~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/bcachefs/checksum.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include "bcachefs.h"
  3 #include "checksum.h"
  4 #include "errcode.h"
  5 #include "super.h"
  6 #include "super-io.h"
  7 
  8 #include <linux/crc32c.h>
  9 #include <linux/crypto.h>
 10 #include <linux/xxhash.h>
 11 #include <linux/key.h>
 12 #include <linux/random.h>
 13 #include <linux/ratelimit.h>
 14 #include <linux/scatterlist.h>
 15 #include <crypto/algapi.h>
 16 #include <crypto/chacha.h>
 17 #include <crypto/hash.h>
 18 #include <crypto/poly1305.h>
 19 #include <crypto/skcipher.h>
 20 #include <keys/user-type.h>
 21 
 22 /*
 23  * bch2_checksum state is an abstraction of the checksum state calculated over different pages.
 24  * it features page merging without having the checksum algorithm lose its state.
 25  * for native checksum aglorithms (like crc), a default seed value will do.
 26  * for hash-like algorithms, a state needs to be stored
 27  */
 28 
 29 struct bch2_checksum_state {
 30         union {
 31                 u64 seed;
 32                 struct xxh64_state h64state;
 33         };
 34         unsigned int type;
 35 };
 36 
 37 static void bch2_checksum_init(struct bch2_checksum_state *state)
 38 {
 39         switch (state->type) {
 40         case BCH_CSUM_none:
 41         case BCH_CSUM_crc32c:
 42         case BCH_CSUM_crc64:
 43                 state->seed = 0;
 44                 break;
 45         case BCH_CSUM_crc32c_nonzero:
 46                 state->seed = U32_MAX;
 47                 break;
 48         case BCH_CSUM_crc64_nonzero:
 49                 state->seed = U64_MAX;
 50                 break;
 51         case BCH_CSUM_xxhash:
 52                 xxh64_reset(&state->h64state, 0);
 53                 break;
 54         default:
 55                 BUG();
 56         }
 57 }
 58 
 59 static u64 bch2_checksum_final(const struct bch2_checksum_state *state)
 60 {
 61         switch (state->type) {
 62         case BCH_CSUM_none:
 63         case BCH_CSUM_crc32c:
 64         case BCH_CSUM_crc64:
 65                 return state->seed;
 66         case BCH_CSUM_crc32c_nonzero:
 67                 return state->seed ^ U32_MAX;
 68         case BCH_CSUM_crc64_nonzero:
 69                 return state->seed ^ U64_MAX;
 70         case BCH_CSUM_xxhash:
 71                 return xxh64_digest(&state->h64state);
 72         default:
 73                 BUG();
 74         }
 75 }
 76 
 77 static void bch2_checksum_update(struct bch2_checksum_state *state, const void *data, size_t len)
 78 {
 79         switch (state->type) {
 80         case BCH_CSUM_none:
 81                 return;
 82         case BCH_CSUM_crc32c_nonzero:
 83         case BCH_CSUM_crc32c:
 84                 state->seed = crc32c(state->seed, data, len);
 85                 break;
 86         case BCH_CSUM_crc64_nonzero:
 87         case BCH_CSUM_crc64:
 88                 state->seed = crc64_be(state->seed, data, len);
 89                 break;
 90         case BCH_CSUM_xxhash:
 91                 xxh64_update(&state->h64state, data, len);
 92                 break;
 93         default:
 94                 BUG();
 95         }
 96 }
 97 
 98 static inline int do_encrypt_sg(struct crypto_sync_skcipher *tfm,
 99                                 struct nonce nonce,
100                                 struct scatterlist *sg, size_t len)
101 {
102         SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
103         int ret;
104 
105         skcipher_request_set_sync_tfm(req, tfm);
106         skcipher_request_set_callback(req, 0, NULL, NULL);
107         skcipher_request_set_crypt(req, sg, sg, len, nonce.d);
108 
109         ret = crypto_skcipher_encrypt(req);
110         if (ret)
111                 pr_err("got error %i from crypto_skcipher_encrypt()", ret);
112 
113         return ret;
114 }
115 
116 static inline int do_encrypt(struct crypto_sync_skcipher *tfm,
117                               struct nonce nonce,
118                               void *buf, size_t len)
119 {
120         if (!is_vmalloc_addr(buf)) {
121                 struct scatterlist sg;
