~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/skcipher.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Symmetric key cipher operations.
  4  *
  5  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
  6  * multiple page boundaries by using temporary blocks.  In user context,
  7  * the kernel is given a chance to schedule us once per page.
  8  *
  9  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
 10  */
 11 
 12 #include <crypto/internal/aead.h>
 13 #include <crypto/internal/cipher.h>
 14 #include <crypto/internal/skcipher.h>
 15 #include <crypto/scatterwalk.h>
 16 #include <linux/bug.h>
 17 #include <linux/cryptouser.h>
 18 #include <linux/err.h>
 19 #include <linux/kernel.h>
 20 #include <linux/list.h>
 21 #include <linux/mm.h>
 22 #include <linux/module.h>
 23 #include <linux/seq_file.h>
 24 #include <linux/slab.h>
 25 #include <linux/string.h>
 26 #include <net/netlink.h>
 27 #include "skcipher.h"
 28 
 29 #define CRYPTO_ALG_TYPE_SKCIPHER_MASK   0x0000000e
 30 
 31 enum {
 32         SKCIPHER_WALK_PHYS = 1 << 0,
 33         SKCIPHER_WALK_SLOW = 1 << 1,
 34         SKCIPHER_WALK_COPY = 1 << 2,
 35         SKCIPHER_WALK_DIFF = 1 << 3,
 36         SKCIPHER_WALK_SLEEP = 1 << 4,
 37 };
 38 
 39 struct skcipher_walk_buffer {
 40         struct list_head entry;
 41         struct scatter_walk dst;
 42         unsigned int len;
 43         u8 *data;
 44         u8 buffer[];
 45 };
 46 
 47 static const struct crypto_type crypto_skcipher_type;
 48 
 49 static int skcipher_walk_next(struct skcipher_walk *walk);
 50 
 51 static inline void skcipher_map_src(struct skcipher_walk *walk)
 52 {
 53         walk->src.virt.addr = scatterwalk_map(&walk->in);
 54 }
 55 
 56 static inline void skcipher_map_dst(struct skcipher_walk *walk)
 57 {
 58         walk->dst.virt.addr = scatterwalk_map(&walk->out);
 59 }
 60 
 61 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
 62 {
 63         scatterwalk_unmap(walk->src.virt.addr);
 64 }
 65 
 66 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
 67 {
 68         scatterwalk_unmap(walk->dst.virt.addr);
 69 }
 70 
 71 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
 72 {
 73         return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
 74 }
 75 
 76 /* Get a spot of the specified length that does not straddle a page.
 77  * The caller needs to ensure that there is enough space for this operation.
 78  */
 79 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
 80 {
 81         u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
 82 
 83         return max(start, end_page);
 84 }
 85 
 86 static inline struct skcipher_alg *__crypto_skcipher_alg(
 87         struct crypto_alg *alg)
 88 {
 89         return container_of(alg, struct skcipher_alg, base);
 90 }
 91 
 92 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
 93 {
 94         u8 *addr;
 95 
 96         addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
 97         addr = skcipher_get_spot(addr, bsize);
 98         scatterwalk_copychunks(addr, &walk->out, bsize,
 99                                (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
100         return 0;
101 }
102 
103 int skcipher_walk_done(struct skcipher_walk *walk, int err)
104 {
105         unsigned int n = walk->nbytes;
106         unsigned int nbytes = 0;
107 
108         if (!n)
109                 goto finish;
110 
111         if (likely(err >= 0)) {
112                 n -= err;
113                 nbytes = walk->total - n;
114         }
115 
116         if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
117                                     SKCIPHER_WALK_SLOW |
118                                     SKCIPHER_WALK_COPY |
119                                     SKCIPHER_WALK_DIFF)))) {
120 unmap_src:
121                 skcipher_unmap_src(walk);
122         } else if (walk->flags & SKCIPHER_WALK_DIFF) {
123                 skcipher_unmap_dst(walk);
124                 goto unmap_src;
125         } else if (walk->flags & SKCIPHER_WALK_COPY) {
126                 skcipher_map_dst(walk);
127                 memcpy(walk->dst.virt.addr, walk->page, n);
128                 skcipher_unmap_dst(walk);
129         } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
130                 if (err > 0) {
131                         /*
132                          * Didn't process all bytes.  Either the algorithm is
133                          * broken, or this was the last step and it turned out
134                          * the message wasn't evenly divisible into blocks but
135                          * the algorithm requires it.
