1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RSA padding templates. 4 * 5 * Copyright (c) 2015 Intel Corporation 6 */ 7 8 #include <crypto/algapi.h> 9 #include <crypto/akcipher.h> 10 #include <crypto/internal/akcipher.h> 11 #include <crypto/internal/rsa.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/random.h> 17 #include <linux/scatterlist.h> 18 19 /* 20 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. 21 */ 22 static const u8 rsa_digest_info_md5[] = { 23 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 24 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 25 0x05, 0x00, 0x04, 0x10 26 }; 27 28 static const u8 rsa_digest_info_sha1[] = { 29 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 30 0x2b, 0x0e, 0x03, 0x02, 0x1a, 31 0x05, 0x00, 0x04, 0x14 32 }; 33 34 static const u8 rsa_digest_info_rmd160[] = { 35 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 36 0x2b, 0x24, 0x03, 0x02, 0x01, 37 0x05, 0x00, 0x04, 0x14 38 }; 39 40 static const u8 rsa_digest_info_sha224[] = { 41 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 42 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 43 0x05, 0x00, 0x04, 0x1c 44 }; 45 46 static const u8 rsa_digest_info_sha256[] = { 47 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 48 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 49 0x05, 0x00, 0x04, 0x20 50 }; 51 52 static const u8 rsa_digest_info_sha384[] = { 53 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 54 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 55 0x05, 0x00, 0x04, 0x30 56 }; 57 58 static const u8 rsa_digest_info_sha512[] = { 59 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 60 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 61 0x05, 0x00, 0x04, 0x40 62 }; 63 64 static const u8 rsa_digest_info_sha3_256[] = { 65 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 66 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x08, 67 0x05, 0x00, 0x04, 0x20 68 }; 69 70 static const u8 rsa_digest_info_sha3_384[] = { 71 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 72 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x09, 73 0x05, 0x00, 0x04, 0x30 74 }; 75 76 static const u8 rsa_digest_info_sha3_512[] = { 77 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 78 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x0A, 79 0x05, 0x00, 0x04, 0x40 80 }; 81 82 static const struct rsa_asn1_template { 83 const char *name; 84 const u8 *data; 85 size_t size; 86 } rsa_asn1_templates[] = { 87 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } 88 _(md5), 89 _(sha1), 90 _(rmd160), 91 _(sha256), 92 _(sha384), 93 _(sha512), 94 _(sha224), 95 #undef _ 96 #define _(X) { "sha3-" #X, rsa_digest_info_sha3_##X, sizeof(rsa_digest_info_sha3_##X) } 97 _(256), 98 _(384), 99 _(512), 100 #undef _ 101 { NULL } 102 }; 103 104 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) 105 { 106 const struct rsa_asn1_template *p; 107 108 for (p = rsa_asn1_templates; p->name; p++) 109 if (strcmp(name, p->name) == 0) 110 return p; 111 return NULL; 112 } 113 114 struct pkcs1pad_ctx { 115 struct crypto_akcipher *child; 116 unsigned int key_size; 117 }; 118 119 struct pkcs1pad_inst_ctx { 120 struct crypto_akcipher_spawn spawn; 121 const struct rsa_asn1_template *digest_info; 122 }; 123 124 struct pkcs1pad_request { 125 struct scatterlist in_sg[2], out_sg[1]; 126 uint8_t *in_buf, *out_buf; 127 struct akcipher_request child_req; 128 }; 129 130 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, 131 unsigned int keylen) 132 { 133 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 134 int err; 135 136 ctx->key_size = 0; 137 138 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); 139 if (err) 140 return err; 141 142 /* Find out new modulus size from rsa implementation */ 143 err = crypto_akcipher_maxsize(ctx->child); 144 if (err > PAGE_SIZE) 145 return -ENOTSUPP; 146 147 ctx->key_size = err; 148 return 0; 149 } 150 