122 
123                 sg_init_table(&sg, 1);
124                 sg_set_page(&sg,
125                             is_vmalloc_addr(buf)
126                             ? vmalloc_to_page(buf)
127                             : virt_to_page(buf),
128                             len, offset_in_page(buf));
129                 return do_encrypt_sg(tfm, nonce, &sg, len);
130         } else {
131                 unsigned pages = buf_pages(buf, len);
132                 struct scatterlist *sg;
133                 size_t orig_len = len;
134                 int ret, i;
135 
136                 sg = kmalloc_array(pages, sizeof(*sg), GFP_KERNEL);
137                 if (!sg)
138                         return -BCH_ERR_ENOMEM_do_encrypt;
139 
140                 sg_init_table(sg, pages);
141 
142                 for (i = 0; i < pages; i++) {
143                         unsigned offset = offset_in_page(buf);
144                         unsigned pg_len = min_t(size_t, len, PAGE_SIZE - offset);
145 
146                         sg_set_page(sg + i, vmalloc_to_page(buf), pg_len, offset);
147                         buf += pg_len;
148                         len -= pg_len;
149                 }
150 
151                 ret = do_encrypt_sg(tfm, nonce, sg, orig_len);
152                 kfree(sg);
153                 return ret;
154         }
155 }
156 
157 int bch2_chacha_encrypt_key(struct bch_key *key, struct nonce nonce,
158                             void *buf, size_t len)
159 {
160         struct crypto_sync_skcipher *chacha20 =
161                 crypto_alloc_sync_skcipher("chacha20", 0, 0);
162         int ret;
163 
164         ret = PTR_ERR_OR_ZERO(chacha20);
165         if (ret) {
166                 pr_err("error requesting chacha20 cipher: %s", bch2_err_str(ret));
167                 return ret;
168         }
169 
170         ret = crypto_skcipher_setkey(&chacha20->base,
171                                      (void *) key, sizeof(*key));
172         if (ret) {
173                 pr_err("error from crypto_skcipher_setkey(): %s", bch2_err_str(ret));
174                 goto err;
175         }
176 
177         ret = do_encrypt(chacha20, nonce, buf, len);
178 err:
179         crypto_free_sync_skcipher(chacha20);
180         return ret;
181 }
182 
183 static int gen_poly_key(struct bch_fs *c, struct shash_desc *desc,
184                         struct nonce nonce)
185 {
186         u8 key[POLY1305_KEY_SIZE];
187         int ret;
188 
189         nonce.d[3] ^= BCH_NONCE_POLY;
190 
191         memset(key, 0, sizeof(key));
192         ret = do_encrypt(c->chacha20, nonce, key, sizeof(key));
193         if (ret)
194                 return ret;
195 
196         desc->tfm = c->poly1305;
197         crypto_shash_init(desc);
198         crypto_shash_update(desc, key, sizeof(key));
199         return 0;
200 }
201 
202 struct bch_csum bch2_checksum(struct bch_fs *c, unsigned type,
203                               struct nonce nonce, const void *data, size_t len)
204 {
205         switch (type) {
206         case BCH_CSUM_none:
207         case BCH_CSUM_crc32c_nonzero:
208         case BCH_CSUM_crc64_nonzero:
209         case BCH_CSUM_crc32c:
210         case BCH_CSUM_xxhash:
211         case BCH_CSUM_crc64: {
212                 struct bch2_checksum_state state;
213 
214                 state.type = type;
215 
216                 bch2_checksum_init(&state);
217                 bch2_checksum_update(&state, data, len);
218 
219                 return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) };
220         }
221 
222         case BCH_CSUM_chacha20_poly1305_80:
223         case BCH_CSUM_chacha20_poly1305_128: {
224                 SHASH_DESC_ON_STACK(desc, c->poly1305);
225                 u8 digest[POLY1305_DIGEST_SIZE];
226                 struct bch_csum ret = { 0 };
227 
228                 gen_poly_key(c, desc, nonce);
229 
230                 crypto_shash_update(desc, data, len);
231                 crypto_shash_final(desc, digest);
232 
233                 memcpy(&ret, digest, bch_crc_bytes[type]);
234                 return ret;
235         }
236         default:
237                 return (struct bch_csum) {};