136                          */
137                         err = -EINVAL;
138                         nbytes = 0;
139                 } else
140                         n = skcipher_done_slow(walk, n);
141         }
142 
143         if (err > 0)
144                 err = 0;
145 
146         walk->total = nbytes;
147         walk->nbytes = 0;
148 
149         scatterwalk_advance(&walk->in, n);
150         scatterwalk_advance(&walk->out, n);
151         scatterwalk_done(&walk->in, 0, nbytes);
152         scatterwalk_done(&walk->out, 1, nbytes);
153 
154         if (nbytes) {
155                 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
156                              CRYPTO_TFM_REQ_MAY_SLEEP : 0);
157                 return skcipher_walk_next(walk);
158         }
159 
160 finish:
161         /* Short-circuit for the common/fast path. */
162         if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
163                 goto out;
164 
165         if (walk->flags & SKCIPHER_WALK_PHYS)
166                 goto out;
167 
168         if (walk->iv != walk->oiv)
169                 memcpy(walk->oiv, walk->iv, walk->ivsize);
170         if (walk->buffer != walk->page)
171                 kfree(walk->buffer);
172         if (walk->page)
173                 free_page((unsigned long)walk->page);
174 
175 out:
176         return err;
177 }
178 EXPORT_SYMBOL_GPL(skcipher_walk_done);
179 
180 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
181 {
182         struct skcipher_walk_buffer *p, *tmp;
183 
184         list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
185                 u8 *data;
186 
187                 if (err)
188                         goto done;
189 
190                 data = p->data;
191                 if (!data) {
192                         data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
193                         data = skcipher_get_spot(data, walk->stride);
194                 }
195 
196                 scatterwalk_copychunks(data, &p->dst, p->len, 1);
197 
198                 if (offset_in_page(p->data) + p->len + walk->stride >
199                     PAGE_SIZE)
200                         free_page((unsigned long)p->data);
201 
202 done:
203                 list_del(&p->entry);
204                 kfree(p);
205         }
206 
207         if (!err && walk->iv != walk->oiv)
208                 memcpy(walk->oiv, walk->iv, walk->ivsize);
209         if (walk->buffer != walk->page)
210                 kfree(walk->buffer);
211         if (walk->page)
212                 free_page((unsigned long)walk->page);
213 }
214 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
215 
216 static void skcipher_queue_write(struct skcipher_walk *walk,
217                                  struct skcipher_walk_buffer *p)
218 {
219         p->dst = walk->out;
220         list_add_tail(&p->entry, &walk->buffers);
221 }
222 
223 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
224 {
225         bool phys = walk->flags & SKCIPHER_WALK_PHYS;
226         unsigned alignmask = walk->alignmask;
227         struct skcipher_walk_buffer *p;
228         unsigned a;
229         unsigned n;
230         u8 *buffer;
231         void *v;
232 
233         if (!phys) {
234                 if (!walk->buffer)
235                         walk->buffer = walk->page;
236                 buffer = walk->buffer;
237                 if (buffer)
238                         goto ok;
239         }
240 
241         /* Start with the minimum alignment of kmalloc. */
242         a = crypto_tfm_ctx_alignment() - 1;
243         n = bsize;
244 
245         if (phys) {
246                 /* Calculate the minimum alignment of p->buffer. */
247                 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
248                 n += sizeof(*p);
249         }
250 
251         /* Minimum size to align p->buffer by alignmask. */
252         n += alignmask & ~a;
253 
254         /* Minimum size to ensure p->buffer does not straddle a page. */
255         n += (bsize - 1) & ~(alignmask | a);
256 
257         v = kzalloc(n, skcipher_walk_gfp(walk));
258         if (!v)
259                 return skcipher_walk_done(walk, -ENOMEM);
260 
261         if (phys) {
262                 p = v;
263                 p->len = bsize;
264                 skcipher_queue_write(walk, p);
265                 buffer = p->buffer;
266         } else {
267                 walk->buffer = v;
268                 buffer = v;
269         }
270 
271 ok:
272         walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
273         walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
274         walk->src.virt.addr = walk->dst.virt.addr;
275 
276         scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
277 
