1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* AFS filesystem file handling 3 * 4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/writeback.h> 14 #include <linux/gfp.h> 15 #include <linux/task_io_accounting_ops.h> 16 #include <linux/mm.h> 17 #include <linux/swap.h> 18 #include <linux/netfs.h> 19 #include "internal.h" 20 21 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma); 22 static int afs_symlink_read_folio(struct file *file, struct folio *folio); 23 24 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter); 25 static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos, 26 struct pipe_inode_info *pipe, 27 size_t len, unsigned int flags); 28 static void afs_vm_open(struct vm_area_struct *area); 29 static void afs_vm_close(struct vm_area_struct *area); 30 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); 31 32 const struct file_operations afs_file_operations = { 33 .open = afs_open, 34 .release = afs_release, 35 .llseek = generic_file_llseek, 36 .read_iter = afs_file_read_iter, 37 .write_iter = netfs_file_write_iter, 38 .mmap = afs_file_mmap, 39 .splice_read = afs_file_splice_read, 40 .splice_write = iter_file_splice_write, 41 .fsync = afs_fsync, 42 .lock = afs_lock, 43 .flock = afs_flock, 44 }; 45 46 const struct inode_operations afs_file_inode_operations = { 47 .getattr = afs_getattr, 48 .setattr = afs_setattr, 49 .permission = afs_permission, 50 }; 51 52 const struct address_space_operations afs_file_aops = { 53 .direct_IO = noop_direct_IO, 54 .read_folio = netfs_read_folio, 55 .readahead = netfs_readahead, 56 .dirty_folio = netfs_dirty_folio, 57 .release_folio = netfs_release_folio, 58 .invalidate_folio = netfs_invalidate_folio, 59 .migrate_folio = filemap_migrate_folio, 60 .writepages = afs_writepages, 61 }; 62 63 const struct address_space_operations afs_symlink_aops = { 64 .read_folio = afs_symlink_read_folio, 65 .release_folio = netfs_release_folio, 66 .invalidate_folio = netfs_invalidate_folio, 67 .migrate_folio = filemap_migrate_folio, 68 }; 69 70 static const struct vm_operations_struct afs_vm_ops = { 71 .open = afs_vm_open, 72 .close = afs_vm_close, 73 .fault = filemap_fault, 74 .map_pages = afs_vm_map_pages, 75 .page_mkwrite = afs_page_mkwrite, 76 }; 77 78 /* 79 * Discard a pin on a writeback key. 80 */ 81 void afs_put_wb_key(struct afs_wb_key *wbk) 82 { 83 if (wbk && refcount_dec_and_test(&wbk->usage)) { 84 key_put(wbk->key); 85 kfree(wbk); 86 } 87 } 88 89 /* 90 * Cache key for writeback. 91 */ 92 int afs_cache_wb_key(struct afs_vnode *vnode, struct afs_file *af) 93 { 94 struct afs_wb_key *wbk, *p; 95 96 wbk = kzalloc(sizeof(struct afs_wb_key), GFP_KERNEL); 97 if (!wbk) 98 return -ENOMEM; 99 refcount_set(&wbk->usage, 2); 100 wbk->key = af->key; 101 102 spin_lock(&vnode->wb_lock); 103 list_for_each_entry(p, &vnode->wb_keys, vnode_link) { 104 if (p->key == wbk->key) 105 goto found; 106 } 107 108 key_get(wbk->key); 109 list_add_tail(&wbk->vnode_link, &vnode->wb_keys); 110 spin_unlock(&vnode->wb_lock); 111 af->wb = wbk; 112 return 0; 113 114 found: 115 refcount_inc(&p->usage); 116 spin_unlock(&vnode->wb_lock); 117 af->wb = p; 118 kfree(wbk); 119 return 0; 120 } 121 122 /* 123 * open an AFS file or directory and attach a key to it 124 */ 125 int afs_open(struct inode *inode, struct file *file) 126 { 127 struct afs_vnode *vnode = AFS_FS_I(inode); 128 struct afs_file *af; 129 struct key *key; 130 int ret; 131 132 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode); 