~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/bcachefs/btree_key_cache.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 #include "bcachefs.h"
  4 #include "btree_cache.h"
  5 #include "btree_iter.h"
  6 #include "btree_key_cache.h"
  7 #include "btree_locking.h"
  8 #include "btree_update.h"
  9 #include "errcode.h"
 10 #include "error.h"
 11 #include "journal.h"
 12 #include "journal_reclaim.h"
 13 #include "trace.h"
 14 
 15 #include <linux/sched/mm.h>
 16 
 17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
 18 {
 19         return id == BTREE_ID_subvolumes;
 20 }
 21 
 22 static struct kmem_cache *bch2_key_cache;
 23 
 24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
 25                                        const void *obj)
 26 {
 27         const struct bkey_cached *ck = obj;
 28         const struct bkey_cached_key *key = arg->key;
 29 
 30         return ck->key.btree_id != key->btree_id ||
 31                 !bpos_eq(ck->key.pos, key->pos);
 32 }
 33 
 34 static const struct rhashtable_params bch2_btree_key_cache_params = {
 35         .head_offset            = offsetof(struct bkey_cached, hash),
 36         .key_offset             = offsetof(struct bkey_cached, key),
 37         .key_len                = sizeof(struct bkey_cached_key),
 38         .obj_cmpfn              = bch2_btree_key_cache_cmp_fn,
 39         .automatic_shrinking    = true,
 40 };
 41 
 42 static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
 43                                          struct bkey_cached *ck,
 44                                          enum btree_node_locked_type lock_held)
 45 {
 46         path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
 47         path->l[0].b            = (void *) ck;
 48         mark_btree_node_locked(trans, path, 0, lock_held);
 49 }
 50 
 51 __flatten
 52 inline struct bkey_cached *
 53 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
 54 {
 55         struct bkey_cached_key key = {
 56                 .btree_id       = btree_id,
 57                 .pos            = pos,
 58         };
 59 
 60         return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
 61                                       bch2_btree_key_cache_params);
 62 }
 63 
 64 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
 65 {
 66         if (!six_trylock_intent(&ck->c.lock))
 67                 return false;
 68 
 69         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 70                 six_unlock_intent(&ck->c.lock);
 71                 return false;
 72         }
 73 
 74         if (!six_trylock_write(&ck->c.lock)) {
 75                 six_unlock_intent(&ck->c.lock);
 76                 return false;
 77         }
 78 
 79         return true;
 80 }
 81 
 82 static void bkey_cached_evict(struct btree_key_cache *c,
 83                               struct bkey_cached *ck)
 84 {
 85         BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
 86                                       bch2_btree_key_cache_params));
 87         memset(&ck->key, ~0, sizeof(ck->key));
 88 
 89         atomic_long_dec(&c->nr_keys);
 90 }
 91 
 92 static void bkey_cached_free(struct btree_key_cache *bc,
 93                              struct bkey_cached *ck)
 94 {
 95         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
 96 
 97         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
 98 
 99         ck->btree_trans_barrier_seq =
100                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
101 
102         if (ck->c.lock.readers) {
103                 list_move_tail(&ck->list, &bc->freed_pcpu);
104                 bc->nr_freed_pcpu++;
105         } else {
106                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
107                 bc->nr_freed_nonpcpu++;
108         }
109         atomic_long_inc(&bc->nr_freed);
110 
111         kfree(ck->k);
112         ck->k           = NULL;
113         ck->u64s        = 0;
114 
115         six_unlock_write(&ck->c.lock);
116         six_unlock_intent(&ck->c.lock);
117 }
118 
119 #ifdef __KERNEL__
120 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
121                                                    struct bkey_cached *ck)
122 {
123         struct bkey_cached *pos;
124 
125         bc->nr_freed_nonpcpu++;
126 
127         list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
128                 if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
129                                  pos->btree_trans_barrier_seq)) {
130                         list_move(&ck->list, &pos->list);
131                         return;
132                 }
133         }
134 
135         list_move(&ck->list, &bc->freed_nonpcpu);
136 }
137 #endif
138 
139 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
140                                          struct bkey_cached *ck)
141 {
142         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
143 
144         if (!ck->c.lock.readers) {
145 #ifdef __KERNEL__
146                 struct btree_key_cache_freelist *f;
147                 bool freed = false;
148 
149                 preempt_disable();
150                 f = this_cpu_ptr(bc->pcpu_freed);
151 
152                 if (f->nr < ARRAY_SIZE(f->objs)) {