151 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, 152 unsigned int keylen) 153 { 154 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 155 int err; 156 157 ctx->key_size = 0; 158 159 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); 160 if (err) 161 return err; 162 163 /* Find out new modulus size from rsa implementation */ 164 err = crypto_akcipher_maxsize(ctx->child); 165 if (err > PAGE_SIZE) 166 return -ENOTSUPP; 167 168 ctx->key_size = err; 169 return 0; 170 } 171 172 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) 173 { 174 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 175 176 /* 177 * The maximum destination buffer size for the encrypt/sign operations 178 * will be the same as for RSA, even though it's smaller for 179 * decrypt/verify. 180 */ 181 182 return ctx->key_size; 183 } 184 185 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, 186 struct scatterlist *next) 187 { 188 int nsegs = next ? 2 : 1; 189 190 sg_init_table(sg, nsegs); 191 sg_set_buf(sg, buf, len); 192 193 if (next) 194 sg_chain(sg, nsegs, next); 195 } 196 197 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) 198 { 199 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 200 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 201 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 202 unsigned int pad_len; 203 unsigned int len; 204 u8 *out_buf; 205 206 if (err) 207 goto out; 208 209 len = req_ctx->child_req.dst_len; 210 pad_len = ctx->key_size - len; 211 212 /* Four billion to one */ 213 if (likely(!pad_len)) 214 goto out; 215 216 out_buf = kzalloc(ctx->key_size, GFP_ATOMIC); 217 err = -ENOMEM; 218 if (!out_buf) 219 goto out; 220 221 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), 222 out_buf + pad_len, len); 223 sg_copy_from_buffer(req->dst, 224 sg_nents_for_len(req->dst, ctx->key_size), 225 out_buf, ctx->key_size); 226 kfree_sensitive(out_buf); 227 228 out: 229 req->dst_len = ctx->key_size; 230 231 kfree(req_ctx->in_buf); 232 233 return err; 234 } 235 236 static void pkcs1pad_encrypt_sign_complete_cb(void *data, int err) 237 { 238 struct akcipher_request *req = data; 239 240 if (err == -EINPROGRESS) 241 goto out; 242 243 err = pkcs1pad_encrypt_sign_complete(req, err); 244 245 out: 246 akcipher_request_complete(req, err); 247 } 248 249 static int pkcs1pad_encrypt(struct akcipher_request *req) 250 { 251 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 252 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 253 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 254 int err; 255 unsigned int i, ps_end; 256 257 if (!ctx->key_size) 258 return -EINVAL; 259 260 if (req->src_len > ctx->key_size - 11) 261 return -EOVERFLOW; 262 263 if (req->dst_len < ctx->key_size) { 264 req->dst_len = ctx->key_size; 265 return -EOVERFLOW; 266 } 267 268 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 269 GFP_KERNEL); 270 if (!req_ctx->in_buf) 271 return -ENOMEM; 272 273 ps_end = ctx->key_size - req->src_len - 2; 274 req_ctx->in_buf[0] = 0x02; 275 for (i = 1; i < ps_end; i++) 276 req_ctx->in_buf[i] = get_random_u32_inclusive(1, 255); 277 req_ctx->in_buf[ps_end] = 0x00; 278 279 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 280 ctx->key_size - 1 - req->src_len, req->src); 281 282 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 283 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 284 pkcs1pad_encrypt_sign_complete_cb, req); 285 286 /* Reuse output buffer */ 287 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 288 req->dst, ctx->key_size - 1, req->dst_len); 289 290 err = crypto_akcipher_encrypt(&req_ctx->child_req); 291 if (err != -EINPROGRESS && err != -EBUSY) 292 return pkcs1pad_encrypt_sign_complete(req, err); 293 294 return err; 295 } 296 297 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) 298 { 299 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 300 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 