~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/aio.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  *      An async IO implementation for Linux
  3  *      Written by Benjamin LaHaise <bcrl@kvack.org>
  4  *
  5  *      Implements an efficient asynchronous io interface.
  6  *
  7  *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
  8  *      Copyright 2018 Christoph Hellwig.
  9  *
 10  *      See ../COPYING for licensing terms.
 11  */
 12 #define pr_fmt(fmt) "%s: " fmt, __func__
 13 
 14 #include <linux/kernel.h>
 15 #include <linux/init.h>
 16 #include <linux/errno.h>
 17 #include <linux/time.h>
 18 #include <linux/aio_abi.h>
 19 #include <linux/export.h>
 20 #include <linux/syscalls.h>
 21 #include <linux/backing-dev.h>
 22 #include <linux/refcount.h>
 23 #include <linux/uio.h>
 24 
 25 #include <linux/sched/signal.h>
 26 #include <linux/fs.h>
 27 #include <linux/file.h>
 28 #include <linux/mm.h>
 29 #include <linux/mman.h>
 30 #include <linux/percpu.h>
 31 #include <linux/slab.h>
 32 #include <linux/timer.h>
 33 #include <linux/aio.h>
 34 #include <linux/highmem.h>
 35 #include <linux/workqueue.h>
 36 #include <linux/security.h>
 37 #include <linux/eventfd.h>
 38 #include <linux/blkdev.h>
 39 #include <linux/compat.h>
 40 #include <linux/migrate.h>
 41 #include <linux/ramfs.h>
 42 #include <linux/percpu-refcount.h>
 43 #include <linux/mount.h>
 44 #include <linux/pseudo_fs.h>
 45 
 46 #include <linux/uaccess.h>
 47 #include <linux/nospec.h>
 48 
 49 #include "internal.h"
 50 
 51 #define KIOCB_KEY               0
 52 
 53 #define AIO_RING_MAGIC                  0xa10a10a1
 54 #define AIO_RING_COMPAT_FEATURES        1
 55 #define AIO_RING_INCOMPAT_FEATURES      0
 56 struct aio_ring {
 57         unsigned        id;     /* kernel internal index number */
 58         unsigned        nr;     /* number of io_events */
 59         unsigned        head;   /* Written to by userland or under ring_lock
 60                                  * mutex by aio_read_events_ring(). */
 61         unsigned        tail;
 62 
 63         unsigned        magic;
 64         unsigned        compat_features;
 65         unsigned        incompat_features;
 66         unsigned        header_length;  /* size of aio_ring */
 67 
 68 
 69         struct io_event         io_events[];
 70 }; /* 128 bytes + ring size */
 71 
 72 /*
 73  * Plugging is meant to work with larger batches of IOs. If we don't
 74  * have more than the below, then don't bother setting up a plug.
 75  */
 76 #define AIO_PLUG_THRESHOLD      2
 77 
 78 #define AIO_RING_PAGES  8
 79 
 80 struct kioctx_table {
 81         struct rcu_head         rcu;
 82         unsigned                nr;
 83         struct kioctx __rcu     *table[] __counted_by(nr);
 84 };
 85 
 86 struct kioctx_cpu {
 87         unsigned                reqs_available;
 88 };
 89 
 90 struct ctx_rq_wait {
 91         struct completion comp;
 92         atomic_t count;
 93 };
 94 
 95 struct kioctx {
 96         struct percpu_ref       users;
 97         atomic_t                dead;
 98 
 99         struct percpu_ref       reqs;
100 
101         unsigned long           user_id;
102 
103         struct __percpu kioctx_cpu *cpu;
104 
105         /*
106          * For percpu reqs_available, number of slots we move to/from global
107          * counter at a time:
108          */
109         unsigned                req_batch;
110         /*
111          * This is what userspace passed to io_setup(), it's not used for
112          * anything but counting against the global max_reqs quota.
113          *
114          * The real limit is nr_events - 1, which will be larger (see
115          * aio_setup_ring())
116          */
117         unsigned                max_reqs;
118 
119         /* Size of ringbuffer, in units of struct io_event */
120         unsigned                nr_events;
121 
122         unsigned long           mmap_base;
123         unsigned long           mmap_size;
124 
125         struct folio            **ring_folios;
126         long                    nr_pages;
127 
128         struct rcu_work         free_rwork;     /* see free_ioctx() */
129 
130         /*
131          * signals when all in-flight requests are done
132          */
133         struct ctx_rq_wait      *rq_wait;
134 
135         struct {
136                 /*
137                  * This counts the number of available slots in the ringbuffer,
138                  * so we avoid overflowing it: it's decremented (if positive)
139                  * when allocating a kiocb and incremented when the resulting
140                  * io_event is pulled off the ringbuffer.
141                  *
142                  * We batch accesses to it with a percpu version.
143                  */
144                 atomic_t        reqs_available;
145         } ____cacheline_aligned_in_smp;
146 
147         struct {
148                 spinlock_t      ctx_lock;
149                 struct list_head active_reqs;   /* used for cancellation */
150         } ____cacheline_aligned_in_smp;
151 
152         struct {
153                 struct mutex    ring_lock;
154                 wait_queue_head_t wait;
155         } ____cacheline_aligned_in_smp;
156 
157         struct {
158                 unsigned        tail;
159                 unsigned        completed_events;
160                 spinlock_t      completion_lock;
161         } ____cacheline_aligned_in_smp;
162 
163         struct folio            *internal_folios[AIO_RING_PAGES];
164         struct file             *aio_ring_file;
165 
166         unsigned                id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174         struct file             *file;
175         struct work_struct      work;
176         bool                    datasync;
177         struct cred             *creds;
178 };
179 
180 struct poll_iocb {
181         struct file             *file;
182         struct wait_queue_head  *head;
183         __poll_t                events;
184         bool                    cancelled;
185         bool                    work_scheduled;
186         bool                    work_need_resched;
187         struct wait_queue_entry wait;
188         struct work_struct      work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198         union {
199                 struct file             *ki_filp;
200                 struct kiocb            rw;
201                 struct fsync_iocb       fsync;
202                 struct poll_iocb        poll;
203         };
204 
205         struct kioctx           *ki_ctx;
206         kiocb_cancel_fn         *ki_cancel;
207 
208         struct io_event         ki_res;
209 
210         struct list_head        ki_list;        /* the aio core uses this
211                                                  * for cancellation */
212         refcount_t              ki_refcnt;
213 
214         /*
215          * If the aio_resfd field of the userspace iocb is not zero,
216          * this is the underlying eventfd context to deliver events to.
217          */
218         struct eventfd_ctx      *ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;            /* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228         {
229                 .procname       = "aio-nr",
230                 .data           = &aio_nr,
231                 .maxlen         = sizeof(aio_nr),
232                 .mode           = 0444,
233                 .proc_handler   = proc_doulongvec_minmax,
234         },
235         {
236                 .procname       = "aio-max-nr",
237                 .data           = &aio_max_nr,
238                 .maxlen         = sizeof(aio_max_nr),
239                 .mode           = 0644,
240                 .proc_handler   = proc_doulongvec_minmax,
241         },
242 };
243 
244 static void __init aio_sysctl_init(void)
245 {
246         register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251 
252 static struct kmem_cache        *kiocb_cachep;
253 static struct kmem_cache        *kioctx_cachep;
254 
255 static struct vfsmount *aio_mnt;
256 
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259 
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262         struct file *file;
263         struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264         if (IS_ERR(inode))
265                 return ERR_CAST(inode);
266 
267         inode->i_mapping->a_ops = &aio_ctx_aops;
268         inode->i_mapping->i_private_data = ctx;
269         inode->i_size = PAGE_SIZE * nr_pages;
270 
271         file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272                                 O_RDWR, &aio_ring_fops);
273         if (IS_ERR(file))
274                 iput(inode);
275         return file;
276 }
277 
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280         if (!init_pseudo(fc, AIO_RING_MAGIC))
281                 return -ENOMEM;
282         fc->s_iflags |= SB_I_NOEXEC;
283         return 0;
284 }
285 
286 /* aio_setup
287  *      Creates the slab caches used by the aio routines, panic on
288  *      failure as this is done early during the boot sequence.
289  */
290 static int __init aio_setup(void)
291 {
292         static struct file_system_type aio_fs = {
293                 .name           = "aio",
294                 .init_fs_context = aio_init_fs_context,
295                 .kill_sb        = kill_anon_super,
296         };
297         aio_mnt = kern_mount(&aio_fs);
298         if (IS_ERR(aio_mnt))
299                 panic("Failed to create aio fs mount.");
300 
301         kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302         kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303         aio_sysctl_init();
304         return 0;
305 }
306 __initcall(aio_setup);
307 
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310         struct file *aio_ring_file = ctx->aio_ring_file;
311         struct address_space *i_mapping;
312 
313         if (aio_ring_file) {
314                 truncate_setsize(file_inode(aio_ring_file), 0);
315 
316                 /* Prevent further access to the kioctx from migratepages */
317                 i_mapping = aio_ring_file->f_mapping;
318                 spin_lock(&i_mapping->i_private_lock);
319                 i_mapping->i_private_data = NULL;
320                 ctx->aio_ring_file = NULL;
321                 spin_unlock(&i_mapping->i_private_lock);
322 
323                 fput(aio_ring_file);
324         }
325 }
326 
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329         int i;
330 
331         /* Disconnect the kiotx from the ring file.  This prevents future
332          * accesses to the kioctx from page migration.
