1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_FORMAT_H 3 #define _BCACHEFS_FORMAT_H 4 5 /* 6 * bcachefs on disk data structures 7 * 8 * OVERVIEW: 9 * 10 * There are three main types of on disk data structures in bcachefs (this is 11 * reduced from 5 in bcache) 12 * 13 * - superblock 14 * - journal 15 * - btree 16 * 17 * The btree is the primary structure; most metadata exists as keys in the 18 * various btrees. There are only a small number of btrees, they're not 19 * sharded - we have one btree for extents, another for inodes, et cetera. 20 * 21 * SUPERBLOCK: 22 * 23 * The superblock contains the location of the journal, the list of devices in 24 * the filesystem, and in general any metadata we need in order to decide 25 * whether we can start a filesystem or prior to reading the journal/btree 26 * roots. 27 * 28 * The superblock is extensible, and most of the contents of the superblock are 29 * in variable length, type tagged fields; see struct bch_sb_field. 30 * 31 * Backup superblocks do not reside in a fixed location; also, superblocks do 32 * not have a fixed size. To locate backup superblocks we have struct 33 * bch_sb_layout; we store a copy of this inside every superblock, and also 34 * before the first superblock. 35 * 36 * JOURNAL: 37 * 38 * The journal primarily records btree updates in the order they occurred; 39 * journal replay consists of just iterating over all the keys in the open 40 * journal entries and re-inserting them into the btrees. 41 * 42 * The journal also contains entry types for the btree roots, and blacklisted 43 * journal sequence numbers (see journal_seq_blacklist.c). 44 * 45 * BTREE: 46 * 47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically 48 * 128k-256k) and log structured. We use struct btree_node for writing the first 49 * entry in a given node (offset 0), and struct btree_node_entry for all 50 * subsequent writes. 51 * 52 * After the header, btree node entries contain a list of keys in sorted order. 53 * Values are stored inline with the keys; since values are variable length (and 54 * keys effectively are variable length too, due to packing) we can't do random 55 * access without building up additional in memory tables in the btree node read 56 * path. 57 * 58 * BTREE KEYS (struct bkey): 59 * 60 * The various btrees share a common format for the key - so as to avoid 61 * switching in fastpath lookup/comparison code - but define their own 62 * structures for the key values. 63 * 64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max 65 * size is just under 2k. The common part also contains a type tag for the 66 * value, and a format field indicating whether the key is packed or not (and 67 * also meant to allow adding new key fields in the future, if desired). 68 * 69 * bkeys, when stored within a btree node, may also be packed. In that case, the 70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can 71 * be generous with field sizes in the common part of the key format (64 bit 72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. 73 */ 74 75 #include <asm/types.h> 76 #include <asm/byteorder.h> 77 #include <linux/kernel.h> 78 #include <linux/uuid.h> 79 #include <uapi/linux/magic.h> 80 #include "vstructs.h" 81 82 #ifdef __KERNEL__ 83 typedef uuid_t __uuid_t; 84 #endif 85 86 #define BITMASK(name, type, field, offset, end) \ 87 static const __maybe_unused unsigned name##_OFFSET = offset; \ 88 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 89 \ 90 static inline __u64 name(const type *k) \ 91 { \ 92 return (k->field >> offset) & ~(~0ULL << (end - offset)); \ 93 } \ 94 \ 95 static inline void SET_##name(type *k, __u64 v) \ 96 { \ 97 k->field &= ~(~(~0ULL << (end - offset)) << offset); \ 98 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \ 99 } 100 101 #define LE_BITMASK(_bits, name, type, field, offset, end) \ 102 static const __maybe_unused unsigned name##_OFFSET = offset; \ 103 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 104 static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\ 105 \ 106 static inline __u64 name(const type *k) \ 107 { \ 108 return (__le##_bits##_to_cpu(k->field) >> offset) & \ 109 ~(~0ULL << (end - offset)); \ 110 } \ 111 \ 112 static inline void SET_##name(type *k, __u64 v) \ 113 { \ 114 __u##_bits new = __le##_bits##_to_cpu(k->field); \ 115 \ 116 new &= ~(~(~0ULL << (end - offset)) << offset); \ 117 new |= (v & ~(~0ULL << (end - offset))) << offset; \ 118 k->field = __cpu_to_le##_bits(new); \ 119 } 120 121 #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) 122 #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) 123 #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) 124 125 struct bkey_format { 126 __u8 key_u64s; 127 __u8 nr_fields; 128 /* One unused slot for now: */ 129 __u8 bits_per_field[6]; 130 __le64 field_offset[6]; 131 }; 132 133 /* Btree keys - all units are in sectors */ 134 135 struct bpos { 136 /* 137 * Word order matches machine byte order - btree code treats a bpos as a 138 * single large integer, for search/comparison purposes 139 * 140 * Note that wherever a bpos is embedded in another on disk data 141 * structure, it has to be byte swabbed when reading in metadata that 142 * wasn't written in native endian order: 143 */ 144 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 145 __u32 snapshot; 146 __u64 offset; 147 __u64 inode; 148 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 149 __u64 inode; 150 __u64 offset; /* Points to end of extent - sectors */ 151 __u32 snapshot; 152 #else 153 #error edit for your odd byteorder. 