~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/simd.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Shared crypto simd helpers
  4  *
  5  * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
  6  * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
  7  * Copyright (c) 2019 Google LLC
  8  *
  9  * Based on aesni-intel_glue.c by:
 10  *  Copyright (C) 2008, Intel Corp.
 11  *    Author: Huang Ying <ying.huang@intel.com>
 12  */
 13 
 14 /*
 15  * Shared crypto SIMD helpers.  These functions dynamically create and register
 16  * an skcipher or AEAD algorithm that wraps another, internal algorithm.  The
 17  * wrapper ensures that the internal algorithm is only executed in a context
 18  * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
 19  * If SIMD is already usable, the wrapper directly calls the internal algorithm.
 20  * Otherwise it defers execution to a workqueue via cryptd.
 21  *
 22  * This is an alternative to the internal algorithm implementing a fallback for
 23  * the !may_use_simd() case itself.
 24  *
 25  * Note that the wrapper algorithm is asynchronous, i.e. it has the
 26  * CRYPTO_ALG_ASYNC flag set.  Therefore it won't be found by users who
 27  * explicitly allocate a synchronous algorithm.
 28  */
 29 
 30 #include <crypto/cryptd.h>
 31 #include <crypto/internal/aead.h>
 32 #include <crypto/internal/simd.h>
 33 #include <crypto/internal/skcipher.h>
 34 #include <linux/kernel.h>
 35 #include <linux/module.h>
 36 #include <linux/preempt.h>
 37 #include <asm/simd.h>
 38 
 39 /* skcipher support */
 40 
 41 struct simd_skcipher_alg {
 42         const char *ialg_name;
 43         struct skcipher_alg alg;
 44 };
 45 
 46 struct simd_skcipher_ctx {
 47         struct cryptd_skcipher *cryptd_tfm;
 48 };
 49 
 50 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
 51                                 unsigned int key_len)
 52 {
 53         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
 54         struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
 55 
 56         crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 57         crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
 58                                          CRYPTO_TFM_REQ_MASK);
 59         return crypto_skcipher_setkey(child, key, key_len);
 60 }
 61 
 62 static int simd_skcipher_encrypt(struct skcipher_request *req)
 63 {
 64         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 65         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
 66         struct skcipher_request *subreq;
 67         struct crypto_skcipher *child;
 68 
 69         subreq = skcipher_request_ctx(req);
 70         *subreq = *req;
 71 
 72         if (!crypto_simd_usable() ||
 73             (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
 74                 child = &ctx->cryptd_tfm->base;
 75         else
 76                 child = cryptd_skcipher_child(ctx->cryptd_tfm);
 77 
 78         skcipher_request_set_tfm(subreq, child);
 79 
 80         return crypto_skcipher_encrypt(subreq);
 81 }
 82 
 83 static int simd_skcipher_decrypt(struct skcipher_request *req)
 84 {
 85         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 86         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
 87         struct skcipher_request *subreq;
 88         struct crypto_skcipher *child;
 89 
 90         subreq = skcipher_request_ctx(req);
 91         *subreq = *req;
 92 
 93         if (!crypto_simd_usable() ||
 94             (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
 95                 child = &ctx->cryptd_tfm->base;
 96         else
 97                 child = cryptd_skcipher_child(ctx->cryptd_tfm);
 98 
 99         skcipher_request_set_tfm(subreq, child);
100 
101         return crypto_skcipher_decrypt(subreq);
102 }
103 
104 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
105 {
106         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
107 
108         cryptd_free_skcipher(ctx->cryptd_tfm);
109 }
110 
111 static int simd_skcipher_init(struct crypto_skcipher *tfm)
112 {
113         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
114         struct cryptd_skcipher *cryptd_tfm;
115         struct simd_skcipher_alg *salg;
116         struct skcipher_alg *alg;
117         unsigned reqsize;
118 
119         alg = crypto_skcipher_alg(tfm);
120         salg = container_of(alg, struct simd_skcipher_alg, alg);
121 
122         cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
123                                            CRYPTO_ALG_INTERNAL,
124                                            CRYPTO_ALG_INTERNAL);
125         if (IS_ERR(cryptd_tfm))
126                 return PTR_ERR(cryptd_tfm);
127 
128         ctx->cryptd_tfm = cryptd_tfm;
129 
130         reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
131         reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
132         reqsize += sizeof(struct skcipher_request);
133 
134         crypto_skcipher_set_reqsize(tfm, reqsize);
135 
136         return 0;
137 }
138 
139 struct simd_skcipher_alg *simd_skcipher_create_compat(struct skcipher_alg *ialg,
140                                                       const char *algname,
141                                                       const char *drvname,
142                                                       const char *basename)
143 {
144         struct simd_skcipher_alg *salg;
145         struct skcipher_alg *alg;
146         int err;
147 
148         salg = kzalloc(sizeof(*salg), GFP_KERNEL);
149         if (!salg) {
150                 salg = ERR_PTR(-ENOMEM);
151                 goto out;
152         }
153 
154         salg->ialg_name = basename;
