~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/bcachefs/bset.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _BCACHEFS_BSET_H
  3 #define _BCACHEFS_BSET_H
  4 
  5 #include <linux/kernel.h>
  6 #include <linux/types.h>
  7 
  8 #include "bcachefs.h"
  9 #include "bkey.h"
 10 #include "bkey_methods.h"
 11 #include "btree_types.h"
 12 #include "util.h" /* for time_stats */
 13 #include "vstructs.h"
 14 
 15 /*
 16  * BKEYS:
 17  *
 18  * A bkey contains a key, a size field, a variable number of pointers, and some
 19  * ancillary flag bits.
 20  *
 21  * We use two different functions for validating bkeys, bkey_invalid and
 22  * bkey_deleted().
 23  *
 24  * The one exception to the rule that ptr_invalid() filters out invalid keys is
 25  * that it also filters out keys of size 0 - these are keys that have been
 26  * completely overwritten. It'd be safe to delete these in memory while leaving
 27  * them on disk, just unnecessary work - so we filter them out when resorting
 28  * instead.
 29  *
 30  * We can't filter out stale keys when we're resorting, because garbage
 31  * collection needs to find them to ensure bucket gens don't wrap around -
 32  * unless we're rewriting the btree node those stale keys still exist on disk.
 33  *
 34  * We also implement functions here for removing some number of sectors from the
 35  * front or the back of a bkey - this is mainly used for fixing overlapping
 36  * extents, by removing the overlapping sectors from the older key.
 37  *
 38  * BSETS:
 39  *
 40  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
 41  * along with a header. A btree node is made up of a number of these, written at
 42  * different times.
 43  *
 44  * There could be many of them on disk, but we never allow there to be more than
 45  * 4 in memory - we lazily resort as needed.
 46  *
 47  * We implement code here for creating and maintaining auxiliary search trees
 48  * (described below) for searching an individial bset, and on top of that we
 49  * implement a btree iterator.
 50  *
 51  * BTREE ITERATOR:
 52  *
 53  * Most of the code in bcache doesn't care about an individual bset - it needs
 54  * to search entire btree nodes and iterate over them in sorted order.
 55  *
 56  * The btree iterator code serves both functions; it iterates through the keys
 57  * in a btree node in sorted order, starting from either keys after a specific
 58  * point (if you pass it a search key) or the start of the btree node.
 59  *
 60  * AUXILIARY SEARCH TREES:
 61  *
 62  * Since keys are variable length, we can't use a binary search on a bset - we
 63  * wouldn't be able to find the start of the next key. But binary searches are
 64  * slow anyways, due to terrible cache behaviour; bcache originally used binary
 65  * searches and that code topped out at under 50k lookups/second.
 66  *
 67  * So we need to construct some sort of lookup table. Since we only insert keys
 68  * into the last (unwritten) set, most of the keys within a given btree node are
 69  * usually in sets that are mostly constant. We use two different types of
 70  * lookup tables to take advantage of this.
 71  *
 72  * Both lookup tables share in common that they don't index every key in the
 73  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
 74  * is used for the rest.
 75  *
 76  * For sets that have been written to disk and are no longer being inserted
 77  * into, we construct a binary search tree in an array - traversing a binary
 78  * search tree in an array gives excellent locality of reference and is very
 79  * fast, since both children of any node are adjacent to each other in memory
 80  * (and their grandchildren, and great grandchildren...) - this means
 81  * prefetching can be used to great effect.
 82  *
 83  * It's quite useful performance wise to keep these nodes small - not just
 84  * because they're more likely to be in L2, but also because we can prefetch
 85  * more nodes on a single cacheline and thus prefetch more iterations in advance
 86  * when traversing this tree.
 87  *
 88  * Nodes in the auxiliary search tree must contain both a key to compare against
 89  * (we don't want to fetch the key from the set, that would defeat the purpose),
 90  * and a pointer to the key. We use a few tricks to compress both of these.
 91  *
 92  * To compress the pointer, we take advantage of the fact that one node in the
 93  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
 94  * a function (to_inorder()) that takes the index of a node in a binary tree and
 95  * returns what its index would be in an inorder traversal, so we only have to
 96  * store the low bits of the offset.