154 #endif 155 } __packed 156 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 157 __aligned(4) 158 #endif 159 ; 160 161 #define KEY_INODE_MAX ((__u64)~0ULL) 162 #define KEY_OFFSET_MAX ((__u64)~0ULL) 163 #define KEY_SNAPSHOT_MAX ((__u32)~0U) 164 #define KEY_SIZE_MAX ((__u32)~0U) 165 166 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot) 167 { 168 return (struct bpos) { 169 .inode = inode, 170 .offset = offset, 171 .snapshot = snapshot, 172 }; 173 } 174 175 #define POS_MIN SPOS(0, 0, 0) 176 #define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0) 177 #define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX) 178 #define POS(_inode, _offset) SPOS(_inode, _offset, 0) 179 180 /* Empty placeholder struct, for container_of() */ 181 struct bch_val { 182 __u64 __nothing[0]; 183 }; 184 185 struct bversion { 186 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 187 __u64 lo; 188 __u32 hi; 189 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 190 __u32 hi; 191 __u64 lo; 192 #endif 193 } __packed 194 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 195 __aligned(4) 196 #endif 197 ; 198 199 struct bkey { 200 /* Size of combined key and value, in u64s */ 201 __u8 u64s; 202 203 /* Format of key (0 for format local to btree node) */ 204 #if defined(__LITTLE_ENDIAN_BITFIELD) 205 __u8 format:7, 206 needs_whiteout:1; 207 #elif defined (__BIG_ENDIAN_BITFIELD) 208 __u8 needs_whiteout:1, 209 format:7; 210 #else 211 #error edit for your odd byteorder. 212 #endif 213 214 /* Type of the value */ 215 __u8 type; 216 217 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 218 __u8 pad[1]; 219 220 struct bversion version; 221 __u32 size; /* extent size, in sectors */ 222 struct bpos p; 223 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 224 struct bpos p; 225 __u32 size; /* extent size, in sectors */ 226 struct bversion version; 227 228 __u8 pad[1]; 229 #endif 230 } __packed 231 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 232 /* 233 * The big-endian version of bkey can't be compiled by rustc with the "aligned" 234 * attr since it doesn't allow types to have both "packed" and "aligned" attrs. 235 * So for Rust compatibility, don't include this. It can be included in the LE 236 * version because the "packed" attr is redundant in that case. 237 * 238 * History: (quoting Kent) 239 * 240 * Specifically, when i was designing bkey, I wanted the header to be no 241 * bigger than necessary so that bkey_packed could use the rest. That means that 242 * decently offten extent keys will fit into only 8 bytes, instead of spilling over 243 * to 16. 244 * 245 * But packed_bkey treats the part after the header - the packed section - 246 * as a single multi word, variable length integer. And bkey, the unpacked 247 * version, is just a special case version of a bkey_packed; all the packed 248 * bkey code will work on keys in any packed format, the in-memory 249 * representation of an unpacked key also is just one type of packed key... 250 * 251 * So that constrains the key part of a bkig endian bkey to start right 252 * after the header. 253 * 254 * If we ever do a bkey_v2 and need to expand the hedaer by another byte for 255 * some reason - that will clean up this wart. 256 */ 257 __aligned(8) 258 #endif 259 ; 260 261 struct bkey_packed { 262 __u64 _data[0]; 263 264 /* Size of combined key and value, in u64s */ 265 __u8 u64s; 266 267 /* Format of key (0 for format local to btree node) */ 268 269 /* 270 * XXX: next incompat on disk format change, switch format and 271 * needs_whiteout - bkey_packed() will be cheaper if format is the high 272 * bits of the bitfield 273 */ 274 #if defined(__LITTLE_ENDIAN_BITFIELD) 275 __u8 format:7, 276 needs_whiteout:1; 277 #elif defined (__BIG_ENDIAN_BITFIELD) 278 __u8 needs_whiteout:1, 279 format:7; 280 #endif 281 282 /* Type of the value */ 283 __u8 type; 284 __u8 key_start[0]; 285 286 /* 287 * We copy bkeys with struct assignment in various places, and while 288 * that shouldn't be done with packed bkeys we can't disallow it in C, 289 * and it's legal to cast a bkey to a bkey_packed - so padding it out 290 * to the same size as struct bkey should hopefully be safest. 291 */ 292 __u8 pad[sizeof(struct bkey) - 3]; 293 } __packed __aligned(8); 294 295 typedef struct { 296 __le64 lo; 297 __le64 hi; 298 } bch_le128; 299 300 #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) 301 #define BKEY_U64s_MAX U8_MAX 302 #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) 303 304 #define KEY_PACKED_BITS_START 24 305 306 #define KEY_FORMAT_LOCAL_BTREE 0 307 #define KEY_FORMAT_CURRENT 1 308 309 enum bch_bkey_fields { 310 BKEY_FIELD_INODE, 311 BKEY_FIELD_OFFSET, 312 BKEY_FIELD_SNAPSHOT, 313 BKEY_FIELD_SIZE, 314 BKEY_FIELD_VERSION_HI, 315 BKEY_FIELD_VERSION_LO, 316 BKEY_NR_FIELDS, 317 }; 318 319 #define bkey_format_field(name, field) \ 320 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) 321 322 #define BKEY_FORMAT_CURRENT \ 323 ((struct bkey_format) { \ 324 .key_u64s = BKEY_U64s, \ 325 .nr_fields = BKEY_NR_FIELDS, \ 326 .bits_per_field = { \ 327 