153                         f->objs[f->nr++] = ck;
154                         freed = true;
155                 }
156                 preempt_enable();
157 
158                 if (!freed) {
159                         mutex_lock(&bc->lock);
160                         preempt_disable();
161                         f = this_cpu_ptr(bc->pcpu_freed);
162 
163                         while (f->nr > ARRAY_SIZE(f->objs) / 2) {
164                                 struct bkey_cached *ck2 = f->objs[--f->nr];
165 
166                                 __bkey_cached_move_to_freelist_ordered(bc, ck2);
167                         }
168                         preempt_enable();
169 
170                         __bkey_cached_move_to_freelist_ordered(bc, ck);
171                         mutex_unlock(&bc->lock);
172                 }
173 #else
174                 mutex_lock(&bc->lock);
175                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
176                 bc->nr_freed_nonpcpu++;
177                 mutex_unlock(&bc->lock);
178 #endif
179         } else {
180                 mutex_lock(&bc->lock);
181                 list_move_tail(&ck->list, &bc->freed_pcpu);
182                 bc->nr_freed_pcpu++;
183                 mutex_unlock(&bc->lock);
184         }
185 }
186 
187 static void bkey_cached_free_fast(struct btree_key_cache *bc,
188                                   struct bkey_cached *ck)
189 {
190         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
191 
192         ck->btree_trans_barrier_seq =
193                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
194 
195         list_del_init(&ck->list);
196         atomic_long_inc(&bc->nr_freed);
197 
198         kfree(ck->k);
199         ck->k           = NULL;
200         ck->u64s        = 0;
201 
202         bkey_cached_move_to_freelist(bc, ck);
203 
204         six_unlock_write(&ck->c.lock);
205         six_unlock_intent(&ck->c.lock);
206 }
207 
208 static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
209 {
210         struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
211         if (unlikely(!ck))
212                 return NULL;
213         ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
214         if (unlikely(!ck->k)) {
215                 kmem_cache_free(bch2_key_cache, ck);
216                 return NULL;
217         }
218         ck->u64s = key_u64s;
219         return ck;
220 }
221 
222 static struct bkey_cached *
223 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
224 {
225         struct bch_fs *c = trans->c;
226         struct btree_key_cache *bc = &c->btree_key_cache;
227         struct bkey_cached *ck = NULL;
228         bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
229         int ret;
230 
231         if (!pcpu_readers) {
232 #ifdef __KERNEL__
233                 struct btree_key_cache_freelist *f;
234 
235                 preempt_disable();
236                 f = this_cpu_ptr(bc->pcpu_freed);
237                 if (f->nr)
238                         ck = f->objs[--f->nr];
239                 preempt_enable();
240 
241                 if (!ck) {
242                         mutex_lock(&bc->lock);
243                         preempt_disable();
244                         f = this_cpu_ptr(bc->pcpu_freed);
245 
246                         while (!list_empty(&bc->freed_nonpcpu) &&
247                                f->nr < ARRAY_SIZE(f->objs) / 2) {
248                                 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
249                                 list_del_init(&ck->list);
250                                 bc->nr_freed_nonpcpu--;
251                                 f->objs[f->nr++] = ck;
252                         }
253 
254                         ck = f->nr ? f->objs[--f->nr] : NULL;
255                         preempt_enable();
256                         mutex_unlock(&bc->lock);
257                 }
258 #else
259                 mutex_lock(&bc->lock);
260                 if (!list_empty(&bc->freed_nonpcpu)) {
261                         ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
262                         list_del_init(&ck->list);
263                         bc->nr_freed_nonpcpu--;
264                 }
265                 mutex_unlock(&bc->lock);
266 #endif
267         } else {
268                 mutex_lock(&bc->lock);
269                 if (!list_empty(&bc->freed_pcpu)) {
270                         ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
271                         list_del_init(&ck->list);
272                         bc->nr_freed_pcpu--;
273                 }
274                 mutex_unlock(&bc->lock);
275         }
276 
277         if (ck) {
278                 ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
279                 if (unlikely(ret)) {
280                         bkey_cached_move_to_freelist(bc, ck);
281                         return ERR_PTR(ret);
282                 }
283 
284                 btree_path_cached_set(trans, path, ck, BTREE_NODE_INTENT_LOCKED);
285 
286                 ret = bch2_btree_node_lock_write(trans, path, &ck->c);
287                 if (unlikely(ret)) {
288                         btree_node_unlock(trans, path, 0);
