1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Cryptographic API. 4 * 5 * SHA-3, as specified in 6 * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf 7 * 8 * SHA-3 code by Jeff Garzik <jeff@garzik.org> 9 * Ard Biesheuvel <ard.biesheuvel@linaro.org> 10 */ 11 #include <crypto/internal/hash.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <crypto/sha3.h> 16 #include <asm/unaligned.h> 17 18 /* 19 * On some 32-bit architectures (h8300), GCC ends up using 20 * over 1 KB of stack if we inline the round calculation into the loop 21 * in keccakf(). On the other hand, on 64-bit architectures with plenty 22 * of [64-bit wide] general purpose registers, not inlining it severely 23 * hurts performance. So let's use 64-bitness as a heuristic to decide 24 * whether to inline or not. 25 */ 26 #ifdef CONFIG_64BIT 27 #define SHA3_INLINE inline 28 #else 29 #define SHA3_INLINE noinline 30 #endif 31 32 #define KECCAK_ROUNDS 24 33 34 static const u64 keccakf_rndc[24] = { 35 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, 36 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL, 37 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL, 38 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL, 39 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 40 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, 41 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, 42 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL 43 }; 44 45 /* update the state with given number of rounds */ 46 47 static SHA3_INLINE void keccakf_round(u64 st[25]) 48 { 49 u64 t[5], tt, bc[5]; 50 51 /* Theta */ 52 bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; 53 bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; 54 bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; 55 bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; 56 bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; 57 58 t[0] = bc[4] ^ rol64(bc[1], 1); 59 t[1] = bc[0] ^ rol64(bc[2], 1); 60 t[2] = bc[1] ^ rol64(bc[3], 1); 61 t[3] = bc[2] ^ rol64(bc[4], 1); 62 t[4] = bc[3] ^ rol64(bc[0], 1); 63 64 st[0] ^= t[0]; 65 66 /* Rho Pi */ 67 tt = st[1]; 68 st[ 1] = rol64(st[ 6] ^ t[1], 44); 69 st[ 6] = rol64(st[ 9] ^ t[4], 20); 70 st[ 9] = rol64(st[22] ^ t[2], 61); 71 st[22] = rol64(st[14] ^ t[4], 39); 72 st[14] = rol64(st[20] ^ t[0], 18); 73 st[20] = rol64(st[ 2] ^ t[2], 62); 74 st[ 2] = rol64(st[12] ^ t[2], 43); 75 st[12] = rol64(st[13] ^ t[3], 25); 76 st[13] = rol64(st[19] ^ t[4], 8); 77 st[19] = rol64(st[23] ^ t[3], 56); 78 st[23] = rol64(st[15] ^ t[0], 41); 79 st[15] = rol64(st[ 4] ^ t[4], 27); 80 st[ 4] = rol64(st[24] ^ t[4], 14); 81 st[24] = rol64(st[21] ^ t[1], 2); 82 st[21] = rol64(st[ 8] ^ t[3], 55); 83 st[ 8] = rol64(st[16] ^ t[1], 45); 84 st[16] = rol64(st[ 5] ^ t[0], 36); 85 st[ 5] = rol64(st[ 3] ^ t[3], 28); 86 st[ 3] = rol64(st[18] ^ t[3], 21); 87 st[18] = rol64(st[17] ^ t[2], 15); 88 st[17] = rol64(st[11] ^ t[1], 10); 89 st[11] = rol64(st[ 7] ^ t[2], 6); 