 97  *
 98  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
 99  * compress that,  we take advantage of the fact that when we're traversing the
100  * search tree at every iteration we know that both our search key and the key
101  * we're looking for lie within some range - bounded by our previous
102  * comparisons. (We special case the start of a search so that this is true even
103  * at the root of the tree).
104  *
105  * So we know the key we're looking for is between a and b, and a and b don't
106  * differ higher than bit 50, we don't need to check anything higher than bit
107  * 50.
108  *
109  * We don't usually need the rest of the bits, either; we only need enough bits
110  * to partition the key range we're currently checking.  Consider key n - the
111  * key our auxiliary search tree node corresponds to, and key p, the key
112  * immediately preceding n.  The lowest bit we need to store in the auxiliary
113  * search tree is the highest bit that differs between n and p.
114  *
115  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
116  * comparison. But we'd really like our nodes in the auxiliary search tree to be
117  * of fixed size.
118  *
119  * The solution is to make them fixed size, and when we're constructing a node
120  * check if p and n differed in the bits we needed them to. If they don't we
121  * flag that node, and when doing lookups we fallback to comparing against the
122  * real key. As long as this doesn't happen to often (and it seems to reliably
123  * happen a bit less than 1% of the time), we win - even on failures, that key
124  * is then more likely to be in cache than if we were doing binary searches all
125  * the way, since we're touching so much less memory.
126  *
127  * The keys in the auxiliary search tree are stored in (software) floating
128  * point, with an exponent and a mantissa. The exponent needs to be big enough
129  * to address all the bits in the original key, but the number of bits in the
130  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
131  *
132  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
133  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
134  * We need one node per 128 bytes in the btree node, which means the auxiliary
135  * search trees take up 3% as much memory as the btree itself.
136  *
137  * Constructing these auxiliary search trees is moderately expensive, and we
138  * don't want to be constantly rebuilding the search tree for the last set
139  * whenever we insert another key into it. For the unwritten set, we use a much
140  * simpler lookup table - it's just a flat array, so index i in the lookup table
141  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
142  * within each byte range works the same as with the auxiliary search trees.
143  *
144  * These are much easier to keep up to date when we insert a key - we do it
145  * somewhat lazily; when we shift a key up we usually just increment the pointer
146  * to it, only when it would overflow do we go to the trouble of finding the
147  * first key in that range of bytes again.
148  */
149 
150 enum bset_aux_tree_type {
151         BSET_NO_AUX_TREE,
152         BSET_RO_AUX_TREE,
153         BSET_RW_AUX_TREE,
154 };
155 
156 #define BSET_TREE_NR_TYPES      3
157 
158 #define BSET_NO_AUX_TREE_VAL    (U16_MAX)
159 #define BSET_RW_AUX_TREE_VAL    (U16_MAX - 1)
160 
161 static inline enum bset_aux_tree_type bset_aux_tree_type(const struct bset_tree *t)
162 {
163         switch (t->extra) {
164         case BSET_NO_AUX_TREE_VAL:
165                 EBUG_ON(t->size);
166                 return BSET_NO_AUX_TREE;
167         case BSET_RW_AUX_TREE_VAL:
168                 EBUG_ON(!t->size);
169                 return BSET_RW_AUX_TREE;
170         default:
171                 EBUG_ON(!t->size);
172                 return BSET_RO_AUX_TREE;
173         }
174 }
175 
176 /*
177  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
178  * it used to be 64, but I realized the lookup code would touch slightly less
179  * memory if it was 128.
180  *
181  * It definites the number of bytes (in struct bset) per struct bkey_float in
182  * the auxiliar search tree - when we're done searching the bset_float tree we
183  * have this many bytes left that we do a linear search over.
184  *
185  * Since (after level 5) every level of the bset_tree is on a new cacheline,
186  * we're touching one fewer cacheline in the bset tree in exchange for one more
187  * cacheline in the linear search - but the linear search might stop before it
188  * gets to the second cacheline.