bkey_format_field(INODE, p.inode), \ 328 bkey_format_field(OFFSET, p.offset), \ 329 bkey_format_field(SNAPSHOT, p.snapshot), \ 330 bkey_format_field(SIZE, size), \ 331 bkey_format_field(VERSION_HI, version.hi), \ 332 bkey_format_field(VERSION_LO, version.lo), \ 333 }, \ 334 }) 335 336 /* bkey with inline value */ 337 struct bkey_i { 338 __u64 _data[0]; 339 340 struct bkey k; 341 struct bch_val v; 342 }; 343 344 #define POS_KEY(_pos) \ 345 ((struct bkey) { \ 346 .u64s = BKEY_U64s, \ 347 .format = KEY_FORMAT_CURRENT, \ 348 .p = _pos, \ 349 }) 350 351 #define KEY(_inode, _offset, _size) \ 352 ((struct bkey) { \ 353 .u64s = BKEY_U64s, \ 354 .format = KEY_FORMAT_CURRENT, \ 355 .p = POS(_inode, _offset), \ 356 .size = _size, \ 357 }) 358 359 static inline void bkey_init(struct bkey *k) 360 { 361 *k = KEY(0, 0, 0); 362 } 363 364 #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) 365 366 #define __BKEY_PADDED(key, pad) \ 367 struct bkey_i key; __u64 key ## _pad[pad] 368 369 /* 370 * - DELETED keys are used internally to mark keys that should be ignored but 371 * override keys in composition order. Their version number is ignored. 372 * 373 * - DISCARDED keys indicate that the data is all 0s because it has been 374 * discarded. DISCARDs may have a version; if the version is nonzero the key 375 * will be persistent, otherwise the key will be dropped whenever the btree 376 * node is rewritten (like DELETED keys). 377 * 378 * - ERROR: any read of the data returns a read error, as the data was lost due 379 * to a failing device. Like DISCARDED keys, they can be removed (overridden) 380 * by new writes or cluster-wide GC. Node repair can also overwrite them with 381 * the same or a more recent version number, but not with an older version 382 * number. 383 * 384 * - WHITEOUT: for hash table btrees 385 */ 386 #define BCH_BKEY_TYPES() \ 387 x(deleted, 0) \ 388 x(whiteout, 1) \ 389 x(error, 2) \ 390 x(cookie, 3) \ 391 x(hash_whiteout, 4) \ 392 x(btree_ptr, 5) \ 393 x(extent, 6) \ 394 x(reservation, 7) \ 395 x(inode, 8) \ 396 x(inode_generation, 9) \ 397 x(dirent, 10) \ 398 x(xattr, 11) \ 399 x(alloc, 12) \ 400 x(quota, 13) \ 401 x(stripe, 14) \ 402 x(reflink_p, 15) \ 403 x(reflink_v, 16) \ 404 x(inline_data, 17) \ 405 x(btree_ptr_v2, 18) \ 406 x(indirect_inline_data, 19) \ 407 x(alloc_v2, 20) \ 408 x(subvolume, 21) \ 409 x(snapshot, 22) \ 410 x(inode_v2, 23) \ 411 x(alloc_v3, 24) \ 412 x(set, 25) \ 413 x(lru, 26) \ 414 x(alloc_v4, 27) \ 415 x(backpointer, 28) \ 416 x(inode_v3, 29) \ 417 x(bucket_gens, 30) \ 418 x(snapshot_tree, 31) \ 419 x(logged_op_truncate, 32) \ 420 x(logged_op_finsert, 33) \ 421 x(accounting, 34) 422 423 enum bch_bkey_type { 424 #define x(name, nr) KEY_TYPE_##name = nr, 425 BCH_BKEY_TYPES() 426 #undef x 427 KEY_TYPE_MAX, 428 }; 429 430 struct bch_deleted { 431 struct bch_val v; 432 }; 433 434 struct bch_whiteout { 435 struct bch_val v; 436 }; 437 438 struct bch_error { 439 struct bch_val v; 440 }; 441 442 struct bch_cookie { 443 struct bch_val v; 444 __le64 cookie; 445 }; 446 447 struct bch_hash_whiteout { 448 struct bch_val v; 449 }; 450 451 struct bch_set { 452 struct bch_val v; 453 }; 454 455 /* 128 bits, sufficient for cryptographic MACs: */ 456 struct bch_csum { 457 __le64 lo; 458 __le64 hi; 459 } __packed __aligned(8); 460 461 struct bch_backpointer { 462 struct bch_val v; 463 __u8 btree_id; 464 __u8 level; 465 __u8 data_type; 466 __u64 bucket_offset:40; 467 __u32 bucket_len; 468 struct bpos pos; 469 } __packed __aligned(8); 470 471 /* Optional/variable size superblock sections: */ 472 473 struct bch_sb_field { 474 __u64 _data[0]; 475 __le32 u64s; 476 __le32 type; 477 }; 478 479 #define BCH_SB_FIELDS() \ 480 x(journal, 0) \ 481 x(members_v1, 1) \ 482 x(crypt, 2) \ 483 x(replicas_v0, 3) \ 484 x(quota, 4) \ 485 x(disk_groups, 5) \ 486 x(clean, 6) \ 487 x(replicas, 7) \ 488 x(journal_seq_blacklist, 8) \ 489 x(journal_v2, 9) \ 490 x(counters, 10) \ 491 x(members_v2, 11) \ 492 x(errors, 12) \ 493 x(ext, 13) \ 494 x(downgrade, 14) 495 496 #include "alloc_background_format.h" 497 #include "dirent_format.h" 498 #include "disk_accounting_format.h" 499 #include "disk_groups_format.h" 500 #include "extents_format.h" 501 #include "ec_format.h" 502 #include "dirent_format.h" 503 #include "disk_groups_format.h" 504 #include "inode_format.h" 505 #include "journal_seq_blacklist_format.h" 506 #include "logged_ops_format.h" 507 #include "lru_format.h" 508 #include "quota_format.h" 509 #include "reflink_format.h" 510 #include "replicas_format.h" 511 #include "snapshot_format.h" 512 #include "subvolume_format.h" 513 #include "sb-counters_format.h" 514 #include "sb-downgrade_format.h" 515 #include "sb-errors_format.h" 516 #include "sb-members_format.h" 517 #include "xattr_format.h" 518 519 enum bch_sb_field_type { 520 #define x(f, nr) BCH_SB_FIELD_##f = nr, 521 BCH_SB_FIELDS() 522 #undef x 523 BCH_SB_FIELD_NR 524 }; 525 526 /* 527 * Most superblock fields are replicated in all device's superblocks - a few are 528 * not: 529 */ 530 #define BCH_SINGLE_DEVICE_SB_FIELDS \ 531 ((1U << BCH_SB_FIELD_journal)| \ 532 (1U << BCH_SB_FIELD_journal_v2)) 533 534 /* BCH_SB_FIELD_journal: */ 535 536 struct bch_sb_field_journal { 537 struct bch_sb_field field; 538 __le64 buckets[]; 539 }; 540 541 struct bch_sb_field_journal_v2 { 542 struct bch_sb_field field; 543 