1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Code for managing the extent btree and dynamically updating the writeback 6 * dirty sector count. 7 */ 8 9 #include "bcachefs.h" 10 #include "bkey_methods.h" 11 #include "btree_cache.h" 12 #include "btree_gc.h" 13 #include "btree_io.h" 14 #include "btree_iter.h" 15 #include "buckets.h" 16 #include "checksum.h" 17 #include "compress.h" 18 #include "debug.h" 19 #include "disk_groups.h" 20 #include "error.h" 21 #include "extents.h" 22 #include "inode.h" 23 #include "journal.h" 24 #include "replicas.h" 25 #include "super.h" 26 #include "super-io.h" 27 #include "trace.h" 28 #include "util.h" 29 30 static unsigned bch2_crc_field_size_max[] = { 31 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, 32 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, 33 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, 34 }; 35 36 static void bch2_extent_crc_pack(union bch_extent_crc *, 37 struct bch_extent_crc_unpacked, 38 enum bch_extent_entry_type); 39 40 struct bch_dev_io_failures *bch2_dev_io_failures(struct bch_io_failures *f, 41 unsigned dev) 42 { 43 struct bch_dev_io_failures *i; 44 45 for (i = f->devs; i < f->devs + f->nr; i++) 46 if (i->dev == dev) 47 return i; 48 49 return NULL; 50 } 51 52 void bch2_mark_io_failure(struct bch_io_failures *failed, 53 struct extent_ptr_decoded *p) 54 { 55 struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, p->ptr.dev); 56 57 if (!f) { 58 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); 59 60 f = &failed->devs[failed->nr++]; 61 f->dev = p->ptr.dev; 62 f->idx = p->idx; 63 f->nr_failed = 1; 64 f->nr_retries = 0; 65 } else if (p->idx != f->idx) { 66 f->idx = p->idx; 67 f->nr_failed = 1; 68 f->nr_retries = 0; 69 } else { 70 f->nr_failed++; 71 } 72 } 73 74 static inline u64 dev_latency(struct bch_fs *c, unsigned dev) 75 { 76 struct bch_dev *ca = bch2_dev_rcu(c, dev); 77 return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX; 78 } 79 80 /* 81 * returns true if p1 is better than p2: 82 */ 83 static inline bool ptr_better(struct bch_fs *c, 84 const struct extent_ptr_decoded p1, 85 const struct extent_ptr_decoded p2) 86 { 87 if (likely(!p1.idx && !p2.idx)) { 88 u64 l1 = dev_latency(c, p1.ptr.dev); 89 u64 l2 = dev_latency(c, p2.ptr.dev); 90 91 /* Pick at random, biased in favor of the faster device: */ 92 93 return bch2_rand_range(l1 + l2) > l1; 94 } 95 96 if (bch2_force_reconstruct_read) 97 return p1.idx > p2.idx; 98 99 return p1.idx < p2.idx; 100 } 101 102 /* 103 * This picks a non-stale pointer, preferably from a device other than @avoid. 104 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to 105 * other devices, it will still pick a pointer from avoid. 106 */ 107 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, 108 struct bch_io_failures *failed, 109 struct extent_ptr_decoded *pick) 110 { 111 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 112 const union bch_extent_entry *entry; 113 struct extent_ptr_decoded p; 114 struct bch_dev_io_failures *f; 115 int ret = 0; 116 117 if (k.k->type == KEY_TYPE_error) 118 return -EIO; 119 120 rcu_read_lock(); 121 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 122 /* 123 * Unwritten extent: no need to actually read, treat it as a 124 * hole and return 0s: 125 */ 126 if (p.ptr.unwritten) { 127 ret = 0; 128 break; 129 } 130 131 /* 132 * If there are any dirty pointers it's an error if we can't 133 * read: 134 */ 135 if (!ret && !p.ptr.cached) 136 ret = -EIO; 137 138 struct bch_dev *ca = bch2_dev_rcu(c, p.ptr.dev); 139 140 if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr))) 141 continue; 142 143 f = failed ? bch2_dev_io_failures(failed, p.ptr.dev) : NULL; 144 if (f) 145 p.idx = f->nr_failed < f->nr_retries 146 ? f->idx 147 : f->idx + 1; 148 149 if (!p.idx && !ca) 150 p.idx++; 151 152 if (!p.idx && p.has_ec && bch2_force_reconstruct_read) 153 p.idx++; 154 155 if (!p.idx && !bch2_dev_is_readable(ca)) 156 p.idx++; 157 158 if (p.idx >= (unsigned) p.has_ec + 1) 159 continue; 160 161 if (ret > 0 && !ptr_better(c, p, *pick)) 162 continue; 163 164 *pick = p; 165 ret = 1; 166 } 167 rcu_read_unlock(); 168 169 return ret; 170 } 171 172 /* KEY_TYPE_btree_ptr: */ 173 174 int bch2_btree_ptr_validate(struct bch_fs *c, struct bkey_s_c k, 175 enum bch_validate_flags flags) 176 { 177 int ret = 0; 178 179 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, 180 c, btree_ptr_val_too_big, 181 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX); 182 183 ret = bch2_bkey_ptrs_validate(c, k, flags); 184 fsck_err: 185 return ret; 186 } 187 188 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, 189 struct bkey_s_c k) 190 { 191 bch2_bkey_ptrs_to_text(out, c, k); 192 } 193 194 int bch2_btree_ptr_v2_validate(struct bch_fs *c, struct bkey_s_c k, 195 enum bch_validate_flags flags) 196 { 197 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 198 int ret = 0; 199 200 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX, 201 c, btree_ptr_v2_val_too_big, 202 "value too big (%zu > %zu)", 203 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); 204 205 bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p), 206 c, btree_ptr_v2_min_key_bad, 207 "min_key > key"); 208 209 if (flags & BCH_VALIDATE_write) 210 bkey_fsck_err_on(!bp.v->sectors_written, 211 c, btree_ptr_v2_written_0, 212 "sectors_written == 0"); 213 214 ret = bch2_bkey_ptrs_validate(c, k, flags); 215 fsck_err: 216 return ret; 217 } 218 219 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, 220 struct bkey_s_c k) 221 { 222 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); 223 224 prt_printf(out, "seq %llx written %u min_key %s", 225 le64_to_cpu(bp.v->seq), 226 le16_to_cpu(bp.v->sectors_written), 227 