~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/jitterentropy.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Non-physical true random number generator based on timing jitter --
  3  * Jitter RNG standalone code.
  4  *
  5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
  6  *
  7  * Design
  8  * ======
  9  *
 10  * See https://www.chronox.de/jent.html
 11  *
 12  * License
 13  * =======
 14  *
 15  * Redistribution and use in source and binary forms, with or without
 16  * modification, are permitted provided that the following conditions
 17  * are met:
 18  * 1. Redistributions of source code must retain the above copyright
 19  *    notice, and the entire permission notice in its entirety,
 20  *    including the disclaimer of warranties.
 21  * 2. Redistributions in binary form must reproduce the above copyright
 22  *    notice, this list of conditions and the following disclaimer in the
 23  *    documentation and/or other materials provided with the distribution.
 24  * 3. The name of the author may not be used to endorse or promote
 25  *    products derived from this software without specific prior
 26  *    written permission.
 27  *
 28  * ALTERNATIVELY, this product may be distributed under the terms of
 29  * the GNU General Public License, in which case the provisions of the GPL2 are
 30  * required INSTEAD OF the above restrictions.  (This clause is
 31  * necessary due to a potential bad interaction between the GPL and
 32  * the restrictions contained in a BSD-style copyright.)
 33  *
 34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 45  * DAMAGE.
 46  */
 47 
 48 /*
 49  * This Jitterentropy RNG is based on the jitterentropy library
 50  * version 3.4.0 provided at https://www.chronox.de/jent.html
 51  */
 52 
 53 #ifdef __OPTIMIZE__
 54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
 55 #endif
 56 
 57 typedef unsigned long long      __u64;
 58 typedef long long               __s64;
 59 typedef unsigned int            __u32;
 60 typedef unsigned char           u8;
 61 #define NULL    ((void *) 0)
 62 
 63 /* The entropy pool */
 64 struct rand_data {
 65         /* SHA3-256 is used as conditioner */
 66 #define DATA_SIZE_BITS 256
 67         /* all data values that are vital to maintain the security
 68          * of the RNG are marked as SENSITIVE. A user must not
 69          * access that information while the RNG executes its loops to
 70          * calculate the next random value. */
 71         void *hash_state;               /* SENSITIVE hash state entropy pool */
 72         __u64 prev_time;                /* SENSITIVE Previous time stamp */
 73         __u64 last_delta;               /* SENSITIVE stuck test */
 74         __s64 last_delta2;              /* SENSITIVE stuck test */
 75 
 76         unsigned int flags;             /* Flags used to initialize */
 77         unsigned int osr;               /* Oversample rate */
 78 #define JENT_MEMORY_ACCESSLOOPS 128
 79 #define JENT_MEMORY_SIZE                                                \
 80         (CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS *                    \
 81          CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE)
 82         unsigned char *mem;     /* Memory access location with size of
 83                                  * memblocks * memblocksize */
 84         unsigned int memlocation; /* Pointer to byte in *mem */
 85         unsigned int memblocks; /* Number of memory blocks in *mem */
 86         unsigned int memblocksize; /* Size of one memory block in bytes */
 87         unsigned int memaccessloops; /* Number of memory accesses per random
 88                                       * bit generation */
 89 
 90         /* Repetition Count Test */
 91         unsigned int rct_count;                 /* Number of stuck values */
 92 
 93         /* Adaptive Proportion Test cutoff values */
 94         unsigned int apt_cutoff; /* Intermittent health test failure */
 95         unsigned int apt_cutoff_permanent; /* Permanent health test failure */
 96 #define JENT_APT_WINDOW_SIZE    512     /* Data window size */
 97         /* LSB of time stamp to process */
 98 #define JENT_APT_LSB            16
 99 #define JENT_APT_WORD_MASK      (JENT_APT_LSB - 1)
100         unsigned int apt_observations;  /* Number of collected observations */