333          */
334         put_aio_ring_file(ctx);
335 
336         for (i = 0; i < ctx->nr_pages; i++) {
337                 struct folio *folio = ctx->ring_folios[i];
338 
339                 if (!folio)
340                         continue;
341 
342                 pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
343                          folio_ref_count(folio));
344                 ctx->ring_folios[i] = NULL;
345                 folio_put(folio);
346         }
347 
348         if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) {
349                 kfree(ctx->ring_folios);
350                 ctx->ring_folios = NULL;
351         }
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356         struct file *file = vma->vm_file;
357         struct mm_struct *mm = vma->vm_mm;
358         struct kioctx_table *table;
359         int i, res = -EINVAL;
360 
361         spin_lock(&mm->ioctx_lock);
362         rcu_read_lock();
363         table = rcu_dereference(mm->ioctx_table);
364         if (!table)
365                 goto out_unlock;
366 
367         for (i = 0; i < table->nr; i++) {
368                 struct kioctx *ctx;
369 
370                 ctx = rcu_dereference(table->table[i]);
371                 if (ctx && ctx->aio_ring_file == file) {
372                         if (!atomic_read(&ctx->dead)) {
373                                 ctx->user_id = ctx->mmap_base = vma->vm_start;
374                                 res = 0;
375                         }
376                         break;
377                 }
378         }
379 
380 out_unlock:
381         rcu_read_unlock();
382         spin_unlock(&mm->ioctx_lock);
383         return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387         .mremap         = aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389         .fault          = filemap_fault,
390         .map_pages      = filemap_map_pages,
391         .page_mkwrite   = filemap_page_mkwrite,
392 #endif
393 };
394 
395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397         vm_flags_set(vma, VM_DONTEXPAND);
398         vma->vm_ops = &aio_ring_vm_ops;
399         return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403         .mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408                         struct folio *src, enum migrate_mode mode)
409 {
410         struct kioctx *ctx;
411         unsigned long flags;
412         pgoff_t idx;
413         int rc = 0;
414 
415         /* mapping->i_private_lock here protects against the kioctx teardown.  */
416         spin_lock(&mapping->i_private_lock);
417         ctx = mapping->i_private_data;
418         if (!ctx) {
419                 rc = -EINVAL;
420                 goto out;
421         }
422 
423         /* The ring_lock mutex.  The prevents aio_read_events() from writing
424          * to the ring's head, and prevents page migration from mucking in
425          * a partially initialized kiotx.
426          */
427         if (!mutex_trylock(&ctx->ring_lock)) {
428                 rc = -EAGAIN;
429                 goto out;
430         }
431 
432         idx = src->index;
433         if (idx < (pgoff_t)ctx->nr_pages) {
434                 /* Make sure the old folio hasn't already been changed */
435                 if (ctx->ring_folios[idx] != src)
436                         rc = -EAGAIN;
437         } else
438                 rc = -EINVAL;
439 
440         if (rc != 0)
441                 goto out_unlock;
442 
443         /* Writeback must be complete */
444         BUG_ON(folio_test_writeback(src));
445         folio_get(dst);
446 
447         rc = folio_migrate_mapping(mapping, dst, src, 1);
448         if (rc != MIGRATEPAGE_SUCCESS) {
449                 folio_put(dst);
450                 goto out_unlock;
451         }
452 
453         /* Take completion_lock to prevent other writes to the ring buffer
454          * while the old folio is copied to the new.  This prevents new
455          * events from being lost.
456          */
457         spin_lock_irqsave(&ctx->completion_lock, flags);
458         folio_copy(dst, src);
459         folio_migrate_flags(dst, src);
460         BUG_ON(ctx->ring_folios[idx] != src);
461         ctx->ring_folios[idx] = dst;
462         spin_unlock_irqrestore(&ctx->completion_lock, flags);
463 
464         /* The old folio is no longer accessible. */
465         folio_put(src);
466 
467 out_unlock:
468         mutex_unlock(&ctx->ring_lock);
469 out:
470         spin_unlock(&mapping->i_private_lock);
471         return rc;
472 }
473 #else
474 #define aio_migrate_folio NULL
475 #endif
476 
477 static const struct address_space_operations aio_ctx_aops = {
478         .dirty_folio    = noop_dirty_folio,
479         .migrate_folio  = aio_migrate_folio,
480 };
481 
482 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
483 {
484         struct aio_ring *ring;
485         struct mm_struct *mm = current->mm;
486         unsigned long size, unused;
487         int nr_pages;
488         int i;
489         struct file *file;
490 
491         /* Compensate for the ring buffer's head/tail overlap entry */
492         nr_events += 2; /* 1 is required, 2 for good luck */
493 
494         size = sizeof(struct aio_ring);
495         size += sizeof(struct io_event) * nr_events;
496 
497         nr_pages = PFN_UP(size);
498         if (nr_pages < 0)
499                 return -EINVAL;
500 
501         file = aio_private_file(ctx, nr_pages);
502         if (IS_ERR(file)) {
503                 ctx->aio_ring_file = NULL;
504                 return -ENOMEM;
505         }
506 
507         ctx->aio_ring_file = file;
508         nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
509                         / sizeof(struct io_event);
510 
511         ctx->ring_folios = ctx->internal_folios;
512         if (nr_pages > AIO_RING_PAGES) {
513                 ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *),
514                                            GFP_KERNEL);
515                 if (!ctx->ring_folios) {
516                         put_aio_ring_file(ctx);
517                         return -ENOMEM;
518                 }
519         }
520 
521         for (i = 0; i < nr_pages; i++) {
522                 struct folio *folio;
523 
524                 folio = __filemap_get_folio(file->f_mapping, i,
525                                             FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
526                                             GFP_USER | __GFP_ZERO);
527                 if (IS_ERR(folio))
528                         break;
529 
530                 pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
531                          folio_ref_count(folio));
532                 folio_end_read(folio, true);
533 
534                 ctx->ring_folios[i] = folio;
535         }
536         ctx->nr_pages = i;
537 
538         if (unlikely(i != nr_pages)) {
539                 aio_free_ring(ctx);
540                 return -ENOMEM;
541         }
542 
543         ctx->mmap_size = nr_pages * PAGE_SIZE;
544         pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
545 
546         if (mmap_write_lock_killable(mm)) {
547                 ctx->mmap_size = 0;
548                 aio_free_ring(ctx);
549                 return -EINTR;
550         }
551 
552         ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
553                                  PROT_READ | PROT_WRITE,
554                                  MAP_SHARED, 0, 0, &unused, NULL);
555         mmap_write_unlock(mm);
556         if (IS_ERR((void *)ctx->mmap_base)) {
557                 ctx->mmap_size = 0;
558                 aio_free_ring(ctx);
559                 return -ENOMEM;
560         }
561 
562         pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
563 
564         ctx->user_id = ctx->mmap_base;
565         ctx->nr_events = nr_events; /* trusted copy */
566 
567         ring = folio_address(ctx->ring_folios[0]);
568         ring->nr = nr_events;   /* user copy */
569         ring->id = ~0U;
570         ring->head = ring->tail = 0;
571         ring->magic = AIO_RING_MAGIC;
572         ring->compat_features = AIO_RING_COMPAT_FEATURES;
573         ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
574         ring->header_length = sizeof(struct aio_ring);
575         flush_dcache_folio(ctx->ring_folios[0]);
576 
577         return 0;
578 }
579 
580 #define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
581 #define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
582 #define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
583 
584 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
585 {
586         struct aio_kiocb *req;
587         struct kioctx *ctx;
588         unsigned long flags;
589 
590         /*
591          * kiocb didn't come from aio or is neither a read nor a write, hence
592          * ignore it.
593          */
594         if (!(iocb->ki_flags & IOCB_AIO_RW))
595                 return;
596 
597         req = container_of(iocb, struct aio_kiocb, rw);
598 
599         if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
600                 return;
601 
602         ctx = req->ki_ctx;
603 
604         spin_lock_irqsave(&ctx->ctx_lock, flags);
605         list_add_tail(&req->ki_list, &ctx->active_reqs);
606         req->ki_cancel = cancel;
607         spin_unlock_irqrestore(&ctx->ctx_lock, flags);
608 }
609 EXPORT_SYMBOL(kiocb_set_cancel_fn);
610 
611 /*
612  * free_ioctx() should be RCU delayed to synchronize against the RCU
613  * protected lookup_ioctx() and also needs process context to call
614  * aio_free_ring().  Use rcu_work.
615  */
616 static void free_ioctx(struct work_struct *work)
617 {
618         struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
619                                           free_rwork);
620         pr_debug("freeing %p\n", ctx);
621 
622         aio_free_ring(ctx);
623         free_percpu(ctx->cpu);
624         percpu_ref_exit(&ctx->reqs);
625         percpu_ref_exit(&ctx->users);
626         kmem_cache_free(kioctx_cachep, ctx);
627 }
628 
629 static void free_ioctx_reqs(struct percpu_ref *ref)
630 {
631         struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
632 
633         /* At this point we know that there are no any in-flight requests */
634         if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
635                 complete(&ctx->rq_wait->comp);
636 
637         /* Synchronize against RCU protected table->table[] dereferences */
638         INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
639         queue_rcu_work(system_wq, &ctx->free_rwork);
640 }
641 
642 /*
643  * When this function runs, the kioctx has been removed from the "hash table"
644  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
645  * now it's safe to cancel any that need to be.