544 struct bch_sb_field_journal_v2_entry { 545 __le64 start; 546 __le64 nr; 547 } d[]; 548 }; 549 550 /* BCH_SB_FIELD_crypt: */ 551 552 struct nonce { 553 __le32 d[4]; 554 }; 555 556 struct bch_key { 557 __le64 key[4]; 558 }; 559 560 #define BCH_KEY_MAGIC \ 561 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \ 562 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \ 563 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \ 564 ((__u64) 'e' << 48)|((__u64) 'y' << 56)) 565 566 struct bch_encrypted_key { 567 __le64 magic; 568 struct bch_key key; 569 }; 570 571 /* 572 * If this field is present in the superblock, it stores an encryption key which 573 * is used encrypt all other data/metadata. The key will normally be encrypted 574 * with the key userspace provides, but if encryption has been turned off we'll 575 * just store the master key unencrypted in the superblock so we can access the 576 * previously encrypted data. 577 */ 578 struct bch_sb_field_crypt { 579 struct bch_sb_field field; 580 581 __le64 flags; 582 __le64 kdf_flags; 583 struct bch_encrypted_key key; 584 }; 585 586 LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); 587 588 enum bch_kdf_types { 589 BCH_KDF_SCRYPT = 0, 590 BCH_KDF_NR = 1, 591 }; 592 593 /* stored as base 2 log of scrypt params: */ 594 LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); 595 LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); 596 LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); 597 598 /* 599 * On clean shutdown, store btree roots and current journal sequence number in 600 * the superblock: 601 */ 602 struct jset_entry { 603 __le16 u64s; 604 __u8 btree_id; 605 __u8 level; 606 __u8 type; /* designates what this jset holds */ 607 __u8 pad[3]; 608 609 struct bkey_i start[0]; 610 __u64 _data[]; 611 }; 612 613 struct bch_sb_field_clean { 614 struct bch_sb_field field; 615 616 __le32 flags; 617 __le16 _read_clock; /* no longer used */ 618 __le16 _write_clock; 619 __le64 journal_seq; 620 621 struct jset_entry start[0]; 622 __u64 _data[]; 623 }; 624 625 struct bch_sb_field_ext { 626 struct bch_sb_field field; 627 __le64 recovery_passes_required[2]; 628 __le64 errors_silent[8]; 629 __le64 btrees_lost_data; 630 }; 631 632 /* Superblock: */ 633 634 /* 635 * New versioning scheme: 636 * One common version number for all on disk data structures - superblock, btree 637 * nodes, journal entries 638 */ 639 #define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10)) 640 #define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10))) 641 #define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0) 642 643 /* 644 * field 1: version name 645 * field 2: BCH_VERSION(major, minor) 646 * field 3: recovery passess required on upgrade 647 */ 648 #define BCH_METADATA_VERSIONS() \ 649 x(bkey_renumber, BCH_VERSION(0, 10)) \ 650 x(inode_btree_change, BCH_VERSION(0, 11)) \ 651 x(snapshot, BCH_VERSION(0, 12)) \ 652 x(inode_backpointers, BCH_VERSION(0, 13)) \ 653 x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \ 654 x(snapshot_2, BCH_VERSION(0, 15)) \ 655 x(reflink_p_fix, BCH_VERSION(0, 16)) \ 656 x(subvol_dirent, BCH_VERSION(0, 17)) \ 657 x(inode_v2, BCH_VERSION(0, 18)) \ 658 x(freespace, BCH_VERSION(0, 19)) \ 659 x(alloc_v4, BCH_VERSION(0, 20)) \ 660 x(new_data_types, BCH_VERSION(0, 21)) \ 661 x(backpointers, BCH_VERSION(0, 22)) \ 662 x(inode_v3, BCH_VERSION(0, 23)) \ 663 x(unwritten_extents, BCH_VERSION(0, 24)) \ 664 x(bucket_gens, BCH_VERSION(0, 25)) \ 665 x(lru_v2, BCH_VERSION(0, 26)) \ 666 x(fragmentation_lru, BCH_VERSION(0, 27)) \ 667 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \ 668 x(snapshot_trees, BCH_VERSION(0, 29)) \ 669 x(major_minor, BCH_VERSION(1, 0)) \ 670 x(snapshot_skiplists, BCH_VERSION(1, 1)) \ 671 x(deleted_inodes, BCH_VERSION(1, 2)) \ 672 x(rebalance_work, BCH_VERSION(1, 3)) \ 673 x(member_seq, BCH_VERSION(1, 4)) \ 674 x(subvolume_fs_parent, BCH_VERSION(1, 5)) \ 675 x(btree_subvolume_children, BCH_VERSION(1, 6)) \ 676 x(mi_btree_bitmap, BCH_VERSION(1, 7)) \ 677 x(bucket_stripe_sectors, BCH_VERSION(1, 8)) \ 678 x(disk_accounting_v2, BCH_VERSION(1, 9)) \ 679 x(disk_accounting_v3, BCH_VERSION(1, 10)) \ 680 x(disk_accounting_inum, BCH_VERSION(1, 11)) \ 681 x(rebalance_work_acct_fix, BCH_VERSION(1, 12)) 682 683 enum bcachefs_metadata_version { 684 bcachefs_metadata_version_min = 9, 685 #define x(t, n) bcachefs_metadata_version_##t = n, 686 BCH_METADATA_VERSIONS() 687 #undef x 688 bcachefs_metadata_version_max 689 }; 690 691 static const __maybe_unused 692 unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work; 693 694 #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) 695 696 #define BCH_SB_SECTOR 8 697 698 #define BCH_SB_LAYOUT_SIZE_BITS_MAX 16 /* 32 MB */ 699 700 struct bch_sb_layout { 701 __uuid_t magic; /* bcachefs superblock UUID */ 702 __u8 layout_type; 703 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ 704 __u8 nr_superblocks; 705 __u8 pad[5]; 706 __le64 sb_offset[61]; 707 } __packed __aligned(8); 708 709 #define BCH_SB_LAYOUT_SECTOR 7 710 711 /* 712 * @offset - sector where this sb was written 713 * @version - on disk format version 714 * @version_min - Oldest metadata version this filesystem contains; so we can 715 * safely drop compatibility code and refuse to mount filesystems 716 * we'd need it for 717 