278         walk->nbytes = bsize;
279         walk->flags |= SKCIPHER_WALK_SLOW;
280 
281         return 0;
282 }
283 
284 static int skcipher_next_copy(struct skcipher_walk *walk)
285 {
286         struct skcipher_walk_buffer *p;
287         u8 *tmp = walk->page;
288 
289         skcipher_map_src(walk);
290         memcpy(tmp, walk->src.virt.addr, walk->nbytes);
291         skcipher_unmap_src(walk);
292 
293         walk->src.virt.addr = tmp;
294         walk->dst.virt.addr = tmp;
295 
296         if (!(walk->flags & SKCIPHER_WALK_PHYS))
297                 return 0;
298 
299         p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
300         if (!p)
301                 return -ENOMEM;
302 
303         p->data = walk->page;
304         p->len = walk->nbytes;
305         skcipher_queue_write(walk, p);
306 
307         if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
308             PAGE_SIZE)
309                 walk->page = NULL;
310         else
311                 walk->page += walk->nbytes;
312 
313         return 0;
314 }
315 
316 static int skcipher_next_fast(struct skcipher_walk *walk)
317 {
318         unsigned long diff;
319 
320         walk->src.phys.page = scatterwalk_page(&walk->in);
321         walk->src.phys.offset = offset_in_page(walk->in.offset);
322         walk->dst.phys.page = scatterwalk_page(&walk->out);
323         walk->dst.phys.offset = offset_in_page(walk->out.offset);
324 
325         if (walk->flags & SKCIPHER_WALK_PHYS)
326                 return 0;
327 
328         diff = walk->src.phys.offset - walk->dst.phys.offset;
329         diff |= walk->src.virt.page - walk->dst.virt.page;
330 
331         skcipher_map_src(walk);
332         walk->dst.virt.addr = walk->src.virt.addr;
333 
334         if (diff) {
335                 walk->flags |= SKCIPHER_WALK_DIFF;
336                 skcipher_map_dst(walk);
337         }
338 
339         return 0;
340 }
341 
342 static int skcipher_walk_next(struct skcipher_walk *walk)
343 {
344         unsigned int bsize;
345         unsigned int n;
346         int err;
347 
348         walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
349                          SKCIPHER_WALK_DIFF);
350 
351         n = walk->total;
352         bsize = min(walk->stride, max(n, walk->blocksize));
353         n = scatterwalk_clamp(&walk->in, n);
354         n = scatterwalk_clamp(&walk->out, n);
355 
356         if (unlikely(n < bsize)) {
357                 if (unlikely(walk->total < walk->blocksize))
358                         return skcipher_walk_done(walk, -EINVAL);
359 
360 slow_path:
361                 err = skcipher_next_slow(walk, bsize);
362                 goto set_phys_lowmem;
363         }
364 
365         if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
366                 if (!walk->page) {
367                         gfp_t gfp = skcipher_walk_gfp(walk);
368 
369                         walk->page = (void *)__get_free_page(gfp);
370                         if (!walk->page)
371                                 goto slow_path;
372                 }
373 
374                 walk->nbytes = min_t(unsigned, n,
375                                      PAGE_SIZE - offset_in_page(walk->page));
376                 walk->flags |= SKCIPHER_WALK_COPY;
377                 err = skcipher_next_copy(walk);
378                 goto set_phys_lowmem;
379         }
380 
381         walk->nbytes = n;
382 
383         return skcipher_next_fast(walk);
384 
385 set_phys_lowmem:
386         if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
387                 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
388                 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
389                 walk->src.phys.offset &= PAGE_SIZE - 1;
390                 walk->dst.phys.offset &= PAGE_SIZE - 1;
391         }
392         return err;
393 }
394 
395 static int skcipher_copy_iv(struct skcipher_walk *walk)
396 {
397         unsigned a = crypto_tfm_ctx_alignment() - 1;
398         unsigned alignmask = walk->alignmask;
399         unsigned ivsize = walk->ivsize;
400         unsigned bs = walk->stride;
401         unsigned aligned_bs;
402         unsigned size;
403         u8 *iv;
404 
405         aligned_bs = ALIGN(bs, alignmask + 1);
406 
407         /* Minimum size to align buffer by alignmask. */
408         size = alignmask & ~a;
409 
410         if (walk->flags & SKCIPHER_WALK_PHYS)
411                 size += ivsize;
412         else {
413                 size += aligned_bs + ivsize;
414 
415                 /* Minimum size to ensure buffer does not straddle a page. */
416                 size += (bs - 1) & ~(alignmask | a);
417         }
418 
419         walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
420         if (!walk->buffer)