90 st[ 7] = rol64(st[10] ^ t[0], 3); 91 st[10] = rol64( tt ^ t[1], 1); 92 93 /* Chi */ 94 bc[ 0] = ~st[ 1] & st[ 2]; 95 bc[ 1] = ~st[ 2] & st[ 3]; 96 bc[ 2] = ~st[ 3] & st[ 4]; 97 bc[ 3] = ~st[ 4] & st[ 0]; 98 bc[ 4] = ~st[ 0] & st[ 1]; 99 st[ 0] ^= bc[ 0]; 100 st[ 1] ^= bc[ 1]; 101 st[ 2] ^= bc[ 2]; 102 st[ 3] ^= bc[ 3]; 103 st[ 4] ^= bc[ 4]; 104 105 bc[ 0] = ~st[ 6] & st[ 7]; 106 bc[ 1] = ~st[ 7] & st[ 8]; 107 bc[ 2] = ~st[ 8] & st[ 9]; 108 bc[ 3] = ~st[ 9] & st[ 5]; 109 bc[ 4] = ~st[ 5] & st[ 6]; 110 st[ 5] ^= bc[ 0]; 111 st[ 6] ^= bc[ 1]; 112 st[ 7] ^= bc[ 2]; 113 st[ 8] ^= bc[ 3]; 114 st[ 9] ^= bc[ 4]; 115 116 bc[ 0] = ~st[11] & st[12]; 117 bc[ 1] = ~st[12] & st[13]; 118 bc[ 2] = ~st[13] & st[14]; 119 bc[ 3] = ~st[14] & st[10]; 120 bc[ 4] = ~st[10] & st[11]; 121 st[10] ^= bc[ 0]; 122 st[11] ^= bc[ 1]; 123 st[12] ^= bc[ 2]; 124 st[13] ^= bc[ 3]; 125 st[14] ^= bc[ 4]; 126 127 bc[ 0] = ~st[16] & st[17]; 128 bc[ 1] = ~st[17] & st[18]; 129 bc[ 2] = ~st[18] & st[19]; 130 bc[ 3] = ~st[19] & st[15]; 131 bc[ 4] = ~st[15] & st[16]; 132 st[15] ^= bc[ 0]; 133 st[16] ^= bc[ 1]; 134 st[17] ^= bc[ 2]; 135 st[18] ^= bc[ 3]; 136 st[19] ^= bc[ 4]; 137 138 bc[ 0] = ~st[21] & st[22]; 139 bc[ 1] = ~st[22] & st[23]; 140 bc[ 2] = ~st[23] & st[24]; 141 bc[ 3] = ~st[24] & st[20]; 142 bc[ 4] = ~st[20] & st[21]; 143 st[20] ^= bc[ 0]; 144 st[21] ^= bc[ 1]; 145 st[22] ^= bc[ 2]; 146 st[23] ^= bc[ 3]; 147 st[24] ^= bc[ 4]; 148 } 149 150 static void keccakf(u64 st[25]) 151 { 152 int round; 153 154 for (round = 0; round < KECCAK_ROUNDS; round++) { 155 keccakf_round(st); 156 /* Iota */ 157 st[0] ^= keccakf_rndc[round]; 158 } 159 } 160 161 int crypto_sha3_init(struct shash_desc *desc) 162 { 163 struct sha3_state *sctx = shash_desc_ctx(desc); 164 unsigned int digest_size = crypto_shash_digestsize(desc->tfm); 165 166 sctx->rsiz = 200 - 2 * digest_size; 167 sctx->rsizw = sctx->rsiz / 8; 168 sctx->partial = 0; 169 170 memset(sctx->st, 0, sizeof(sctx->st)); 171 return 0; 172 } 173 EXPORT_SYMBOL(crypto_sha3_init); 174 175 int crypto_sha3_update(struct shash_desc *desc, const u8 *data, 176 unsigned int len) 177 { 178 struct sha3_state *sctx = shash_desc_ctx(desc); 179 unsigned int done; 180 const u8 *src; 181 182 done = 0; 183 src = data; 184 185 if ((sctx->partial + len) > (sctx->rsiz - 1)) { 186 if (sctx->partial) { 187 done = -sctx->partial; 188 memcpy(sctx->buf + sctx->partial, data, 189 done + sctx->rsiz); 190 src = sctx->buf; 191 } 192 193 do { 194 unsigned int i; 195 196 for (i = 0; i < sctx->rsizw; i++) 197 sctx->st[i] ^= get_unaligned_le64(src + 8 * i); 198 keccakf(sctx->st); 199 200 done += sctx->rsiz; 201 src = data + done; 202 } while (done + (sctx->rsiz - 1) < len); 203 204 sctx->partial = 0; 205 } 206 memcpy(sctx->buf + sctx->partial, src, len - done); 207 sctx->partial += (len - done); 208 209 return 0; 210 } 211 EXPORT_SYMBOL(crypto_sha3_update); 212 213 int crypto_sha3_final(struct shash_desc *desc, u8 *out) 214 { 215 struct sha3_state *sctx = shash_desc_ctx(desc); 216 unsigned int i, inlen = sctx->partial; 217 unsigned int digest_size = crypto_shash_digestsize(desc->tfm); 218 __le64 *digest = (__le64 *)out; 219 220 sctx->buf[inlen++] = 0x06; 221 memset(sctx->buf + inlen, 0, sctx->rsiz - inlen); 222 sctx->buf[sctx->rsiz - 1] |= 0x80; 223 224 for (i = 0; i < sctx->rsizw; i++) 225 sctx->st[i] ^= get_unaligned_le64(sctx->buf + 8 * i); 226 227 keccakf(sctx->st); 228 229 for (i = 0; i < digest_size / 8; i++) 230 put_unaligned_le64(sctx->st[i], digest++); 231 232 if (digest_size & 4) 233 put_unaligned_le32(sctx->st[i], (__le32 *)digest); 234 235 memset(sctx, 0, sizeof(*sctx)); 236 return 0; 237 } 238 EXPORT_SYMBOL(crypto_sha3_final); 239 240 static struct shash_alg algs[] = { { 241 .digestsize = SHA3_224_DIGEST_SIZE, 242 .init = crypto_sha3_init, 243 .update = crypto_sha3_update, 244 .final = crypto_sha3_final, 245 .descsize = sizeof(struct sha3_state), 246 .base.cra_name = "sha3-224", 247 .base.cra_driver_name = "sha3-224-generic", 248 .base.cra_blocksize = SHA3_224_BLOCK_SIZE, 249 .base.cra_module = THIS_MODULE, 250 }, { 251 .digestsize = SHA3_256_DIGEST_SIZE, 252 .init = crypto_sha3_init, 253 .update = crypto_sha3_update, 254 .final = crypto_sha3_final, 255 .descsize = sizeof(struct sha3_state), 256 .base.cra_name = "sha3-256", 257 .base.cra_driver_name = "sha3-256-generic", 258 .base.cra_blocksize = SHA3_256_BLOCK_SIZE, 259 .base.cra_module = THIS_MODULE, 260 }, { 261 .digestsize = SHA3_384_DIGEST_SIZE, 262 .init = crypto_sha3_init, 263 .update = crypto_sha3_update, 264 .final = crypto_sha3_final, 265 .descsize = sizeof(struct sha3_state), 266 .base.cra_name = "sha3-384", 267 .base.cra_driver_name = "sha3-384-generic", 268 .base.cra_blocksize = SHA3_384_BLOCK_SIZE, 269 .base.cra_module = THIS_MODULE, 270 }, { 271 .digestsize = SHA3_512_DIGEST_SIZE, 272 .init = crypto_sha3_init, 273 .update = crypto_sha3_update, 274 .final = crypto_sha3_final, 275 .descsize = sizeof(struct sha3_state), 276 .base.cra_name = "sha3-512", 277 .base.cra_driver_name = "sha3-512-generic", 278 .base.cra_blocksize = SHA3_512_BLOCK_SIZE, 279 .base.cra_module = THIS_MODULE, 280 } }; 281 282 static int __init sha3_generic_mod_init(void) 283 { 284 return crypto_register_shashes(algs, ARRAY_SIZE(algs)); 285 } 286 287 static void __exit sha3_generic_mod_fini(void) 288 { 289 crypto_unregister_shashes(algs, ARRAY_SIZE(algs)); 290 } 291 292 subsys_initcall(sha3_generic_mod_init); 293 module_exit(sha3_generic_mod_fini); 294 295 MODULE_LICENSE("GPL"); 296 MODULE_DESCRIPTION("SHA-3 Secure Hash Algorithm"); 297 298 MODULE_ALIAS_CRYPTO("sha3-224"); 299 MODULE_ALIAS_CRYPTO("sha3-224-generic"); 300 MODULE_ALIAS_CRYPTO("sha3-256"); 301 MODULE_ALIAS_CRYPTO("sha3-256-generic"); 302 MODULE_ALIAS_CRYPTO("sha3-384"); 303 MODULE_ALIAS_CRYPTO("sha3-384-generic"); 304 MODULE_ALIAS_CRYPTO("sha3-512"); 305 MODULE_ALIAS_CRYPTO("sha3-512-generic"); 306
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.