646  */
647 static void free_ioctx_users(struct percpu_ref *ref)
648 {
649         struct kioctx *ctx = container_of(ref, struct kioctx, users);
650         struct aio_kiocb *req;
651 
652         spin_lock_irq(&ctx->ctx_lock);
653 
654         while (!list_empty(&ctx->active_reqs)) {
655                 req = list_first_entry(&ctx->active_reqs,
656                                        struct aio_kiocb, ki_list);
657                 req->ki_cancel(&req->rw);
658                 list_del_init(&req->ki_list);
659         }
660 
661         spin_unlock_irq(&ctx->ctx_lock);
662 
663         percpu_ref_kill(&ctx->reqs);
664         percpu_ref_put(&ctx->reqs);
665 }
666 
667 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
668 {
669         unsigned i, new_nr;
670         struct kioctx_table *table, *old;
671         struct aio_ring *ring;
672 
673         spin_lock(&mm->ioctx_lock);
674         table = rcu_dereference_raw(mm->ioctx_table);
675 
676         while (1) {
677                 if (table)
678                         for (i = 0; i < table->nr; i++)
679                                 if (!rcu_access_pointer(table->table[i])) {
680                                         ctx->id = i;
681                                         rcu_assign_pointer(table->table[i], ctx);
682                                         spin_unlock(&mm->ioctx_lock);
683 
684                                         /* While kioctx setup is in progress,
685                                          * we are protected from page migration
686                                          * changes ring_folios by ->ring_lock.
687                                          */
688                                         ring = folio_address(ctx->ring_folios[0]);
689                                         ring->id = ctx->id;
690                                         return 0;
691                                 }
692 
693                 new_nr = (table ? table->nr : 1) * 4;
694                 spin_unlock(&mm->ioctx_lock);
695 
696                 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
697                 if (!table)
698                         return -ENOMEM;
699 
700                 table->nr = new_nr;
701 
702                 spin_lock(&mm->ioctx_lock);
703                 old = rcu_dereference_raw(mm->ioctx_table);
704 
705                 if (!old) {
706                         rcu_assign_pointer(mm->ioctx_table, table);
707                 } else if (table->nr > old->nr) {
708                         memcpy(table->table, old->table,
709                                old->nr * sizeof(struct kioctx *));
710 
711                         rcu_assign_pointer(mm->ioctx_table, table);
712                         kfree_rcu(old, rcu);
713                 } else {
714                         kfree(table);
715                         table = old;
716                 }
717         }
718 }
719 
720 static void aio_nr_sub(unsigned nr)
721 {
722         spin_lock(&aio_nr_lock);
723         if (WARN_ON(aio_nr - nr > aio_nr))
724                 aio_nr = 0;
725         else
726                 aio_nr -= nr;
727         spin_unlock(&aio_nr_lock);
728 }
729 
730 /* ioctx_alloc
731  *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
732  */
733 static struct kioctx *ioctx_alloc(unsigned nr_events)
734 {
735         struct mm_struct *mm = current->mm;
736         struct kioctx *ctx;
737         int err = -ENOMEM;
738 
739         /*
740          * Store the original nr_events -- what userspace passed to io_setup(),
741          * for counting against the global limit -- before it changes.
742          */
743         unsigned int max_reqs = nr_events;
744 
745         /*
746          * We keep track of the number of available ringbuffer slots, to prevent
747          * overflow (reqs_available), and we also use percpu counters for this.
748          *
749          * So since up to half the slots might be on other cpu's percpu counters
750          * and unavailable, double nr_events so userspace sees what they
751          * expected: additionally, we move req_batch slots to/from percpu
752          * counters at a time, so make sure that isn't 0:
753          */
754         nr_events = max(nr_events, num_possible_cpus() * 4);
755         nr_events *= 2;
756 
757         /* Prevent overflows */
758         if (nr_events > (0x10000000U / sizeof(struct io_event))) {
759                 pr_debug("ENOMEM: nr_events too high\n");
760                 return ERR_PTR(-EINVAL);
761         }
762 
763         if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
764                 return ERR_PTR(-EAGAIN);
765 
766         ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
767         if (!ctx)
768                 return ERR_PTR(-ENOMEM);
769 
770         ctx->max_reqs = max_reqs;
771 
772         spin_lock_init(&ctx->ctx_lock);
773         spin_lock_init(&ctx->completion_lock);
774         mutex_init(&ctx->ring_lock);
775         /* Protect against page migration throughout kiotx setup by keeping
776          * the ring_lock mutex held until setup is complete. */
777         mutex_lock(&ctx->ring_lock);
778         init_waitqueue_head(&ctx->wait);
779 
780         INIT_LIST_HEAD(&ctx->active_reqs);
781 
782         if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
783                 goto err;
784 
785         if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
786                 goto err;
787 
788         ctx->cpu = alloc_percpu(struct kioctx_cpu);
789         if (!ctx->cpu)
790                 goto err;
791 
792         err = aio_setup_ring(ctx, nr_events);
793         if (err < 0)
794                 goto err;
795 
796         atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
797         ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
798         if (ctx->req_batch < 1)
799                 ctx->req_batch = 1;
800 
801         /* limit the number of system wide aios */
802         spin_lock(&aio_nr_lock);
803         if (aio_nr + ctx->max_reqs > aio_max_nr ||
804             aio_nr + ctx->max_reqs < aio_nr) {
805                 spin_unlock(&aio_nr_lock);
806                 err = -EAGAIN;
807                 goto err_ctx;
808         }
809         aio_nr += ctx->max_reqs;
810         spin_unlock(&aio_nr_lock);
811 
812         percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
813         percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
814 
815         err = ioctx_add_table(ctx, mm);
816         if (err)
817                 goto err_cleanup;
818 
819         /* Release the ring_lock mutex now that all setup is complete. */
820         mutex_unlock(&ctx->ring_lock);
821 
822         pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
823                  ctx, ctx->user_id, mm, ctx->nr_events);
824         return ctx;
825 
826 err_cleanup:
827         aio_nr_sub(ctx->max_reqs);
828 err_ctx:
829         atomic_set(&ctx->dead, 1);
830         if (ctx->mmap_size)
831                 vm_munmap(ctx->mmap_base, ctx->mmap_size);
832         aio_free_ring(ctx);
833 err:
834         mutex_unlock(&ctx->ring_lock);
835         free_percpu(ctx->cpu);
836         percpu_ref_exit(&ctx->reqs);
837         percpu_ref_exit(&ctx->users);
838         kmem_cache_free(kioctx_cachep, ctx);
839         pr_debug("error allocating ioctx %d\n", err);
840         return ERR_PTR(err);
841 }
842 
843 /* kill_ioctx
844  *      Cancels all outstanding aio requests on an aio context.  Used
845  *      when the processes owning a context have all exited to encourage
846  *      the rapid destruction of the kioctx.
847  */
848 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
849                       struct ctx_rq_wait *wait)
850 {
851         struct kioctx_table *table;
852 
853         spin_lock(&mm->ioctx_lock);
854         if (atomic_xchg(&ctx->dead, 1)) {
855                 spin_unlock(&mm->ioctx_lock);
856                 return -EINVAL;
857         }
858 
859         table = rcu_dereference_raw(mm->ioctx_table);
860         WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
861         RCU_INIT_POINTER(table->table[ctx->id], NULL);
862         spin_unlock(&mm->ioctx_lock);
863 
864         /* free_ioctx_reqs() will do the necessary RCU synchronization */
865         wake_up_all(&ctx->wait);
866 
867         /*
868          * It'd be more correct to do this in free_ioctx(), after all
869          * the outstanding kiocbs have finished - but by then io_destroy
870          * has already returned, so io_setup() could potentially return
871          * -EAGAIN with no ioctxs actually in use (as far as userspace
872          *  could tell).
873          */
874         aio_nr_sub(ctx->max_reqs);
875 
876         if (ctx->mmap_size)
877                 vm_munmap(ctx->mmap_base, ctx->mmap_size);
878 
879         ctx->rq_wait = wait;
880         percpu_ref_kill(&ctx->users);
881         return 0;
882 }
883 
884 /*
885  * exit_aio: called when the last user of mm goes away.  At this point, there is
886  * no way for any new requests to be submited or any of the io_* syscalls to be
887  * called on the context.
888  *
889  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
890  * them.
891  */
892 void exit_aio(struct mm_struct *mm)
893 {
894         struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
895         struct ctx_rq_wait wait;
896         int i, skipped;
897 
898         if (!table)
899                 return;
900 
901         atomic_set(&wait.count, table->nr);
902         init_completion(&wait.comp);
903 
904         skipped = 0;
905         for (i = 0; i < table->nr; ++i) {
906                 struct kioctx *ctx =
907                         rcu_dereference_protected(table->table[i], true);
908 
909                 if (!ctx) {
910                         skipped++;
911                         continue;
912                 }
913 
914                 /*
915                  * We don't need to bother with munmap() here - exit_mmap(mm)
916                  * is coming and it'll unmap everything. And we simply can't,
917                  * this is not necessarily our ->mm.
918                  * Since kill_ioctx() uses non-zero ->mmap_size as indicator
919                  * that it needs to unmap the area, just set it to 0.
920                  */
921                 ctx->mmap_size = 0;
922                 kill_ioctx(mm, ctx, &wait);
923         }
924 
925         if (!atomic_sub_and_test(skipped, &wait.count)) {
926                 /* Wait until all IO for the context are done. */
927                 wait_for_completion(&wait.comp);
928         }
929 
930         RCU_INIT_POINTER(mm->ioctx_table, NULL);
931         kfree(table);
932 }
933 
934 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
935 {
936         struct kioctx_cpu *kcpu;
937         unsigned long flags;
938 
939         local_irq_save(flags);
940         kcpu = this_cpu_ptr(ctx->cpu);
941         kcpu->reqs_available += nr;
942 
943         while (kcpu->reqs_available >= ctx->req_batch * 2) {
944                 kcpu->reqs_available -= ctx->req_batch;
945                 atomic_add(ctx->req_batch, &ctx->reqs_available);
946         }
947 
948         local_irq_restore(flags);
949 }
950 
951 static bool __get_reqs_available(struct kioctx *ctx)
952 {
953         struct kioctx_cpu *kcpu;
954         bool ret = false;
955         unsigned long flags;
956 
957         local_irq_save(flags);
958         kcpu = this_cpu_ptr(ctx->cpu);
959         if (!kcpu->reqs_available) {
960                 int avail = atomic_read(&ctx->reqs_available);
961 
962                 do {
963                         if (avail < ctx->req_batch)
964                                 goto out;
965                 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
966                                              &avail, avail - ctx->req_batch));
967 
968                 kcpu->reqs_available += ctx->req_batch;
969         }
970 
971         ret = true;
972         kcpu->reqs_available--;
973 out:
974         local_irq_restore(flags);
975         return ret;
976 }
977 
978 /* refill_reqs_available
979  *      Updates the reqs_available reference counts used for tracking the
980  *      number of free slots in the completion ring.  This can be called
981  *      from aio_complete() (to optimistically update reqs_available) or
982  *      from aio_get_req() (the we're out of events case).  It must be
983  *      called holding ctx->completion_lock.