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); 228 229 bch2_bpos_to_text(out, bp.v->min_key); 230 prt_printf(out, " "); 231 bch2_bkey_ptrs_to_text(out, c, k); 232 } 233 234 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, 235 unsigned big_endian, int write, 236 struct bkey_s k) 237 { 238 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); 239 240 compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); 241 242 if (version < bcachefs_metadata_version_inode_btree_change && 243 btree_id_is_extents(btree_id) && 244 !bkey_eq(bp.v->min_key, POS_MIN)) 245 bp.v->min_key = write 246 ? bpos_nosnap_predecessor(bp.v->min_key) 247 : bpos_nosnap_successor(bp.v->min_key); 248 } 249 250 /* KEY_TYPE_extent: */ 251 252 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) 253 { 254 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); 255 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); 256 union bch_extent_entry *en_l; 257 const union bch_extent_entry *en_r; 258 struct extent_ptr_decoded lp, rp; 259 bool use_right_ptr; 260 261 en_l = l_ptrs.start; 262 en_r = r_ptrs.start; 263 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 264 if (extent_entry_type(en_l) != extent_entry_type(en_r)) 265 return false; 266 267 en_l = extent_entry_next(en_l); 268 en_r = extent_entry_next(en_r); 269 } 270 271 if (en_l < l_ptrs.end || en_r < r_ptrs.end) 272 return false; 273 274 en_l = l_ptrs.start; 275 en_r = r_ptrs.start; 276 lp.crc = bch2_extent_crc_unpack(l.k, NULL); 277 rp.crc = bch2_extent_crc_unpack(r.k, NULL); 278 279 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && 280 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { 281 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != 282 rp.ptr.offset + rp.crc.offset || 283 lp.ptr.dev != rp.ptr.dev || 284 lp.ptr.gen != rp.ptr.gen || 285 lp.ptr.unwritten != rp.ptr.unwritten || 286 lp.has_ec != rp.has_ec) 287 return false; 288 289 /* Extents may not straddle buckets: */ 290 rcu_read_lock(); 291 struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev); 292 bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr); 293 rcu_read_unlock(); 294 295 if (!same_bucket) 296 return false; 297 298 if (lp.has_ec != rp.has_ec || 299 (lp.has_ec && 300 (lp.ec.block != rp.ec.block || 301 lp.ec.redundancy != rp.ec.redundancy || 302 lp.ec.idx != rp.ec.idx))) 303 return false; 304 305 if (lp.crc.compression_type != rp.crc.compression_type || 306 lp.crc.nonce != rp.crc.nonce) 307 return false; 308 309 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= 310 lp.crc.uncompressed_size) { 311 /* can use left extent's crc entry */ 312 } else if (lp.crc.live_size <= rp.crc.offset) { 313 /* can use right extent's crc entry */ 314 } else { 315 /* check if checksums can be merged: */ 316 if (lp.crc.csum_type != rp.crc.csum_type || 317 lp.crc.nonce != rp.crc.nonce || 318 crc_is_compressed(lp.crc) || 319 !bch2_checksum_mergeable(lp.crc.csum_type)) 320 return false; 321 322 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || 323 rp.crc.offset) 324 return false; 325 326 if (lp.crc.csum_type && 327 lp.crc.uncompressed_size + 328 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) 329 return false; 330 } 331 332 en_l = extent_entry_next(en_l); 333 en_r = extent_entry_next(en_r); 334 } 335 336 en_l = l_ptrs.start; 337 en_r = r_ptrs.start; 338 while (en_l < l_ptrs.end && en_r < r_ptrs.end) { 339 if (extent_entry_is_crc(en_l)) { 340 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 341 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 342 343 if (crc_l.uncompressed_size + crc_r.uncompressed_size > 344 bch2_crc_field_size_max[extent_entry_type(en_l)]) 345 return false; 346 } 347 348 en_l = extent_entry_next(en_l); 349 en_r = extent_entry_next(en_r); 350 } 351 352 use_right_ptr = false; 353 en_l = l_ptrs.start; 354 en_r = r_ptrs.start; 355 while (en_l < l_ptrs.end) { 356 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && 357 use_right_ptr) 358 en_l->ptr = en_r->ptr; 359 360 if (extent_entry_is_crc(en_l)) { 361 struct bch_extent_crc_unpacked crc_l = 362 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); 363 struct bch_extent_crc_unpacked crc_r = 364 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); 365 366 use_right_ptr = false; 367 368 if (crc_l.offset + crc_l.live_size + crc_r.live_size <= 369 crc_l.uncompressed_size) { 370 /* can use left extent's crc entry */ 371 } else if (crc_l.live_size <= crc_r.offset) { 372 /* can use right extent's crc entry */ 373 crc_r.offset -= crc_l.live_size; 374 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, 375 extent_entry_type(en_l)); 376 use_right_ptr = true; 377 } else { 378 crc_l.csum = bch2_checksum_merge(crc_l.csum_type, 379 crc_l.csum, 380 crc_r.csum, 381 crc_r.uncompressed_size << 9); 382 383 crc_l.uncompressed_size += crc_r.uncompressed_size; 384 crc_l.compressed_size += crc_r.compressed_size; 385 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, 386 extent_entry_type(en_l)); 387 } 388 } 389 390 en_l = extent_entry_next(en_l); 391 en_r = extent_entry_next(en_r); 392 } 393 394 bch2_key_resize(l.k, l.k->size + r.k->size); 395 return true; 396 } 397 398 /* KEY_TYPE_reservation: */ 399 400 int bch2_reservation_validate(struct bch_fs *c, struct bkey_s_c k, 401 enum bch_validate_flags flags) 402 { 403 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 404 int ret = 0; 405 406 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, 407 c, reservation_key_nr_replicas_invalid, 408 "invalid nr_replicas (%u)", r.v->nr_replicas); 409 fsck_err: 410 return ret; 411 } 412 413 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, 414 struct bkey_s_c k) 415 { 416 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); 417 418 prt_printf(out, "generation %u replicas %u", 419 le32_to_cpu(r.v->generation), 420 r.v->nr_replicas); 421 } 422 423 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) 424 { 425 struct bkey_s_reservation l = bkey_s_to_reservation(_l); 426 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); 427 428 if (l.v->generation != r.v->generation || 429 l.v->nr_replicas != r.v->nr_replicas) 430 return false; 431 432 bch2_key_resize(l.k, l.k->size + r.k->size); 433 return true; 434 } 435 436 /* Extent checksum entries: */ 437 438 /* returns true if not equal */ 439 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, 440 struct bch_extent_crc_unpacked r) 441 { 442 return (l.csum_type != r.csum_type || 443 l.compression_type != r.compression_type || 444 l.compressed_size != r.compressed_size || 445 l.uncompressed_size != r.uncompressed_size || 446 l.offset != r.offset || 447 l.live_size != r.live_size || 448 l.nonce != r.nonce || 449 bch2_crc_cmp(l.csum, r.csum)); 450 } 451 452 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, 453 struct bch_extent_crc_unpacked n) 454 { 455 return !crc_is_compressed(u) && 456 u.csum_type && 457 u.uncompressed_size > u.live_size && 458 bch2_csum_type_is_encryption(u.csum_type) == 459 bch2_csum_type_is_encryption(n.csum_type); 460 } 461 462 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, 463 struct bch_extent_crc_unpacked n) 464 { 465 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 466 struct bch_extent_crc_unpacked crc; 467 const union bch_extent_entry *i; 468 469 if (!n.csum_type) 470 return false; 471 472 bkey_for_each_crc(k.k, ptrs, crc, i) 473 if (can_narrow_crc(crc, n)) 474 return true; 475 476 return false; 477 } 478 479 /* 480 * We're writing another replica for this extent, so while we've got the data in 481 * memory we'll be computing a new checksum for the currently live data. 482 * 483 * If there are other replicas we aren't moving, and they are checksummed but 484 * not compressed, we can modify them to point to only the data that is 485 * currently live (so that readers won't have to bounce) while we've got the 486 * checksum we need: 487 */ 488 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) 489 { 490 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 491 struct bch_extent_crc_unpacked u; 492 struct extent_ptr_decoded p; 493 union bch_extent_entry *i; 494 bool ret = false; 495 496 /* Find a checksum entry that covers only live data: */ 497 if (!n.csum_type) { 498 bkey_for_each_crc(&k->k, ptrs, u, i) 499 if (!crc_is_compressed(u) && 500 u.csum_type && 501 u.live_size == u.uncompressed_size) { 502 n = u; 503 goto found; 504 } 505 return false; 506 } 507 found: 508 BUG_ON(crc_is_compressed(n)); 509 BUG_ON(n.offset); 510 BUG_ON(n.live_size != k->k.size); 511 512 restart_narrow_pointers: 513 ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 514 515 bkey_for_each_ptr_decode(&k->k, ptrs, p, i) 516 if (can_narrow_crc(p.crc, n)) { 517 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); 518 p.ptr.offset += p.crc.offset; 519 p.crc = n; 520 bch2_extent_ptr_decoded_append(k, &p); 521 ret = true; 522 goto restart_narrow_pointers; 523 } 524 525 return ret; 526 } 527 528 static void bch2_extent_crc_pack(union bch_extent_crc *dst, 529 struct bch_extent_crc_unpacked src, 530 enum bch_extent_entry_type type) 531 { 532 #define set_common_fields(_dst, _src) \ 533 _dst.type = 1 << type; \ 534 _dst.csum_type = _src.csum_type, \ 535 _dst.compression_type = _src.compression_type, \ 536 _dst._compressed_size = _src.compressed_size - 1, \ 537 _dst._uncompressed_size = _src.uncompressed_size - 1, \ 538 _dst.offset = _src.offset 539 540 switch (type) { 541 case BCH_EXTENT_ENTRY_crc32: 542 set_common_fields(dst->crc32, src); 543 dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); 544 break; 545 case BCH_EXTENT_ENTRY_crc64: 546 set_common_fields(dst->crc64, src); 547 dst->crc64.nonce = src.nonce; 548 dst->crc64.csum_lo = (u64 __force) src.csum.lo; 549 dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); 550 break; 551 case BCH_EXTENT_ENTRY_crc128: 552 set_common_fields(dst->crc128, src); 553 dst->crc128.nonce = src.nonce; 554 dst->crc128.csum = src.csum; 555 break; 556 default: 557 BUG(); 558 } 559 #undef set_common_fields 560 } 561 562 void bch2_extent_crc_append(struct bkey_i *k, 563 struct bch_extent_crc_unpacked new) 564 { 565 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 566 union bch_extent_crc *crc = (void *) ptrs.end; 567 enum bch_extent_entry_type type; 568 569 if (bch_crc_bytes[new.csum_type] <= 4 && 570 new.uncompressed_size <= CRC32_SIZE_MAX && 571 new.nonce <= CRC32_NONCE_MAX) 572 type = BCH_EXTENT_ENTRY_crc32; 573 else if (bch_crc_bytes[new.csum_type] <= 10 && 574 new.uncompressed_size <= CRC64_SIZE_MAX && 575 new.nonce <= CRC64_NONCE_MAX) 576 type = BCH_EXTENT_ENTRY_crc64; 577 else if (bch_crc_bytes[new.csum_type] <= 16 && 578 new.uncompressed_size <= CRC128_SIZE_MAX && 579 new.nonce <= CRC128_NONCE_MAX) 580 type = BCH_EXTENT_ENTRY_crc128; 581 else 582 BUG(); 583 584 bch2_extent_crc_pack(crc, new, type); 585 586 k->k.u64s += extent_entry_u64s(ptrs.end); 587 588 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); 589 } 590 591 /* Generic code for keys with pointers: */ 592 593 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) 594 { 595 return bch2_bkey_devs(k).nr; 596 } 597 598 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) 599 { 600 return k.k->type == KEY_TYPE_reservation 601 ? bkey_s_c_to_reservation(k).v->nr_replicas 602 : bch2_bkey_dirty_devs(k).nr; 603 } 604 605 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) 606 { 607 unsigned ret = 0; 608 609 if (k.k->type == KEY_TYPE_reservation) { 610 ret = bkey_s_c_to_reservation(k).v->nr_replicas; 611 } else { 612 