101         unsigned int apt_count;         /* APT counter */
102         unsigned int apt_base;          /* APT base reference */
103         unsigned int health_failure;    /* Record health failure */
104 
105         unsigned int apt_base_set:1;    /* APT base reference set? */
106 };
107 
108 /* Flags that can be used to initialize the RNG */
109 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
110                                            * entropy, saves MEMORY_SIZE RAM for
111                                            * entropy collector */
112 
113 /* -- error codes for init function -- */
114 #define JENT_ENOTIME            1 /* Timer service not available */
115 #define JENT_ECOARSETIME        2 /* Timer too coarse for RNG */
116 #define JENT_ENOMONOTONIC       3 /* Timer is not monotonic increasing */
117 #define JENT_EVARVAR            5 /* Timer does not produce variations of
118                                    * variations (2nd derivation of time is
119                                    * zero). */
120 #define JENT_ESTUCK             8 /* Too many stuck results during init. */
121 #define JENT_EHEALTH            9 /* Health test failed during initialization */
122 #define JENT_ERCT              10 /* RCT failed during initialization */
123 #define JENT_EHASH             11 /* Hash self test failed */
124 #define JENT_EMEM              12 /* Can't allocate memory for initialization */
125 
126 #define JENT_RCT_FAILURE        1 /* Failure in RCT health test. */
127 #define JENT_APT_FAILURE        2 /* Failure in APT health test. */
128 #define JENT_PERMANENT_FAILURE_SHIFT    16
129 #define JENT_PERMANENT_FAILURE(x)       (x << JENT_PERMANENT_FAILURE_SHIFT)
130 #define JENT_RCT_FAILURE_PERMANENT      JENT_PERMANENT_FAILURE(JENT_RCT_FAILURE)
131 #define JENT_APT_FAILURE_PERMANENT      JENT_PERMANENT_FAILURE(JENT_APT_FAILURE)
132 
133 /*
134  * The output n bits can receive more than n bits of min entropy, of course,
135  * but the fixed output of the conditioning function can only asymptotically
136  * approach the output size bits of min entropy, not attain that bound. Random
137  * maps will tend to have output collisions, which reduces the creditable
138  * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
139  *
140  * The value "64" is justified in Appendix A.4 of the current 90C draft,
141  * and aligns with NIST's in "epsilon" definition in this document, which is
142  * that a string can be considered "full entropy" if you can bound the min
143  * entropy in each bit of output to at least 1-epsilon, where epsilon is
144  * required to be <= 2^(-32).
145  */
146 #define JENT_ENTROPY_SAFETY_FACTOR      64
147 
148 #include <linux/fips.h>
149 #include "jitterentropy.h"
150 
151 /***************************************************************************
152  * Adaptive Proportion Test
153  *
154  * This test complies with SP800-90B section 4.4.2.
155  ***************************************************************************/
156 
157 /*
158  * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B
159  * APT.
160  * https://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf
161  * In the syntax of R, this is C = 2 + qbinom(1 − 2^(−30), 511, 2^(-1/osr)).
162  * (The original formula wasn't correct because the first symbol must
163  * necessarily have been observed, so there is no chance of observing 0 of these
164  * symbols.)
165  *
166  * For the alpha < 2^-53, R cannot be used as it uses a float data type without
167  * arbitrary precision. A SageMath script is used to calculate those cutoff
168  * values.
169  *
170  * For any value above 14, this yields the maximal allowable value of 512
171  * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that
172  * renders the test unable to fail).
173  */
174 static const unsigned int jent_apt_cutoff_lookup[15] = {
175         325, 422, 459, 477, 488, 494, 499, 502,
176         505, 507, 508, 509, 510, 511, 512 };
177 static const unsigned int jent_apt_cutoff_permanent_lookup[15] = {
178         355, 447, 479, 494, 502, 507, 510, 512,
179         512, 512, 512, 512, 512, 512, 512 };
180 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
181 
182 static void jent_apt_init(struct rand_data *ec, unsigned int osr)
183 {
184         /*
185          * Establish the apt_cutoff based on the presumed entropy rate of
186          * 1/osr.
