~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/bcachefs/io_write.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  4  * Copyright 2012 Google, Inc.
  5  */
  6 
  7 #include "bcachefs.h"
  8 #include "alloc_foreground.h"
  9 #include "bkey_buf.h"
 10 #include "bset.h"
 11 #include "btree_update.h"
 12 #include "buckets.h"
 13 #include "checksum.h"
 14 #include "clock.h"
 15 #include "compress.h"
 16 #include "debug.h"
 17 #include "ec.h"
 18 #include "error.h"
 19 #include "extent_update.h"
 20 #include "inode.h"
 21 #include "io_write.h"
 22 #include "journal.h"
 23 #include "keylist.h"
 24 #include "move.h"
 25 #include "nocow_locking.h"
 26 #include "rebalance.h"
 27 #include "subvolume.h"
 28 #include "super.h"
 29 #include "super-io.h"
 30 #include "trace.h"
 31 
 32 #include <linux/blkdev.h>
 33 #include <linux/prefetch.h>
 34 #include <linux/random.h>
 35 #include <linux/sched/mm.h>
 36 
 37 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
 38 
 39 static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
 40                                        u64 now, int rw)
 41 {
 42         u64 latency_capable =
 43                 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
 44         /* ideally we'd be taking into account the device's variance here: */
 45         u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
 46         s64 latency_over = io_latency - latency_threshold;
 47 
 48         if (latency_threshold && latency_over > 0) {
 49                 /*
 50                  * bump up congested by approximately latency_over * 4 /
 51                  * latency_threshold - we don't need much accuracy here so don't
 52                  * bother with the divide:
 53                  */
 54                 if (atomic_read(&ca->congested) < CONGESTED_MAX)
 55                         atomic_add(latency_over >>
 56                                    max_t(int, ilog2(latency_threshold) - 2, 0),
 57                                    &ca->congested);
 58 
 59                 ca->congested_last = now;
 60         } else if (atomic_read(&ca->congested) > 0) {
 61                 atomic_dec(&ca->congested);
 62         }
 63 }
 64 
 65 void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
 66 {
 67         atomic64_t *latency = &ca->cur_latency[rw];
 68         u64 now = local_clock();
 69         u64 io_latency = time_after64(now, submit_time)
 70                 ? now - submit_time
 71                 : 0;
 72         u64 old, new;
 73 
 74         old = atomic64_read(latency);
 75         do {
 76                 /*
 77                  * If the io latency was reasonably close to the current
 78                  * latency, skip doing the update and atomic operation - most of
 79                  * the time:
 80                  */
 81                 if (abs((int) (old - io_latency)) < (old >> 1) &&
 82                     now & ~(~0U << 5))
 83                         break;
 84 
 85                 new = ewma_add(old, io_latency, 5);
 86         } while (!atomic64_try_cmpxchg(latency, &old, new));
 87 
 88         bch2_congested_acct(ca, io_latency, now, rw);
 89 
 90         __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now);
 91 }
 92 
 93 #endif
 94 
 95 /* Allocate, free from mempool: */
 96 
 97 void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
 98 {
 99         struct bvec_iter_all iter;
100         struct bio_vec *bv;
101 
102         bio_for_each_segment_all(bv, bio, iter)
103                 if (bv->bv_page != ZERO_PAGE(0))
104                         mempool_free(bv->bv_page, &c->bio_bounce_pages);
105         bio->bi_vcnt = 0;
106 }
107 
108 static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
109 {
110         struct page *page;
111 
112         if (likely(!*using_mempool)) {
113                 page = alloc_page(GFP_NOFS);
114                 if (unlikely(!page)) {
115                         mutex_lock(&c->bio_bounce_pages_lock);
116                         *using_mempool = true;
117                         goto pool_alloc;
118 
119                 }
120         } else {
121 pool_alloc:
122                 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
123         }
124 
125         return page;
126 }
127 
128 void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
129                                size_t size)
130 {
131         bool using_mempool = false;
132 
133         while (size) {
134                 struct page *page = __bio_alloc_page_pool(c, &using_mempool);
135                 unsigned len = min_t(size_t, PAGE_SIZE, size);
136 
137                 BUG_ON(!bio_add_page(bio, page, len, 0));
138                 size -= len;
139         }
140 
141         if (using_mempool)
142                 mutex_unlock(&c->bio_bounce_pages_lock);
143 }
144 
145 /* Extent update path: */
146 
147 int bch2_sum_sector_overwrites(struct btree_trans *trans,
148                                struct btree_iter *extent_iter,
149                                struct bkey_i *new,
150                                bool *usage_increasing,
151                                s64 *i_sectors_delta,
152                                s64 *disk_sectors_delta)
153 {
154         struct bch_fs *c = trans->c;
155         struct btree_iter iter;
156         struct bkey_s_c old;