301 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 302 unsigned int dst_len; 303 unsigned int pos; 304 u8 *out_buf; 305 306 if (err) 307 goto done; 308 309 err = -EINVAL; 310 dst_len = req_ctx->child_req.dst_len; 311 if (dst_len < ctx->key_size - 1) 312 goto done; 313 314 out_buf = req_ctx->out_buf; 315 if (dst_len == ctx->key_size) { 316 if (out_buf[0] != 0x00) 317 /* Decrypted value had no leading 0 byte */ 318 goto done; 319 320 dst_len--; 321 out_buf++; 322 } 323 324 if (out_buf[0] != 0x02) 325 goto done; 326 327 for (pos = 1; pos < dst_len; pos++) 328 if (out_buf[pos] == 0x00) 329 break; 330 if (pos < 9 || pos == dst_len) 331 goto done; 332 pos++; 333 334 err = 0; 335 336 if (req->dst_len < dst_len - pos) 337 err = -EOVERFLOW; 338 req->dst_len = dst_len - pos; 339 340 if (!err) 341 sg_copy_from_buffer(req->dst, 342 sg_nents_for_len(req->dst, req->dst_len), 343 out_buf + pos, req->dst_len); 344 345 done: 346 kfree_sensitive(req_ctx->out_buf); 347 348 return err; 349 } 350 351 static void pkcs1pad_decrypt_complete_cb(void *data, int err) 352 { 353 struct akcipher_request *req = data; 354 355 if (err == -EINPROGRESS) 356 goto out; 357 358 err = pkcs1pad_decrypt_complete(req, err); 359 360 out: 361 akcipher_request_complete(req, err); 362 } 363 364 static int pkcs1pad_decrypt(struct akcipher_request *req) 365 { 366 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 367 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 368 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 369 int err; 370 371 if (!ctx->key_size || req->src_len != ctx->key_size) 372 return -EINVAL; 373 374 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); 375 if (!req_ctx->out_buf) 376 return -ENOMEM; 377 378 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 379 ctx->key_size, NULL); 380 381 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 382 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 383 pkcs1pad_decrypt_complete_cb, req); 384 385 /* Reuse input buffer, output to a new buffer */ 386 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 387 req_ctx->out_sg, req->src_len, 388 ctx->key_size); 389 390 err = crypto_akcipher_decrypt(&req_ctx->child_req); 391 if (err != -EINPROGRESS && err != -EBUSY) 392 return pkcs1pad_decrypt_complete(req, err); 393 394 return err; 395 } 396 397 static int pkcs1pad_sign(struct akcipher_request *req) 398 { 399 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 400 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 401 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 402 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 403 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 404 const struct rsa_asn1_template *digest_info = ictx->digest_info; 405 int err; 406 unsigned int ps_end, digest_info_size = 0; 407 408 if (!ctx->key_size) 409 return -EINVAL; 410 411 if (digest_info) 412 digest_info_size = digest_info->size; 413 414 if (req->src_len + digest_info_size > ctx->key_size - 11) 415 return -EOVERFLOW; 416 417 if (req->dst_len < ctx->key_size) { 418 req->dst_len = ctx->key_size; 419 return -EOVERFLOW; 420 } 421 422 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, 423 GFP_KERNEL); 424 if (!req_ctx->in_buf) 425 return -ENOMEM; 426 427 ps_end = ctx->key_size - digest_info_size - req->src_len - 2; 428 req_ctx->in_buf[0] = 0x01; 429 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); 430 req_ctx->in_buf[ps_end] = 0x00; 431 432 if (digest_info) 433 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, 434 digest_info->size); 435 436 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, 437 ctx->key_size - 1 - req->src_len, req->src); 438 439 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 440 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 441 pkcs1pad_encrypt_sign_complete_cb, req); 442 443 /* Reuse output buffer */ 444 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, 445 