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 613 const union bch_extent_entry *entry; 614 struct extent_ptr_decoded p; 615 616 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 617 ret += !p.ptr.cached && !crc_is_compressed(p.crc); 618 } 619 620 return ret; 621 } 622 623 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) 624 { 625 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 626 const union bch_extent_entry *entry; 627 struct extent_ptr_decoded p; 628 unsigned ret = 0; 629 630 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 631 if (!p.ptr.cached && crc_is_compressed(p.crc)) 632 ret += p.crc.compressed_size; 633 634 return ret; 635 } 636 637 bool bch2_bkey_is_incompressible(struct bkey_s_c k) 638 { 639 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 640 const union bch_extent_entry *entry; 641 struct bch_extent_crc_unpacked crc; 642 643 bkey_for_each_crc(k.k, ptrs, crc, entry) 644 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) 645 return true; 646 return false; 647 } 648 649 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) 650 { 651 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 652 const union bch_extent_entry *entry; 653 struct extent_ptr_decoded p = { 0 }; 654 unsigned replicas = 0; 655 656 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 657 if (p.ptr.cached) 658 continue; 659 660 if (p.has_ec) 661 replicas += p.ec.redundancy; 662 663 replicas++; 664 665 } 666 667 return replicas; 668 } 669 670 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p) 671 { 672 if (p->ptr.cached) 673 return 0; 674 675 return p->has_ec 676 ? p->ec.redundancy + 1 677 : ca->mi.durability; 678 } 679 680 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 681 { 682 struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev); 683 684 return ca ? __extent_ptr_durability(ca, p) : 0; 685 } 686 687 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) 688 { 689 struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev); 690 691 if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed) 692 return 0; 693 694 return __extent_ptr_durability(ca, p); 695 } 696 697 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) 698 { 699 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 700 const union bch_extent_entry *entry; 701 struct extent_ptr_decoded p; 702 unsigned durability = 0; 703 704 rcu_read_lock(); 705 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 706 durability += bch2_extent_ptr_durability(c, &p); 707 rcu_read_unlock(); 708 709 return durability; 710 } 711 712 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) 713 { 714 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 715 const union bch_extent_entry *entry; 716 struct extent_ptr_decoded p; 717 unsigned durability = 0; 718 719 rcu_read_lock(); 720 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 721 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) 722 durability += bch2_extent_ptr_durability(c, &p); 723 rcu_read_unlock(); 724 725 return durability; 726 } 727 728 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) 729 { 730 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); 731 union bch_extent_entry *next = extent_entry_next(entry); 732 733 memmove_u64s(entry, next, (u64 *) end - (u64 *) next); 734 k->k.u64s -= extent_entry_u64s(entry); 735 } 736 737 void bch2_extent_ptr_decoded_append(struct bkey_i *k, 738 struct extent_ptr_decoded *p) 739 { 740 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); 741 struct bch_extent_crc_unpacked crc = 742 bch2_extent_crc_unpack(&k->k, NULL); 743 union bch_extent_entry *pos; 744 745 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 746 pos = ptrs.start; 747 goto found; 748 } 749 750 bkey_for_each_crc(&k->k, ptrs, crc, pos) 751 if (!bch2_crc_unpacked_cmp(crc, p->crc)) { 752 pos = extent_entry_next(pos); 753 goto found; 754 } 755 756 bch2_extent_crc_append(k, p->crc); 757 pos = bkey_val_end(bkey_i_to_s(k)); 758 found: 759 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; 760 __extent_entry_insert(k, pos, to_entry(&p->ptr)); 761 762 if (p->has_ec) { 763 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; 764 __extent_entry_insert(k, pos, to_entry(&p->ec)); 765 } 766 } 767 768 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, 769 union bch_extent_entry *entry) 770 { 771 union bch_extent_entry *i = ptrs.start; 772 773 if (i == entry) 774 return NULL; 775 776 while (extent_entry_next(i) != entry) 777 i = extent_entry_next(i); 778 return i; 779 } 780 781 /* 782 * Returns pointer to the next entry after the one being dropped: 783 */ 784 void bch2_bkey_drop_ptr_noerror(struct bkey_s k, struct bch_extent_ptr *ptr) 785 { 786 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 787 union bch_extent_entry *entry = to_entry(ptr), *next; 788 bool drop_crc = true; 789 790 if (k.k->type == KEY_TYPE_stripe) { 791 ptr->dev = BCH_SB_MEMBER_INVALID; 792 return; 793 } 794 795 EBUG_ON(ptr < &ptrs.start->ptr || 796 ptr >= &ptrs.end->ptr); 797 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); 798 799 for (next = extent_entry_next(entry); 800 next != ptrs.end; 801 next = extent_entry_next(next)) { 802 if (extent_entry_is_crc(next)) { 803 break; 804 } else if (extent_entry_is_ptr(next)) { 805 drop_crc = false; 806 break; 807 } 808 } 809 810 extent_entry_drop(k, entry); 811 812 while ((entry = extent_entry_prev(ptrs, entry))) { 813 if (extent_entry_is_ptr(entry)) 814 break; 815 816 if ((extent_entry_is_crc(entry) && drop_crc) || 817 extent_entry_is_stripe_ptr(entry)) 818 extent_entry_drop(k, entry); 819 } 820 } 821 822 void bch2_bkey_drop_ptr(struct bkey_s k, struct bch_extent_ptr *ptr) 823 { 824 bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; 825 826 bch2_bkey_drop_ptr_noerror(k, ptr); 