984  */
985 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
986                                   unsigned tail)
987 {
988         unsigned events_in_ring, completed;
989 
990         /* Clamp head since userland can write to it. */
991         head %= ctx->nr_events;
992         if (head <= tail)
993                 events_in_ring = tail - head;
994         else
995                 events_in_ring = ctx->nr_events - (head - tail);
996 
997         completed = ctx->completed_events;
998         if (events_in_ring < completed)
999                 completed -= events_in_ring;
1000         else
1001                 completed = 0;
1002 
1003         if (!completed)
1004                 return;
1005 
1006         ctx->completed_events -= completed;
1007         put_reqs_available(ctx, completed);
1008 }
1009 
1010 /* user_refill_reqs_available
1011  *      Called to refill reqs_available when aio_get_req() encounters an
1012  *      out of space in the completion ring.
1013  */
1014 static void user_refill_reqs_available(struct kioctx *ctx)
1015 {
1016         spin_lock_irq(&ctx->completion_lock);
1017         if (ctx->completed_events) {
1018                 struct aio_ring *ring;
1019                 unsigned head;
1020 
1021                 /* Access of ring->head may race with aio_read_events_ring()
1022                  * here, but that's okay since whether we read the old version
1023                  * or the new version, and either will be valid.  The important
1024                  * part is that head cannot pass tail since we prevent
1025                  * aio_complete() from updating tail by holding
1026                  * ctx->completion_lock.  Even if head is invalid, the check
1027                  * against ctx->completed_events below will make sure we do the
1028                  * safe/right thing.
1029                  */
1030                 ring = folio_address(ctx->ring_folios[0]);
1031                 head = ring->head;
1032 
1033                 refill_reqs_available(ctx, head, ctx->tail);
1034         }
1035 
1036         spin_unlock_irq(&ctx->completion_lock);
1037 }
1038 
1039 static bool get_reqs_available(struct kioctx *ctx)
1040 {
1041         if (__get_reqs_available(ctx))
1042                 return true;
1043         user_refill_reqs_available(ctx);
1044         return __get_reqs_available(ctx);
1045 }
1046 
1047 /* aio_get_req
1048  *      Allocate a slot for an aio request.
1049  * Returns NULL if no requests are free.
1050  *
1051  * The refcount is initialized to 2 - one for the async op completion,
1052  * one for the synchronous code that does this.
1053  */
1054 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1055 {
1056         struct aio_kiocb *req;
1057 
1058         req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1059         if (unlikely(!req))
1060                 return NULL;
1061 
1062         if (unlikely(!get_reqs_available(ctx))) {
1063                 kmem_cache_free(kiocb_cachep, req);
1064                 return NULL;
1065         }
1066 
1067         percpu_ref_get(&ctx->reqs);
1068         req->ki_ctx = ctx;
1069         INIT_LIST_HEAD(&req->ki_list);
1070         refcount_set(&req->ki_refcnt, 2);
1071         req->ki_eventfd = NULL;
1072         return req;
1073 }
1074 
1075 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1076 {
1077         struct aio_ring __user *ring  = (void __user *)ctx_id;
1078         struct mm_struct *mm = current->mm;
1079         struct kioctx *ctx, *ret = NULL;
1080         struct kioctx_table *table;
1081         unsigned id;
1082 
1083         if (get_user(id, &ring->id))
1084                 return NULL;
1085 
1086         rcu_read_lock();
1087         table = rcu_dereference(mm->ioctx_table);
1088 
1089         if (!table || id >= table->nr)
1090                 goto out;
1091 
1092         id = array_index_nospec(id, table->nr);
1093         ctx = rcu_dereference(table->table[id]);
1094         if (ctx && ctx->user_id == ctx_id) {
1095                 if (percpu_ref_tryget_live(&ctx->users))
1096                         ret = ctx;
1097         }
1098 out:
1099         rcu_read_unlock();
1100         return ret;
1101 }
1102 
1103 static inline void iocb_destroy(struct aio_kiocb *iocb)
1104 {
1105         if (iocb->ki_eventfd)
1106                 eventfd_ctx_put(iocb->ki_eventfd);
1107         if (iocb->ki_filp)
1108                 fput(iocb->ki_filp);
1109         percpu_ref_put(&iocb->ki_ctx->reqs);
1110         kmem_cache_free(kiocb_cachep, iocb);
1111 }
1112 
1113 struct aio_waiter {
1114         struct wait_queue_entry w;
1115         size_t                  min_nr;
1116 };
1117 
1118 /* aio_complete
1119  *      Called when the io request on the given iocb is complete.
1120  */
1121 static void aio_complete(struct aio_kiocb *iocb)
1122 {
1123         struct kioctx   *ctx = iocb->ki_ctx;
1124         struct aio_ring *ring;
1125         struct io_event *ev_page, *event;
1126         unsigned tail, pos, head, avail;
1127         unsigned long   flags;
1128 
1129         /*
1130          * Add a completion event to the ring buffer. Must be done holding
1131          * ctx->completion_lock to prevent other code from messing with the tail
1132          * pointer since we might be called from irq context.
1133          */
1134         spin_lock_irqsave(&ctx->completion_lock, flags);
1135 
1136         tail = ctx->tail;
1137         pos = tail + AIO_EVENTS_OFFSET;
1138 
1139         if (++tail >= ctx->nr_events)
1140                 tail = 0;
1141 
1142         ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1143         event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1144 
1145         *event = iocb->ki_res;
1146 
1147         flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1148 
1149         pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1150                  (void __user *)(unsigned long)iocb->ki_res.obj,
1151                  iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1152 
1153         /* after flagging the request as done, we
1154          * must never even look at it again
1155          */
1156         smp_wmb();      /* make event visible before updating tail */
1157 
1158         ctx->tail = tail;
1159 
1160         ring = folio_address(ctx->ring_folios[0]);
1161         head = ring->head;
1162         ring->tail = tail;
1163         flush_dcache_folio(ctx->ring_folios[0]);
1164 
1165         ctx->completed_events++;
1166         if (ctx->completed_events > 1)
1167                 refill_reqs_available(ctx, head, tail);
1168 
1169         avail = tail > head
1170                 ? tail - head
1171                 : tail + ctx->nr_events - head;
1172         spin_unlock_irqrestore(&ctx->completion_lock, flags);
1173 
1174         pr_debug("added to ring %p at [%u]\n", iocb, tail);
1175 
1176         /*
1177          * Check if the user asked us to deliver the result through an
1178          * eventfd. The eventfd_signal() function is safe to be called
1179          * from IRQ context.
1180          */
1181         if (iocb->ki_eventfd)
1182                 eventfd_signal(iocb->ki_eventfd);
1183 
1184         /*
1185          * We have to order our ring_info tail store above and test
1186          * of the wait list below outside the wait lock.  This is
1187          * like in wake_up_bit() where clearing a bit has to be
1188          * ordered with the unlocked test.
1189          */
1190         smp_mb();
1191 
1192         if (waitqueue_active(&ctx->wait)) {
1193                 struct aio_waiter *curr, *next;
1194                 unsigned long flags;
1195 
1196                 spin_lock_irqsave(&ctx->wait.lock, flags);
1197                 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1198                         if (avail >= curr->min_nr) {
1199                                 wake_up_process(curr->w.private);
1200                                 list_del_init_careful(&curr->w.entry);
1201                         }
1202                 spin_unlock_irqrestore(&ctx->wait.lock, flags);
1203         }
1204 }
1205 
1206 static inline void iocb_put(struct aio_kiocb *iocb)
1207 {
1208         if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1209                 aio_complete(iocb);
1210                 iocb_destroy(iocb);
1211         }
1212 }
1213 
1214 /* aio_read_events_ring
1215  *      Pull an event off of the ioctx's event ring.  Returns the number of
1216  *      events fetched
1217  */
1218 static long aio_read_events_ring(struct kioctx *ctx,
1219                                  struct io_event __user *event, long nr)
1220 {
1221         struct aio_ring *ring;
1222         unsigned head, tail, pos;
1223         long ret = 0;
1224         int copy_ret;
1225 
1226         /*
1227          * The mutex can block and wake us up and that will cause
1228          * wait_event_interruptible_hrtimeout() to schedule without sleeping
1229          * and repeat. This should be rare enough that it doesn't cause
1230          * peformance issues. See the comment in read_events() for more detail.
1231          */
1232         sched_annotate_sleep();
1233         mutex_lock(&ctx->ring_lock);
1234 
1235         /* Access to ->ring_folios here is protected by ctx->ring_lock. */
1236         ring = folio_address(ctx->ring_folios[0]);
1237         head = ring->head;
1238         tail = ring->tail;
1239 
1240         /*
1241          * Ensure that once we've read the current tail pointer, that
1242          * we also see the events that were stored up to the tail.