289                         bkey_cached_move_to_freelist(bc, ck);
290                         return ERR_PTR(ret);
291                 }
292 
293                 return ck;
294         }
295 
296         ck = allocate_dropping_locks(trans, ret,
297                                      __bkey_cached_alloc(key_u64s, _gfp));
298         if (ret) {
299                 if (ck)
300                         kfree(ck->k);
301                 kmem_cache_free(bch2_key_cache, ck);
302                 return ERR_PTR(ret);
303         }
304 
305         if (!ck)
306                 return NULL;
307 
308         INIT_LIST_HEAD(&ck->list);
309         bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
310 
311         ck->c.cached = true;
312         BUG_ON(!six_trylock_intent(&ck->c.lock));
313         BUG_ON(!six_trylock_write(&ck->c.lock));
314         return ck;
315 }
316 
317 static struct bkey_cached *
318 bkey_cached_reuse(struct btree_key_cache *c)
319 {
320         struct bucket_table *tbl;
321         struct rhash_head *pos;
322         struct bkey_cached *ck;
323         unsigned i;
324 
325         mutex_lock(&c->lock);
326         rcu_read_lock();
327         tbl = rht_dereference_rcu(c->table.tbl, &c->table);
328         for (i = 0; i < tbl->size; i++)
329                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
330                         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
331                             bkey_cached_lock_for_evict(ck)) {
332                                 bkey_cached_evict(c, ck);
333                                 goto out;
334                         }
335                 }
336         ck = NULL;
337 out:
338         rcu_read_unlock();
339         mutex_unlock(&c->lock);
340         return ck;
341 }
342 
343 static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path,
344                                   struct bkey_s_c k)
345 {
346         struct bch_fs *c = trans->c;
347         struct btree_key_cache *bc = &c->btree_key_cache;
348 
349         /*
350          * bch2_varint_decode can read past the end of the buffer by at
351          * most 7 bytes (it won't be used):
352          */
353         unsigned key_u64s = k.k->u64s + 1;
354 
355         /*
356          * Allocate some extra space so that the transaction commit path is less
357          * likely to have to reallocate, since that requires a transaction
358          * restart:
359          */
360         key_u64s = min(256U, (key_u64s * 3) / 2);
361         key_u64s = roundup_pow_of_two(key_u64s);
362 
363         struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s);
364         int ret = PTR_ERR_OR_ZERO(ck);
365         if (ret)
366                 return ret;
367 
368         if (unlikely(!ck)) {
369                 ck = bkey_cached_reuse(bc);
370                 if (unlikely(!ck)) {
371                         bch_err(c, "error allocating memory for key cache item, btree %s",
372                                 bch2_btree_id_str(path->btree_id));
373                         return -BCH_ERR_ENOMEM_btree_key_cache_create;
374                 }
375         }
376 
377         ck->c.level             = 0;
378         ck->c.btree_id          = path->btree_id;
379         ck->key.btree_id        = path->btree_id;
380         ck->key.pos             = path->pos;
381         ck->flags               = 1U << BKEY_CACHED_ACCESSED;
382 
383         if (unlikely(key_u64s > ck->u64s)) {
384                 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
385 
386                 struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
387                                 kmalloc(key_u64s * sizeof(u64), _gfp));
388                 if (unlikely(!new_k)) {
389                         bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
390                                 bch2_btree_id_str(ck->key.btree_id), key_u64s);
391                         ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
392                 } else if (ret) {
393                         kfree(new_k);
394                         goto err;
395                 }
396 
397                 kfree(ck->k);
398                 ck->k = new_k;
399                 ck->u64s = key_u64s;
400         }
401 
402         bkey_reassemble(ck->k, k);
403 
404         ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
405         if (unlikely(ret)) /* raced with another fill? */
406                 goto err;
407 
408         atomic_long_inc(&bc->nr_keys);
409         six_unlock_write(&ck->c.lock);
410 
411         enum six_lock_type lock_want = __btree_lock_want(path, 0);
412         if (lock_want == SIX_LOCK_read)
413                 six_lock_downgrade(&ck->c.lock);
414         btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
415         path->uptodate = BTREE_ITER_UPTODATE;
416         return 0;
417 err:
418         bkey_cached_free_fast(bc, ck);
419         mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
420 
421         return ret;
422 }
423 
424 static noinline int btree_key_cache_fill(struct btree_trans *trans,
425                                          struct btree_path *ck_path,
426                                          unsigned flags)
427 {