189  */
190 
191 #define BSET_CACHELINE          256
192 
193 static inline size_t btree_keys_cachelines(const struct btree *b)
194 {
195         return (1U << b->byte_order) / BSET_CACHELINE;
196 }
197 
198 static inline size_t btree_aux_data_bytes(const struct btree *b)
199 {
200         return btree_keys_cachelines(b) * 8;
201 }
202 
203 static inline size_t btree_aux_data_u64s(const struct btree *b)
204 {
205         return btree_aux_data_bytes(b) / sizeof(u64);
206 }
207 
208 #define for_each_bset(_b, _t)                                           \
209         for (struct bset_tree *_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++)
210 
211 #define for_each_bset_c(_b, _t)                                         \
212         for (const struct bset_tree *_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++)
213 
214 #define bset_tree_for_each_key(_b, _t, _k)                              \
215         for (_k = btree_bkey_first(_b, _t);                             \
216              _k != btree_bkey_last(_b, _t);                             \
217              _k = bkey_p_next(_k))
218 
219 static inline bool bset_has_ro_aux_tree(const struct bset_tree *t)
220 {
221         return bset_aux_tree_type(t) == BSET_RO_AUX_TREE;
222 }
223 
224 static inline bool bset_has_rw_aux_tree(struct bset_tree *t)
225 {
226         return bset_aux_tree_type(t) == BSET_RW_AUX_TREE;
227 }
228 
229 static inline void bch2_bset_set_no_aux_tree(struct btree *b,
230                                             struct bset_tree *t)
231 {
232         BUG_ON(t < b->set);
233 
234         for (; t < b->set + ARRAY_SIZE(b->set); t++) {
235                 t->size = 0;
236                 t->extra = BSET_NO_AUX_TREE_VAL;
237                 t->aux_data_offset = U16_MAX;
238         }
239 }
240 
241 static inline void btree_node_set_format(struct btree *b,
242                                          struct bkey_format f)
243 {
244         int len;
245 
246         b->format       = f;
247         b->nr_key_bits  = bkey_format_key_bits(&f);
248 
249         len = bch2_compile_bkey_format(&b->format, b->aux_data);
250         BUG_ON(len < 0 || len > U8_MAX);
251 
252         b->unpack_fn_len = len;
253 
254         bch2_bset_set_no_aux_tree(b, b->set);
255 }
256 
257 static inline struct bset *bset_next_set(struct btree *b,
258                                          unsigned block_bytes)
259 {
260         struct bset *i = btree_bset_last(b);
261 
262         EBUG_ON(!is_power_of_2(block_bytes));
263 
264         return ((void *) i) + round_up(vstruct_bytes(i), block_bytes);
265 }
266 
267 void bch2_btree_keys_init(struct btree *);
268 
269 void bch2_bset_init_first(struct btree *, struct bset *);
270 void bch2_bset_init_next(struct btree *, struct btree_node_entry *);
271 void bch2_bset_build_aux_tree(struct btree *, struct bset_tree *, bool);
272 
273 void bch2_bset_insert(struct btree *, struct btree_node_iter *,
274                      struct bkey_packed *, struct bkey_i *, unsigned);
275 void bch2_bset_delete(struct btree *, struct bkey_packed *, unsigned);
276 
277 /* Bkey utility code */
278 
279 /* packed or unpacked */
280 static inline int bkey_cmp_p_or_unp(const struct btree *b,
281                                     const struct bkey_packed *l,
282                                     const struct bkey_packed *r_packed,
283                                     const struct bpos *r)
284 {
285         EBUG_ON(r_packed && !bkey_packed(r_packed));
286 
287         if (unlikely(!bkey_packed(l)))
288                 return bpos_cmp(packed_to_bkey_c(l)->p, *r);
289 
290         if (likely(r_packed))
291                 return __bch2_bkey_cmp_packed_format_checked(l, r_packed, b);
292 
293         return __bch2_bkey_cmp_left_packed_format_checked(b, l, r);
294 }
295 
296 static inline struct bset_tree *
297 bch2_bkey_to_bset_inlined(struct btree *b, struct bkey_packed *k)
298 {
299         unsigned offset = __btree_node_key_to_offset(b, k);
300 
301         for_each_bset(b, t)
302                 if (offset <= t->end_offset) {
303                         EBUG_ON(offset < btree_bkey_first_offset(t));
304                         return t;
305                 }
306 
307         BUG();
308 }
309 
310 struct bset_tree *bch2_bkey_to_bset(struct btree *, struct bkey_packed *);
311 
312 struct bkey_packed *bch2_bkey_prev_filter(struct btree *, struct bset_tree *,
313                                           struct bkey_packed *, unsigned);
314 
315 static inline struct bkey_packed *
316 bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k)
317 {
318         return bch2_bkey_prev_filter(b, t, k, 0);
319 }