133 134 key = afs_request_key(vnode->volume->cell); 135 if (IS_ERR(key)) { 136 ret = PTR_ERR(key); 137 goto error; 138 } 139 140 af = kzalloc(sizeof(*af), GFP_KERNEL); 141 if (!af) { 142 ret = -ENOMEM; 143 goto error_key; 144 } 145 af->key = key; 146 147 ret = afs_validate(vnode, key); 148 if (ret < 0) 149 goto error_af; 150 151 if (file->f_mode & FMODE_WRITE) { 152 ret = afs_cache_wb_key(vnode, af); 153 if (ret < 0) 154 goto error_af; 155 } 156 157 if (file->f_flags & O_TRUNC) 158 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 159 160 fscache_use_cookie(afs_vnode_cache(vnode), file->f_mode & FMODE_WRITE); 161 162 file->private_data = af; 163 _leave(" = 0"); 164 return 0; 165 166 error_af: 167 kfree(af); 168 error_key: 169 key_put(key); 170 error: 171 _leave(" = %d", ret); 172 return ret; 173 } 174 175 /* 176 * release an AFS file or directory and discard its key 177 */ 178 int afs_release(struct inode *inode, struct file *file) 179 { 180 struct afs_vnode_cache_aux aux; 181 struct afs_vnode *vnode = AFS_FS_I(inode); 182 struct afs_file *af = file->private_data; 183 loff_t i_size; 184 int ret = 0; 185 186 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode); 187 188 if ((file->f_mode & FMODE_WRITE)) 189 ret = vfs_fsync(file, 0); 190 191 file->private_data = NULL; 192 if (af->wb) 193 afs_put_wb_key(af->wb); 194 195 if ((file->f_mode & FMODE_WRITE)) { 196 i_size = i_size_read(&vnode->netfs.inode); 197 afs_set_cache_aux(vnode, &aux); 198 fscache_unuse_cookie(afs_vnode_cache(vnode), &aux, &i_size); 199 } else { 200 fscache_unuse_cookie(afs_vnode_cache(vnode), NULL, NULL); 201 } 202 203 key_put(af->key); 204 kfree(af); 205 afs_prune_wb_keys(vnode); 206 _leave(" = %d", ret); 207 return ret; 208 } 209 210 /* 211 * Allocate a new read record. 212 */ 213 struct afs_read *afs_alloc_read(gfp_t gfp) 214 { 215 struct afs_read *req; 216 217 req = kzalloc(sizeof(struct afs_read), gfp); 218 if (req) 219 refcount_set(&req->usage, 1); 220 221 return req; 222 } 223 224 /* 225 * Dispose of a ref to a read record. 226 */ 227 void afs_put_read(struct afs_read *req) 228 { 229 if (refcount_dec_and_test(&req->usage)) { 230 if (req->cleanup) 231 req->cleanup(req); 232 key_put(req->key); 233 kfree(req); 234 } 235 } 236 237 static void afs_fetch_data_notify(struct afs_operation *op) 238 { 239 struct afs_read *req = op->fetch.req; 240 struct netfs_io_subrequest *subreq = req->subreq; 241 int error = afs_op_error(op); 242 243 req->error = error; 244 if (subreq) { 245 if (subreq->rreq->origin != NETFS_DIO_READ) 246 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 247 netfs_subreq_terminated(subreq, error ?: req->actual_len, false); 248 req->subreq = NULL; 249 } else if (req->done) { 250 req->done(req); 251 } 252 } 253 254 static void afs_fetch_data_success(struct afs_operation *op) 255 { 256 struct afs_vnode *vnode = op->file[0].vnode; 257 258 _enter("op=%08x", op->debug_id); 259 afs_vnode_commit_status(op, &op->file[0]); 260 afs_stat_v(vnode, n_fetches); 261 atomic_long_add(op->fetch.req->actual_len, &op->net->n_fetch_bytes); 262 afs_fetch_data_notify(op); 263 } 264 265 static void afs_fetch_data_put(struct afs_operation *op) 266 { 267 op->fetch.req->error = afs_op_error(op); 268 afs_put_read(op->fetch.req); 269 } 270 271 static const struct afs_operation_ops afs_fetch_data_operation = { 272 .issue_afs_rpc = afs_fs_fetch_data, 273 .issue_yfs_rpc = yfs_fs_fetch_data, 274 .success = afs_fetch_data_success, 275 .aborted = afs_check_for_remote_deletion, 276 .failed = afs_fetch_data_notify, 277 .put = afs_fetch_data_put, 278 }; 279 280 /* 281 * Fetch file data from the volume. 