187          */
188         if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) {
189                 ec->apt_cutoff = jent_apt_cutoff_lookup[
190                         ARRAY_SIZE(jent_apt_cutoff_lookup) - 1];
191                 ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[
192                         ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1];
193         } else {
194                 ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1];
195                 ec->apt_cutoff_permanent =
196                                 jent_apt_cutoff_permanent_lookup[osr - 1];
197         }
198 }
199 /*
200  * Reset the APT counter
201  *
202  * @ec [in] Reference to entropy collector
203  */
204 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
205 {
206         /* Reset APT counter */
207         ec->apt_count = 0;
208         ec->apt_base = delta_masked;
209         ec->apt_observations = 0;
210 }
211 
212 /*
213  * Insert a new entropy event into APT
214  *
215  * @ec [in] Reference to entropy collector
216  * @delta_masked [in] Masked time delta to process
217  */
218 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
219 {
220         /* Initialize the base reference */
221         if (!ec->apt_base_set) {
222                 ec->apt_base = delta_masked;
223                 ec->apt_base_set = 1;
224                 return;
225         }
226 
227         if (delta_masked == ec->apt_base) {
228                 ec->apt_count++;
229 
230                 /* Note, ec->apt_count starts with one. */
231                 if (ec->apt_count >= ec->apt_cutoff_permanent)
232                         ec->health_failure |= JENT_APT_FAILURE_PERMANENT;
233                 else if (ec->apt_count >= ec->apt_cutoff)
234                         ec->health_failure |= JENT_APT_FAILURE;
235         }
236 
237         ec->apt_observations++;
238 
239         if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
240                 jent_apt_reset(ec, delta_masked);
241 }
242 
243 /***************************************************************************
244  * Stuck Test and its use as Repetition Count Test
245  *
246  * The Jitter RNG uses an enhanced version of the Repetition Count Test
247  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
248  * back-to-back values, the input to the RCT is the counting of the stuck
249  * values during the generation of one Jitter RNG output block.
250  *
251  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
252  *
253  * During the counting operation, the Jitter RNG always calculates the RCT
254  * cut-off value of C. If that value exceeds the allowed cut-off value,
255  * the Jitter RNG output block will be calculated completely but discarded at
256  * the end. The caller of the Jitter RNG is informed with an error code.
257  ***************************************************************************/
258 
259 /*
260  * Repetition Count Test as defined in SP800-90B section 4.4.1
261  *
262  * @ec [in] Reference to entropy collector
263  * @stuck [in] Indicator whether the value is stuck
264  */
265 static void jent_rct_insert(struct rand_data *ec, int stuck)
266 {
267         if (stuck) {
268                 ec->rct_count++;
269 
270                 /*
271                  * The cutoff value is based on the following consideration:
272                  * alpha = 2^-30 or 2^-60 as recommended in SP800-90B.
273                  * In addition, we require an entropy value H of 1/osr as this
274                  * is the minimum entropy required to provide full entropy.
275                  * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr
276                  * deltas for inserting them into the entropy pool which should
277                  * then have (close to) DATA_SIZE_BITS bits of entropy in the
278                  * conditioned output.
279                  *
280                  * Note, ec->rct_count (which equals to value B in the pseudo
281                  * code of SP800-90B section 4.4.1) starts with zero. Hence
282                  * we need to subtract one from the cutoff value as calculated
283                  * following SP800-90B. Thus C = ceil(-log_2(alpha)/H) = 30*osr
284                  * or 60*osr.
285                  */
286                 if ((unsigned int)ec->rct_count >= (60 * ec->osr)) {
287                         ec->rct_count = -1;
288                         ec->health_failure |= JENT_RCT_FAILURE_PERMANENT;
289                 } else if ((unsigned int)ec->rct_count >= (30 * ec->osr)) {
290                         ec->rct_count = -1;
291                         ec->health_failure |= JENT_RCT_FAILURE;
292                 }
293         } else {
294                 /* Reset RCT */
295                 ec->rct_count = 0;
296         }
297 }
298 
299 static inline __u64 jent_delta(__u64 prev, __u64 next)
300 {
301 #define JENT_UINT64_MAX         (__u64)(~((__u64) 0))
302         return (prev < next) ? (next - prev) :
303                                (JENT_UINT64_MAX - prev + 1 + next);
304 }
305 
306 /*
307  * Stuck test by checking the:
308  *      1st derivative of the jitter measurement (time delta)
309  *      2nd derivative of the jitter measurement (delta of time deltas)
310  *      3rd derivative of the jitter measurement (delta of delta of time deltas)
311  *
312  * All values must always be non-zero.