428         if (flags & BTREE_ITER_cached_nofill) {
429                 ck_path->uptodate = BTREE_ITER_UPTODATE;
430                 return 0;
431         }
432 
433         struct bch_fs *c = trans->c;
434         struct btree_iter iter;
435         struct bkey_s_c k;
436         int ret;
437 
438         bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
439                              BTREE_ITER_key_cache_fill|
440                              BTREE_ITER_cached_nofill);
441         iter.flags &= ~BTREE_ITER_with_journal;
442         k = bch2_btree_iter_peek_slot(&iter);
443         ret = bkey_err(k);
444         if (ret)
445                 goto err;
446 
447         /* Recheck after btree lookup, before allocating: */
448         ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
449         if (unlikely(ret))
450                 goto out;
451 
452         ret = btree_key_cache_create(trans, ck_path, k);
453         if (ret)
454                 goto err;
455 out:
456         /* We're not likely to need this iterator again: */
457         bch2_set_btree_iter_dontneed(&iter);
458 err:
459         bch2_trans_iter_exit(trans, &iter);
460         return ret;
461 }
462 
463 static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
464                                                   struct btree_path *path)
465 {
466         struct bch_fs *c = trans->c;
467         struct bkey_cached *ck;
468 retry:
469         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
470         if (!ck)
471                 return -ENOENT;
472 
473         enum six_lock_type lock_want = __btree_lock_want(path, 0);
474 
475         int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
476         if (ret)
477                 return ret;
478 
479         if (ck->key.btree_id != path->btree_id ||
480             !bpos_eq(ck->key.pos, path->pos)) {
481                 six_unlock_type(&ck->c.lock, lock_want);
482                 goto retry;
483         }
484 
485         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
486                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
487 
488         btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
489         path->uptodate = BTREE_ITER_UPTODATE;
490         return 0;
491 }
492 
493 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
494                                     unsigned flags)
495 {
496         EBUG_ON(path->level);
497 
498         path->l[1].b = NULL;
499 
500         int ret;
501         do {
502                 ret = btree_path_traverse_cached_fast(trans, path);
503                 if (unlikely(ret == -ENOENT))
504                         ret = btree_key_cache_fill(trans, path, flags);
505         } while (ret == -EEXIST);
506 
507         if (unlikely(ret)) {
508                 path->uptodate = BTREE_ITER_NEED_TRAVERSE;
509                 if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
510                         btree_node_unlock(trans, path, 0);
511                         path->l[0].b = ERR_PTR(ret);
512                 }
513         }
514         return ret;
515 }
516 
517 static int btree_key_cache_flush_pos(struct btree_trans *trans,
518                                      struct bkey_cached_key key,
519                                      u64 journal_seq,
520                                      unsigned commit_flags,
521                                      bool evict)
522 {
523         struct bch_fs *c = trans->c;
524         struct journal *j = &c->journal;
525         struct btree_iter c_iter, b_iter;
526         struct bkey_cached *ck = NULL;
527         int ret;
528 
529         bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
530                              BTREE_ITER_slots|
531                              BTREE_ITER_intent|
532                              BTREE_ITER_all_snapshots);
533         bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
534                              BTREE_ITER_cached|
535                              BTREE_ITER_intent);
536         b_iter.flags &= ~BTREE_ITER_with_key_cache;
537 
538         ret = bch2_btree_iter_traverse(&c_iter);
539         if (ret)
540                 goto out;
541 
542         ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
543         if (!ck)
544                 goto out;
545 
546         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
547                 if (evict)
548                         goto evict;
549                 goto out;
550         }
551 
552         if (journal_seq && ck->journal.seq != journal_seq)
553                 goto out;
554 
555         trans->journal_res.seq = ck->journal.seq;
556 
557         /*
558          * If we're at the end of the journal, we really want to free up space
559          * in the journal right away - we don't want to pin that old journal
560          * sequence number with a new btree node write, we want to re-journal
561          * the update
562          */
563         if (ck->journal.seq == journal_last_seq(j))
564                 commit_flags |= BCH_WATERMARK_reclaim;
565 
566         if (ck->journal.seq != journal_last_seq(j) ||
567             !test_bit(JOURNAL_space_low, &c->journal.flags))
568                 commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