1243          */
1244         smp_rmb();
1245 
1246         pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1247 
1248         if (head == tail)
1249                 goto out;
1250 
1251         head %= ctx->nr_events;
1252         tail %= ctx->nr_events;
1253 
1254         while (ret < nr) {
1255                 long avail;
1256                 struct io_event *ev;
1257                 struct folio *folio;
1258 
1259                 avail = (head <= tail ?  tail : ctx->nr_events) - head;
1260                 if (head == tail)
1261                         break;
1262 
1263                 pos = head + AIO_EVENTS_OFFSET;
1264                 folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE];
1265                 pos %= AIO_EVENTS_PER_PAGE;
1266 
1267                 avail = min(avail, nr - ret);
1268                 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1269 
1270                 ev = folio_address(folio);
1271                 copy_ret = copy_to_user(event + ret, ev + pos,
1272                                         sizeof(*ev) * avail);
1273 
1274                 if (unlikely(copy_ret)) {
1275                         ret = -EFAULT;
1276                         goto out;
1277                 }
1278 
1279                 ret += avail;
1280                 head += avail;
1281                 head %= ctx->nr_events;
1282         }
1283 
1284         ring = folio_address(ctx->ring_folios[0]);
1285         ring->head = head;
1286         flush_dcache_folio(ctx->ring_folios[0]);
1287 
1288         pr_debug("%li  h%u t%u\n", ret, head, tail);
1289 out:
1290         mutex_unlock(&ctx->ring_lock);
1291 
1292         return ret;
1293 }
1294 
1295 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1296                             struct io_event __user *event, long *i)
1297 {
1298         long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1299 
1300         if (ret > 0)
1301                 *i += ret;
1302 
1303         if (unlikely(atomic_read(&ctx->dead)))
1304                 ret = -EINVAL;
1305 
1306         if (!*i)
1307                 *i = ret;
1308 
1309         return ret < 0 || *i >= min_nr;
1310 }
1311 
1312 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1313                         struct io_event __user *event,
1314                         ktime_t until)
1315 {
1316         struct hrtimer_sleeper  t;
1317         struct aio_waiter       w;
1318         long ret = 0, ret2 = 0;
1319 
1320         /*
1321          * Note that aio_read_events() is being called as the conditional - i.e.
1322          * we're calling it after prepare_to_wait() has set task state to
1323          * TASK_INTERRUPTIBLE.
1324          *
1325          * But aio_read_events() can block, and if it blocks it's going to flip
1326          * the task state back to TASK_RUNNING.
1327          *
1328          * This should be ok, provided it doesn't flip the state back to
1329          * TASK_RUNNING and return 0 too much - that causes us to spin. That
1330          * will only happen if the mutex_lock() call blocks, and we then find
1331          * the ringbuffer empty. So in practice we should be ok, but it's
1332          * something to be aware of when touching this code.
1333          */
1334         aio_read_events(ctx, min_nr, nr, event, &ret);
1335         if (until == 0 || ret < 0 || ret >= min_nr)
1336                 return ret;
1337 
1338         hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1339         if (until != KTIME_MAX) {
1340                 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1341                 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1342         }
1343 
1344         init_wait(&w.w);
1345 
1346         while (1) {
1347                 unsigned long nr_got = ret;
1348 
1349                 w.min_nr = min_nr - ret;
1350 
1351                 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1352                 if (!ret2 && !t.task)
1353                         ret2 = -ETIME;
1354 
1355                 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1356                         break;
1357 
1358                 if (nr_got == ret)
1359                         schedule();
1360         }
1361 
1362         finish_wait(&ctx->wait, &w.w);
1363         hrtimer_cancel(&t.timer);
1364         destroy_hrtimer_on_stack(&t.timer);
1365 
1366         return ret;
1367 }
1368 
1369 /* sys_io_setup:
1370  *      Create an aio_context capable of receiving at least nr_events.
1371  *      ctxp must not point to an aio_context that already exists, and
1372  *      must be initialized to 0 prior to the call.  On successful
1373  *      creation of the aio_context, *ctxp is filled in with the resulting 
1374  *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1375  *      if the specified nr_events exceeds internal limits.  May fail 
1376  *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1377  *      of available events.  May fail with -ENOMEM if insufficient kernel
1378  *      resources are available.  May fail with -EFAULT if an invalid
1379  *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1380  *      implemented.
1381  */
1382 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1383 {
1384         struct kioctx *ioctx = NULL;
1385         unsigned long ctx;
1386         long ret;
1387 
1388         ret = get_user(ctx, ctxp);
1389         if (unlikely(ret))
1390                 goto out;
1391 
1392         ret = -EINVAL;
1393         if (unlikely(ctx || nr_events == 0)) {
1394                 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1395                          ctx, nr_events);
1396                 goto out;
1397         }
1398 
1399         ioctx = ioctx_alloc(nr_events);
1400         ret = PTR_ERR(ioctx);
1401         if (!IS_ERR(ioctx)) {
1402                 ret = put_user(ioctx->user_id, ctxp);
1403                 if (ret)
1404                         kill_ioctx(current->mm, ioctx, NULL);
1405                 percpu_ref_put(&ioctx->users);
1406         }
1407 
1408 out:
1409         return ret;
1410 }
1411 
1412 #ifdef CONFIG_COMPAT
1413 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1414 {
1415         struct kioctx *ioctx = NULL;
1416         unsigned long ctx;
1417         long ret;
1418 
1419         ret = get_user(ctx, ctx32p);
1420         if (unlikely(ret))
1421                 goto out;
1422 
1423         ret = -EINVAL;
1424         if (unlikely(ctx || nr_events == 0)) {
1425                 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1426                          ctx, nr_events);
1427                 goto out;
1428         }
1429 
1430         ioctx = ioctx_alloc(nr_events);
1431         ret = PTR_ERR(ioctx);
1432         if (!IS_ERR(ioctx)) {
1433                 /* truncating is ok because it's a user address */
1434                 ret = put_user((u32)ioctx->user_id, ctx32p);
1435                 if (ret)
1436                         kill_ioctx(current->mm, ioctx, NULL);
1437                 percpu_ref_put(&ioctx->users);
1438         }
1439 
1440 out:
1441         return ret;
1442 }
1443 #endif
1444 
1445 /* sys_io_destroy:
1446  *      Destroy the aio_context specified.  May cancel any outstanding 
1447  *      AIOs and block on completion.  Will fail with -ENOSYS if not
1448  *      implemented.  May fail with -EINVAL if the context pointed to
1449  *      is invalid.
1450  */
1451 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1452 {
1453         struct kioctx *ioctx = lookup_ioctx(ctx);
1454         if (likely(NULL != ioctx)) {
1455                 struct ctx_rq_wait wait;
1456                 int ret;
1457 
1458                 init_completion(&wait.comp);
1459                 atomic_set(&wait.count, 1);
1460 
1461                 /* Pass requests_done to kill_ioctx() where it can be set
1462                  * in a thread-safe way. If we try to set it here then we have
1463                  * a race condition if two io_destroy() called simultaneously.
1464                  */
1465                 ret = kill_ioctx(current->mm, ioctx, &wait);
1466                 percpu_ref_put(&ioctx->users);
1467 
1468                 /* Wait until all IO for the context are done. Otherwise kernel
1469                  * keep using user-space buffers even if user thinks the context
1470                  * is destroyed.
1471                  */
1472                 if (!ret)
1473                         wait_for_completion(&wait.comp);
1474 
1475                 return ret;
1476         }
1477         pr_debug("EINVAL: invalid context id\n");
1478         return -EINVAL;
1479 }
1480 
1481 static void aio_remove_iocb(struct aio_kiocb *iocb)
1482 {
1483         struct kioctx *ctx = iocb->ki_ctx;
1484         unsigned long flags;
1485 
1486         spin_lock_irqsave(&ctx->ctx_lock, flags);
1487         list_del(&iocb->ki_list);
1488         spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1489 }
1490 
1491 static void aio_complete_rw(struct kiocb *kiocb, long res)
1492 {
1493         struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1494 
1495         if (!list_empty_careful(&iocb->ki_list))
1496                 aio_remove_iocb(iocb);
1497 
1498         if (kiocb->ki_flags & IOCB_WRITE) {
1499                 struct inode *inode = file_inode(kiocb->ki_filp);
1500 
1501                 if (S_ISREG(inode->i_mode))
1502                         kiocb_end_write(kiocb);
1503         }
1504 
1505         iocb->ki_res.res = res;
1506         iocb->ki_res.res2 = 0;
1507         iocb_put(iocb);
1508 }
1509 
1510 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb, int rw_type)
1511 {
1512         int ret;
1513 
1514         req->ki_complete = aio_complete_rw;
1515         req->private = NULL;
1516         req->ki_pos = iocb->aio_offset;
1517         req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1518         if (iocb->aio_flags & IOCB_FLAG_RESFD)
1519                 req->ki_flags |= IOCB_EVENTFD;
1520         if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1521                 /*
1522                  * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1523                  * aio_reqprio is interpreted as an I/O scheduling
1524                  * class and priority.
1525                  */
1526                 ret = ioprio_check_cap(iocb->aio_reqprio);
1527                 if (ret) {
1528                         pr_debug("aio ioprio check cap error: %d\n", ret);
1529                         return ret;
1530                 }
1531 
1532                 req->ki_ioprio = iocb->aio_reqprio;
1533         } else
1534                 req->ki_ioprio = get_current_ioprio();
1535 
1536         ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags, rw_type);
1537         if (unlikely(ret))
1538                 return ret;
1539 
1540         req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1541         return 0;
1542 }
1543 
1544 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1545                 struct iovec **iovec, bool vectored, bool compat,
1546                 struct iov_iter *iter)
1547 {
1548         void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1549         size_t len = iocb->aio_nbytes;
1550 
1551         if (!vectored) {
1552                 ssize_t ret = import_ubuf(rw, buf, len, iter);
1553                 *iovec = NULL;
1554                 return ret;
1555         }
1556 
1557         return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1558 }
1559 
1560 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1561 {
1562         switch (ret) {
1563         case -EIOCBQUEUED:
1564                 break;
1565         case -ERESTARTSYS:
1566         case -ERESTARTNOINTR:
1567         case -ERESTARTNOHAND:
1568         case -ERESTART_RESTARTBLOCK:
1569                 /*
1570                  * There's no easy way to restart the syscall since other AIO's
1571                  * may be already running. Just fail this IO with EINTR.