421                 return -ENOMEM;
422 
423         iv = PTR_ALIGN(walk->buffer, alignmask + 1);
424         iv = skcipher_get_spot(iv, bs) + aligned_bs;
425 
426         walk->iv = memcpy(iv, walk->iv, walk->ivsize);
427         return 0;
428 }
429 
430 static int skcipher_walk_first(struct skcipher_walk *walk)
431 {
432         if (WARN_ON_ONCE(in_hardirq()))
433                 return -EDEADLK;
434 
435         walk->buffer = NULL;
436         if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
437                 int err = skcipher_copy_iv(walk);
438                 if (err)
439                         return err;
440         }
441 
442         walk->page = NULL;
443 
444         return skcipher_walk_next(walk);
445 }
446 
447 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
448                                   struct skcipher_request *req)
449 {
450         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
451         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
452 
453         walk->total = req->cryptlen;
454         walk->nbytes = 0;
455         walk->iv = req->iv;
456         walk->oiv = req->iv;
457 
458         if (unlikely(!walk->total))
459                 return 0;
460 
461         scatterwalk_start(&walk->in, req->src);
462         scatterwalk_start(&walk->out, req->dst);
463 
464         walk->flags &= ~SKCIPHER_WALK_SLEEP;
465         walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
466                        SKCIPHER_WALK_SLEEP : 0;
467 
468         walk->blocksize = crypto_skcipher_blocksize(tfm);
469         walk->ivsize = crypto_skcipher_ivsize(tfm);
470         walk->alignmask = crypto_skcipher_alignmask(tfm);
471 
472         if (alg->co.base.cra_type != &crypto_skcipher_type)
473                 walk->stride = alg->co.chunksize;
474         else
475                 walk->stride = alg->walksize;
476 
477         return skcipher_walk_first(walk);
478 }
479 
480 int skcipher_walk_virt(struct skcipher_walk *walk,
481                        struct skcipher_request *req, bool atomic)
482 {
483         int err;
484 
485         might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
486 
487         walk->flags &= ~SKCIPHER_WALK_PHYS;
488 
489         err = skcipher_walk_skcipher(walk, req);
490 
491         walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
492 
493         return err;
494 }
495 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
496 
497 int skcipher_walk_async(struct skcipher_walk *walk,
498                         struct skcipher_request *req)
499 {
500         walk->flags |= SKCIPHER_WALK_PHYS;
501 
502         INIT_LIST_HEAD(&walk->buffers);
503 
504         return skcipher_walk_skcipher(walk, req);
505 }
506 EXPORT_SYMBOL_GPL(skcipher_walk_async);
507 
508 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
509                                      struct aead_request *req, bool atomic)
510 {
511         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
512         int err;
513 
514         walk->nbytes = 0;
515         walk->iv = req->iv;
516         walk->oiv = req->iv;
517 
518         if (unlikely(!walk->total))
519                 return 0;
520 
521         walk->flags &= ~SKCIPHER_WALK_PHYS;
522 
523         scatterwalk_start(&walk->in, req->src);
524         scatterwalk_start(&walk->out, req->dst);
525 
526         scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
527         scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
528 
529         scatterwalk_done(&walk->in, 0, walk->total);
530         scatterwalk_done(&walk->out, 0, walk->total);
531 
532         if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
533                 walk->flags |= SKCIPHER_WALK_SLEEP;
534         else
535                 walk->flags &= ~SKCIPHER_WALK_SLEEP;
536 
537         walk->blocksize = crypto_aead_blocksize(tfm);
538         walk->stride = crypto_aead_chunksize(tfm);
539         walk->ivsize = crypto_aead_ivsize(tfm);
540         walk->alignmask = crypto_aead_alignmask(tfm);
541 
542         err = skcipher_walk_first(walk);
543 
544         if (atomic)
545                 walk->flags &= ~SKCIPHER_WALK_SLEEP;
546 
547         return err;
548 }
549 
550 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
551                                struct aead_request *req, bool atomic)
552 {
553         walk->total = req->cryptlen;
554 
555         return skcipher_walk_aead_common(walk, req, atomic);
556 }
557 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
558 
559 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
560                                struct aead_request *req, bool atomic)
561 {
562         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
563 
564         walk->total = req->cryptlen - crypto_aead_authsize(tfm);