238         }
239 }
240 
241 int bch2_encrypt(struct bch_fs *c, unsigned type,
242                   struct nonce nonce, void *data, size_t len)
243 {
244         if (!bch2_csum_type_is_encryption(type))
245                 return 0;
246 
247         return do_encrypt(c->chacha20, nonce, data, len);
248 }
249 
250 static struct bch_csum __bch2_checksum_bio(struct bch_fs *c, unsigned type,
251                                            struct nonce nonce, struct bio *bio,
252                                            struct bvec_iter *iter)
253 {
254         struct bio_vec bv;
255 
256         switch (type) {
257         case BCH_CSUM_none:
258                 return (struct bch_csum) { 0 };
259         case BCH_CSUM_crc32c_nonzero:
260         case BCH_CSUM_crc64_nonzero:
261         case BCH_CSUM_crc32c:
262         case BCH_CSUM_xxhash:
263         case BCH_CSUM_crc64: {
264                 struct bch2_checksum_state state;
265 
266                 state.type = type;
267                 bch2_checksum_init(&state);
268 
269 #ifdef CONFIG_HIGHMEM
270                 __bio_for_each_segment(bv, bio, *iter, *iter) {
271                         void *p = kmap_local_page(bv.bv_page) + bv.bv_offset;
272 
273                         bch2_checksum_update(&state, p, bv.bv_len);
274                         kunmap_local(p);
275                 }
276 #else
277                 __bio_for_each_bvec(bv, bio, *iter, *iter)
278                         bch2_checksum_update(&state, page_address(bv.bv_page) + bv.bv_offset,
279                                 bv.bv_len);
280 #endif
281                 return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) };
282         }
283 
284         case BCH_CSUM_chacha20_poly1305_80:
285         case BCH_CSUM_chacha20_poly1305_128: {
286                 SHASH_DESC_ON_STACK(desc, c->poly1305);
287                 u8 digest[POLY1305_DIGEST_SIZE];
288                 struct bch_csum ret = { 0 };
289 
290                 gen_poly_key(c, desc, nonce);
291 
292 #ifdef CONFIG_HIGHMEM
293                 __bio_for_each_segment(bv, bio, *iter, *iter) {
294                         void *p = kmap_local_page(bv.bv_page) + bv.bv_offset;
295 
296                         crypto_shash_update(desc, p, bv.bv_len);
297                         kunmap_local(p);
298                 }
299 #else
300                 __bio_for_each_bvec(bv, bio, *iter, *iter)
301                         crypto_shash_update(desc,
302                                 page_address(bv.bv_page) + bv.bv_offset,
303                                 bv.bv_len);
304 #endif
305                 crypto_shash_final(desc, digest);
306 
307                 memcpy(&ret, digest, bch_crc_bytes[type]);
308                 return ret;
309         }
310         default:
311                 return (struct bch_csum) {};
312         }
313 }
314 
315 struct bch_csum bch2_checksum_bio(struct bch_fs *c, unsigned type,
316                                   struct nonce nonce, struct bio *bio)
317 {
318         struct bvec_iter iter = bio->bi_iter;
319 
320         return __bch2_checksum_bio(c, type, nonce, bio, &iter);
321 }
322 
323 int __bch2_encrypt_bio(struct bch_fs *c, unsigned type,
324                      struct nonce nonce, struct bio *bio)
325 {
326         struct bio_vec bv;
327         struct bvec_iter iter;
328         struct scatterlist sgl[16], *sg = sgl;
329         size_t bytes = 0;
330         int ret = 0;
331 
332         if (!bch2_csum_type_is_encryption(type))
333                 return 0;
334 
335         sg_init_table(sgl, ARRAY_SIZE(sgl));
336 
337         bio_for_each_segment(bv, bio, iter) {
338                 if (sg == sgl + ARRAY_SIZE(sgl)) {
339                         sg_mark_end(sg - 1);
340 
341                         ret = do_encrypt_sg(c->chacha20, nonce, sgl, bytes);
342                         if (ret)
343                                 return ret;
344 
345                         nonce = nonce_add(nonce, bytes);
346                         bytes = 0;
347 
348                         sg_init_table(sgl, ARRAY_SIZE(sgl));
349                         sg = sgl;
350                 }