827 828 /* 829 * If we deleted all the dirty pointers and there's still cached 830 * pointers, we could set the cached pointers to dirty if they're not 831 * stale - but to do that correctly we'd need to grab an open_bucket 832 * reference so that we don't race with bucket reuse: 833 */ 834 if (have_dirty && 835 !bch2_bkey_dirty_devs(k.s_c).nr) { 836 k.k->type = KEY_TYPE_error; 837 set_bkey_val_u64s(k.k, 0); 838 } else if (!bch2_bkey_nr_ptrs(k.s_c)) { 839 k.k->type = KEY_TYPE_deleted; 840 set_bkey_val_u64s(k.k, 0); 841 } 842 } 843 844 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) 845 { 846 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); 847 } 848 849 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) 850 { 851 struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev); 852 853 if (ptr) 854 bch2_bkey_drop_ptr_noerror(k, ptr); 855 } 856 857 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) 858 { 859 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 860 861 bkey_for_each_ptr(ptrs, ptr) 862 if (ptr->dev == dev) 863 return ptr; 864 865 return NULL; 866 } 867 868 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) 869 { 870 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 871 struct bch_dev *ca; 872 bool ret = false; 873 874 rcu_read_lock(); 875 bkey_for_each_ptr(ptrs, ptr) 876 if (bch2_dev_in_target(c, ptr->dev, target) && 877 (ca = bch2_dev_rcu(c, ptr->dev)) && 878 (!ptr->cached || 879 !dev_ptr_stale_rcu(ca, ptr))) { 880 ret = true; 881 break; 882 } 883 rcu_read_unlock(); 884 885 return ret; 886 } 887 888 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, 889 struct bch_extent_ptr m, u64 offset) 890 { 891 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 892 const union bch_extent_entry *entry; 893 struct extent_ptr_decoded p; 894 895 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 896 if (p.ptr.dev == m.dev && 897 p.ptr.gen == m.gen && 898 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == 899 (s64) m.offset - offset) 900 return true; 901 902 return false; 903 } 904 905 /* 906 * Returns true if two extents refer to the same data: 907 */ 908 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) 909 { 910 if (k1.k->type != k2.k->type) 911 return false; 912 913 if (bkey_extent_is_direct_data(k1.k)) { 914 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); 915 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); 916 const union bch_extent_entry *entry1, *entry2; 917 struct extent_ptr_decoded p1, p2; 918 919 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) 920 return false; 921 922 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) 923 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 924 if (p1.ptr.dev == p2.ptr.dev && 925 p1.ptr.gen == p2.ptr.gen && 926 927 /* 928 * This checks that the two pointers point 929 * to the same region on disk - adjusting 930 * for the difference in where the extents 931 * start, since one may have been trimmed: 932 */ 933 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 934 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k) && 935 936 /* 937 * This additionally checks that the 938 * extents overlap on disk, since the 939 * previous check may trigger spuriously 940 * when one extent is immediately partially 941 * overwritten with another extent (so that 942 * on disk they are adjacent) and 943 * compression is in use: 944 */ 945 ((p1.ptr.offset >= p2.ptr.offset && 946 p1.ptr.offset < p2.ptr.offset + p2.crc.compressed_size) || 947 (p2.ptr.offset >= p1.ptr.offset && 948 p2.ptr.offset < p1.ptr.offset + p1.crc.compressed_size))) 949 return true; 950 951 return false; 952 } else { 953 /* KEY_TYPE_deleted, etc. */ 954 return true; 955 } 956 } 957 958 struct bch_extent_ptr * 959 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) 960 { 961 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); 962 union bch_extent_entry *entry2; 963 struct extent_ptr_decoded p2; 964 965 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) 966 if (p1.ptr.dev == p2.ptr.dev && 967 p1.ptr.gen == p2.ptr.gen && 968 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == 969 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) 970 return &entry2->ptr; 971 972 return NULL; 973 } 974 975 void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr) 976 { 977 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 978 union bch_extent_entry *entry; 979 union bch_extent_entry *ec = NULL; 980 981 bkey_extent_entry_for_each(ptrs, entry) { 982 if (&entry->ptr == ptr) { 983 ptr->cached = true; 984 if (ec) 985 extent_entry_drop(k, ec); 986 return; 987 } 988 989 if (extent_entry_is_stripe_ptr(entry)) 990 ec = entry; 991 else if (extent_entry_is_ptr(entry)) 992 ec = NULL; 993 } 994 995 BUG(); 996 } 997 998 /* 999 * bch_extent_normalize - clean up an extent, dropping stale pointers etc. 1000 * 1001 * Returns true if @k should be dropped entirely 1002 * 1003 * For existing keys, only called when btree nodes are being rewritten, not when 1004 * they're merely being compacted/resorted in memory. 