565 
566         return skcipher_walk_aead_common(walk, req, atomic);
567 }
568 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
569 
570 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
571 {
572         if (crypto_skcipher_max_keysize(tfm) != 0)
573                 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
574 }
575 
576 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
577                                      const u8 *key, unsigned int keylen)
578 {
579         unsigned long alignmask = crypto_skcipher_alignmask(tfm);
580         struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
581         u8 *buffer, *alignbuffer;
582         unsigned long absize;
583         int ret;
584 
585         absize = keylen + alignmask;
586         buffer = kmalloc(absize, GFP_ATOMIC);
587         if (!buffer)
588                 return -ENOMEM;
589 
590         alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
591         memcpy(alignbuffer, key, keylen);
592         ret = cipher->setkey(tfm, alignbuffer, keylen);
593         kfree_sensitive(buffer);
594         return ret;
595 }
596 
597 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
598                            unsigned int keylen)
599 {
600         struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
601         unsigned long alignmask = crypto_skcipher_alignmask(tfm);
602         int err;
603 
604         if (cipher->co.base.cra_type != &crypto_skcipher_type) {
605                 struct crypto_lskcipher **ctx = crypto_skcipher_ctx(tfm);
606 
607                 crypto_lskcipher_clear_flags(*ctx, CRYPTO_TFM_REQ_MASK);
608                 crypto_lskcipher_set_flags(*ctx,
609                                            crypto_skcipher_get_flags(tfm) &
610                                            CRYPTO_TFM_REQ_MASK);
611                 err = crypto_lskcipher_setkey(*ctx, key, keylen);
612                 goto out;
613         }
614 
615         if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
616                 return -EINVAL;
617 
618         if ((unsigned long)key & alignmask)
619                 err = skcipher_setkey_unaligned(tfm, key, keylen);
620         else
621                 err = cipher->setkey(tfm, key, keylen);
622 
623 out:
624         if (unlikely(err)) {
625                 skcipher_set_needkey(tfm);
626                 return err;
627         }
628 
629         crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
630         return 0;
631 }
632 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
633 
634 int crypto_skcipher_encrypt(struct skcipher_request *req)
635 {
636         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
637         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
638 
639         if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
640                 return -ENOKEY;
641         if (alg->co.base.cra_type != &crypto_skcipher_type)
642                 return crypto_lskcipher_encrypt_sg(req);
643         return alg->encrypt(req);
644 }
645 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
646 
647 int crypto_skcipher_decrypt(struct skcipher_request *req)
648 {
649         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
650         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
651 
652         if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
653                 return -ENOKEY;
654         if (alg->co.base.cra_type != &crypto_skcipher_type)
655                 return crypto_lskcipher_decrypt_sg(req);
656         return alg->decrypt(req);
657 }
658 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
659 
660 static int crypto_lskcipher_export(struct skcipher_request *req, void *out)
661 {
662         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
663         u8 *ivs = skcipher_request_ctx(req);
664 
665         ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(tfm) + 1);
666 
667         memcpy(out, ivs + crypto_skcipher_ivsize(tfm),
668                crypto_skcipher_statesize(tfm));
669 
670         return 0;
671 }
672 
673 static int crypto_lskcipher_import(struct skcipher_request *req, const void *in)
674 {
675         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
676         u8 *ivs = skcipher_request_ctx(req);
677 
678         ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(tfm) + 1);
679 
680         memcpy(ivs + crypto_skcipher_ivsize(tfm), in,
681                crypto_skcipher_statesize(tfm));
682 
683         return 0;
684 }
685 
686 static int skcipher_noexport(struct skcipher_request *req, void *out)
687 {
688         return 0;
689 }
690 
691 static int skcipher_noimport(struct skcipher_request *req, const void *in)
692 {
693         return 0;
694 }
695 