155         alg = &salg->alg;
156 
157         err = -ENAMETOOLONG;
158         if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
159             CRYPTO_MAX_ALG_NAME)
160                 goto out_free_salg;
161 
162         if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
163                      drvname) >= CRYPTO_MAX_ALG_NAME)
164                 goto out_free_salg;
165 
166         alg->base.cra_flags = CRYPTO_ALG_ASYNC |
167                 (ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
168         alg->base.cra_priority = ialg->base.cra_priority;
169         alg->base.cra_blocksize = ialg->base.cra_blocksize;
170         alg->base.cra_alignmask = ialg->base.cra_alignmask;
171         alg->base.cra_module = ialg->base.cra_module;
172         alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
173 
174         alg->ivsize = ialg->ivsize;
175         alg->chunksize = ialg->chunksize;
176         alg->min_keysize = ialg->min_keysize;
177         alg->max_keysize = ialg->max_keysize;
178 
179         alg->init = simd_skcipher_init;
180         alg->exit = simd_skcipher_exit;
181 
182         alg->setkey = simd_skcipher_setkey;
183         alg->encrypt = simd_skcipher_encrypt;
184         alg->decrypt = simd_skcipher_decrypt;
185 
186         err = crypto_register_skcipher(alg);
187         if (err)
188                 goto out_free_salg;
189 
190 out:
191         return salg;
192 
193 out_free_salg:
194         kfree(salg);
195         salg = ERR_PTR(err);
196         goto out;
197 }
198 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
199 
200 void simd_skcipher_free(struct simd_skcipher_alg *salg)
201 {
202         crypto_unregister_skcipher(&salg->alg);
203         kfree(salg);
204 }
205 EXPORT_SYMBOL_GPL(simd_skcipher_free);
206 
207 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
208                                    struct simd_skcipher_alg **simd_algs)
209 {
210         int err;
211         int i;
212         const char *algname;
213         const char *drvname;
214         const char *basename;
215         struct simd_skcipher_alg *simd;
216 
217         err = crypto_register_skciphers(algs, count);
218         if (err)
219                 return err;
220 
221         for (i = 0; i < count; i++) {
222                 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
223                 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
224                 algname = algs[i].base.cra_name + 2;
225                 drvname = algs[i].base.cra_driver_name + 2;
226                 basename = algs[i].base.cra_driver_name;
227                 simd = simd_skcipher_create_compat(algs + i, algname, drvname, basename);
228                 err = PTR_ERR(simd);
229                 if (IS_ERR(simd))
230                         goto err_unregister;
231                 simd_algs[i] = simd;
232         }
233         return 0;
234 
235 err_unregister:
236         simd_unregister_skciphers(algs, count, simd_algs);
237         return err;
238 }
239 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
240 
241 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
242                                struct simd_skcipher_alg **simd_algs)
243 {
244         int i;
245 
246         crypto_unregister_skciphers(algs, count);
247 
248         for (i = 0; i < count; i++) {
249                 if (simd_algs[i]) {
250                         simd_skcipher_free(simd_algs[i]);
251                         simd_algs[i] = NULL;
252                 }
253         }
254 }
255 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
256 
257 /* AEAD support */
258 
259 struct simd_aead_alg {
260         const char *ialg_name;
261         struct aead_alg alg;
262 };
263 
264 struct simd_aead_ctx {
265         struct cryptd_aead *cryptd_tfm;
266 };
267 
268 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
269                                 unsigned int key_len)
270 {
271         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
272         struct crypto_aead *child = &ctx->cryptd_tfm->base;
273 
274         crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
275         crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
276                                      CRYPTO_TFM_REQ_MASK);
277         return crypto_aead_setkey(child, key, key_len);
278 }
279 
280 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
281 {
282         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
283         struct crypto_aead *child = &ctx->cryptd_tfm->base;
284 
285         return crypto_aead_setauthsize(child, authsize);
286 }
287 
288 static int simd_aead_encrypt(struct aead_request *req)
289 {
290         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
291         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
292         struct aead_request *subreq;
293         struct crypto_aead *child;
294 
295         subreq = aead_request_ctx(req);
296         *subreq = *req;
297 
298         if (!crypto_simd_usable() ||
299             (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
300                 child = &ctx->cryptd_tfm->base;
301         else
302                 child = cryptd_aead_child(ctx->cryptd_tfm);
303 
304         aead_request_set_tfm(subreq, child);
305 
306         return crypto_aead_encrypt(subreq);
307 }
308 
309 static int simd_aead_decrypt(struct aead_request *req)
310 {
311         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
312         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
313         struct aead_request *subreq;
314         struct crypto_aead *child;
315 
316         subreq = aead_request_ctx(req);
317         *subreq = *req;
318 