569 
570         ret   = bch2_btree_iter_traverse(&b_iter) ?:
571                 bch2_trans_update(trans, &b_iter, ck->k,
572                                   BTREE_UPDATE_key_cache_reclaim|
573                                   BTREE_UPDATE_internal_snapshot_node|
574                                   BTREE_TRIGGER_norun) ?:
575                 bch2_trans_commit(trans, NULL, NULL,
576                                   BCH_TRANS_COMMIT_no_check_rw|
577                                   BCH_TRANS_COMMIT_no_enospc|
578                                   commit_flags);
579 
580         bch2_fs_fatal_err_on(ret &&
581                              !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
582                              !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
583                              !bch2_journal_error(j), c,
584                              "flushing key cache: %s", bch2_err_str(ret));
585         if (ret)
586                 goto out;
587 
588         bch2_journal_pin_drop(j, &ck->journal);
589 
590         struct btree_path *path = btree_iter_path(trans, &c_iter);
591         BUG_ON(!btree_node_locked(path, 0));
592 
593         if (!evict) {
594                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
595                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
596                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
597                 }
598         } else {
599                 struct btree_path *path2;
600                 unsigned i;
601 evict:
602                 trans_for_each_path(trans, path2, i)
603                         if (path2 != path)
604                                 __bch2_btree_path_unlock(trans, path2);
605 
606                 bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
607 
608                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
609                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
610                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
611                 }
612 
613                 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
614                 bkey_cached_evict(&c->btree_key_cache, ck);
615                 bkey_cached_free_fast(&c->btree_key_cache, ck);
616         }
617 out:
618         bch2_trans_iter_exit(trans, &b_iter);
619         bch2_trans_iter_exit(trans, &c_iter);
620         return ret;
621 }
622 
623 int bch2_btree_key_cache_journal_flush(struct journal *j,
624                                 struct journal_entry_pin *pin, u64 seq)
625 {
626         struct bch_fs *c = container_of(j, struct bch_fs, journal);
627         struct bkey_cached *ck =
628                 container_of(pin, struct bkey_cached, journal);
629         struct bkey_cached_key key;
630         struct btree_trans *trans = bch2_trans_get(c);
631         int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
632         int ret = 0;
633 
634         btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
635         key = ck->key;
636 
637         if (ck->journal.seq != seq ||
638             !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
639                 six_unlock_read(&ck->c.lock);
640                 goto unlock;
641         }
642 
643         if (ck->seq != seq) {
644                 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
645                                         bch2_btree_key_cache_journal_flush);
646                 six_unlock_read(&ck->c.lock);
647                 goto unlock;
648         }
649         six_unlock_read(&ck->c.lock);
650 
651         ret = lockrestart_do(trans,
652                 btree_key_cache_flush_pos(trans, key, seq,
653                                 BCH_TRANS_COMMIT_journal_reclaim, false));
654 unlock:
655         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
656 
657         bch2_trans_put(trans);
658         return ret;
659 }
660 
661 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
662                                   unsigned flags,
663                                   struct btree_insert_entry *insert_entry)
664 {
665         struct bch_fs *c = trans->c;
666         struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
667         struct bkey_i *insert = insert_entry->k;
668         bool kick_reclaim = false;
669 
670         BUG_ON(insert->k.u64s > ck->u64s);
671 
672         bkey_copy(ck->k, insert);
673 
674         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
675                 EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
676                 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
677                 atomic_long_inc(&c->btree_key_cache.nr_dirty);
678 
679                 if (bch2_nr_btree_keys_need_flush(c))
680                         kick_reclaim = true;
681         }
682 
683         /*
684          * To minimize lock contention, we only add the journal pin here and
685          * defer pin updates to the flush callback via ->seq. Be careful not to
686          * update ->seq on nojournal commits because we don't want to update the
687          * pin to a seq that doesn't include journal updates on disk. Otherwise
688          * we risk losing the update after a crash.