696 int crypto_skcipher_export(struct skcipher_request *req, void *out)
697 {
698         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
699         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
700 
701         if (alg->co.base.cra_type != &crypto_skcipher_type)
702                 return crypto_lskcipher_export(req, out);
703         return alg->export(req, out);
704 }
705 EXPORT_SYMBOL_GPL(crypto_skcipher_export);
706 
707 int crypto_skcipher_import(struct skcipher_request *req, const void *in)
708 {
709         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
710         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
711 
712         if (alg->co.base.cra_type != &crypto_skcipher_type)
713                 return crypto_lskcipher_import(req, in);
714         return alg->import(req, in);
715 }
716 EXPORT_SYMBOL_GPL(crypto_skcipher_import);
717 
718 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
719 {
720         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
721         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
722 
723         alg->exit(skcipher);
724 }
725 
726 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
727 {
728         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
729         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
730 
731         skcipher_set_needkey(skcipher);
732 
733         if (tfm->__crt_alg->cra_type != &crypto_skcipher_type) {
734                 unsigned am = crypto_skcipher_alignmask(skcipher);
735                 unsigned reqsize;
736 
737                 reqsize = am & ~(crypto_tfm_ctx_alignment() - 1);
738                 reqsize += crypto_skcipher_ivsize(skcipher);
739                 reqsize += crypto_skcipher_statesize(skcipher);
740                 crypto_skcipher_set_reqsize(skcipher, reqsize);
741 
742                 return crypto_init_lskcipher_ops_sg(tfm);
743         }
744 
745         if (alg->exit)
746                 skcipher->base.exit = crypto_skcipher_exit_tfm;
747 
748         if (alg->init)
749                 return alg->init(skcipher);
750 
751         return 0;
752 }
753 
754 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
755 {
756         if (alg->cra_type != &crypto_skcipher_type)
757                 return sizeof(struct crypto_lskcipher *);
758 
759         return crypto_alg_extsize(alg);
760 }
761 
762 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
763 {
764         struct skcipher_instance *skcipher =
765                 container_of(inst, struct skcipher_instance, s.base);
766 
767         skcipher->free(skcipher);
768 }
769 
770 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
771         __maybe_unused;
772 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
773 {
774         struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg);
775 
776         seq_printf(m, "type         : skcipher\n");
777         seq_printf(m, "async        : %s\n",
778                    alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
779         seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
780         seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
781         seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
782         seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
783         seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
784         seq_printf(m, "walksize     : %u\n", skcipher->walksize);
785         seq_printf(m, "statesize    : %u\n", skcipher->statesize);
786 }
787 
788 static int __maybe_unused crypto_skcipher_report(
789         struct sk_buff *skb, struct crypto_alg *alg)
790 {
791         struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg);
792         struct crypto_report_blkcipher rblkcipher;
793 
794         memset(&rblkcipher, 0, sizeof(rblkcipher));
795 
796         strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
797         strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
798 
799         rblkcipher.blocksize = alg->cra_blocksize;
800         rblkcipher.min_keysize = skcipher->min_keysize;
801         rblkcipher.max_keysize = skcipher->max_keysize;
802         rblkcipher.ivsize = skcipher->ivsize;
803 
804         return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
805                        sizeof(rblkcipher), &rblkcipher);
806 }
807 
808 static const struct crypto_type crypto_skcipher_type = {
809         .extsize = crypto_skcipher_extsize,
810         .init_tfm = crypto_skcipher_init_tfm,
811         .free = crypto_skcipher_free_instance,
812 #ifdef CONFIG_PROC_FS
813         .show = crypto_skcipher_show,
814 #endif
815 #if IS_ENABLED(CONFIG_CRYPTO_USER)
816         .report = crypto_skcipher_report,
817 #endif
818         .maskclear = ~CRYPTO_ALG_TYPE_MASK,