313  *
314  * @ec [in] Reference to entropy collector
315  * @current_delta [in] Jitter time delta
316  *
317  * @return
318  *      0 jitter measurement not stuck (good bit)
319  *      1 jitter measurement stuck (reject bit)
320  */
321 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
322 {
323         __u64 delta2 = jent_delta(ec->last_delta, current_delta);
324         __u64 delta3 = jent_delta(ec->last_delta2, delta2);
325 
326         ec->last_delta = current_delta;
327         ec->last_delta2 = delta2;
328 
329         /*
330          * Insert the result of the comparison of two back-to-back time
331          * deltas.
332          */
333         jent_apt_insert(ec, current_delta);
334 
335         if (!current_delta || !delta2 || !delta3) {
336                 /* RCT with a stuck bit */
337                 jent_rct_insert(ec, 1);
338                 return 1;
339         }
340 
341         /* RCT with a non-stuck bit */
342         jent_rct_insert(ec, 0);
343 
344         return 0;
345 }
346 
347 /*
348  * Report any health test failures
349  *
350  * @ec [in] Reference to entropy collector
351  *
352  * @return a bitmask indicating which tests failed
353  *      0 No health test failure
354  *      1 RCT failure
355  *      2 APT failure
356  *      1<<JENT_PERMANENT_FAILURE_SHIFT RCT permanent failure
357  *      2<<JENT_PERMANENT_FAILURE_SHIFT APT permanent failure
358  */
359 static unsigned int jent_health_failure(struct rand_data *ec)
360 {
361         /* Test is only enabled in FIPS mode */
362         if (!fips_enabled)
363                 return 0;
364 
365         return ec->health_failure;
366 }
367 
368 /***************************************************************************
369  * Noise sources
370  ***************************************************************************/
371 
372 /*
373  * Update of the loop count used for the next round of
374  * an entropy collection.
375  *
376  * Input:
377  * @bits is the number of low bits of the timer to consider
378  * @min is the number of bits we shift the timer value to the right at
379  *      the end to make sure we have a guaranteed minimum value
380  *
381  * @return Newly calculated loop counter
382  */
383 static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
384 {
385         __u64 time = 0;
386         __u64 shuffle = 0;
387         unsigned int i = 0;
388         unsigned int mask = (1<<bits) - 1;
389 
390         jent_get_nstime(&time);
391 
392         /*
393          * We fold the time value as much as possible to ensure that as many
394          * bits of the time stamp are included as possible.
395          */
396         for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
397                 shuffle ^= time & mask;
398                 time = time >> bits;
399         }
400 
401         /*
402          * We add a lower boundary value to ensure we have a minimum
403          * RNG loop count.
404          */
405         return (shuffle + (1<<min));
406 }
407 
408 /*
409  * CPU Jitter noise source -- this is the noise source based on the CPU
410  *                            execution time jitter
411  *
412  * This function injects the individual bits of the time value into the
413  * entropy pool using a hash.
414  *
415  * ec [in] entropy collector
416  * time [in] time stamp to be injected
417  * stuck [in] Is the time stamp identified as stuck?
418  *
419  * Output:
420  * updated hash context in the entropy collector or error code
421  */
422 static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
423 {
424 #define SHA3_HASH_LOOP (1<<3)
425         struct {
426                 int rct_count;
427                 unsigned int apt_observations;
428                 unsigned int apt_count;
429                 unsigned int apt_base;
430         } addtl = {
431                 ec->rct_count,
432                 ec->apt_observations,
433                 ec->apt_count,
434                 ec->apt_base
435         };
436 
437         return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
438                               SHA3_HASH_LOOP, stuck);
439 }
440 
441 /*
442  * Memory Access noise source -- this is a noise source based on variations in
443  *                               memory access times
444  *
445  * This function performs memory accesses which will add to the timing
446  * variations due to an unknown amount of CPU wait states that need to be
447  * added when accessing memory. The memory size should be larger than the L1
448  * caches as outlined in the documentation and the associated testing.