351 
352                 sg_set_page(sg++, bv.bv_page, bv.bv_len, bv.bv_offset);
353                 bytes += bv.bv_len;
354         }
355 
356         if (sg != sgl) {
357                 sg_mark_end(sg - 1);
358                 return do_encrypt_sg(c->chacha20, nonce, sgl, bytes);
359         }
360 
361         return ret;
362 }
363 
364 struct bch_csum bch2_checksum_merge(unsigned type, struct bch_csum a,
365                                     struct bch_csum b, size_t b_len)
366 {
367         struct bch2_checksum_state state;
368 
369         state.type = type;
370         bch2_checksum_init(&state);
371         state.seed = le64_to_cpu(a.lo);
372 
373         BUG_ON(!bch2_checksum_mergeable(type));
374 
375         while (b_len) {
376                 unsigned page_len = min_t(unsigned, b_len, PAGE_SIZE);
377 
378                 bch2_checksum_update(&state,
379                                 page_address(ZERO_PAGE(0)), page_len);
380                 b_len -= page_len;
381         }
382         a.lo = cpu_to_le64(bch2_checksum_final(&state));
383         a.lo ^= b.lo;
384         a.hi ^= b.hi;
385         return a;
386 }
387 
388 int bch2_rechecksum_bio(struct bch_fs *c, struct bio *bio,
389                         struct bversion version,
390                         struct bch_extent_crc_unpacked crc_old,
391                         struct bch_extent_crc_unpacked *crc_a,
392                         struct bch_extent_crc_unpacked *crc_b,
393                         unsigned len_a, unsigned len_b,
394                         unsigned new_csum_type)
395 {
396         struct bvec_iter iter = bio->bi_iter;
397         struct nonce nonce = extent_nonce(version, crc_old);
398         struct bch_csum merged = { 0 };
399         struct crc_split {
400                 struct bch_extent_crc_unpacked  *crc;
401                 unsigned                        len;
402                 unsigned                        csum_type;
403                 struct bch_csum                 csum;
404         } splits[3] = {
405                 { crc_a, len_a, new_csum_type, { 0 }},
406                 { crc_b, len_b, new_csum_type, { 0 } },
407                 { NULL,  bio_sectors(bio) - len_a - len_b, new_csum_type, { 0 } },
408         }, *i;
409         bool mergeable = crc_old.csum_type == new_csum_type &&
410                 bch2_checksum_mergeable(new_csum_type);
411         unsigned crc_nonce = crc_old.nonce;
412 
413         BUG_ON(len_a + len_b > bio_sectors(bio));
414         BUG_ON(crc_old.uncompressed_size != bio_sectors(bio));
415         BUG_ON(crc_is_compressed(crc_old));
416         BUG_ON(bch2_csum_type_is_encryption(crc_old.csum_type) !=
417                bch2_csum_type_is_encryption(new_csum_type));
418 
419         for (i = splits; i < splits + ARRAY_SIZE(splits); i++) {
420                 iter.bi_size = i->len << 9;
421                 if (mergeable || i->crc)
422                         i->csum = __bch2_checksum_bio(c, i->csum_type,
423                                                       nonce, bio, &iter);
424                 else
425                         bio_advance_iter(bio, &iter, i->len << 9);
426                 nonce = nonce_add(nonce, i->len << 9);
427         }
428 
429         if (mergeable)
430                 for (i = splits; i < splits + ARRAY_SIZE(splits); i++)
431                         merged = bch2_checksum_merge(new_csum_type, merged,
432                                                      i->csum, i->len << 9);
433         else
434                 merged = bch2_checksum_bio(c, crc_old.csum_type,
435                                 extent_nonce(version, crc_old), bio);
436 
437         if (bch2_crc_cmp(merged, crc_old.csum) && !c->opts.no_data_io) {
438                 struct printbuf buf = PRINTBUF;
439                 prt_printf(&buf, "checksum error in %s() (memory corruption or bug?)\n"
440                            "  expected %0llx:%0llx got %0llx:%0llx (old type ",
441                            __func__,
442                            crc_old.csum.hi,
443                            crc_old.csum.lo,
444                            merged.hi,