req->dst, ctx->key_size - 1, req->dst_len); 446 447 err = crypto_akcipher_decrypt(&req_ctx->child_req); 448 if (err != -EINPROGRESS && err != -EBUSY) 449 return pkcs1pad_encrypt_sign_complete(req, err); 450 451 return err; 452 } 453 454 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) 455 { 456 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 457 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 458 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 459 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 460 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 461 const struct rsa_asn1_template *digest_info = ictx->digest_info; 462 const unsigned int sig_size = req->src_len; 463 const unsigned int digest_size = req->dst_len; 464 unsigned int dst_len; 465 unsigned int pos; 466 u8 *out_buf; 467 468 if (err) 469 goto done; 470 471 err = -EINVAL; 472 dst_len = req_ctx->child_req.dst_len; 473 if (dst_len < ctx->key_size - 1) 474 goto done; 475 476 out_buf = req_ctx->out_buf; 477 if (dst_len == ctx->key_size) { 478 if (out_buf[0] != 0x00) 479 /* Decrypted value had no leading 0 byte */ 480 goto done; 481 482 dst_len--; 483 out_buf++; 484 } 485 486 err = -EBADMSG; 487 if (out_buf[0] != 0x01) 488 goto done; 489 490 for (pos = 1; pos < dst_len; pos++) 491 if (out_buf[pos] != 0xff) 492 break; 493 494 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) 495 goto done; 496 pos++; 497 498 if (digest_info) { 499 if (digest_info->size > dst_len - pos) 500 goto done; 501 if (crypto_memneq(out_buf + pos, digest_info->data, 502 digest_info->size)) 503 goto done; 504 505 pos += digest_info->size; 506 } 507 508 err = 0; 509 510 if (digest_size != dst_len - pos) { 511 err = -EKEYREJECTED; 512 req->dst_len = dst_len - pos; 513 goto done; 514 } 515 /* Extract appended digest. */ 516 sg_pcopy_to_buffer(req->src, 517 sg_nents_for_len(req->src, sig_size + digest_size), 518 req_ctx->out_buf + ctx->key_size, 519 digest_size, sig_size); 520 /* Do the actual verification step. */ 521 if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos, 522 digest_size) != 0) 523 err = -EKEYREJECTED; 524 done: 525 kfree_sensitive(req_ctx->out_buf); 526 527 return err; 528 } 529 530 static void pkcs1pad_verify_complete_cb(void *data, int err) 531 { 532 struct akcipher_request *req = data; 533 534 if (err == -EINPROGRESS) 535 goto out; 536 537 err = pkcs1pad_verify_complete(req, err); 538 539 out: 540 akcipher_request_complete(req, err); 541 } 542 543 /* 544 * The verify operation is here for completeness similar to the verification 545 * defined in RFC2313 section 10.2 except that block type 0 is not accepted, 546 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to 547 * retrieve the DigestInfo from a signature, instead the user is expected 548 * to call the sign operation to generate the expected signature and compare 549 * signatures instead of the message-digests. 550 */ 551 static int pkcs1pad_verify(struct akcipher_request *req) 552 { 553 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 554 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 555 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); 556 const unsigned int sig_size = req->src_len; 557 const unsigned int digest_size = req->dst_len; 558 int err; 559 560 if (WARN_ON(req->dst) || WARN_ON(!digest_size) || 561 !ctx->key_size || sig_size != ctx->key_size) 562 return -EINVAL; 563 564 req_ctx->out_buf = kmalloc(ctx->key_size + digest_size, GFP_KERNEL); 565 if (!req_ctx->out_buf) 566 return -ENOMEM; 567 568 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, 569 ctx->key_size, NULL); 570 571 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); 572 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, 573 pkcs1pad_verify_complete_cb, req); 574 575 /* Reuse input buffer, output to a new buffer */ 576 akcipher_request_set_crypt(&req_ctx->child_req, req->src, 577 req_ctx->out_sg, sig_size, ctx->key_size); 578 