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC) 718 * @seq - incremented each time superblock is written 719 * @uuid - used for generating various magic numbers and identifying 720 * member devices, never changes 721 * @user_uuid - user visible UUID, may be changed 722 * @label - filesystem label 723 * @seq - identifies most recent superblock, incremented each time 724 * superblock is written 725 * @features - enabled incompatible features 726 */ 727 struct bch_sb { 728 struct bch_csum csum; 729 __le16 version; 730 __le16 version_min; 731 __le16 pad[2]; 732 __uuid_t magic; 733 __uuid_t uuid; 734 __uuid_t user_uuid; 735 __u8 label[BCH_SB_LABEL_SIZE]; 736 __le64 offset; 737 __le64 seq; 738 739 __le16 block_size; 740 __u8 dev_idx; 741 __u8 nr_devices; 742 __le32 u64s; 743 744 __le64 time_base_lo; 745 __le32 time_base_hi; 746 __le32 time_precision; 747 748 __le64 flags[7]; 749 __le64 write_time; 750 __le64 features[2]; 751 __le64 compat[2]; 752 753 struct bch_sb_layout layout; 754 755 struct bch_sb_field start[0]; 756 __le64 _data[]; 757 } __packed __aligned(8); 758 759 /* 760 * Flags: 761 * BCH_SB_INITALIZED - set on first mount 762 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect 763 * behaviour of mount/recovery path: 764 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits 765 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 766 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides 767 * DATA/META_CSUM_TYPE. Also indicates encryption 768 * algorithm in use, if/when we get more than one 769 */ 770 771 LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); 772 773 LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); 774 LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); 775 LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); 776 LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); 777 778 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); 779 780 LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); 781 LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); 782 783 LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); 784 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); 785 786 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); 787 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); 788 789 LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); 790 LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); 791 LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); 792 LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); 793 794 LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); 795 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62); 796 797 LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63); 798 799 LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); 800 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8); 801 LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); 802 803 LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); 804 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); 805 806 /* 807 * Max size of an extent that may require bouncing to read or write 808 * (checksummed, compressed): 64k 809 */ 810 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, 811 struct bch_sb, flags[1], 14, 20); 812 813 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); 814 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); 815 816 LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); 817 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); 818 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); 819 820 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO, 821 struct bch_sb, flags[2], 0, 4); 822 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); 823 824 LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); 825 LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28); 826 LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29); 827 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30); 828 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62); 829 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63); 830 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32); 831 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33); 832 LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34); 833 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54); 834 LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56); 835 836 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60); 837 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI, 838 struct bch_sb, flags[4], 60, 64); 839 840 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE, 841 struct bch_sb, flags[5], 0, 16); 842 LE64_BITMASK(BCH_SB_ALLOCATOR_STUCK_TIMEOUT, 843 struct bch_sb, flags[5], 16, 32); 844 845 static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb) 846 { 847 return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4); 848 } 849 850 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 851 { 852 SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v); 853 SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4); 854 } 855 856 static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb) 857 { 858 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) | 859 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4); 860 } 861 862 