157         unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
158         bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
159         int ret = 0;
160 
161         *usage_increasing       = false;
162         *i_sectors_delta        = 0;
163         *disk_sectors_delta     = 0;
164 
165         bch2_trans_copy_iter(&iter, extent_iter);
166 
167         for_each_btree_key_upto_continue_norestart(iter,
168                                 new->k.p, BTREE_ITER_slots, old, ret) {
169                 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
170                         max(bkey_start_offset(&new->k),
171                             bkey_start_offset(old.k));
172 
173                 *i_sectors_delta += sectors *
174                         (bkey_extent_is_allocation(&new->k) -
175                          bkey_extent_is_allocation(old.k));
176 
177                 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
178                 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
179                         ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
180                         : 0;
181 
182                 if (!*usage_increasing &&
183                     (new->k.p.snapshot != old.k->p.snapshot ||
184                      new_replicas > bch2_bkey_replicas(c, old) ||
185                      (!new_compressed && bch2_bkey_sectors_compressed(old))))
186                         *usage_increasing = true;
187 
188                 if (bkey_ge(old.k->p, new->k.p))
189                         break;
190         }
191 
192         bch2_trans_iter_exit(trans, &iter);
193         return ret;
194 }
195 
196 static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
197                                                     struct btree_iter *extent_iter,
198                                                     u64 new_i_size,
199                                                     s64 i_sectors_delta)
200 {
201         /*
202          * Crazy performance optimization:
203          * Every extent update needs to also update the inode: the inode trigger
204          * will set bi->journal_seq to the journal sequence number of this
205          * transaction - for fsync.
206          *
207          * But if that's the only reason we're updating the inode (we're not
208          * updating bi_size or bi_sectors), then we don't need the inode update
209          * to be journalled - if we crash, the bi_journal_seq update will be
210          * lost, but that's fine.
211          */
212         unsigned inode_update_flags = BTREE_UPDATE_nojournal;
213 
214         struct btree_iter iter;
215         struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
216                               SPOS(0,
217                                    extent_iter->pos.inode,
218                                    extent_iter->snapshot),
219                               BTREE_ITER_cached);
220         int ret = bkey_err(k);
221         if (unlikely(ret))
222                 return ret;
223 
224         /*
225          * varint_decode_fast(), in the inode .invalid method, reads up to 7
226          * bytes past the end of the buffer:
227          */
228         struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8);
229         ret = PTR_ERR_OR_ZERO(k_mut);
230         if (unlikely(ret))
231                 goto err;
232 
233         bkey_reassemble(k_mut, k);
234 
235         if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) {
236                 k_mut = bch2_inode_to_v3(trans, k_mut);
237                 ret = PTR_ERR_OR_ZERO(k_mut);
238                 if (unlikely(ret))
239                         goto err;
240         }
241 
242         struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut);
243 
244         if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
245             new_i_size > le64_to_cpu(inode->v.bi_size)) {
246                 inode->v.bi_size = cpu_to_le64(new_i_size);
247                 inode_update_flags = 0;
248         }
249 
250         if (i_sectors_delta) {
251                 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
252                 inode_update_flags = 0;
253         }
254 
255         if (inode->k.p.snapshot != iter.snapshot) {
256                 inode->k.p.snapshot = iter.snapshot;
257                 inode_update_flags = 0;
258         }
259 
260         ret = bch2_trans_update(trans, &iter, &inode->k_i,
261                                 BTREE_UPDATE_internal_snapshot_node|
262                                 inode_update_flags);
263 err:
264         bch2_trans_iter_exit(trans, &iter);
265         return ret;
266 }
267 
268 int bch2_extent_update(struct btree_trans *trans,
269                        subvol_inum inum,
270                        struct btree_iter *iter,
271                        struct bkey_i *k,
272                        struct disk_reservation *disk_res,
273                        u64 new_i_size,
274                        s64 *i_sectors_delta_total,
275                        bool check_enospc)
276 {
277         struct bpos next_pos;
278         bool usage_increasing;
279         s64 i_sectors_delta = 0, disk_sectors_delta = 0;
280         int ret;
281 
282         /*
283          * This traverses us the iterator without changing iter->path->pos to