579 err = crypto_akcipher_encrypt(&req_ctx->child_req); 580 if (err != -EINPROGRESS && err != -EBUSY) 581 return pkcs1pad_verify_complete(req, err); 582 583 return err; 584 } 585 586 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) 587 { 588 struct akcipher_instance *inst = akcipher_alg_instance(tfm); 589 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); 590 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 591 struct crypto_akcipher *child_tfm; 592 593 child_tfm = crypto_spawn_akcipher(&ictx->spawn); 594 if (IS_ERR(child_tfm)) 595 return PTR_ERR(child_tfm); 596 597 ctx->child = child_tfm; 598 599 akcipher_set_reqsize(tfm, sizeof(struct pkcs1pad_request) + 600 crypto_akcipher_reqsize(child_tfm)); 601 602 return 0; 603 } 604 605 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) 606 { 607 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); 608 609 crypto_free_akcipher(ctx->child); 610 } 611 612 static void pkcs1pad_free(struct akcipher_instance *inst) 613 { 614 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); 615 struct crypto_akcipher_spawn *spawn = &ctx->spawn; 616 617 crypto_drop_akcipher(spawn); 618 kfree(inst); 619 } 620 621 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) 622 { 623 u32 mask; 624 struct akcipher_instance *inst; 625 struct pkcs1pad_inst_ctx *ctx; 626 struct akcipher_alg *rsa_alg; 627 const char *hash_name; 628 int err; 629 630 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask); 631 if (err) 632 return err; 633 634 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 635 if (!inst) 636 return -ENOMEM; 637 638 ctx = akcipher_instance_ctx(inst); 639 640 err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst), 641 crypto_attr_alg_name(tb[1]), 0, mask); 642 if (err) 643 goto err_free_inst; 644 645 rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn); 646 647 if (strcmp(rsa_alg->base.cra_name, "rsa") != 0) { 648 err = -EINVAL; 649 goto err_free_inst; 650 } 651 652 err = -ENAMETOOLONG; 653 hash_name = crypto_attr_alg_name(tb[2]); 654 if (IS_ERR(hash_name)) { 655 if (snprintf(inst->alg.base.cra_name, 656 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", 657 rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) 658 goto err_free_inst; 659 660 if (snprintf(inst->alg.base.cra_driver_name, 661 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", 662 rsa_alg->base.cra_driver_name) >= 663 CRYPTO_MAX_ALG_NAME) 664 goto err_free_inst; 665 } else { 666 ctx->digest_info = rsa_lookup_asn1(hash_name); 667 if (!ctx->digest_info) { 668 err = -EINVAL; 669 goto err_free_inst; 670 } 671 672 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, 673 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, 674 hash_name) >= CRYPTO_MAX_ALG_NAME) 675 goto err_free_inst; 676 677 if (snprintf(inst->alg.base.cra_driver_name, 678 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)", 679 rsa_alg->base.cra_driver_name, 680 hash_name) >= CRYPTO_MAX_ALG_NAME) 681 goto err_free_inst; 682 } 683 684 inst->alg.base.cra_priority = rsa_alg->base.cra_priority; 685 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); 686 687 inst->alg.init = pkcs1pad_init_tfm; 688 inst->alg.exit = pkcs1pad_exit_tfm; 689 690 inst->alg.encrypt = pkcs1pad_encrypt; 691 inst->alg.decrypt = pkcs1pad_decrypt; 692 inst->alg.sign = pkcs1pad_sign; 693 inst->alg.verify = pkcs1pad_verify; 694 inst->alg.set_pub_key = pkcs1pad_set_pub_key; 695 inst->alg.set_priv_key = pkcs1pad_set_priv_key; 696 inst->alg.max_size = pkcs1pad_get_max_size; 697 698 inst->free = pkcs1pad_free; 699 700 err = akcipher_register_instance(tmpl, inst); 701 if (err) { 702 err_free_inst: 703 pkcs1pad_free(inst); 704 } 705 return err; 706 } 707 708 struct crypto_template rsa_pkcs1pad_tmpl = { 709 .name = "pkcs1pad", 710 .create = pkcs1pad_create, 711 .module = THIS_MODULE, 712 }; 713 714 MODULE_ALIAS_CRYPTO("pkcs1pad"); 715
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.