320 
321 static inline struct bkey_packed *
322 bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k)
323 {
324         return bch2_bkey_prev_filter(b, t, k, 1);
325 }
326 
327 /* Btree key iteration */
328 
329 void bch2_btree_node_iter_push(struct btree_node_iter *, struct btree *,
330                               const struct bkey_packed *,
331                               const struct bkey_packed *);
332 void bch2_btree_node_iter_init(struct btree_node_iter *, struct btree *,
333                                struct bpos *);
334 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *,
335                                           struct btree *);
336 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *,
337                                                  struct btree *,
338                                                  struct bset_tree *);
339 
340 void bch2_btree_node_iter_sort(struct btree_node_iter *, struct btree *);
341 void bch2_btree_node_iter_set_drop(struct btree_node_iter *,
342                                    struct btree_node_iter_set *);
343 void bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *);
344 
345 #define btree_node_iter_for_each(_iter, _set)                           \
346         for (_set = (_iter)->data;                                      \
347              _set < (_iter)->data + ARRAY_SIZE((_iter)->data) &&        \
348              (_set)->k != (_set)->end;                                  \
349              _set++)
350 
351 static inline bool __btree_node_iter_set_end(struct btree_node_iter *iter,
352                                              unsigned i)
353 {
354         return iter->data[i].k == iter->data[i].end;
355 }
356 
357 static inline bool bch2_btree_node_iter_end(struct btree_node_iter *iter)
358 {
359         return __btree_node_iter_set_end(iter, 0);
360 }
361 
362 /*
363  * When keys compare equal, deleted keys compare first:
364  *
365  * XXX: only need to compare pointers for keys that are both within a
366  * btree_node_iterator - we need to break ties for prev() to work correctly
367  */
368 static inline int bkey_iter_cmp(const struct btree *b,
369                                 const struct bkey_packed *l,
370                                 const struct bkey_packed *r)
371 {
372         return bch2_bkey_cmp_packed(b, l, r)
373                 ?: (int) bkey_deleted(r) - (int) bkey_deleted(l)
374                 ?: cmp_int(l, r);
375 }
376 
377 static inline int btree_node_iter_cmp(const struct btree *b,
378                                       struct btree_node_iter_set l,
379                                       struct btree_node_iter_set r)
380 {
381         return bkey_iter_cmp(b,
382                         __btree_node_offset_to_key(b, l.k),
383                         __btree_node_offset_to_key(b, r.k));
384 }
385 
386 /* These assume r (the search key) is not a deleted key: */
387 static inline int bkey_iter_pos_cmp(const struct btree *b,
388                         const struct bkey_packed *l,
389                         const struct bpos *r)
390 {
391         return bkey_cmp_left_packed(b, l, r)
392                 ?: -((int) bkey_deleted(l));
393 }
394 
395 static inline int bkey_iter_cmp_p_or_unp(const struct btree *b,
396                                     const struct bkey_packed *l,
397                                     const struct bkey_packed *r_packed,
398                                     const struct bpos *r)
399 {
400         return bkey_cmp_p_or_unp(b, l, r_packed, r)
401                 ?: -((int) bkey_deleted(l));
402 }
403 
404 static inline struct bkey_packed *
405 __bch2_btree_node_iter_peek_all(struct btree_node_iter *iter,
406                                 struct btree *b)
407 {
408         return __btree_node_offset_to_key(b, iter->data->k);
409 }
410 
411 static inline struct bkey_packed *
412 bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, struct btree *b)
413 {
414         return !bch2_btree_node_iter_end(iter)
415                 ? __btree_node_offset_to_key(b, iter->data->k)
416                 : NULL;
417 }
418 
419 static inline struct bkey_packed *
420 bch2_btree_node_iter_peek(struct btree_node_iter *iter, struct btree *b)
421 {
422         struct bkey_packed *k;
423 
424         while ((k = bch2_btree_node_iter_peek_all(iter, b)) &&
425                bkey_deleted(k))
426                 bch2_btree_node_iter_advance(iter, b);
427 
428         return k;
429 }
430 
431 static inline struct bkey_packed *
432 bch2_btree_node_iter_next_all(struct btree_node_iter *iter, struct btree *b)
433 {
434         struct bkey_packed *ret = bch2_btree_node_iter_peek_all(iter, b);