1572                  */
1573                 ret = -EINTR;
1574                 fallthrough;
1575         default:
1576                 req->ki_complete(req, ret);
1577         }
1578 }
1579 
1580 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1581                         bool vectored, bool compat)
1582 {
1583         struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1584         struct iov_iter iter;
1585         struct file *file;
1586         int ret;
1587 
1588         ret = aio_prep_rw(req, iocb, READ);
1589         if (ret)
1590                 return ret;
1591         file = req->ki_filp;
1592         if (unlikely(!(file->f_mode & FMODE_READ)))
1593                 return -EBADF;
1594         if (unlikely(!file->f_op->read_iter))
1595                 return -EINVAL;
1596 
1597         ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1598         if (ret < 0)
1599                 return ret;
1600         ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1601         if (!ret)
1602                 aio_rw_done(req, file->f_op->read_iter(req, &iter));
1603         kfree(iovec);
1604         return ret;
1605 }
1606 
1607 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1608                          bool vectored, bool compat)
1609 {
1610         struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1611         struct iov_iter iter;
1612         struct file *file;
1613         int ret;
1614 
1615         ret = aio_prep_rw(req, iocb, WRITE);
1616         if (ret)
1617                 return ret;
1618         file = req->ki_filp;
1619 
1620         if (unlikely(!(file->f_mode & FMODE_WRITE)))
1621                 return -EBADF;
1622         if (unlikely(!file->f_op->write_iter))
1623                 return -EINVAL;
1624 
1625         ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1626         if (ret < 0)
1627                 return ret;
1628         ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1629         if (!ret) {
1630                 if (S_ISREG(file_inode(file)->i_mode))
1631                         kiocb_start_write(req);
1632                 req->ki_flags |= IOCB_WRITE;
1633                 aio_rw_done(req, file->f_op->write_iter(req, &iter));
1634         }
1635         kfree(iovec);
1636         return ret;
1637 }
1638 
1639 static void aio_fsync_work(struct work_struct *work)
1640 {
1641         struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1642         const struct cred *old_cred = override_creds(iocb->fsync.creds);
1643 
1644         iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1645         revert_creds(old_cred);
1646         put_cred(iocb->fsync.creds);
1647         iocb_put(iocb);
1648 }
1649 
1650 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1651                      bool datasync)
1652 {
1653         if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1654                         iocb->aio_rw_flags))
1655                 return -EINVAL;
1656 
1657         if (unlikely(!req->file->f_op->fsync))
1658                 return -EINVAL;
1659 
1660         req->creds = prepare_creds();
1661         if (!req->creds)
1662                 return -ENOMEM;
1663 
1664         req->datasync = datasync;
1665         INIT_WORK(&req->work, aio_fsync_work);
1666         schedule_work(&req->work);
1667         return 0;
1668 }
1669 
1670 static void aio_poll_put_work(struct work_struct *work)
1671 {
1672         struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1673         struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1674 
1675         iocb_put(iocb);
1676 }
1677 
1678 /*
1679  * Safely lock the waitqueue which the request is on, synchronizing with the
1680  * case where the ->poll() provider decides to free its waitqueue early.
1681  *
1682  * Returns true on success, meaning that req->head->lock was locked, req->wait
1683  * is on req->head, and an RCU read lock was taken.  Returns false if the
1684  * request was already removed from its waitqueue (which might no longer exist).
1685  */
1686 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1687 {
1688         wait_queue_head_t *head;
1689 
1690         /*
1691          * While we hold the waitqueue lock and the waitqueue is nonempty,
1692          * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1693          * lock in the first place can race with the waitqueue being freed.
1694          *
1695          * We solve this as eventpoll does: by taking advantage of the fact that
1696          * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1697          * we enter rcu_read_lock() and see that the pointer to the queue is
1698          * non-NULL, we can then lock it without the memory being freed out from
1699          * under us, then check whether the request is still on the queue.
1700          *
1701          * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1702          * case the caller deletes the entry from the queue, leaving it empty.
1703          * In that case, only RCU prevents the queue memory from being freed.
1704          */
1705         rcu_read_lock();
1706         head = smp_load_acquire(&req->head);
1707         if (head) {
1708                 spin_lock(&head->lock);
1709                 if (!list_empty(&req->wait.entry))
1710                         return true;
1711                 spin_unlock(&head->lock);
1712         }
1713         rcu_read_unlock();
1714         return false;
1715 }
1716 
1717 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1718 {
1719         spin_unlock(&req->head->lock);
1720         rcu_read_unlock();
1721 }
1722 
1723 static void aio_poll_complete_work(struct work_struct *work)
1724 {
1725         struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1726         struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1727         struct poll_table_struct pt = { ._key = req->events };
1728         struct kioctx *ctx = iocb->ki_ctx;
1729         __poll_t mask = 0;
1730 
1731         if (!READ_ONCE(req->cancelled))
1732                 mask = vfs_poll(req->file, &pt) & req->events;
1733 
1734         /*
1735          * Note that ->ki_cancel callers also delete iocb from active_reqs after
1736          * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1737          * synchronize with them.  In the cancellation case the list_del_init
1738          * itself is not actually needed, but harmless so we keep it in to
1739          * avoid further branches in the fast path.
1740          */
1741         spin_lock_irq(&ctx->ctx_lock);
1742         if (poll_iocb_lock_wq(req)) {
1743                 if (!mask && !READ_ONCE(req->cancelled)) {
1744                         /*
1745                          * The request isn't actually ready to be completed yet.
1746                          * Reschedule completion if another wakeup came in.
1747                          */
1748                         if (req->work_need_resched) {
1749                                 schedule_work(&req->work);
1750                                 req->work_need_resched = false;
1751                         } else {
1752                                 req->work_scheduled = false;
1753                         }
1754                         poll_iocb_unlock_wq(req);
1755                         spin_unlock_irq(&ctx->ctx_lock);
1756                         return;
1757                 }
1758                 list_del_init(&req->wait.entry);
1759                 poll_iocb_unlock_wq(req);
1760         } /* else, POLLFREE has freed the waitqueue, so we must complete */
1761         list_del_init(&iocb->ki_list);
1762         iocb->ki_res.res = mangle_poll(mask);
1763         spin_unlock_irq(&ctx->ctx_lock);
1764 
1765         iocb_put(iocb);
1766 }
1767 
1768 /* assumes we are called with irqs disabled */
1769 static int aio_poll_cancel(struct kiocb *iocb)
1770 {
1771         struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1772         struct poll_iocb *req = &aiocb->poll;
1773 
1774         if (poll_iocb_lock_wq(req)) {
1775                 WRITE_ONCE(req->cancelled, true);
1776                 if (!req->work_scheduled) {
1777                         schedule_work(&aiocb->poll.work);
1778                         req->work_scheduled = true;
1779                 }
1780                 poll_iocb_unlock_wq(req);
1781         } /* else, the request was force-cancelled by POLLFREE already */
1782 
1783         return 0;
1784 }
1785 
1786 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1787                 void *key)
1788 {
1789         struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1790         struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1791         __poll_t mask = key_to_poll(key);
1792         unsigned long flags;
1793 
1794         /* for instances that support it check for an event match first: */
1795         if (mask && !(mask & req->events))
1796                 return 0;
1797 
1798         /*
1799          * Complete the request inline if possible.  This requires that three
1800          * conditions be met:
1801          *   1. An event mask must have been passed.  If a plain wakeup was done
1802          *      instead, then mask == 0 and we have to call vfs_poll() to get
1803          *      the events, so inline completion isn't possible.
1804          *   2. The completion work must not have already been scheduled.
1805          *   3. ctx_lock must not be busy.  We have to use trylock because we
1806          *      already hold the waitqueue lock, so this inverts the normal
1807          *      locking order.  Use irqsave/irqrestore because not all
1808          *      filesystems (e.g. fuse) call this function with IRQs disabled,
1809          *      yet IRQs have to be disabled before ctx_lock is obtained.
1810          */
1811         if (mask && !req->work_scheduled &&
1812             spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1813                 struct kioctx *ctx = iocb->ki_ctx;
1814 
1815                 list_del_init(&req->wait.entry);
1816                 list_del(&iocb->ki_list);
1817                 iocb->ki_res.res = mangle_poll(mask);
1818                 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1819                         iocb = NULL;
1820                         INIT_WORK(&req->work, aio_poll_put_work);
1821                         schedule_work(&req->work);
1822                 }
1823                 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1824                 if (iocb)
1825                         iocb_put(iocb);
1826         } else {
1827                 /*
1828                  * Schedule the completion work if needed.  If it was already
1829                  * scheduled, record that another wakeup came in.
1830                  *
1831                  * Don't remove the request from the waitqueue here, as it might
1832                  * not actually be complete yet (we won't know until vfs_poll()
1833                  * is called), and we must not miss any wakeups.  POLLFREE is an
1834                  * exception to this; see below.