445                            merged.lo);
446                 bch2_prt_csum_type(&buf, crc_old.csum_type);
447                 prt_str(&buf, " new type ");
448                 bch2_prt_csum_type(&buf, new_csum_type);
449                 prt_str(&buf, ")");
450                 WARN_RATELIMIT(1, "%s", buf.buf);
451                 printbuf_exit(&buf);
452                 return -EIO;
453         }
454 
455         for (i = splits; i < splits + ARRAY_SIZE(splits); i++) {
456                 if (i->crc)
457                         *i->crc = (struct bch_extent_crc_unpacked) {
458                                 .csum_type              = i->csum_type,
459                                 .compression_type       = crc_old.compression_type,
460                                 .compressed_size        = i->len,
461                                 .uncompressed_size      = i->len,
462                                 .offset                 = 0,
463                                 .live_size              = i->len,
464                                 .nonce                  = crc_nonce,
465                                 .csum                   = i->csum,
466                         };
467 
468                 if (bch2_csum_type_is_encryption(new_csum_type))
469                         crc_nonce += i->len;
470         }
471 
472         return 0;
473 }
474 
475 /* BCH_SB_FIELD_crypt: */
476 
477 static int bch2_sb_crypt_validate(struct bch_sb *sb, struct bch_sb_field *f,
478                                   enum bch_validate_flags flags, struct printbuf *err)
479 {
480         struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
481 
482         if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) {
483                 prt_printf(err, "wrong size (got %zu should be %zu)",
484                        vstruct_bytes(&crypt->field), sizeof(*crypt));
485                 return -BCH_ERR_invalid_sb_crypt;
486         }
487 
488         if (BCH_CRYPT_KDF_TYPE(crypt)) {
489                 prt_printf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt));
490                 return -BCH_ERR_invalid_sb_crypt;
491         }
492 
493         return 0;
494 }
495 
496 static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb,
497                                   struct bch_sb_field *f)
498 {
499         struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
500 
501         prt_printf(out, "KFD:               %llu\n", BCH_CRYPT_KDF_TYPE(crypt));
502         prt_printf(out, "scrypt n:          %llu\n", BCH_KDF_SCRYPT_N(crypt));
503         prt_printf(out, "scrypt r:          %llu\n", BCH_KDF_SCRYPT_R(crypt));
504         prt_printf(out, "scrypt p:          %llu\n", BCH_KDF_SCRYPT_P(crypt));
505 }
506 
507 const struct bch_sb_field_ops bch_sb_field_ops_crypt = {
508         .validate       = bch2_sb_crypt_validate,
509         .to_text        = bch2_sb_crypt_to_text,
510 };
511 
512 #ifdef __KERNEL__
513 static int __bch2_request_key(char *key_description, struct bch_key *key)
514 {
515         struct key *keyring_key;
516         const struct user_key_payload *ukp;
517         int ret;
518 
519         keyring_key = request_key(&key_type_user, key_description, NULL);
520         if (IS_ERR(keyring_key))
521                 return PTR_ERR(keyring_key);
522 
523         down_read(&keyring_key->sem);
524         ukp = dereference_key_locked(keyring_key);
525         if (ukp->datalen == sizeof(*key)) {
526                 memcpy(key, ukp->data, ukp->datalen);
527                 ret = 0;
528         } else {
529                 ret = -EINVAL;
530         }
531         up_read(&keyring_key->sem);
532         key_put(keyring_key);
533 
534         return ret;
535 }
536 #else
537 #include <keyutils.h>
538 
539 static int __bch2_request_key(char *key_description, struct bch_key *key)
540 {
541         key_serial_t key_id;
542 
543         key_id = request_key("user", key_description, NULL,
544                              KEY_SPEC_SESSION_KEYRING);
545         if (key_id >= 0)
546                 goto got_key;
547 
548         key_id = request_key("user", key_description, NULL,
549                              KEY_SPEC_USER_KEYRING);