282 */ 283 int afs_fetch_data(struct afs_vnode *vnode, struct afs_read *req) 284 { 285 struct afs_operation *op; 286 287 _enter("%s{%llx:%llu.%u},%x,,,", 288 vnode->volume->name, 289 vnode->fid.vid, 290 vnode->fid.vnode, 291 vnode->fid.unique, 292 key_serial(req->key)); 293 294 op = afs_alloc_operation(req->key, vnode->volume); 295 if (IS_ERR(op)) { 296 if (req->subreq) 297 netfs_subreq_terminated(req->subreq, PTR_ERR(op), false); 298 return PTR_ERR(op); 299 } 300 301 afs_op_set_vnode(op, 0, vnode); 302 303 op->fetch.req = afs_get_read(req); 304 op->ops = &afs_fetch_data_operation; 305 return afs_do_sync_operation(op); 306 } 307 308 static void afs_issue_read(struct netfs_io_subrequest *subreq) 309 { 310 struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode); 311 struct afs_read *fsreq; 312 313 fsreq = afs_alloc_read(GFP_NOFS); 314 if (!fsreq) 315 return netfs_subreq_terminated(subreq, -ENOMEM, false); 316 317 fsreq->subreq = subreq; 318 fsreq->pos = subreq->start + subreq->transferred; 319 fsreq->len = subreq->len - subreq->transferred; 320 fsreq->key = key_get(subreq->rreq->netfs_priv); 321 fsreq->vnode = vnode; 322 fsreq->iter = &subreq->io_iter; 323 324 afs_fetch_data(fsreq->vnode, fsreq); 325 afs_put_read(fsreq); 326 } 327 328 static int afs_symlink_read_folio(struct file *file, struct folio *folio) 329 { 330 struct afs_vnode *vnode = AFS_FS_I(folio->mapping->host); 331 struct afs_read *fsreq; 332 int ret; 333 334 fsreq = afs_alloc_read(GFP_NOFS); 335 if (!fsreq) 336 return -ENOMEM; 337 338 fsreq->pos = folio_pos(folio); 339 fsreq->len = folio_size(folio); 340 fsreq->vnode = vnode; 341 fsreq->iter = &fsreq->def_iter; 342 iov_iter_xarray(&fsreq->def_iter, ITER_DEST, &folio->mapping->i_pages, 343 fsreq->pos, fsreq->len); 344 345 ret = afs_fetch_data(fsreq->vnode, fsreq); 346 if (ret == 0) 347 folio_mark_uptodate(folio); 348 folio_unlock(folio); 349 return ret; 350 } 351 352 static int afs_init_request(struct netfs_io_request *rreq, struct file *file) 353 { 354 if (file) 355 rreq->netfs_priv = key_get(afs_file_key(file)); 356 rreq->rsize = 256 * 1024; 357 rreq->wsize = 256 * 1024 * 1024; 358 return 0; 359 } 360 361 static int afs_check_write_begin(struct file *file, loff_t pos, unsigned len, 362 struct folio **foliop, void **_fsdata) 363 { 364 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 365 366 return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0; 367 } 368 369 static void afs_free_request(struct netfs_io_request *rreq) 370 { 371 key_put(rreq->netfs_priv); 372 afs_put_wb_key(rreq->netfs_priv2); 373 } 374 375 static void afs_update_i_size(struct inode *inode, loff_t new_i_size) 376 { 377 struct afs_vnode *vnode = AFS_FS_I(inode); 378 loff_t i_size; 379 380 write_seqlock(&vnode->cb_lock); 381 i_size = i_size_read(&vnode->netfs.inode); 382 if (new_i_size > i_size) { 383 i_size_write(&vnode->netfs.inode, new_i_size); 384 inode_set_bytes(&vnode->netfs.inode, new_i_size); 385 } 386 write_sequnlock(&vnode->cb_lock); 387 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &new_i_size); 388 } 389 390 static void afs_netfs_invalidate_cache(struct netfs_io_request *wreq) 391 { 392 struct afs_vnode *vnode = AFS_FS_I(wreq->inode); 393 394 afs_invalidate_cache(vnode, 0); 395 } 396 397 const