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 863 { 864 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v); 865 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4); 866 } 867 868 /* 869 * Features: 870 * 871 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist 872 * reflink: gates KEY_TYPE_reflink 873 * inline_data: gates KEY_TYPE_inline_data 874 * new_siphash: gates BCH_STR_HASH_siphash 875 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE 876 */ 877 #define BCH_SB_FEATURES() \ 878 x(lz4, 0) \ 879 x(gzip, 1) \ 880 x(zstd, 2) \ 881 x(atomic_nlink, 3) \ 882 x(ec, 4) \ 883 x(journal_seq_blacklist_v3, 5) \ 884 x(reflink, 6) \ 885 x(new_siphash, 7) \ 886 x(inline_data, 8) \ 887 x(new_extent_overwrite, 9) \ 888 x(incompressible, 10) \ 889 x(btree_ptr_v2, 11) \ 890 x(extents_above_btree_updates, 12) \ 891 x(btree_updates_journalled, 13) \ 892 x(reflink_inline_data, 14) \ 893 x(new_varint, 15) \ 894 x(journal_no_flush, 16) \ 895 x(alloc_v2, 17) \ 896 x(extents_across_btree_nodes, 18) 897 898 #define BCH_SB_FEATURES_ALWAYS \ 899 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \ 900 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\ 901 (1ULL << BCH_FEATURE_btree_updates_journalled)|\ 902 (1ULL << BCH_FEATURE_alloc_v2)|\ 903 (1ULL << BCH_FEATURE_extents_across_btree_nodes)) 904 905 #define BCH_SB_FEATURES_ALL \ 906 (BCH_SB_FEATURES_ALWAYS| \ 907 (1ULL << BCH_FEATURE_new_siphash)| \ 908 (1ULL << BCH_FEATURE_btree_ptr_v2)| \ 909 (1ULL << BCH_FEATURE_new_varint)| \ 910 (1ULL << BCH_FEATURE_journal_no_flush)) 911 912 enum bch_sb_feature { 913 #define x(f, n) BCH_FEATURE_##f, 914 BCH_SB_FEATURES() 915 #undef x 916 BCH_FEATURE_NR, 917 }; 918 919 #define BCH_SB_COMPAT() \ 920 x(alloc_info, 0) \ 921 x(alloc_metadata, 1) \ 922 x(extents_above_btree_updates_done, 2) \ 923 x(bformat_overflow_done, 3) 924 925 enum bch_sb_compat { 926 #define x(f, n) BCH_COMPAT_##f, 927 BCH_SB_COMPAT() 928 #undef x 929 BCH_COMPAT_NR, 930 }; 931 932 /* options: */ 933 934 #define BCH_VERSION_UPGRADE_OPTS() \ 935 x(compatible, 0) \ 936 x(incompatible, 1) \ 937 x(none, 2) 938 939 enum bch_version_upgrade_opts { 940 #define x(t, n) BCH_VERSION_UPGRADE_##t = n, 941 BCH_VERSION_UPGRADE_OPTS() 942 #undef x 943 }; 944 945 #define BCH_REPLICAS_MAX 4U 946 947 #define BCH_BKEY_PTRS_MAX 16U 948 949 #define BCH_ERROR_ACTIONS() \ 950 x(continue, 0) \ 951 x(fix_safe, 1) \ 952 x(panic, 2) \ 953 x(ro, 3) 954 955 enum bch_error_actions { 956 #define x(t, n) BCH_ON_ERROR_##t = n, 957 BCH_ERROR_ACTIONS() 958 #undef x 959 BCH_ON_ERROR_NR 960 }; 961 962 #define BCH_STR_HASH_TYPES() \ 963 x(crc32c, 0) \ 964 x(crc64, 1) \ 965 x(siphash_old, 2) \ 966 x(siphash, 3) 967 968 enum bch_str_hash_type { 969 #define x(t, n) BCH_STR_HASH_##t = n, 970 BCH_STR_HASH_TYPES() 971 #undef x 972 BCH_STR_HASH_NR 973 }; 974 975 #define BCH_STR_HASH_OPTS() \ 976 x(crc32c, 0) \ 977 x(crc64, 1) \ 978 x(siphash, 2) 979 980 enum bch_str_hash_opts { 981 #define x(t, n) BCH_STR_HASH_OPT_##t = n, 982 BCH_STR_HASH_OPTS() 983 #undef x 984 BCH_STR_HASH_OPT_NR 985 }; 986 987 #define BCH_CSUM_TYPES() \ 988 x(none, 0) \ 989 x(crc32c_nonzero, 1) \ 990 x(crc64_nonzero, 2) \ 991 x(chacha20_poly1305_80, 3) \ 992 x(chacha20_poly1305_128, 4) \ 993 x(crc32c, 5) \ 994 x(crc64, 6) \ 995 x(xxhash, 7) 996 997 enum bch_csum_type { 998 #define x(t, n) BCH_CSUM_##t = n, 999 BCH_CSUM_TYPES() 1000 #undef x 1001 BCH_CSUM_NR 1002 }; 1003 1004 static const __maybe_unused unsigned bch_crc_bytes[] = { 1005 [BCH_CSUM_none] = 0, 1006 [BCH_CSUM_crc32c_nonzero] = 4, 1007 [BCH_CSUM_crc32c] = 4, 1008 [BCH_CSUM_crc64_nonzero] = 8, 1009 [BCH_CSUM_crc64] = 8, 1010 [BCH_CSUM_xxhash] = 8, 1011 [BCH_CSUM_chacha20_poly1305_80] = 10, 1012 [BCH_CSUM_chacha20_poly1305_128] = 16, 1013 }; 1014 1015 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) 1016 { 1017 switch (type) { 1018 case BCH_CSUM_chacha20_poly1305_80: 1019 case BCH_CSUM_chacha20_poly1305_128: 1020 return true; 1021 default: 1022 return false; 1023 } 1024 } 1025 1026 #define BCH_CSUM_OPTS() \ 1027 x(none, 0) \ 1028 x(crc32c, 1) \ 1029 x(crc64, 2) \ 1030 x(xxhash, 3) 1031 1032 enum bch_csum_opts { 1033 #define x(t, n) BCH_CSUM_OPT_##t = n, 1034 BCH_CSUM_OPTS() 1035 #undef x 1036 BCH_CSUM_OPT_NR 1037 }; 1038 1039 #define BCH_COMPRESSION_TYPES() \ 1040 x(none, 0) \ 1041 x(lz4_old, 1) \ 1042 x(gzip, 2) \ 1043 x(lz4, 3) \ 1044 x(zstd, 4) \ 1045 x(incompressible, 5) 1046 1047 enum bch_compression_type { 1048 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n, 1049 BCH_COMPRESSION_TYPES() 1050 #undef x 1051 BCH_COMPRESSION_TYPE_NR 1052 }; 1053 1054 #define BCH_COMPRESSION_OPTS() \ 1055 x(none, 0) \ 1056 x(lz4, 1) \ 1057 x(gzip, 2) \ 1058 x(zstd, 3) 1059 1060 enum bch_compression_opts { 1061 #define x(t, n) BCH_COMPRESSION_OPT_##t = n, 1062 BCH_COMPRESSION_OPTS() 1063 #undef x 1064 BCH_COMPRESSION_OPT_NR 1065 }; 1066 1067 /* 1068 * Magic numbers 1069 * 1070 * The various other data structures have their own magic numbers, which are 1071 * xored with the first part of the cache set's UUID 1072 */ 1073 1074 #define BCACHE_MAGIC \ 1075 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ 1076 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) 1077 #define BCHFS_MAGIC \ 1078 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ 1079 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) 