1005 */ 1006 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) 1007 { 1008 struct bch_dev *ca; 1009 1010 rcu_read_lock(); 1011 bch2_bkey_drop_ptrs(k, ptr, 1012 ptr->cached && 1013 (ca = bch2_dev_rcu(c, ptr->dev)) && 1014 dev_ptr_stale_rcu(ca, ptr) > 0); 1015 rcu_read_unlock(); 1016 1017 return bkey_deleted(k.k); 1018 } 1019 1020 void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr) 1021 { 1022 out->atomic++; 1023 rcu_read_lock(); 1024 struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev); 1025 if (!ca) { 1026 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, 1027 (u64) ptr->offset, ptr->gen, 1028 ptr->cached ? " cached" : ""); 1029 } else { 1030 u32 offset; 1031 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); 1032 1033 prt_printf(out, "ptr: %u:%llu:%u gen %u", 1034 ptr->dev, b, offset, ptr->gen); 1035 if (ca->mi.durability != 1) 1036 prt_printf(out, " d=%u", ca->mi.durability); 1037 if (ptr->cached) 1038 prt_str(out, " cached"); 1039 if (ptr->unwritten) 1040 prt_str(out, " unwritten"); 1041 int stale = dev_ptr_stale_rcu(ca, ptr); 1042 if (stale > 0) 1043 prt_printf(out, " stale"); 1044 else if (stale) 1045 prt_printf(out, " invalid"); 1046 } 1047 rcu_read_unlock(); 1048 --out->atomic; 1049 } 1050 1051 void bch2_extent_crc_unpacked_to_text(struct printbuf *out, struct bch_extent_crc_unpacked *crc) 1052 { 1053 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ", 1054 crc->compressed_size, 1055 crc->uncompressed_size, 1056 crc->offset, crc->nonce); 1057 bch2_prt_csum_type(out, crc->csum_type); 1058 prt_printf(out, " %0llx:%0llx ", crc->csum.hi, crc->csum.lo); 1059 prt_str(out, " compress "); 1060 bch2_prt_compression_type(out, crc->compression_type); 1061 } 1062 1063 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, 1064 struct bkey_s_c k) 1065 { 1066 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1067 const union bch_extent_entry *entry; 1068 bool first = true; 1069 1070 if (c) 1071 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); 1072 1073 bkey_extent_entry_for_each(ptrs, entry) { 1074 if (!first) 1075 prt_printf(out, " "); 1076 1077 switch (__extent_entry_type(entry)) { 1078 case BCH_EXTENT_ENTRY_ptr: 1079 bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry)); 1080 break; 1081 1082 case BCH_EXTENT_ENTRY_crc32: 1083 case BCH_EXTENT_ENTRY_crc64: 1084 case BCH_EXTENT_ENTRY_crc128: { 1085 struct bch_extent_crc_unpacked crc = 1086 bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1087 1088 bch2_extent_crc_unpacked_to_text(out, &crc); 1089 break; 1090 } 1091 case BCH_EXTENT_ENTRY_stripe_ptr: { 1092 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr; 1093 1094 prt_printf(out, "ec: idx %llu block %u", 1095 (u64) ec->idx, ec->block); 1096 break; 1097 } 1098 case BCH_EXTENT_ENTRY_rebalance: { 1099 const struct bch_extent_rebalance *r = &entry->rebalance; 1100 1101 prt_str(out, "rebalance: target "); 1102 if (c) 1103 bch2_target_to_text(out, c, r->target); 1104 else 1105 prt_printf(out, "%u", r->target); 1106 prt_str(out, " compression "); 1107 bch2_compression_opt_to_text(out, r->compression); 1108 break; 1109 } 1110 default: 1111 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); 1112 return; 1113 } 1114 1115 first = false; 1116 } 1117 } 1118 1119 static int extent_ptr_validate(struct bch_fs *c, 1120 struct bkey_s_c k, 1121 enum bch_validate_flags flags, 1122 const struct bch_extent_ptr *ptr, 1123 unsigned size_ondisk, 1124 bool metadata) 1125 { 1126 int ret = 0; 1127 1128 rcu_read_lock(); 1129 struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev); 1130 if (!ca) { 1131 rcu_read_unlock(); 1132 return 0; 1133 } 1134 u32 bucket_offset; 1135 u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); 1136 unsigned first_bucket = ca->mi.first_bucket; 1137 u64 nbuckets = ca->mi.nbuckets; 1138 unsigned bucket_size = ca->mi.bucket_size; 1139 rcu_read_unlock(); 1140 1141 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1142 bkey_for_each_ptr(ptrs, ptr2) 1143 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, 1144 c, ptr_to_duplicate_device, 1145 "multiple pointers to same device (%u)", ptr->dev); 1146 1147 1148 bkey_fsck_err_on(bucket >= nbuckets, 1149 c, ptr_after_last_bucket, 1150 "pointer past last bucket (%llu > %llu)", bucket, nbuckets); 1151 bkey_fsck_err_on(bucket < first_bucket, 1152 c, ptr_before_first_bucket, 1153 "pointer before first bucket (%llu < %u)", bucket, first_bucket); 1154 bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size, 1155 c, ptr_spans_multiple_buckets, 1156 "pointer spans multiple buckets (%u + %u > %u)", 1157 bucket_offset, size_ondisk, bucket_size); 1158 fsck_err: 1159 return ret; 1160 } 1161 1162 int bch2_bkey_ptrs_validate(struct bch_fs *c, struct bkey_s_c k, 1163 enum bch_validate_flags flags) 1164 { 1165 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1166 const union bch_extent_entry *entry; 1167 struct bch_extent_crc_unpacked crc; 1168 unsigned size_ondisk = k.k->size; 1169 unsigned nonce = UINT_MAX; 1170 unsigned nr_ptrs = 0; 1171 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false; 1172 int ret = 0; 1173 1174 if (bkey_is_btree_ptr(k.k)) 1175 size_ondisk = btree_sectors(c); 1176 1177 bkey_extent_entry_for_each(ptrs, entry) { 1178 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, 1179 c, extent_ptrs_invalid_entry, 1180 "invalid extent entry type (got %u, max %u)", 1181 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); 1182 1183 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) && 1184 !extent_entry_is_ptr(entry), 1185 c, btree_ptr_has_non_ptr, 1186 "has non ptr field"); 1187 1188 switch (extent_entry_type(entry)) { 1189 case BCH_EXTENT_ENTRY_ptr: 1190 ret = extent_ptr_validate(c, k, flags, &entry->ptr, size_ondisk, false); 1191 if (ret) 1192 return ret; 1193 1194 bkey_fsck_err_on(entry->ptr.cached && have_ec, 1195 c, ptr_cached_and_erasure_coded, 1196 "cached, erasure coded ptr"); 1197 1198 if (!entry->ptr.unwritten) 1199 have_written = true; 1200 else 1201 have_unwritten = true; 1202 1203 have_ec = false; 1204 crc_since_last_ptr = false; 1205 nr_ptrs++; 1206 break; 1207 case BCH_EXTENT_ENTRY_crc32: 1208 case BCH_EXTENT_ENTRY_crc64: 1209 case BCH_EXTENT_ENTRY_crc128: 1210 crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); 1211 1212 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, 1213 c, ptr_crc_uncompressed_size_too_small, 1214 "checksum offset + key size > uncompressed size"); 1215 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), 1216 c, ptr_crc_csum_type_unknown, 1217 "invalid checksum type"); 1218 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, 1219 c, ptr_crc_compression_type_unknown, 1220 "invalid compression type"); 1221 1222 if (bch2_csum_type_is_encryption(crc.csum_type)) { 1223 if (nonce == UINT_MAX) 1224 nonce = crc.offset + crc.nonce; 1225 else if (nonce != crc.offset + crc.nonce) 1226 bkey_fsck_err(c, ptr_crc_nonce_mismatch, 1227 "incorrect nonce"); 1228 } 1229 1230 bkey_fsck_err_on(crc_since_last_ptr, 1231 c, ptr_crc_redundant, 1232 "redundant crc entry"); 1233 crc_since_last_ptr = true; 1234 1235 bkey_fsck_err_on(crc_is_encoded(crc) && 1236 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) && 1237 (flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)), 1238 c, ptr_crc_uncompressed_size_too_big, 1239 "too large encoded extent"); 1240 1241 size_ondisk = crc.compressed_size; 1242 break; 1243 case BCH_EXTENT_ENTRY_stripe_ptr: 1244 bkey_fsck_err_on(have_ec, 1245 c, ptr_stripe_redundant, 1246 "redundant stripe entry"); 1247 have_ec = true; 1248 break; 1249 case BCH_EXTENT_ENTRY_rebalance: { 1250 /* 1251 * this shouldn't be a fsck error, for forward 1252 * compatibility; the rebalance code should just refetch 1253 * the compression opt if it's unknown 1254 */ 1255 #if 0 1256 const struct bch_extent_rebalance *r = &entry->rebalance; 1257 1258 if (!bch2_compression_opt_valid(r->compression)) { 1259 struct bch_compression_opt opt = __bch2_compression_decode(r->compression); 1260 prt_printf(err, "invalid compression opt %u:%u", 1261 opt.type, opt.level); 1262 return -BCH_ERR_invalid_bkey; 1263 } 1264 #endif 1265 break; 1266 } 1267 } 1268 } 1269 1270 bkey_fsck_err_on(!nr_ptrs, 1271 c, extent_ptrs_no_ptrs, 1272 "no ptrs"); 1273 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, 1274 c, extent_ptrs_too_many_ptrs, 1275 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX); 1276 bkey_fsck_err_on(have_written && have_unwritten, 1277 c, extent_ptrs_written_and_unwritten, 1278 "extent with unwritten and written ptrs"); 1279 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, 1280 c, extent_ptrs_unwritten, 1281 "has unwritten ptrs"); 1282 bkey_fsck_err_on(crc_since_last_ptr, 1283 c, extent_ptrs_redundant_crc, 1284 "redundant crc entry"); 1285 bkey_fsck_err_on(have_ec, 1286 c, extent_ptrs_redundant_stripe, 1287 "redundant stripe entry"); 1288 fsck_err: 1289 return ret; 1290 } 1291 1292 void bch2_ptr_swab(struct bkey_s k) 1293 { 1294 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1295 union bch_extent_entry *entry; 1296 u64 *d; 1297 1298 for (d = (u64 *) ptrs.start; 1299 d != (u64 *) ptrs.end; 1300 d++) 1301 *d = swab64(*d); 1302 1303 for (entry = ptrs.start; 1304 entry < ptrs.end; 1305 entry = extent_entry_next(entry)) { 1306 switch (extent_entry_type(entry)) { 1307 case BCH_EXTENT_ENTRY_ptr: 1308 break; 1309 case BCH_EXTENT_ENTRY_crc32: 1310 entry->crc32.csum = swab32(entry->crc32.csum); 1311 break; 1312 case BCH_EXTENT_ENTRY_crc64: 1313 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); 1314 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); 1315 break; 1316 case BCH_EXTENT_ENTRY_crc128: 1317 entry->crc128.csum.hi = (__force __le64) 1318 swab64((__force u64) entry->crc128.csum.hi); 1319 entry->crc128.csum.lo = (__force __le64) 1320 swab64((__force u64) entry->crc128.csum.lo); 1321 break; 1322 case BCH_EXTENT_ENTRY_stripe_ptr: 1323 break; 1324 case BCH_EXTENT_ENTRY_rebalance: 1325 break; 1326 } 1327 } 1328 } 1329 1330 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k) 1331 { 1332 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1333 const union bch_extent_entry *entry; 1334 1335 bkey_extent_entry_for_each(ptrs, entry) 1336 if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance) 1337 return &entry->rebalance; 1338 1339 return NULL; 1340 } 1341 1342 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k, 1343 unsigned target, unsigned compression) 1344 { 1345 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1346 unsigned rewrite_ptrs = 0; 1347 1348 if (compression) { 1349 unsigned compression_type = bch2_compression_opt_to_type(compression); 1350 const union bch_extent_entry *entry; 1351 struct extent_ptr_decoded p; 1352 unsigned i = 0; 1353 1354 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 1355 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || 1356 p.ptr.unwritten) { 1357 rewrite_ptrs = 0; 1358 goto incompressible; 1359 } 1360 1361 if (!p.ptr.cached && p.crc.compression_type != compression_type) 1362 rewrite_ptrs |= 1U << i; 1363 i++; 1364 } 1365 } 1366 incompressible: 1367 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { 1368 unsigned i = 0; 1369 1370 bkey_for_each_ptr(ptrs, ptr) { 1371 if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target)) 1372 rewrite_ptrs |= 1U << i; 1373 i++; 1374 } 1375 } 1376 1377 return rewrite_ptrs; 1378 } 1379 1380 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k) 1381 { 1382 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); 1383 1384 /* 1385 * If it's an indirect extent, we don't delete the rebalance entry when 1386 * done so that we know what options were applied - check if it still 1387 * needs work done: 1388 */ 1389 if (r && 1390 k.k->type == KEY_TYPE_reflink_v && 1391 !