550         if (key_id >= 0)
551                 goto got_key;
552 
553         key_id = request_key("user", key_description, NULL,
554                              KEY_SPEC_USER_SESSION_KEYRING);
555         if (key_id >= 0)
556                 goto got_key;
557 
558         return -errno;
559 got_key:
560 
561         if (keyctl_read(key_id, (void *) key, sizeof(*key)) != sizeof(*key))
562                 return -1;
563 
564         return 0;
565 }
566 
567 #include "crypto.h"
568 #endif
569 
570 int bch2_request_key(struct bch_sb *sb, struct bch_key *key)
571 {
572         struct printbuf key_description = PRINTBUF;
573         int ret;
574 
575         prt_printf(&key_description, "bcachefs:");
576         pr_uuid(&key_description, sb->user_uuid.b);
577 
578         ret = __bch2_request_key(key_description.buf, key);
579         printbuf_exit(&key_description);
580 
581 #ifndef __KERNEL__
582         if (ret) {
583                 char *passphrase = read_passphrase("Enter passphrase: ");
584                 struct bch_encrypted_key sb_key;
585 
586                 bch2_passphrase_check(sb, passphrase,
587                                       key, &sb_key);
588                 ret = 0;
589         }
590 #endif
591 
592         /* stash with memfd, pass memfd fd to mount */
593 
594         return ret;
595 }
596 
597 #ifndef __KERNEL__
598 int bch2_revoke_key(struct bch_sb *sb)
599 {
600         key_serial_t key_id;
601         struct printbuf key_description = PRINTBUF;
602 
603         prt_printf(&key_description, "bcachefs:");
604         pr_uuid(&key_description, sb->user_uuid.b);
605 
606         key_id = request_key("user", key_description.buf, NULL, KEY_SPEC_USER_KEYRING);
607         printbuf_exit(&key_description);
608         if (key_id < 0)
609                 return errno;
610 
611         keyctl_revoke(key_id);
612 
613         return 0;
614 }
615 #endif
616 
617 int bch2_decrypt_sb_key(struct bch_fs *c,
618                         struct bch_sb_field_crypt *crypt,
619                         struct bch_key *key)
620 {
621         struct bch_encrypted_key sb_key = crypt->key;
622         struct bch_key user_key;
623         int ret = 0;
624 
625         /* is key encrypted? */
626         if (!bch2_key_is_encrypted(&sb_key))
627                 goto out;
628 
629         ret = bch2_request_key(c->disk_sb.sb, &user_key);
630         if (ret) {
631                 bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret));
632                 goto err;
633         }
634 
635         /* decrypt real key: */
636         ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c),
637                                       &sb_key, sizeof(sb_key));
638         if (ret)
639                 goto err;
640 
641         if (bch2_key_is_encrypted(&sb_key)) {
642                 bch_err(c, "incorrect encryption key");
643                 ret = -EINVAL;
644                 goto err;
645         }
646 out:
647         *key = sb_key.key;
648 err:
649         memzero_explicit(&sb_key, sizeof(sb_key));
650         memzero_explicit(&user_key, sizeof(user_key));
651         return ret;
652 }
653 
654 static int bch2_alloc_ciphers(struct bch_fs *c)
655 {
656         if (c->chacha20)
657                 return 0;
658 
659         struct crypto_sync_skcipher *chacha20 = crypto_alloc_sync_skcipher("chacha20", 0, 0);
660         int ret = PTR_ERR_OR_ZERO(chacha20);
661         if (ret) {
662                 bch_err(c, "error requesting chacha20 module: %s", bch2_err_str(ret));
663                 return ret;
664         }
665 
666         struct crypto_shash *poly1305 = crypto_alloc_shash("poly1305", 0, 0);
667         ret = PTR_ERR_OR_ZERO(poly1305);
668         if (ret) {
669                 bch_err(c, "error requesting poly1305 module: %s", bch2_err_str(ret));
670                 crypto_free_sync_skcipher(chacha20);
671                 return ret;
672         }
673 
674         c->chacha20     = chacha20;
675         c->poly1305     = poly1305;
676         return 0;
677 }
678 
679 int bch2_disable_encryption(struct bch_fs *c)
680 {
681         struct bch_sb_field_crypt *crypt;