1080 1081 #define BCACHEFS_STATFS_MAGIC BCACHEFS_SUPER_MAGIC 1082 1083 #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) 1084 #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) 1085 1086 static inline __le64 __bch2_sb_magic(struct bch_sb *sb) 1087 { 1088 __le64 ret; 1089 1090 memcpy(&ret, &sb->uuid, sizeof(ret)); 1091 return ret; 1092 } 1093 1094 static inline __u64 __jset_magic(struct bch_sb *sb) 1095 { 1096 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); 1097 } 1098 1099 static inline __u64 __bset_magic(struct bch_sb *sb) 1100 { 1101 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); 1102 } 1103 1104 /* Journal */ 1105 1106 #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) 1107 1108 #define BCH_JSET_ENTRY_TYPES() \ 1109 x(btree_keys, 0) \ 1110 x(btree_root, 1) \ 1111 x(prio_ptrs, 2) \ 1112 x(blacklist, 3) \ 1113 x(blacklist_v2, 4) \ 1114 x(usage, 5) \ 1115 x(data_usage, 6) \ 1116 x(clock, 7) \ 1117 x(dev_usage, 8) \ 1118 x(log, 9) \ 1119 x(overwrite, 10) \ 1120 x(write_buffer_keys, 11) \ 1121 x(datetime, 12) 1122 1123 enum bch_jset_entry_type { 1124 #define x(f, nr) BCH_JSET_ENTRY_##f = nr, 1125 BCH_JSET_ENTRY_TYPES() 1126 #undef x 1127 BCH_JSET_ENTRY_NR 1128 }; 1129 1130 static inline bool jset_entry_is_key(struct jset_entry *e) 1131 { 1132 switch (e->type) { 1133 case BCH_JSET_ENTRY_btree_keys: 1134 case BCH_JSET_ENTRY_btree_root: 1135 case BCH_JSET_ENTRY_write_buffer_keys: 1136 return true; 1137 } 1138 1139 return false; 1140 } 1141 1142 /* 1143 * Journal sequence numbers can be blacklisted: bsets record the max sequence 1144 * number of all the journal entries they contain updates for, so that on 1145 * recovery we can ignore those bsets that contain index updates newer that what 1146 * made it into the journal. 1147 * 1148 * This means that we can't reuse that journal_seq - we have to skip it, and 1149 * then record that we skipped it so that the next time we crash and recover we 1150 * don't think there was a missing journal entry. 1151 */ 1152 struct jset_entry_blacklist { 1153 struct jset_entry entry; 1154 __le64 seq; 1155 }; 1156 1157 struct jset_entry_blacklist_v2 { 1158 struct jset_entry entry; 1159 __le64 start; 1160 __le64 end; 1161 }; 1162 1163 #define BCH_FS_USAGE_TYPES() \ 1164 x(reserved, 0) \ 1165 x(inodes, 1) \ 1166 x(key_version, 2) 1167 1168 enum bch_fs_usage_type { 1169 #define x(f, nr) BCH_FS_USAGE_##f = nr, 1170 BCH_FS_USAGE_TYPES() 1171 #undef x 1172 BCH_FS_USAGE_NR 1173 }; 1174 1175 struct jset_entry_usage { 1176 struct jset_entry entry; 1177 __le64 v; 1178 } __packed; 1179 1180 struct jset_entry_data_usage { 1181 struct jset_entry entry; 1182 __le64 v; 1183 struct bch_replicas_entry_v1 r; 1184 } __packed; 1185 1186 struct jset_entry_clock { 1187 struct jset_entry entry; 1188 __u8 rw; 1189 __u8 pad[7]; 1190 __le64 time; 1191 } __packed; 1192 1193 struct jset_entry_dev_usage_type { 1194 __le64 buckets; 1195 __le64 sectors; 1196 __le64 fragmented; 1197 } __packed; 1198 1199 struct jset_entry_dev_usage { 1200 struct jset_entry entry; 1201 __le32 dev; 1202 __u32 pad; 1203 1204 __le64 _buckets_ec; /* No longer used */ 1205 __le64 _buckets_unavailable; /* No longer used */ 1206 1207 struct jset_entry_dev_usage_type d[]; 1208 }; 1209 1210 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u) 1211 { 1212 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) / 1213 sizeof(struct jset_entry_dev_usage_type); 1214 } 1215 1216 struct jset_entry_log { 1217 struct jset_entry entry; 1218 u8 d[]; 1219 } __packed __aligned(8); 1220 1221 struct jset_entry_datetime { 1222 struct jset_entry entry; 1223 __le64 seconds; 1224 } __packed __aligned(8); 1225 1226 /* 1227 * On disk format for a journal entry: 1228 * seq is monotonically increasing; every journal entry has its own unique 1229 * sequence number. 1230 * 1231 * last_seq is the oldest journal entry that still has keys the btree hasn't 1232 * flushed to disk yet. 1233 * 1234 * version is for on disk format changes. 1235 */ 1236 struct jset { 1237 struct bch_csum csum; 1238 1239 __le64 magic; 1240 __le64 seq; 1241 __le32 version; 1242 __le32 flags; 1243 1244 __le32 u64s; /* size of d[] in u64s */ 1245 1246 __u8 encrypted_start[0]; 1247 1248 __le16 _read_clock; /* no longer used */ 1249 __le16 _write_clock; 1250 1251 /* Sequence number of oldest dirty journal entry */ 1252 __le64 last_seq; 1253 1254 1255 struct jset_entry start[0]; 1256 __u64 _data[]; 1257 } __packed __aligned(8); 1258 1259 LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); 1260 LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); 1261 LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); 1262 1263 #define BCH_JOURNAL_BUCKETS_MIN 8 1264 1265 /* Btree: */ 1266 1267 enum btree_id_flags { 1268 BTREE_ID_EXTENTS = BIT(0), 1269 BTREE_ID_SNAPSHOTS = BIT(1), 1270 BTREE_ID_SNAPSHOT_FIELD = BIT(2), 1271 BTREE_ID_DATA = BIT(3), 1272 }; 1273 1274 #define BCH_BTREE_IDS() \ 1275 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\ 1276 BIT_ULL(KEY_TYPE_whiteout)| \ 1277 BIT_ULL(KEY_TYPE_error)| \ 1278 BIT_ULL(KEY_TYPE_cookie)| \ 1279 BIT_ULL(KEY_TYPE_extent)| \ 1280 BIT_ULL(KEY_TYPE_reservation)| \ 1281 BIT_ULL(KEY_TYPE_reflink_p)| \ 1282 BIT_ULL(KEY_TYPE_inline_data)) \ 1283 x(inodes, 1, BTREE_ID_SNAPSHOTS, \ 1284 BIT_ULL(KEY_TYPE_whiteout)| \ 1285 