435 
436         if (ret)
437                 bch2_btree_node_iter_advance(iter, b);
438 
439         return ret;
440 }
441 
442 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *,
443                                                   struct btree *);
444 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *,
445                                               struct btree *);
446 
447 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *,
448                                                 struct btree *,
449                                                 struct bkey *);
450 
451 #define for_each_btree_node_key(b, k, iter)                             \
452         for (bch2_btree_node_iter_init_from_start((iter), (b));         \
453              (k = bch2_btree_node_iter_peek((iter), (b)));              \
454              bch2_btree_node_iter_advance(iter, b))
455 
456 #define for_each_btree_node_key_unpack(b, k, iter, unpacked)            \
457         for (bch2_btree_node_iter_init_from_start((iter), (b));         \
458              (k = bch2_btree_node_iter_peek_unpack((iter), (b), (unpacked))).k;\
459              bch2_btree_node_iter_advance(iter, b))
460 
461 /* Accounting: */
462 
463 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *);
464 
465 static inline void btree_keys_account_key(struct btree_nr_keys *n,
466                                           unsigned bset,
467                                           struct bkey_packed *k,
468                                           int sign)
469 {
470         n->live_u64s            += k->u64s * sign;
471         n->bset_u64s[bset]      += k->u64s * sign;
472 
473         if (bkey_packed(k))
474                 n->packed_keys  += sign;
475         else
476                 n->unpacked_keys += sign;
477 }
478 
479 static inline void btree_keys_account_val_delta(struct btree *b,
480                                                 struct bkey_packed *k,
481                                                 int delta)
482 {
483         struct bset_tree *t = bch2_bkey_to_bset(b, k);
484 
485         b->nr.live_u64s                 += delta;
486         b->nr.bset_u64s[t - b->set]     += delta;
487 }
488 
489 #define btree_keys_account_key_add(_nr, _bset_idx, _k)          \
490         btree_keys_account_key(_nr, _bset_idx, _k, 1)
491 #define btree_keys_account_key_drop(_nr, _bset_idx, _k) \
492         btree_keys_account_key(_nr, _bset_idx, _k, -1)
493 
494 #define btree_account_key_add(_b, _k)                           \
495         btree_keys_account_key(&(_b)->nr,                       \
496                 bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, 1)
497 #define btree_account_key_drop(_b, _k)                          \
498         btree_keys_account_key(&(_b)->nr,                       \
499                 bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, -1)
500 
501 struct bset_stats {
502         struct {
503                 size_t nr, bytes;
504         } sets[BSET_TREE_NR_TYPES];
505 
506         size_t floats;
507         size_t failed;
508 };
509 
510 void bch2_btree_keys_stats(const struct btree *, struct bset_stats *);
511 void bch2_bfloat_to_text(struct printbuf *, struct btree *,
512                          struct bkey_packed *);
513 
514 /* Debug stuff */
515 
516 void bch2_dump_bset(struct bch_fs *, struct btree *, struct bset *, unsigned);
517 void bch2_dump_btree_node(struct bch_fs *, struct btree *);
518 void bch2_dump_btree_node_iter(struct btree *, struct btree_node_iter *);
519 
520 #ifdef CONFIG_BCACHEFS_DEBUG
521 
522 void __bch2_verify_btree_nr_keys(struct btree *);
523 void bch2_btree_node_iter_verify(struct btree_node_iter *, struct btree *);
524 void bch2_verify_insert_pos(struct btree *, struct bkey_packed *,
525                             struct bkey_packed *, unsigned);
526 
527 #else
528 
529 static inline void __bch2_verify_btree_nr_keys(struct btree *b) {}
530 static inline void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
531                                               struct btree *b) {}
532 static inline void bch2_verify_insert_pos(struct btree *b,
533                                           struct bkey_packed *where,
534                                           struct bkey_packed *insert,
535                                           unsigned clobber_u64s) {}
536 #endif
537 
538 static inline void bch2_verify_btree_nr_keys(struct btree *b)
539 {
540         if (bch2_debug_check_btree_accounting)
541                 __bch2_verify_btree_nr_keys(b);
542 }
543 
544 #endif /* _BCACHEFS_BSET_H */
545 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php