689          *
690          * The only exception is if the pin is not active in the first place. We
691          * have to add the pin because journal reclaim drives key cache
692          * flushing. The flush callback will not proceed unless ->seq matches
693          * the latest pin, so make sure it starts with a consistent value.
694          */
695         if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
696             !journal_pin_active(&ck->journal)) {
697                 ck->seq = trans->journal_res.seq;
698         }
699         bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
700                              &ck->journal, bch2_btree_key_cache_journal_flush);
701 
702         if (kick_reclaim)
703                 journal_reclaim_kick(&c->journal);
704         return true;
705 }
706 
707 void bch2_btree_key_cache_drop(struct btree_trans *trans,
708                                struct btree_path *path)
709 {
710         struct bch_fs *c = trans->c;
711         struct btree_key_cache *bc = &c->btree_key_cache;
712         struct bkey_cached *ck = (void *) path->l[0].b;
713 
714         /*
715          * We just did an update to the btree, bypassing the key cache: the key
716          * cache key is now stale and must be dropped, even if dirty:
717          */
718         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
719                 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
720                 atomic_long_dec(&c->btree_key_cache.nr_dirty);
721                 bch2_journal_pin_drop(&c->journal, &ck->journal);
722         }
723 
724         bkey_cached_evict(bc, ck);
725         bkey_cached_free_fast(bc, ck);
726 
727         mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
728         btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
729         path->should_be_locked = false;
730 }
731 
732 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
733                                            struct shrink_control *sc)
734 {
735         struct bch_fs *c = shrink->private_data;
736         struct btree_key_cache *bc = &c->btree_key_cache;
737         struct bucket_table *tbl;
738         struct bkey_cached *ck, *t;
739         size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
740         unsigned start, flags;
741         int srcu_idx;
742 
743         mutex_lock(&bc->lock);
744         bc->requested_to_free += sc->nr_to_scan;
745 
746         srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
747         flags = memalloc_nofs_save();
748 
749         /*
750          * Newest freed entries are at the end of the list - once we hit one
751          * that's too new to be freed, we can bail out:
752          */
753         list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
754                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
755                                                  ck->btree_trans_barrier_seq))
756                         break;
757 
758                 list_del(&ck->list);
759                 six_lock_exit(&ck->c.lock);
760                 kmem_cache_free(bch2_key_cache, ck);
761                 atomic_long_dec(&bc->nr_freed);
762                 bc->nr_freed_nonpcpu--;
763                 bc->freed++;
764         }
765 
766         list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
767                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
768                                                  ck->btree_trans_barrier_seq))
769                         break;
770 
771                 list_del(&ck->list);
772                 six_lock_exit(&ck->c.lock);
773                 kmem_cache_free(bch2_key_cache, ck);
774                 atomic_long_dec(&bc->nr_freed);
775                 bc->nr_freed_pcpu--;
776                 bc->freed++;
777         }
778 
779         rcu_read_lock();
780         tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
781 
782         /*
783          * Scanning is expensive while a rehash is in progress - most elements
784          * will be on the new hashtable, if it's in progress
785          *
786          * A rehash could still start while we're scanning - that's ok, we'll
787          * still see most elements.