682         struct bch_key key;
683         int ret = -EINVAL;
684 
685         mutex_lock(&c->sb_lock);
686 
687         crypt = bch2_sb_field_get(c->disk_sb.sb, crypt);
688         if (!crypt)
689                 goto out;
690 
691         /* is key encrypted? */
692         ret = 0;
693         if (bch2_key_is_encrypted(&crypt->key))
694                 goto out;
695 
696         ret = bch2_decrypt_sb_key(c, crypt, &key);
697         if (ret)
698                 goto out;
699 
700         crypt->key.magic        = cpu_to_le64(BCH_KEY_MAGIC);
701         crypt->key.key          = key;
702 
703         SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 0);
704         bch2_write_super(c);
705 out:
706         mutex_unlock(&c->sb_lock);
707 
708         return ret;
709 }
710 
711 int bch2_enable_encryption(struct bch_fs *c, bool keyed)
712 {
713         struct bch_encrypted_key key;
714         struct bch_key user_key;
715         struct bch_sb_field_crypt *crypt;
716         int ret = -EINVAL;
717 
718         mutex_lock(&c->sb_lock);
719 
720         /* Do we already have an encryption key? */
721         if (bch2_sb_field_get(c->disk_sb.sb, crypt))
722                 goto err;
723 
724         ret = bch2_alloc_ciphers(c);
725         if (ret)
726                 goto err;
727 
728         key.magic = cpu_to_le64(BCH_KEY_MAGIC);
729         get_random_bytes(&key.key, sizeof(key.key));
730 
731         if (keyed) {
732                 ret = bch2_request_key(c->disk_sb.sb, &user_key);
733                 if (ret) {
734                         bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret));
735                         goto err;
736                 }
737 
738                 ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c),
739                                               &key, sizeof(key));
740                 if (ret)
741                         goto err;
742         }
743 
744         ret = crypto_skcipher_setkey(&c->chacha20->base,
745                         (void *) &key.key, sizeof(key.key));
746         if (ret)
747                 goto err;
748 
749         crypt = bch2_sb_field_resize(&c->disk_sb, crypt,
750                                      sizeof(*crypt) / sizeof(u64));
751         if (!crypt) {
752                 ret = -BCH_ERR_ENOSPC_sb_crypt;
753                 goto err;
754         }
755 
756         crypt->key = key;
757 
758         /* write superblock */
759         SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 1);
760         bch2_write_super(c);
761 err:
762         mutex_unlock(&c->sb_lock);
763         memzero_explicit(&user_key, sizeof(user_key));
764         memzero_explicit(&key, sizeof(key));
765         return ret;
766 }
767 
768 void bch2_fs_encryption_exit(struct bch_fs *c)
769 {
770         if (c->poly1305)
771                 crypto_free_shash(c->poly1305);
772         if (c->chacha20)
773                 crypto_free_sync_skcipher(c->chacha20);
774         if (c->sha256)
775                 crypto_free_shash(c->sha256);
776 }
777 
778 int bch2_fs_encryption_init(struct bch_fs *c)
779 {
780         struct bch_sb_field_crypt *crypt;
781         struct bch_key key;
782         int ret = 0;
783 
784         c->sha256 = crypto_alloc_shash("sha256", 0, 0);
785         ret = PTR_ERR_OR_ZERO(c->sha256);
786         if (ret) {
787                 c->sha256 = NULL;
788                 bch_err(c, "error requesting sha256 module: %s", bch2_err_str(ret));
789                 goto out;
790         }
791 
792         crypt = bch2_sb_field_get(c->disk_sb.sb, crypt);
793         if (!crypt)
794                 goto out;
795 
796         ret = bch2_alloc_ciphers(c);
797         if (ret)
798                 goto out;
799 
800         ret = bch2_decrypt_sb_key(c, crypt, &key);
801         if (ret)
802                 goto out;
803 
804         ret = crypto_skcipher_setkey(&c->chacha20->base,
805                         (void *) &key.key, sizeof(key.key));
806         if (ret)
807                 goto out;
808 out:
809         memzero_explicit(&key, sizeof(key));
810         return ret;
811 }
812 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php