1835                  */
1836                 if (req->work_scheduled) {
1837                         req->work_need_resched = true;
1838                 } else {
1839                         schedule_work(&req->work);
1840                         req->work_scheduled = true;
1841                 }
1842 
1843                 /*
1844                  * If the waitqueue is being freed early but we can't complete
1845                  * the request inline, we have to tear down the request as best
1846                  * we can.  That means immediately removing the request from its
1847                  * waitqueue and preventing all further accesses to the
1848                  * waitqueue via the request.  We also need to schedule the
1849                  * completion work (done above).  Also mark the request as
1850                  * cancelled, to potentially skip an unneeded call to ->poll().
1851                  */
1852                 if (mask & POLLFREE) {
1853                         WRITE_ONCE(req->cancelled, true);
1854                         list_del_init(&req->wait.entry);
1855 
1856                         /*
1857                          * Careful: this *must* be the last step, since as soon
1858                          * as req->head is NULL'ed out, the request can be
1859                          * completed and freed, since aio_poll_complete_work()
1860                          * will no longer need to take the waitqueue lock.
1861                          */
1862                         smp_store_release(&req->head, NULL);
1863                 }
1864         }
1865         return 1;
1866 }
1867 
1868 struct aio_poll_table {
1869         struct poll_table_struct        pt;
1870         struct aio_kiocb                *iocb;
1871         bool                            queued;
1872         int                             error;
1873 };
1874 
1875 static void
1876 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1877                 struct poll_table_struct *p)
1878 {
1879         struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1880 
1881         /* multiple wait queues per file are not supported */
1882         if (unlikely(pt->queued)) {
1883                 pt->error = -EINVAL;
1884                 return;
1885         }
1886 
1887         pt->queued = true;
1888         pt->error = 0;
1889         pt->iocb->poll.head = head;
1890         add_wait_queue(head, &pt->iocb->poll.wait);
1891 }
1892 
1893 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1894 {
1895         struct kioctx *ctx = aiocb->ki_ctx;
1896         struct poll_iocb *req = &aiocb->poll;
1897         struct aio_poll_table apt;
1898         bool cancel = false;
1899         __poll_t mask;
1900 
1901         /* reject any unknown events outside the normal event mask. */
1902         if ((u16)iocb->aio_buf != iocb->aio_buf)
1903                 return -EINVAL;
1904         /* reject fields that are not defined for poll */
1905         if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1906                 return -EINVAL;
1907 
1908         INIT_WORK(&req->work, aio_poll_complete_work);
1909         req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1910 
1911         req->head = NULL;
1912         req->cancelled = false;
1913         req->work_scheduled = false;
1914         req->work_need_resched = false;
1915 
1916         apt.pt._qproc = aio_poll_queue_proc;
1917         apt.pt._key = req->events;
1918         apt.iocb = aiocb;
1919         apt.queued = false;
1920         apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1921 
1922         /* initialized the list so that we can do list_empty checks */
1923         INIT_LIST_HEAD(&req->wait.entry);
1924         init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1925 
1926         mask = vfs_poll(req->file, &apt.pt) & req->events;
1927         spin_lock_irq(&ctx->ctx_lock);
1928         if (likely(apt.queued)) {
1929                 bool on_queue = poll_iocb_lock_wq(req);
1930 
1931                 if (!on_queue || req->work_scheduled) {
1932                         /*
1933                          * aio_poll_wake() already either scheduled the async
1934                          * completion work, or completed the request inline.
1935                          */
1936                         if (apt.error) /* unsupported case: multiple queues */
1937                                 cancel = true;
1938                         apt.error = 0;
1939                         mask = 0;
1940                 }
1941                 if (mask || apt.error) {
1942                         /* Steal to complete synchronously. */
1943                         list_del_init(&req->wait.entry);
1944                 } else if (cancel) {
1945                         /* Cancel if possible (may be too late though). */
1946                         WRITE_ONCE(req->cancelled, true);
1947                 } else if (on_queue) {
1948                         /*
1949                          * Actually waiting for an event, so add the request to
1950                          * active_reqs so that it can be cancelled if needed.
1951                          */
1952                         list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1953                         aiocb->ki_cancel = aio_poll_cancel;
1954                 }
1955                 if (on_queue)
1956                         poll_iocb_unlock_wq(req);
1957         }
1958         if (mask) { /* no async, we'd stolen it */
1959                 aiocb->ki_res.res = mangle_poll(mask);
1960                 apt.error = 0;
1961         }
1962         spin_unlock_irq(&ctx->ctx_lock);
1963         if (mask)
1964                 iocb_put(aiocb);
1965         return apt.error;
1966 }
1967 
1968 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1969                            struct iocb __user *user_iocb, struct aio_kiocb *req,
1970                            bool compat)
1971 {
1972         req->ki_filp = fget(iocb->aio_fildes);
1973         if (unlikely(!req->ki_filp))
1974                 return -EBADF;
1975 
1976         if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1977                 struct eventfd_ctx *eventfd;
1978                 /*
1979                  * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1980                  * instance of the file* now. The file descriptor must be
1981                  * an eventfd() fd, and will be signaled for each completed
1982                  * event using the eventfd_signal() function.
1983                  */
1984                 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1985                 if (IS_ERR(eventfd))
1986                         return PTR_ERR(eventfd);
1987 
1988                 req->ki_eventfd = eventfd;
1989         }
1990 
1991         if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1992                 pr_debug("EFAULT: aio_key\n");
1993                 return -EFAULT;
1994         }
1995 
1996         req->ki_res.obj = (u64)(unsigned long)user_iocb;
1997         req->ki_res.data = iocb->aio_data;
1998         req->ki_res.res = 0;
1999         req->ki_res.res2 = 0;
2000 
2001         switch (iocb->aio_lio_opcode) {
2002         case IOCB_CMD_PREAD:
2003                 return aio_read(&req->rw, iocb, false, compat);
2004         case IOCB_CMD_PWRITE:
2005                 return aio_write(&req->rw, iocb, false, compat);
2006         case IOCB_CMD_PREADV:
2007                 return aio_read(&req->rw, iocb, true, compat);
2008         case IOCB_CMD_PWRITEV:
2009                 return aio_write(&req->rw, iocb, true, compat);
2010         case IOCB_CMD_FSYNC:
2011                 return aio_fsync(&req->fsync, iocb, false);
2012         case IOCB_CMD_FDSYNC:
2013                 return aio_fsync(&req->fsync, iocb, true);
2014         case IOCB_CMD_POLL:
2015                 return aio_poll(req, iocb);
2016         default:
2017                 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2018                 return -EINVAL;
2019         }
2020 }
2021 
2022 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2023                          bool compat)
2024 {
2025         struct aio_kiocb *req;
2026         struct iocb iocb;
2027         int err;
2028 
2029         if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2030                 return -EFAULT;
2031 
2032         /* enforce forwards compatibility on users */
2033         if (unlikely(iocb.aio_reserved2)) {
2034                 pr_debug("EINVAL: reserve field set\n");
2035                 return -EINVAL;
2036         }
2037 
2038         /* prevent overflows */
2039         if (unlikely(
2040             (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2041             (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2042             ((ssize_t)iocb.aio_nbytes < 0)
2043            )) {
2044                 pr_debug("EINVAL: overflow check\n");
2045                 return -EINVAL;
2046         }
2047 
2048         req = aio_get_req(ctx);
2049         if (unlikely(!req))
2050                 return -EAGAIN;
2051 
2052         err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2053 
2054         /* Done with the synchronous reference */
2055         iocb_put(req);
2056 
2057         /*
2058          * If err is 0, we'd either done aio_complete() ourselves or have
2059          * arranged for that to be done asynchronously.  Anything non-zero
2060          * means that we need to destroy req ourselves.
2061          */
2062         if (unlikely(err)) {
2063                 iocb_destroy(req);
2064                 put_reqs_available(ctx, 1);
2065         }
2066         return err;
2067 }
2068 
2069 /* sys_io_submit:
2070  *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2071  *      the number of iocbs queued.  May return -EINVAL if the aio_context
2072  *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
2073  *      *iocbpp[0] is not properly initialized, if the operation specified
2074  *      is invalid for the file descriptor in the iocb.  May fail with
2075  *      -EFAULT if any of the data structures point to invalid data.  May
2076  *      fail with -EBADF if the file descriptor specified in the first
2077  *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
2078  *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2079  *      fail with -ENOSYS if not implemented.
2080  */
2081 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2082                 struct iocb __user * __user *, iocbpp)
2083 {
2084         struct kioctx *ctx;
2085         long ret = 0;
2086         int i = 0;
2087         struct blk_plug plug;
2088 
2089         if (unlikely(nr < 0))
2090                 return -EINVAL;
2091 
2092         ctx = lookup_ioctx(ctx_id);
2093         if (unlikely(!ctx)) {
2094                 pr_debug("EINVAL: invalid context id\n");
2095                 return -EINVAL;
2096         }
2097 
2098         if (nr > ctx->nr_events)
2099                 nr = ctx->nr_events;
2100 
2101         if (nr > AIO_PLUG_THRESHOLD)
2102                 blk_start_plug(&plug);
2103         for (i = 0; i < nr; i++) {
2104                 struct iocb __user *user_iocb;
2105 
2106                 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2107                         ret = -EFAULT;
2108                         break;
2109                 }
2110 
2111                 ret = io_submit_one(ctx, user_iocb, false);
2112                 if (ret)
2113                         break;
2114         }
2115         if (nr > AIO_PLUG_THRESHOLD)
2116                 blk_finish_plug(&plug);
2117 
2118         percpu_ref_put(&ctx->users);
2119         return i ? i : ret;
2120 }
2121 
2122 #ifdef CONFIG_COMPAT
2123 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2124                        int, nr, compat_uptr_t __user *, iocbpp)
2125 {
2126         struct kioctx *ctx;
2127         long ret = 0;
2128         int i = 0;
2129         struct blk_plug plug;
2130 
2131         if (unlikely(nr < 0))
2132                 return -EINVAL;
2133 
2134         ctx = lookup_ioctx(ctx_id);
2135         if (unlikely(!ctx)) {
2136                 pr_debug("EINVAL: invalid context id\n");
2137                 return -EINVAL;
2138         }
2139 
2140         if (nr > ctx->nr_events)
2141                 nr = ctx->nr_events;
2142 
2143         if (nr > AIO_PLUG_THRESHOLD)
2144                 blk_start_plug(&plug);
2145         for (i = 0; i < nr; i++) {
2146                 compat_uptr_t user_iocb;
2147 
2148                 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2149                         ret = -EFAULT;
2150                         break;
2151                 }
2152 
2153                 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2154                 if (ret)
2155                         break;
2156         }
2157         if (nr > AIO_PLUG_THRESHOLD)
2158                 blk_finish_plug(&plug);
2159 
2160         percpu_ref_put(&ctx->users);
2161         return i ? i : ret;
2162 }
2163 #endif
2164 
2165 /* sys_io_cancel:
2166  *      Attempts to cancel an iocb previously passed to io_submit.  If
2167  *      the operation is successfully cancelled, the resulting event is
2168  *      copied into the memory pointed to by result without being placed
2169  *      into the completion queue and 0 is returned.  May fail with
2170  *      -EFAULT if any of the data structures pointed to are invalid.