788          */
789         if (unlikely(tbl->nest)) {
790                 rcu_read_unlock();
791                 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
792                 return SHRINK_STOP;
793         }
794 
795         if (bc->shrink_iter >= tbl->size)
796                 bc->shrink_iter = 0;
797         start = bc->shrink_iter;
798 
799         do {
800                 struct rhash_head *pos, *next;
801 
802                 pos = rht_ptr_rcu(&tbl->buckets[bc->shrink_iter]);
803 
804                 while (!rht_is_a_nulls(pos)) {
805                         next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
806                         ck = container_of(pos, struct bkey_cached, hash);
807 
808                         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
809                                 bc->skipped_dirty++;
810                         } else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
811                                 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
812                                 bc->skipped_accessed++;
813                         } else if (!bkey_cached_lock_for_evict(ck)) {
814                                 bc->skipped_lock_fail++;
815                         } else {
816                                 bkey_cached_evict(bc, ck);
817                                 bkey_cached_free(bc, ck);
818                                 bc->moved_to_freelist++;
819                                 freed++;
820                         }
821 
822                         scanned++;
823                         if (scanned >= nr)
824                                 break;
825 
826                         pos = next;
827                 }
828 
829                 bc->shrink_iter++;
830                 if (bc->shrink_iter >= tbl->size)
831                         bc->shrink_iter = 0;
832         } while (scanned < nr && bc->shrink_iter != start);
833 
834         rcu_read_unlock();
835         memalloc_nofs_restore(flags);
836         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
837         mutex_unlock(&bc->lock);
838 
839         return freed;
840 }
841 
842 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
843                                             struct shrink_control *sc)
844 {
845         struct bch_fs *c = shrink->private_data;
846         struct btree_key_cache *bc = &c->btree_key_cache;
847         long nr = atomic_long_read(&bc->nr_keys) -
848                 atomic_long_read(&bc->nr_dirty);
849 
850         /*
851          * Avoid hammering our shrinker too much if it's nearly empty - the
852          * shrinker code doesn't take into account how big our cache is, if it's
853          * mostly empty but the system is under memory pressure it causes nasty
854          * lock contention:
855          */
856         nr -= 128;
857 
858         return max(0L, nr);
859 }
860 
861 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
862 {
863         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
864         struct bucket_table *tbl;
865         struct bkey_cached *ck, *n;
866         struct rhash_head *pos;
867         LIST_HEAD(items);
868         unsigned i;
869 #ifdef __KERNEL__
870         int cpu;
871 #endif
872 
873         shrinker_free(bc->shrink);
874 
875         mutex_lock(&bc->lock);
876 
877         /*
878          * The loop is needed to guard against racing with rehash:
879          */
880         while (atomic_long_read(&bc->nr_keys)) {
881                 rcu_read_lock();
882                 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
883                 if (tbl) {
884                         if (tbl->nest) {
885                                 /* wait for in progress rehash */
886                                 rcu_read_unlock();
887                                 mutex_lock(&bc->table.mutex);
888                                 mutex_unlock(&bc->table.mutex);
889                                 rcu_read_lock();
890                                 continue;
891                         }
892                         for (i = 0; i < tbl->size; i++)
893                                 while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
894                                         ck = container_of(pos, struct bkey_cached, hash);
895                                         bkey_cached_evict(bc, ck);
896                                         list_add(&ck->list, &items);
897                                 }
898                 }
899                 rcu_read_unlock();
900         }
901 
902 #ifdef __KERNEL__
903         if (bc->pcpu_freed) {
904                 for_each_possible_cpu(cpu) {
905                         struct btree_key_cache_freelist *f =
906                                 per_cpu_ptr(bc->pcpu_freed, cpu);
907 
908                         for (i = 0; i < f->nr; i++) {
909                                 ck = f->objs[i];
910                                 list_add(&ck->list, &items);
911                         }
912                 }