struct netfs_request_ops afs_req_ops = { 398 .init_request = afs_init_request, 399 .free_request = afs_free_request, 400 .check_write_begin = afs_check_write_begin, 401 .issue_read = afs_issue_read, 402 .update_i_size = afs_update_i_size, 403 .invalidate_cache = afs_netfs_invalidate_cache, 404 .begin_writeback = afs_begin_writeback, 405 .prepare_write = afs_prepare_write, 406 .issue_write = afs_issue_write, 407 .retry_request = afs_retry_request, 408 }; 409 410 static void afs_add_open_mmap(struct afs_vnode *vnode) 411 { 412 if (atomic_inc_return(&vnode->cb_nr_mmap) == 1) { 413 down_write(&vnode->volume->open_mmaps_lock); 414 415 if (list_empty(&vnode->cb_mmap_link)) 416 list_add_tail(&vnode->cb_mmap_link, &vnode->volume->open_mmaps); 417 418 up_write(&vnode->volume->open_mmaps_lock); 419 } 420 } 421 422 static void afs_drop_open_mmap(struct afs_vnode *vnode) 423 { 424 if (atomic_add_unless(&vnode->cb_nr_mmap, -1, 1)) 425 return; 426 427 down_write(&vnode->volume->open_mmaps_lock); 428 429 read_seqlock_excl(&vnode->cb_lock); 430 // the only place where ->cb_nr_mmap may hit 0 431 // see __afs_break_callback() for the other side... 432 if (atomic_dec_and_test(&vnode->cb_nr_mmap)) 433 list_del_init(&vnode->cb_mmap_link); 434 read_sequnlock_excl(&vnode->cb_lock); 435 436 up_write(&vnode->volume->open_mmaps_lock); 437 flush_work(&vnode->cb_work); 438 } 439 440 /* 441 * Handle setting up a memory mapping on an AFS file. 442 */ 443 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma) 444 { 445 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 446 int ret; 447 448 afs_add_open_mmap(vnode); 449 450 ret = generic_file_mmap(file, vma); 451 if (ret == 0) 452 vma->vm_ops = &afs_vm_ops; 453 else 454 afs_drop_open_mmap(vnode); 455 return ret; 456 } 457 458 static void afs_vm_open(struct vm_area_struct *vma) 459 { 460 afs_add_open_mmap(AFS_FS_I(file_inode(vma->vm_file))); 461 } 462 463 static void afs_vm_close(struct vm_area_struct *vma) 464 { 465 afs_drop_open_mmap(AFS_FS_I(file_inode(vma->vm_file))); 466 } 467 468 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff) 469 { 470 struct afs_vnode *vnode = AFS_FS_I(file_inode(vmf->vma->vm_file)); 471 472 if (afs_check_validity(vnode)) 473 return filemap_map_pages(vmf, start_pgoff, end_pgoff); 474 return 0; 475 } 476 477 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 478 { 479 struct inode *inode = file_inode(iocb->ki_filp); 480 struct afs_vnode *vnode = AFS_FS_I(inode); 481 struct afs_file *af = iocb->ki_filp->private_data; 482 ssize_t ret; 483 484 if (iocb->ki_flags & IOCB_DIRECT) 485 return netfs_unbuffered_read_iter(iocb, iter); 486 487 ret = netfs_start_io_read(inode); 488 if (ret < 0) 489 return ret; 490 ret = afs_validate(vnode, af->key); 491 if (ret == 0) 492 ret = filemap_read(iocb, iter, 0); 493 netfs_end_io_read(inode); 494 return ret; 495 } 496 497 static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos, 498 struct pipe_inode_info *pipe, 499 size_t len, unsigned int flags) 500 { 501 struct inode *inode = file_inode(in); 502 struct afs_vnode *vnode = AFS_FS_I(inode); 503 struct afs_file *af = in->private_data; 504 ssize_t ret; 505 506 ret = netfs_start_io_read(inode); 507 if (ret < 0) 508 return ret; 509 ret = afs_validate(vnode, af->key); 510 if (ret == 0) 511 ret = filemap_splice_read(in, ppos, pipe, len, flags); 512 netfs_end_io_read(inode); 513 return ret; 514 } 515
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.