319         if (!crypto_simd_usable() ||
320             (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
321                 child = &ctx->cryptd_tfm->base;
322         else
323                 child = cryptd_aead_child(ctx->cryptd_tfm);
324 
325         aead_request_set_tfm(subreq, child);
326 
327         return crypto_aead_decrypt(subreq);
328 }
329 
330 static void simd_aead_exit(struct crypto_aead *tfm)
331 {
332         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
333 
334         cryptd_free_aead(ctx->cryptd_tfm);
335 }
336 
337 static int simd_aead_init(struct crypto_aead *tfm)
338 {
339         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
340         struct cryptd_aead *cryptd_tfm;
341         struct simd_aead_alg *salg;
342         struct aead_alg *alg;
343         unsigned reqsize;
344 
345         alg = crypto_aead_alg(tfm);
346         salg = container_of(alg, struct simd_aead_alg, alg);
347 
348         cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
349                                        CRYPTO_ALG_INTERNAL);
350         if (IS_ERR(cryptd_tfm))
351                 return PTR_ERR(cryptd_tfm);
352 
353         ctx->cryptd_tfm = cryptd_tfm;
354 
355         reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
356         reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
357         reqsize += sizeof(struct aead_request);
358 
359         crypto_aead_set_reqsize(tfm, reqsize);
360 
361         return 0;
362 }
363 
364 static struct simd_aead_alg *simd_aead_create_compat(struct aead_alg *ialg,
365                                                      const char *algname,
366                                                      const char *drvname,
367                                                      const char *basename)
368 {
369         struct simd_aead_alg *salg;
370         struct aead_alg *alg;
371         int err;
372 
373         salg = kzalloc(sizeof(*salg), GFP_KERNEL);
374         if (!salg) {
375                 salg = ERR_PTR(-ENOMEM);
376                 goto out;
377         }
378 
379         salg->ialg_name = basename;
380         alg = &salg->alg;
381 
382         err = -ENAMETOOLONG;
383         if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
384             CRYPTO_MAX_ALG_NAME)
385                 goto out_free_salg;
386 
387         if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
388                      drvname) >= CRYPTO_MAX_ALG_NAME)
389                 goto out_free_salg;
390 
391         alg->base.cra_flags = CRYPTO_ALG_ASYNC |
392                 (ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
393         alg->base.cra_priority = ialg->base.cra_priority;
394         alg->base.cra_blocksize = ialg->base.cra_blocksize;
395         alg->base.cra_alignmask = ialg->base.cra_alignmask;
396         alg->base.cra_module = ialg->base.cra_module;
397         alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
398 
399         alg->ivsize = ialg->ivsize;
400         alg->maxauthsize = ialg->maxauthsize;
401         alg->chunksize = ialg->chunksize;
402 
403         alg->init = simd_aead_init;
404         alg->exit = simd_aead_exit;
405 
406         alg->setkey = simd_aead_setkey;
407         alg->setauthsize = simd_aead_setauthsize;
408         alg->encrypt = simd_aead_encrypt;
409         alg->decrypt = simd_aead_decrypt;
410 
411         err = crypto_register_aead(alg);
412         if (err)
413                 goto out_free_salg;
414 
415 out:
416         return salg;
417 
418 out_free_salg:
419         kfree(salg);
420         salg = ERR_PTR(err);
421         goto out;
422 }
423 
424 static void simd_aead_free(struct simd_aead_alg *salg)
425 {
426         crypto_unregister_aead(&salg->alg);
427         kfree(salg);
428 }
429 
430 int simd_register_aeads_compat(struct aead_alg *algs, int count,
431                                struct simd_aead_alg **simd_algs)
432 {
433         int err;
434         int i;
435         const char *algname;
436         const char *drvname;
437         const char *basename;
438         struct simd_aead_alg *simd;
439 
440         err = crypto_register_aeads(algs, count);
441         if (err)
442                 return err;
443 
444         for (i = 0; i < count; i++) {
445                 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
446                 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
447                 algname = algs[i].base.cra_name + 2;
448                 drvname = algs[i].base.cra_driver_name + 2;
449                 basename = algs[i].base.cra_driver_name;
450                 simd = simd_aead_create_compat(algs + i, algname, drvname, basename);
451                 err = PTR_ERR(simd);
452                 if (IS_ERR(simd))
453                         goto err_unregister;
454                 simd_algs[i] = simd;
455         }
456         return 0;
457 
458 err_unregister:
459         simd_unregister_aeads(algs, count, simd_algs);
460         return err;
461 }
462 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
463 
464 void simd_unregister_aeads(struct aead_alg *algs, int count,
465                            struct simd_aead_alg **simd_algs)
466 {
467         int i;
468 
469         crypto_unregister_aeads(algs, count);
470 
471         for (i = 0; i < count; i++) {
472                 if (simd_algs[i]) {
473                         simd_aead_free(simd_algs[i]);
474                         simd_algs[i] = NULL;
475                 }
476         }
477 }
478 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
479 
480 MODULE_DESCRIPTION("Shared crypto SIMD helpers");
481 MODULE_LICENSE("GPL");
482 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php