913         }
914 #endif
915 
916         BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
917         BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
918 
919         list_splice(&bc->freed_pcpu,    &items);
920         list_splice(&bc->freed_nonpcpu, &items);
921 
922         mutex_unlock(&bc->lock);
923 
924         list_for_each_entry_safe(ck, n, &items, list) {
925                 cond_resched();
926 
927                 list_del(&ck->list);
928                 kfree(ck->k);
929                 six_lock_exit(&ck->c.lock);
930                 kmem_cache_free(bch2_key_cache, ck);
931         }
932 
933         if (atomic_long_read(&bc->nr_dirty) &&
934             !bch2_journal_error(&c->journal) &&
935             test_bit(BCH_FS_was_rw, &c->flags))
936                 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
937                       atomic_long_read(&bc->nr_dirty));
938 
939         if (atomic_long_read(&bc->nr_keys))
940                 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
941                       atomic_long_read(&bc->nr_keys));
942 
943         if (bc->table_init_done)
944                 rhashtable_destroy(&bc->table);
945 
946         free_percpu(bc->pcpu_freed);
947 }
948 
949 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
950 {
951         mutex_init(&c->lock);
952         INIT_LIST_HEAD(&c->freed_pcpu);
953         INIT_LIST_HEAD(&c->freed_nonpcpu);
954 }
955 
956 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
957 {
958         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
959         struct shrinker *shrink;
960 
961 #ifdef __KERNEL__
962         bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
963         if (!bc->pcpu_freed)
964                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
965 #endif
966 
967         if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
968                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
969 
970         bc->table_init_done = true;
971 
972         shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
973         if (!shrink)
974                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
975         bc->shrink = shrink;
976         shrink->count_objects   = bch2_btree_key_cache_count;
977         shrink->scan_objects    = bch2_btree_key_cache_scan;
978         shrink->batch           = 1 << 14;
979         shrink->seeks           = 0;
980         shrink->private_data    = c;
981         shrinker_register(shrink);
982         return 0;
983 }
984 
985 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
986 {
987         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
988 
989         printbuf_tabstop_push(out, 24);
990         printbuf_tabstop_push(out, 12);
991 
992         unsigned flags = memalloc_nofs_save();
993         mutex_lock(&bc->lock);
994         prt_printf(out, "keys:\t%lu\r\n",               atomic_long_read(&bc->nr_keys));
995         prt_printf(out, "dirty:\t%lu\r\n",              atomic_long_read(&bc->nr_dirty));
996         prt_printf(out, "freelist:\t%lu\r\n",           atomic_long_read(&bc->nr_freed));
997         prt_printf(out, "nonpcpu freelist:\t%zu\r\n",   bc->nr_freed_nonpcpu);
998         prt_printf(out, "pcpu freelist:\t%zu\r\n",      bc->nr_freed_pcpu);
999 
1000         prt_printf(out, "\nshrinker:\n");
1001         prt_printf(out, "requested_to_free:\t%lu\r\n",  bc->requested_to_free);
1002         prt_printf(out, "freed:\t%lu\r\n",              bc->freed);
1003         prt_printf(out, "moved_to_freelist:\t%lu\r\n",  bc->moved_to_freelist);
1004         prt_printf(out, "skipped_dirty:\t%lu\r\n",      bc->skipped_dirty);
1005         prt_printf(out, "skipped_accessed:\t%lu\r\n",   bc->skipped_accessed);
1006         prt_printf(out, "skipped_lock_fail:\t%lu\r\n",  bc->skipped_lock_fail);
1007 
1008         prt_printf(out, "srcu seq:\t%lu\r\n",           get_state_synchronize_srcu(&c->btree_trans_barrier));
1009 
1010         struct bkey_cached *ck;
1011         unsigned iter = 0;
1012         list_for_each_entry(ck, &bc->freed_nonpcpu, list) {
1013                 prt_printf(out, "freed_nonpcpu:\t%lu\r\n", ck->btree_trans_barrier_seq);
1014                 if (++iter > 10)
1015                         break;
1016         }
1017 
1018         iter = 0;
1019         list_for_each_entry(ck, &bc->freed_pcpu, list) {
1020                 prt_printf(out, "freed_pcpu:\t%lu\r\n", ck->btree_trans_barrier_seq);
1021                 if (++iter > 10)
1022                         break;
1023         }
1024         mutex_unlock(&bc->lock);
1025         memalloc_flags_restore(flags);
1026 }
1027 
1028 void bch2_btree_key_cache_exit(void)
1029 {
1030         kmem_cache_destroy(bch2_key_cache);
1031 }
1032 
1033 int __init bch2_btree_key_cache_init(void)
1034 {
1035         bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1036         if (!bch2_key_cache)
1037                 return -ENOMEM;
1038 
1039         return 0;
1040 }
1041 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php