2171  *      May fail with -EINVAL if aio_context specified by ctx_id is
2172  *      invalid.  May fail with -EAGAIN if the iocb specified was not
2173  *      cancelled.  Will fail with -ENOSYS if not implemented.
2174  */
2175 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2176                 struct io_event __user *, result)
2177 {
2178         struct kioctx *ctx;
2179         struct aio_kiocb *kiocb;
2180         int ret = -EINVAL;
2181         u32 key;
2182         u64 obj = (u64)(unsigned long)iocb;
2183 
2184         if (unlikely(get_user(key, &iocb->aio_key)))
2185                 return -EFAULT;
2186         if (unlikely(key != KIOCB_KEY))
2187                 return -EINVAL;
2188 
2189         ctx = lookup_ioctx(ctx_id);
2190         if (unlikely(!ctx))
2191                 return -EINVAL;
2192 
2193         spin_lock_irq(&ctx->ctx_lock);
2194         /* TODO: use a hash or array, this sucks. */
2195         list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2196                 if (kiocb->ki_res.obj == obj) {
2197                         ret = kiocb->ki_cancel(&kiocb->rw);
2198                         list_del_init(&kiocb->ki_list);
2199                         break;
2200                 }
2201         }
2202         spin_unlock_irq(&ctx->ctx_lock);
2203 
2204         if (!ret) {
2205                 /*
2206                  * The result argument is no longer used - the io_event is
2207                  * always delivered via the ring buffer. -EINPROGRESS indicates
2208                  * cancellation is progress:
2209                  */
2210                 ret = -EINPROGRESS;
2211         }
2212 
2213         percpu_ref_put(&ctx->users);
2214 
2215         return ret;
2216 }
2217 
2218 static long do_io_getevents(aio_context_t ctx_id,
2219                 long min_nr,
2220                 long nr,
2221                 struct io_event __user *events,
2222                 struct timespec64 *ts)
2223 {
2224         ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2225         struct kioctx *ioctx = lookup_ioctx(ctx_id);
2226         long ret = -EINVAL;
2227 
2228         if (likely(ioctx)) {
2229                 if (likely(min_nr <= nr && min_nr >= 0))
2230                         ret = read_events(ioctx, min_nr, nr, events, until);
2231                 percpu_ref_put(&ioctx->users);
2232         }
2233 
2234         return ret;
2235 }
2236 
2237 /* io_getevents:
2238  *      Attempts to read at least min_nr events and up to nr events from
2239  *      the completion queue for the aio_context specified by ctx_id. If
2240  *      it succeeds, the number of read events is returned. May fail with
2241  *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2242  *      out of range, if timeout is out of range.  May fail with -EFAULT
2243  *      if any of the memory specified is invalid.  May return 0 or
2244  *      < min_nr if the timeout specified by timeout has elapsed
2245  *      before sufficient events are available, where timeout == NULL
2246  *      specifies an infinite timeout. Note that the timeout pointed to by
2247  *      timeout is relative.  Will fail with -ENOSYS if not implemented.
2248  */
2249 #ifdef CONFIG_64BIT
2250 
2251 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2252                 long, min_nr,
2253                 long, nr,
2254                 struct io_event __user *, events,
2255                 struct __kernel_timespec __user *, timeout)
2256 {
2257         struct timespec64       ts;
2258         int                     ret;
2259 
2260         if (timeout && unlikely(get_timespec64(&ts, timeout)))
2261                 return -EFAULT;
2262 
2263         ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2264         if (!ret && signal_pending(current))
2265                 ret = -EINTR;
2266         return ret;
2267 }
2268 
2269 #endif
2270 
2271 struct __aio_sigset {
2272         const sigset_t __user   *sigmask;
2273         size_t          sigsetsize;
2274 };
2275 
2276 SYSCALL_DEFINE6(io_pgetevents,
2277                 aio_context_t, ctx_id,
2278                 long, min_nr,
2279                 long, nr,
2280                 struct io_event __user *, events,
2281                 struct __kernel_timespec __user *, timeout,
2282                 const struct __aio_sigset __user *, usig)
2283 {
2284         struct __aio_sigset     ksig = { NULL, };
2285         struct timespec64       ts;
2286         bool interrupted;
2287         int ret;
2288 
2289         if (timeout && unlikely(get_timespec64(&ts, timeout)))
2290                 return -EFAULT;
2291 
2292         if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2293                 return -EFAULT;
2294 
2295         ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2296         if (ret)
2297                 return ret;
2298 
2299         ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2300 
2301         interrupted = signal_pending(current);
2302         restore_saved_sigmask_unless(interrupted);
2303         if (interrupted && !ret)
2304                 ret = -ERESTARTNOHAND;
2305 
2306         return ret;
2307 }
2308 
2309 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2310 
2311 SYSCALL_DEFINE6(io_pgetevents_time32,
2312                 aio_context_t, ctx_id,
2313                 long, min_nr,
2314                 long, nr,
2315                 struct io_event __user *, events,
2316                 struct old_timespec32 __user *, timeout,
2317                 const struct __aio_sigset __user *, usig)
2318 {
2319         struct __aio_sigset     ksig = { NULL, };
2320         struct timespec64       ts;
2321         bool interrupted;
2322         int ret;
2323 
2324         if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2325                 return -EFAULT;
2326 
2327         if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2328                 return -EFAULT;
2329 
2330 
2331         ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2332         if (ret)
2333                 return ret;
2334 
2335         ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2336 
2337         interrupted = signal_pending(current);
2338         restore_saved_sigmask_unless(interrupted);
2339         if (interrupted && !ret)
2340                 ret = -ERESTARTNOHAND;
2341 
2342         return ret;
2343 }
2344 
2345 #endif
2346 
2347 #if defined(CONFIG_COMPAT_32BIT_TIME)
2348 
2349 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2350                 __s32, min_nr,
2351                 __s32, nr,
2352                 struct io_event __user *, events,
2353                 struct old_timespec32 __user *, timeout)
2354 {
2355         struct timespec64 t;
2356         int ret;
2357 
2358         if (timeout && get_old_timespec32(&t, timeout))
2359                 return -EFAULT;
2360 
2361         ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2362         if (!ret && signal_pending(current))
2363                 ret = -EINTR;
2364         return ret;
2365 }
2366 
2367 #endif
2368 
2369 #ifdef CONFIG_COMPAT
2370 
2371 struct __compat_aio_sigset {
2372         compat_uptr_t           sigmask;
2373         compat_size_t           sigsetsize;
2374 };
2375 
2376 #if defined(CONFIG_COMPAT_32BIT_TIME)
2377 
2378 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2379                 compat_aio_context_t, ctx_id,
2380                 compat_long_t, min_nr,
2381                 compat_long_t, nr,
2382                 struct io_event __user *, events,
2383                 struct old_timespec32 __user *, timeout,
2384                 const struct __compat_aio_sigset __user *, usig)
2385 {
2386         struct __compat_aio_sigset ksig = { 0, };
2387         struct timespec64 t;
2388         bool interrupted;
2389         int ret;
2390 
2391         if (timeout && get_old_timespec32(&t, timeout))
2392                 return -EFAULT;
2393 
2394         if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2395                 return -EFAULT;
2396 
2397         ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2398         if (ret)
2399                 return ret;
2400 
2401         ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2402 
2403         interrupted = signal_pending(current);
2404         restore_saved_sigmask_unless(interrupted);
2405         if (interrupted && !ret)
2406                 ret = -ERESTARTNOHAND;
2407 
2408         return ret;
2409 }
2410 
2411 #endif
2412 
2413 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2414                 compat_aio_context_t, ctx_id,
2415                 compat_long_t, min_nr,
2416                 compat_long_t, nr,
2417                 struct io_event __user *, events,
2418                 struct __kernel_timespec __user *, timeout,
2419                 const struct __compat_aio_sigset __user *, usig)
2420 {
2421         struct __compat_aio_sigset ksig = { 0, };
2422         struct timespec64 t;
2423         bool interrupted;
2424         int ret;
2425 
2426         if (timeout && get_timespec64(&t, timeout))
2427                 return -EFAULT;
2428 
2429         if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2430                 return -EFAULT;
2431 
2432         ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2433         if (ret)
2434                 return ret;
2435 
2436         ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2437 
2438         interrupted = signal_pending(current);
2439         restore_saved_sigmask_unless(interrupted);
2440         if (interrupted && !ret)
2441                 ret = -ERESTARTNOHAND;
2442 
2443         return ret;
2444 }
2445 #endif
2446 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php