449  *
450  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
451  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
452  * variations as the CPU has hardly to wait. Starting with L2, significant
453  * variations are added because L2 typically does not belong to the CPU any more
454  * and therefore a wider range of CPU wait states is necessary for accesses.
455  * L3 and real memory accesses have even a wider range of wait states. However,
456  * to reliably access either L3 or memory, the ec->mem memory must be quite
457  * large which is usually not desirable.
458  *
459  * @ec [in] Reference to the entropy collector with the memory access data -- if
460  *          the reference to the memory block to be accessed is NULL, this noise
461  *          source is disabled
462  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
463  *                number of loops to perform the LFSR
464  */
465 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
466 {
467         unsigned int wrap = 0;
468         __u64 i = 0;
469 #define MAX_ACC_LOOP_BIT 7
470 #define MIN_ACC_LOOP_BIT 0
471         __u64 acc_loop_cnt =
472                 jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
473 
474         if (NULL == ec || NULL == ec->mem)
475                 return;
476         wrap = ec->memblocksize * ec->memblocks;
477 
478         /*
479          * testing purposes -- allow test app to set the counter, not
480          * needed during runtime
481          */
482         if (loop_cnt)
483                 acc_loop_cnt = loop_cnt;
484 
485         for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
486                 unsigned char *tmpval = ec->mem + ec->memlocation;
487                 /*
488                  * memory access: just add 1 to one byte,
489                  * wrap at 255 -- memory access implies read
490                  * from and write to memory location
491                  */
492                 *tmpval = (*tmpval + 1) & 0xff;
493                 /*
494                  * Addition of memblocksize - 1 to pointer
495                  * with wrap around logic to ensure that every
496                  * memory location is hit evenly
497                  */
498                 ec->memlocation = ec->memlocation + ec->memblocksize - 1;
499                 ec->memlocation = ec->memlocation % wrap;
500         }
501 }
502 
503 /***************************************************************************
504  * Start of entropy processing logic
505  ***************************************************************************/
506 /*
507  * This is the heart of the entropy generation: calculate time deltas and
508  * use the CPU jitter in the time deltas. The jitter is injected into the
509  * entropy pool.
510  *
511  * WARNING: ensure that ->prev_time is primed before using the output
512  *          of this function! This can be done by calling this function
513  *          and not using its result.
514  *
515  * @ec [in] Reference to entropy collector
516  *
517  * @return result of stuck test
518  */
519 static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta)
520 {
521         __u64 time = 0;
522         __u64 current_delta = 0;
523         int stuck;
524 
525         /* Invoke one noise source before time measurement to add variations */
526         jent_memaccess(ec, 0);
527 
528         /*
529          * Get time stamp and calculate time delta to previous
530          * invocation to measure the timing variations
531          */
532         jent_get_nstime(&time);
533         current_delta = jent_delta(ec->prev_time, time);
534         ec->prev_time = time;
535 
536         /* Check whether we have a stuck measurement. */
537         stuck = jent_stuck(ec, current_delta);
538 
539         /* Now call the next noise sources which also injects the data */
540         if (jent_condition_data(ec, current_delta, stuck))
541                 stuck = 1;
542 
543         /* return the raw entropy value */
544         if (ret_current_delta)
545                 *ret_current_delta = current_delta;
546 
547         return stuck;
548 }
549 
550 /*
551  * Generator of one 64 bit random number
552  * Function fills rand_data->hash_state
553  *
554  * @ec [in] Reference to entropy collector
555  */
556 static void jent_gen_entropy(struct rand_data *ec)
557 {
558         unsigned int k = 0, safety_factor = 0;
559 
560         if (fips_enabled)
561                 safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
562 
563         /* priming of the ->prev_time value */
564         jent_measure_jitter(ec, NULL);
565 
566         while (!jent_health_failure(ec)) {
567                 /* If a stuck measurement is received, repeat measurement */
568                 if (jent_measure_jitter(ec, NULL))
569                         continue;
570 
571                 /*
572                  * We multiply the loop value with ->osr to obtain the
573                  * oversampling rate requested by the caller
574                  */
575                 if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
576                         break;
577         }
578 }
579 
580 /*
581  * Entry function: Obtain entropy for the caller.
