. In this case
290                  * an SP800-90B permanent health test error is treated as
291                  * a FIPS module error.
292                  */
293                 if (fips_enabled)
294                         panic("Jitter RNG permanent health test failure\n");
295 
296                 pr_err("Jitter RNG permanent health test failure\n");
297                 ret = -EFAULT;
298         } else if (ret == -2) {
299                 /* Handle intermittent health test error */
300                 pr_warn_ratelimited("Reset Jitter RNG due to intermittent health test failure\n");
301                 ret = -EAGAIN;
302         } else if (ret == -1) {
303                 /* Handle other errors */
304                 ret = -EINVAL;
305         }
306 
307         spin_unlock(&rng->jent_lock);
308 
309         return ret;
310 }
311 
312 static int jent_kcapi_reset(struct crypto_rng *tfm,
313                             const u8 *seed, unsigned int slen)
314 {
315         return 0;
316 }
317 
318 static struct rng_alg jent_alg = {
319         .generate               = jent_kcapi_random,
320         .seed                   = jent_kcapi_reset,
321         .seedsize               = 0,
322         .base                   = {
323                 .cra_name               = "jitterentropy_rng",
324                 .cra_driver_name        = "jitterentropy_rng",
325                 .cra_priority           = 100,
326                 .cra_ctxsize            = sizeof(struct jitterentropy),
327                 .cra_module             = THIS_MODULE,
328                 .cra_init               = jent_kcapi_init,
329                 .cra_exit               = jent_kcapi_cleanup,
330         }
331 };
332 
333 static int __init jent_mod_init(void)
334 {
335         SHASH_DESC_ON_STACK(desc, tfm);
336         struct crypto_shash *tfm;
337         int ret = 0;
338 
339         jent_testing_init();
340 
341         tfm = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0);
342         if (IS_ERR(tfm)) {
343                 jent_testing_exit();
344                 return PTR_ERR(tfm);
345         }
346 
347         desc->tfm = tfm;
348         crypto_shash_init(desc);
349         ret = jent_entropy_init(CONFIG_CRYPTO_JITTERENTROPY_OSR, 0, desc, NULL);
350         shash_desc_zero(desc);
351         crypto_free_shash(tfm);
352         if (ret) {
353                 /* Handle permanent health test error */
354                 if (fips_enabled)
355                         panic("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
356 
357                 jent_testing_exit();
358                 pr_info("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
359                 return -EFAULT;
360         }
361         return crypto_register_rng(&jent_alg);
362 }
363 
364 static void __exit jent_mod_exit(void)
365 {
366         jent_testing_exit();
367         crypto_unregister_rng(&jent_alg);
368 }
369 
370 module_init(jent_mod_init);
371 module_exit(jent_mod_exit);
372 
373 MODULE_LICENSE("Dual BSD/GPL");
374 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
375 MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter");
376 MODULE_ALIAS_CRYPTO("jitterentropy_rng");
377 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php