819         .maskset = CRYPTO_ALG_TYPE_SKCIPHER_MASK,
820         .type = CRYPTO_ALG_TYPE_SKCIPHER,
821         .tfmsize = offsetof(struct crypto_skcipher, base),
822 };
823 
824 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
825                          struct crypto_instance *inst,
826                          const char *name, u32 type, u32 mask)
827 {
828         spawn->base.frontend = &crypto_skcipher_type;
829         return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
830 }
831 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
832 
833 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
834                                               u32 type, u32 mask)
835 {
836         return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
837 }
838 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
839 
840 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
841                                 const char *alg_name, u32 type, u32 mask)
842 {
843         struct crypto_skcipher *tfm;
844 
845         /* Only sync algorithms allowed. */
846         mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE;
847 
848         tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
849 
850         /*
851          * Make sure we do not allocate something that might get used with
852          * an on-stack request: check the request size.
853          */
854         if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
855                                     MAX_SYNC_SKCIPHER_REQSIZE)) {
856                 crypto_free_skcipher(tfm);
857                 return ERR_PTR(-EINVAL);
858         }
859 
860         return (struct crypto_sync_skcipher *)tfm;
861 }
862 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
863 
864 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
865 {
866         return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
867 }
868 EXPORT_SYMBOL_GPL(crypto_has_skcipher);
869 
870 int skcipher_prepare_alg_common(struct skcipher_alg_common *alg)
871 {
872         struct crypto_alg *base = &alg->base;
873 
874         if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
875             alg->statesize > PAGE_SIZE / 2 ||
876             (alg->ivsize + alg->statesize) > PAGE_SIZE / 2)
877                 return -EINVAL;
878 
879         if (!alg->chunksize)
880                 alg->chunksize = base->cra_blocksize;
881 
882         base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
883 
884         return 0;
885 }
886 
887 static int skcipher_prepare_alg(struct skcipher_alg *alg)
888 {
889         struct crypto_alg *base = &alg->base;
890         int err;
891 
892         err = skcipher_prepare_alg_common(&alg->co);
893         if (err)
894                 return err;
895 
896         if (alg->walksize > PAGE_SIZE / 8)
897                 return -EINVAL;
898 
899         if (!alg->walksize)
900                 alg->walksize = alg->chunksize;
901 
902         if (!alg->statesize) {
903                 alg->import = skcipher_noimport;
904                 alg->export = skcipher_noexport;
905         } else if (!(alg->import && alg->export))
906                 return -EINVAL;
907 
908         base->cra_type = &crypto_skcipher_type;
909         base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
910 
911         return 0;
912 }
913 
914 int crypto_register_skcipher(struct skcipher_alg *alg)
915 {
916         struct crypto_alg *base = &alg->base;
917         int err;
918 
919         err = skcipher_prepare_alg(alg);
920         if (err)
921                 return err;
922 
923         return crypto_register_alg(base);
924 }
925 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
926 
927 void crypto_unregister_skcipher(struct skcipher_alg *alg)
928 {
929         crypto_unregister_alg(&alg->base);
930 }
931 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
932 
933 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
934 {
935         int i, ret;
936 
937         for (i = 0; i < count; i++) {
938                 ret = crypto_register_skcipher(&algs[i]);
939                 if (ret)
940                         goto err;
941         }
942 
943         return 0;
944 
945 err:
946         for (--i; i >= 0; --i)
947                 crypto_unregister_skcipher(&algs[i]);
948 
949         return ret;
950 }
951 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
952 
953 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
954 {
955         int i;
956 
957         for (i = count - 1; i >= 0; --i)
958                 crypto_unregister_skcipher(&algs[i]);
959 }
960 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
961 
962 int skcipher_register_instance(struct crypto_template *tmpl,
963                            struct skcipher_instance *inst)
964 {