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression)) 1392 r = NULL; 1393 1394 return r != NULL; 1395 } 1396 1397 static u64 __bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k, 1398 unsigned target, unsigned compression) 1399 { 1400 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 1401 const union bch_extent_entry *entry; 1402 struct extent_ptr_decoded p; 1403 u64 sectors = 0; 1404 1405 if (compression) { 1406 unsigned compression_type = bch2_compression_opt_to_type(compression); 1407 1408 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { 1409 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || 1410 p.ptr.unwritten) { 1411 sectors = 0; 1412 goto incompressible; 1413 } 1414 1415 if (!p.ptr.cached && p.crc.compression_type != compression_type) 1416 sectors += p.crc.compressed_size; 1417 } 1418 } 1419 incompressible: 1420 if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { 1421 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) 1422 if (!p.ptr.cached && !bch2_dev_in_target(c, p.ptr.dev, target)) 1423 sectors += p.crc.compressed_size; 1424 } 1425 1426 return sectors; 1427 } 1428 1429 u64 bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k) 1430 { 1431 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); 1432 1433 return r ? __bch2_bkey_sectors_need_rebalance(c, k, r->target, r->compression) : 0; 1434 } 1435 1436 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k, 1437 struct bch_io_opts *opts) 1438 { 1439 struct bkey_s k = bkey_i_to_s(_k); 1440 struct bch_extent_rebalance *r; 1441 unsigned target = opts->background_target; 1442 unsigned compression = background_compression(*opts); 1443 bool needs_rebalance; 1444 1445 if (!bkey_extent_is_direct_data(k.k)) 1446 return 0; 1447 1448 /* get existing rebalance entry: */ 1449 r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c); 1450 if (r) { 1451 if (k.k->type == KEY_TYPE_reflink_v) { 1452 /* 1453 * indirect extents: existing options take precedence, 1454 * so that we don't move extents back and forth if 1455 * they're referenced by different inodes with different 1456 * options: 1457 */ 1458 if (r->target) 1459 target = r->target; 1460 if (r->compression) 1461 compression = r->compression; 1462 } 1463 1464 r->target = target; 1465 r->compression = compression; 1466 } 1467 1468 needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression); 1469 1470 if (needs_rebalance && !r) { 1471 union bch_extent_entry *new = bkey_val_end(k); 1472 1473 new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance; 1474 new->rebalance.compression = compression; 1475 new->rebalance.target = target; 1476 new->rebalance.unused = 0; 1477 k.k->u64s += extent_entry_u64s(new); 1478 } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) { 1479 /* 1480 * For indirect extents, don't delete the rebalance entry when 1481 * we're finished so that we know we specifically moved it or 1482 * compressed it to its current location/compression type 1483 */ 1484 extent_entry_drop(k, (union bch_extent_entry *) r); 1485 } 1486 1487 return 0; 1488 } 1489 1490 /* Generic extent code: */ 1491 1492 int bch2_cut_front_s(struct bpos where, struct bkey_s k) 1493 { 1494 unsigned new_val_u64s = bkey_val_u64s(k.k); 1495 int val_u64s_delta; 1496 u64 sub; 1497 1498 if (bkey_le(where, bkey_start_pos(k.k))) 1499 return 0; 1500 1501 EBUG_ON(bkey_gt(where, k.k->p)); 1502 1503 sub = where.offset - bkey_start_offset(k.k); 1504 1505 k.k->size -= sub; 1506 1507 if (!k.k->size) { 1508 k.k->type = KEY_TYPE_deleted; 1509 new_val_u64s = 0; 1510 } 1511 1512 switch (k.k->type) { 1513 case KEY_TYPE_extent: 1514 case KEY_TYPE_reflink_v: { 1515 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); 1516 union bch_extent_entry *entry; 1517 bool seen_crc = false; 1518 1519 bkey_extent_entry_for_each(ptrs, entry) { 1520 switch (extent_entry_type(entry)) { 1521 case BCH_EXTENT_ENTRY_ptr: 1522 if (!seen_crc) 1523 entry->ptr.offset += sub; 1524 break; 1525 case BCH_EXTENT_ENTRY_crc32: 1526 entry->crc32.offset += sub; 1527 break; 1528 case BCH_EXTENT_ENTRY_crc64: 1529 entry->crc64.offset += sub; 1530 break; 1531 case BCH_EXTENT_ENTRY_crc128: 1532 entry->crc128.offset += sub; 1533 break; 1534 case BCH_EXTENT_ENTRY_stripe_ptr: 1535 break; 1536 case BCH_EXTENT_ENTRY_rebalance: 1537 break; 1538 } 1539 1540 if (extent_entry_is_crc(entry)) 1541 seen_crc = true; 1542 } 1543 1544 break; 1545 } 1546 case KEY_TYPE_reflink_p: { 1547 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); 1548 1549 le64_add_cpu(&p.v->idx, sub); 1550 break; 1551 } 1552 case KEY_TYPE_inline_data: 1553 case KEY_TYPE_indirect_inline_data: { 1554 void *p = bkey_inline_data_p(k); 1555 unsigned bytes = bkey_inline_data_bytes(k.k); 1556 1557 sub = min_t(u64, sub << 9, bytes); 1558 1559 memmove(p, p + sub, bytes - sub); 1560 1561 new_val_u64s -= sub >> 3; 1562 break; 1563 } 1564 } 1565 1566 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1567 BUG_ON(val_u64s_delta < 0); 1568 1569 set_bkey_val_u64s(k.k, new_val_u64s); 1570 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1571 return -val_u64s_delta; 1572 } 1573 1574 int bch2_cut_back_s(struct bpos where, struct bkey_s k) 1575 { 1576 unsigned new_val_u64s = bkey_val_u64s(k.k); 1577 int val_u64s_delta; 1578 u64 len = 0; 1579 1580 if (bkey_ge(where, k.k->p)) 1581 return 0; 1582 1583 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); 1584 1585 len = where.offset - bkey_start_offset(k.k); 1586 1587 k.k->p.offset = where.offset; 1588 k.k->size = len; 1589 1590 if (!len) { 1591 k.k->type = KEY_TYPE_deleted; 1592 new_val_u64s = 0; 1593 } 1594 1595 switch (k.k->type) { 1596 case KEY_TYPE_inline_data: 1597 case KEY_TYPE_indirect_inline_data: 1598 new_val_u64s = (bkey_inline_data_offset(k.k) + 1599 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; 1600 break; 1601 } 1602 1603 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; 1604 BUG_ON(val_u64s_delta < 0); 1605 1606 set_bkey_val_u64s(k.k, new_val_u64s); 1607 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); 1608 return -val_u64s_delta; 1609 } 1610
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.