284          * search_key() (which is pos + 1 for extents): we want there to be a
285          * path already traversed at iter->pos because
286          * bch2_trans_extent_update() will use it to attempt extent merging
287          */
288         ret = __bch2_btree_iter_traverse(iter);
289         if (ret)
290                 return ret;
291 
292         ret = bch2_extent_trim_atomic(trans, iter, k);
293         if (ret)
294                 return ret;
295 
296         next_pos = k->k.p;
297 
298         ret = bch2_sum_sector_overwrites(trans, iter, k,
299                         &usage_increasing,
300                         &i_sectors_delta,
301                         &disk_sectors_delta);
302         if (ret)
303                 return ret;
304 
305         if (disk_res &&
306             disk_sectors_delta > (s64) disk_res->sectors) {
307                 ret = bch2_disk_reservation_add(trans->c, disk_res,
308                                         disk_sectors_delta - disk_res->sectors,
309                                         !check_enospc || !usage_increasing
310                                         ? BCH_DISK_RESERVATION_NOFAIL : 0);
311                 if (ret)
312                         return ret;
313         }
314 
315         /*
316          * Note:
317          * We always have to do an inode update - even when i_size/i_sectors
318          * aren't changing - for fsync to work properly; fsync relies on
319          * inode->bi_journal_seq which is updated by the trigger code:
320          */
321         ret =   bch2_extent_update_i_size_sectors(trans, iter,
322                                                   min(k->k.p.offset << 9, new_i_size),
323                                                   i_sectors_delta) ?:
324                 bch2_trans_update(trans, iter, k, 0) ?:
325                 bch2_trans_commit(trans, disk_res, NULL,
326                                 BCH_TRANS_COMMIT_no_check_rw|
327                                 BCH_TRANS_COMMIT_no_enospc);
328         if (unlikely(ret))
329                 return ret;
330 
331         if (i_sectors_delta_total)
332                 *i_sectors_delta_total += i_sectors_delta;
333         bch2_btree_iter_set_pos(iter, next_pos);
334         return 0;
335 }
336 
337 static int bch2_write_index_default(struct bch_write_op *op)
338 {
339         struct bch_fs *c = op->c;
340         struct bkey_buf sk;
341         struct keylist *keys = &op->insert_keys;
342         struct bkey_i *k = bch2_keylist_front(keys);
343         struct btree_trans *trans = bch2_trans_get(c);
344         struct btree_iter iter;
345         subvol_inum inum = {
346                 .subvol = op->subvol,
347                 .inum   = k->k.p.inode,
348         };
349         int ret;
350 
351         BUG_ON(!inum.subvol);
352 
353         bch2_bkey_buf_init(&sk);
354 
355         do {
356                 bch2_trans_begin(trans);
357 
358                 k = bch2_keylist_front(keys);
359                 bch2_bkey_buf_copy(&sk, c, k);
360 
361                 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
362                                                   &sk.k->k.p.snapshot);
363                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
364                         continue;
365                 if (ret)
366                         break;
367 
368                 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
369                                      bkey_start_pos(&sk.k->k),
370                                      BTREE_ITER_slots|BTREE_ITER_intent);
371 
372                 ret =   bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?:
373                         bch2_extent_update(trans, inum, &iter, sk.k,
374                                         &op->res,
375                                         op->new_i_size, &op->i_sectors_delta,
376                                         op->flags & BCH_WRITE_CHECK_ENOSPC);
377                 bch2_trans_iter_exit(trans, &iter);
378 
379                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
380                         continue;
381                 if (ret)
382                         break;
383 
384                 if (bkey_ge(iter.pos, k->k.p))
385                         bch2_keylist_pop_front(&op->insert_keys);
386                 else
387                         bch2_cut_front(iter.pos, k);
388         } while (!bch2_keylist_empty(keys));
389 
390         bch2_trans_put(trans);
391         bch2_bkey_buf_exit(&sk, c);
392 
393         return ret;
394 }
395 
396 /* Writes */
397 
398 void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
399                                enum bch_data_type type,
400                                const struct bkey_i *k,
401                                bool nocow)
402 {
403         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
404         struct bch_write_bio *n;
405 
406         BUG_ON(c->opts.nochanges);
407 
408         bkey_for_each_ptr(ptrs, ptr) {
409                 struct bch_dev *ca = nocow
410                         ? bch2_dev_have_ref(c, ptr->dev)
411                         : bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE);
412 
413                 if (to_entry(ptr + 1) < ptrs.end) {
414                         n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set));