965         int err;
966 
967         if (WARN_ON(!inst->free))
968                 return -EINVAL;
969 
970         err = skcipher_prepare_alg(&inst->alg);
971         if (err)
972                 return err;
973 
974         return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
975 }
976 EXPORT_SYMBOL_GPL(skcipher_register_instance);
977 
978 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
979                                   unsigned int keylen)
980 {
981         struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
982 
983         crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
984         crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
985                                 CRYPTO_TFM_REQ_MASK);
986         return crypto_cipher_setkey(cipher, key, keylen);
987 }
988 
989 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
990 {
991         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
992         struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
993         struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
994         struct crypto_cipher *cipher;
995 
996         cipher = crypto_spawn_cipher(spawn);
997         if (IS_ERR(cipher))
998                 return PTR_ERR(cipher);
999 
1000         ctx->cipher = cipher;
1001         return 0;
1002 }
1003 
1004 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
1005 {
1006         struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1007 
1008         crypto_free_cipher(ctx->cipher);
1009 }
1010 
1011 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
1012 {
1013         crypto_drop_cipher(skcipher_instance_ctx(inst));
1014         kfree(inst);
1015 }
1016 
1017 /**
1018  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
1019  *
1020  * Allocate an skcipher_instance for a simple block cipher mode of operation,
1021  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
1022  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
1023  * alignmask, and priority are set from the underlying cipher but can be
1024  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
1025  * default ->setkey(), ->init(), and ->exit() methods are installed.
1026  *
1027  * @tmpl: the template being instantiated
1028  * @tb: the template parameters
1029  *
1030  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
1031  *         needs to register the instance.
1032  */
1033 struct skcipher_instance *skcipher_alloc_instance_simple(
1034         struct crypto_template *tmpl, struct rtattr **tb)
1035 {
1036         u32 mask;
1037         struct skcipher_instance *inst;
1038         struct crypto_cipher_spawn *spawn;
1039         struct crypto_alg *cipher_alg;
1040         int err;
1041 
1042         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
1043         if (err)
1044                 return ERR_PTR(err);
1045 
1046         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
1047         if (!inst)
1048                 return ERR_PTR(-ENOMEM);
1049         spawn = skcipher_instance_ctx(inst);
1050 
1051         err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
1052                                  crypto_attr_alg_name(tb[1]), 0, mask);
1053         if (err)
1054                 goto err_free_inst;
1055         cipher_alg = crypto_spawn_cipher_alg(spawn);
1056 
1057         err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
1058                                   cipher_alg);
1059         if (err)
1060                 goto err_free_inst;
1061 
1062         inst->free = skcipher_free_instance_simple;
1063 
1064         /* Default algorithm properties, can be overridden */
1065         inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
1066         inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
1067         inst->alg.base.cra_priority = cipher_alg->cra_priority;
1068         inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
1069         inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
1070         inst->alg.ivsize = cipher_alg->cra_blocksize;
1071 
1072         /* Use skcipher_ctx_simple by default, can be overridden */
1073         inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
1074         inst->alg.setkey = skcipher_setkey_simple;
1075         inst->alg.init = skcipher_init_tfm_simple;
1076         inst->alg.exit = skcipher_exit_tfm_simple;
1077 
1078         return inst;
1079 
1080 err_free_inst:
1081         skcipher_free_instance_simple(inst);
1082         return ERR_PTR(err);
1083 }
1084 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
1085 
1086 MODULE_LICENSE("GPL");
1087 MODULE_DESCRIPTION("Symmetric key cipher type");
1088 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
1089 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php