BIT_ULL(KEY_TYPE_inode)| \ 1286 BIT_ULL(KEY_TYPE_inode_v2)| \ 1287 BIT_ULL(KEY_TYPE_inode_v3)| \ 1288 BIT_ULL(KEY_TYPE_inode_generation)) \ 1289 x(dirents, 2, BTREE_ID_SNAPSHOTS, \ 1290 BIT_ULL(KEY_TYPE_whiteout)| \ 1291 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1292 BIT_ULL(KEY_TYPE_dirent)) \ 1293 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \ 1294 BIT_ULL(KEY_TYPE_whiteout)| \ 1295 BIT_ULL(KEY_TYPE_cookie)| \ 1296 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1297 BIT_ULL(KEY_TYPE_xattr)) \ 1298 x(alloc, 4, 0, \ 1299 BIT_ULL(KEY_TYPE_alloc)| \ 1300 BIT_ULL(KEY_TYPE_alloc_v2)| \ 1301 BIT_ULL(KEY_TYPE_alloc_v3)| \ 1302 BIT_ULL(KEY_TYPE_alloc_v4)) \ 1303 x(quotas, 5, 0, \ 1304 BIT_ULL(KEY_TYPE_quota)) \ 1305 x(stripes, 6, 0, \ 1306 BIT_ULL(KEY_TYPE_stripe)) \ 1307 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \ 1308 BIT_ULL(KEY_TYPE_reflink_v)| \ 1309 BIT_ULL(KEY_TYPE_indirect_inline_data)| \ 1310 BIT_ULL(KEY_TYPE_error)) \ 1311 x(subvolumes, 8, 0, \ 1312 BIT_ULL(KEY_TYPE_subvolume)) \ 1313 x(snapshots, 9, 0, \ 1314 BIT_ULL(KEY_TYPE_snapshot)) \ 1315 x(lru, 10, 0, \ 1316 BIT_ULL(KEY_TYPE_set)) \ 1317 x(freespace, 11, BTREE_ID_EXTENTS, \ 1318 BIT_ULL(KEY_TYPE_set)) \ 1319 x(need_discard, 12, 0, \ 1320 BIT_ULL(KEY_TYPE_set)) \ 1321 x(backpointers, 13, 0, \ 1322 BIT_ULL(KEY_TYPE_backpointer)) \ 1323 x(bucket_gens, 14, 0, \ 1324 BIT_ULL(KEY_TYPE_bucket_gens)) \ 1325 x(snapshot_trees, 15, 0, \ 1326 BIT_ULL(KEY_TYPE_snapshot_tree)) \ 1327 x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \ 1328 BIT_ULL(KEY_TYPE_set)) \ 1329 x(logged_ops, 17, 0, \ 1330 BIT_ULL(KEY_TYPE_logged_op_truncate)| \ 1331 BIT_ULL(KEY_TYPE_logged_op_finsert)) \ 1332 x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \ 1333 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \ 1334 x(subvolume_children, 19, 0, \ 1335 BIT_ULL(KEY_TYPE_set)) \ 1336 x(accounting, 20, BTREE_ID_SNAPSHOT_FIELD, \ 1337 BIT_ULL(KEY_TYPE_accounting)) \ 1338 1339 enum btree_id { 1340 #define x(name, nr, ...) BTREE_ID_##name = nr, 1341 BCH_BTREE_IDS() 1342 #undef x 1343 BTREE_ID_NR 1344 }; 1345 1346 /* 1347 * Maximum number of btrees that we will _ever_ have under the current scheme, 1348 * where we refer to them with 64 bit bitfields - and we also need a bit for 1349 * the interior btree node type: 1350 */ 1351 #define BTREE_ID_NR_MAX 63 1352 1353 static inline bool btree_id_is_alloc(enum btree_id id) 1354 { 1355 switch (id) { 1356 case BTREE_ID_alloc: 1357 case BTREE_ID_backpointers: 1358 case BTREE_ID_need_discard: 1359 case BTREE_ID_freespace: 1360 case BTREE_ID_bucket_gens: 1361 return true; 1362 default: 1363 return false; 1364 } 1365 } 1366 1367 #define BTREE_MAX_DEPTH 4U 1368 1369 /* Btree nodes */ 1370 1371 /* 1372 * Btree nodes 1373 * 1374 * On disk a btree node is a list/log of these; within each set the keys are 1375 * sorted 1376 */ 1377 struct bset { 1378 __le64 seq; 1379 1380 /* 1381 * Highest journal entry this bset contains keys for. 1382 * If on recovery we don't see that journal entry, this bset is ignored: 1383 * this allows us to preserve the order of all index updates after a 1384 * crash, since the journal records a total order of all index updates 1385 * and anything that didn't make it to the journal doesn't get used. 1386 */ 1387 __le64 journal_seq; 1388 1389 __le32 flags; 1390 __le16 version; 1391 __le16 u64s; /* count of d[] in u64s */ 1392 1393 struct bkey_packed start[0]; 1394 __u64 _data[]; 1395 } __packed __aligned(8); 1396 1397 LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); 1398 1399 LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); 1400 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, 1401 struct bset, flags, 5, 6); 1402 1403 /* Sector offset within the btree node: */ 1404 LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32); 1405 1406 struct btree_node { 1407 struct bch_csum csum; 1408 __le64 magic; 1409 1410 /* this flags field is encrypted, unlike bset->flags: */ 1411 __le64 flags; 1412 1413 /* Closed interval: */ 1414 struct bpos min_key; 1415 struct bpos max_key; 1416 struct bch_extent_ptr _ptr; /* not used anymore */ 1417 struct bkey_format format; 1418 1419 union { 1420 struct bset keys; 1421 struct { 1422 __u8 pad[22]; 1423 __le16 u64s; 1424 __u64 _data[0]; 1425 1426 }; 1427 }; 1428 } __packed __aligned(8); 1429 1430 LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4); 1431 LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); 1432 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, 1433 struct btree_node, flags, 8, 9); 1434 LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25); 1435 /* 25-32 unused */ 1436 LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); 1437 1438 static inline __u64 BTREE_NODE_ID(struct btree_node *n) 1439 { 1440 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4); 1441 } 1442 1443 static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v) 1444 { 1445 SET_BTREE_NODE_ID_LO(n, v); 1446 SET_BTREE_NODE_ID_HI(n, v >> 4); 1447 } 1448 1449 struct btree_node_entry { 1450 struct bch_csum csum; 1451 1452 union { 1453 struct bset keys; 1454 struct { 1455 __u8 pad[22]; 1456 __le16 u64s; 1457 __u64 _data[0]; 1458 }; 1459 }; 1460 } __packed __aligned(8); 1461 1462 #endif /* _BCACHEFS_FORMAT_H */ 1463
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.