582  *
583  * This function invokes the entropy gathering logic as often to generate
584  * as many bytes as requested by the caller. The entropy gathering logic
585  * creates 64 bit per invocation.
586  *
587  * This function truncates the last 64 bit entropy value output to the exact
588  * size specified by the caller.
589  *
590  * @ec [in] Reference to entropy collector
591  * @data [in] pointer to buffer for storing random data -- buffer must already
592  *            exist
593  * @len [in] size of the buffer, specifying also the requested number of random
594  *           in bytes
595  *
596  * @return 0 when request is fulfilled or an error
597  *
598  * The following error codes can occur:
599  *      -1      entropy_collector is NULL or the generation failed
600  *      -2      Intermittent health failure
601  *      -3      Permanent health failure
602  */
603 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
604                       unsigned int len)
605 {
606         unsigned char *p = data;
607 
608         if (!ec)
609                 return -1;
610 
611         while (len > 0) {
612                 unsigned int tocopy, health_test_result;
613 
614                 jent_gen_entropy(ec);
615 
616                 health_test_result = jent_health_failure(ec);
617                 if (health_test_result > JENT_PERMANENT_FAILURE_SHIFT) {
618                         /*
619                          * At this point, the Jitter RNG instance is considered
620                          * as a failed instance. There is no rerun of the
621                          * startup test any more, because the caller
622                          * is assumed to not further use this instance.
623                          */
624                         return -3;
625                 } else if (health_test_result) {
626                         /*
627                          * Perform startup health tests and return permanent
628                          * error if it fails.
629                          */
630                         if (jent_entropy_init(0, 0, NULL, ec)) {
631                                 /* Mark the permanent error */
632                                 ec->health_failure &=
633                                         JENT_RCT_FAILURE_PERMANENT |
634                                         JENT_APT_FAILURE_PERMANENT;
635                                 return -3;
636                         }
637 
638                         return -2;
639                 }
640 
641                 if ((DATA_SIZE_BITS / 8) < len)
642                         tocopy = (DATA_SIZE_BITS / 8);
643                 else
644                         tocopy = len;
645                 if (jent_read_random_block(ec->hash_state, p, tocopy))
646                         return -1;
647 
648                 len -= tocopy;
649                 p += tocopy;
650         }
651 
652         return 0;
653 }
654 
655 /***************************************************************************
656  * Initialization logic
657  ***************************************************************************/
658 
659 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
660                                                unsigned int flags,
661                                                void *hash_state)
662 {
663         struct rand_data *entropy_collector;
664 
665         entropy_collector = jent_zalloc(sizeof(struct rand_data));
666         if (!entropy_collector)
667                 return NULL;
668 
669         if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
670                 /* Allocate memory for adding variations based on memory
671                  * access
672                  */
673                 entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE);
674                 if (!entropy_collector->mem) {
675                         jent_zfree(entropy_collector);
676                         return NULL;
677                 }
678                 entropy_collector->memblocksize =
679                         CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE;
680                 entropy_collector->memblocks =
681                         CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS;
682                 entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
683         }
684 
685         /* verify and set the oversampling rate */
686         if (osr == 0)
687                 osr = 1; /* H_submitter = 1 / osr */
688         entropy_collector->osr = osr;
689         entropy_collector->flags = flags;
690 
691         entropy_collector->hash_state = hash_state;
692 
693         /* Initialize the APT */
694         jent_apt_init(entropy_collector, osr);
695 
696         /* fill the data pad with non-zero values */
697         jent_gen_entropy(entropy_collector);
698 
699         return entropy_collector;
700 }
701 
702 void jent_entropy_collector_free(struct rand_data *entropy_collector)
703 {
704         jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE);
705         entropy_collector->mem = NULL;
706         jent_zfree(entropy_collector);
707 }
708 
709 int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state,
710                       struct rand_data *p_ec)
711 {
712         /*
713          * If caller provides an allocated ec, reuse it which implies that the
714          * health test entropy data is used to further still the available
715          * entropy pool.
716          */
717         struct rand_data *ec = p_ec;
718         int i, time_backwards = 0, ret = 0, ec_free = 0;
719         unsigned int health_test_result;
720 
721         if (!ec) {
722                 ec = jent_entropy_collector_alloc(osr, flags, hash_state);
723                 if (!ec)
724                         return JENT_EMEM;
725                 ec_free = 1;
726         } else {
727                 /* Reset the APT */
728                 jent_apt_reset(ec, 0);
729                 /* Ensure that a new APT base is obtained */
730                 ec->apt_base_set = 0;
731                 /* Reset the RCT */
732                 ec->rct_count = 0;
733                 /* Reset intermittent, leave permanent health test result */
734                 ec->health_failure &= (~JENT_RCT_FAILURE);
735                 ec->health_failure &= (~JENT_APT_FAILURE);
736         }
737 
738         /* We could perform statistical tests here, but the problem is
739          * that we only have a few loop counts to do testing. These
740          * loop counts may show some slight skew and we produce
741          * false positives.
742          *
743          * Moreover, only old systems show potentially problematic
744          * jitter entropy that could potentially be caught here. But
745          * the RNG is intended for hardware that is available or widely
746          * used, but not old systems that are long out of favor. Thus,
747          * no statistical tests.
748          */
749 
750         /*
751          * We could add a check for system capabilities such as clock_getres or
752          * check for CONFIG_X86_TSC, but it does not make much sense as the
753          * following sanity checks verify that we have a high-resolution
754          * timer.
755          */
756         /*
757          * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
758          * definitely too little.
759          *
760          * SP800-90B requires at least 1024 initial test cycles.
761          */
762 #define TESTLOOPCOUNT 1024
763 #define CLEARCACHE 100
764         for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
765                 __u64 start_time = 0, end_time = 0, delta = 0;
766 
767                 /* Invoke core entropy collection logic */
768                 jent_measure_jitter(ec, &delta);
769                 end_time = ec->prev_time;
770                 start_time = ec->prev_time - delta;
771 
772                 /* test whether timer works */
773                 if (!start_time || !end_time) {
774                         ret = JENT_ENOTIME;
775                         goto out;
776                 }
777 
778                 /*
779                  * test whether timer is fine grained enough to provide
780                  * delta even when called shortly after each other -- this
781                  * implies that we also have a high resolution timer
782                  */
783                 if (!delta || (end_time == start_time)) {
784                         ret = JENT_ECOARSETIME;
785                         goto out;
786                 }
787 
788                 /*
789                  * up to here we did not modify any variable that will be
790                  * evaluated later, but we already performed some work. Thus we
791                  * already have had an impact on the caches, branch prediction,
792                  * etc. with the goal to clear it to get the worst case
793                  * measurements.
794                  */
795                 if (i < CLEARCACHE)
796                         continue;
797 
798                 /* test whether we have an increasing timer */
799                 if (!(end_time > start_time))
800                         time_backwards++;
801         }
802 
803         /*
804          * we allow up to three times the time running backwards.
805          * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
806          * if such an operation just happens to interfere with our test, it
807          * should not fail. The value of 3 should cover the NTP case being
808          * performed during our test run.
809          */
810         if (time_backwards > 3) {
811                 ret = JENT_ENOMONOTONIC;
812                 goto out;
813         }
814 
815         /* Did we encounter a health test failure? */
816         health_test_result = jent_health_failure(ec);
817         if (health_test_result) {
818                 ret = (health_test_result & JENT_RCT_FAILURE) ? JENT_ERCT :
819                                                                 JENT_EHEALTH;
820                 goto out;
821         }
822 
823 out:
824         if (ec_free)
825                 jent_entropy_collector_free(ec);
826 
827         return ret;
828 }
829 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php