415 
416                         n->bio.bi_end_io        = wbio->bio.bi_end_io;
417                         n->bio.bi_private       = wbio->bio.bi_private;
418                         n->parent               = wbio;
419                         n->split                = true;
420                         n->bounce               = false;
421                         n->put_bio              = true;
422                         n->bio.bi_opf           = wbio->bio.bi_opf;
423                         bio_inc_remaining(&wbio->bio);
424                 } else {
425                         n = wbio;
426                         n->split                = false;
427                 }
428 
429                 n->c                    = c;
430                 n->dev                  = ptr->dev;
431                 n->have_ioref           = ca != NULL;
432                 n->nocow                = nocow;
433                 n->submit_time          = local_clock();
434                 n->inode_offset         = bkey_start_offset(&k->k);
435                 if (nocow)
436                         n->nocow_bucket = PTR_BUCKET_NR(ca, ptr);
437                 n->bio.bi_iter.bi_sector = ptr->offset;
438 
439                 if (likely(n->have_ioref)) {
440                         this_cpu_add(ca->io_done->sectors[WRITE][type],
441                                      bio_sectors(&n->bio));
442 
443                         bio_set_dev(&n->bio, ca->disk_sb.bdev);
444 
445                         if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
446                                 bio_endio(&n->bio);
447                                 continue;
448                         }
449 
450                         submit_bio(&n->bio);
451                 } else {
452                         n->bio.bi_status        = BLK_STS_REMOVED;
453                         bio_endio(&n->bio);
454                 }
455         }
456 }
457 
458 static void __bch2_write(struct bch_write_op *);
459 
460 static void bch2_write_done(struct closure *cl)
461 {
462         struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
463         struct bch_fs *c = op->c;
464 
465         EBUG_ON(op->open_buckets.nr);
466 
467         bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
468         bch2_disk_reservation_put(c, &op->res);
469 
470         if (!(op->flags & BCH_WRITE_MOVE))
471                 bch2_write_ref_put(c, BCH_WRITE_REF_write);
472         bch2_keylist_free(&op->insert_keys, op->inline_keys);
473 
474         EBUG_ON(cl->parent);
475         closure_debug_destroy(cl);
476         if (op->end_io)
477                 op->end_io(op);
478 }
479 
480 static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
481 {
482         struct keylist *keys = &op->insert_keys;
483         struct bkey_i *src, *dst = keys->keys, *n;
484 
485         for (src = keys->keys; src != keys->top; src = n) {
486                 n = bkey_next(src);
487 
488                 if (bkey_extent_is_direct_data(&src->k)) {
489                         bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
490                                             test_bit(ptr->dev, op->failed.d));
491 
492                         if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
493                                 return -EIO;
494                 }
495 
496                 if (dst != src)
497                         memmove_u64s_down(dst, src, src->k.u64s);
498                 dst = bkey_next(dst);
499         }
500 
501         keys->top = dst;
502         return 0;
503 }
504 
505 /**
506  * __bch2_write_index - after a write, update index to point to new data
507  * @op:         bch_write_op to process
508  */
509 static void __bch2_write_index(struct bch_write_op *op)
510 {
511         struct bch_fs *c = op->c;
512         struct keylist *keys = &op->insert_keys;
513         unsigned dev;
514         int ret = 0;
515 
516         if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
517                 ret = bch2_write_drop_io_error_ptrs(op);
518                 if (ret)
519                         goto err;
520         }
521 
522         if (!bch2_keylist_empty(keys)) {
523                 u64 sectors_start = keylist_sectors(keys);
524 
525                 ret = !(op->flags & BCH_WRITE_MOVE)
526                         ? bch2_write_index_default(op)
527                         : bch2_data_update_index_update(op);
528 
529                 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
530                 BUG_ON(keylist_sectors(keys) && !ret);
531 
532                 op->written += sectors_start - keylist_sectors(keys);
533 
534                 if (ret && !bch2_err_matches(ret, EROFS)) {
535                         struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
536 
537                         bch_err_inum_offset_ratelimited(c,
538                                 insert->k.p.inode, insert->k.p.offset << 9,
539                                 "%s write error while doing btree update: %s",
540                                 op->flags & BCH_WRITE_MOVE ? "move" : "user",
541                                 bch2_err_str(ret));
542                 }
543 
544                 if (ret)
545                         goto err;
546         }
547 out:
548         /* If some a bucket wasn't written, we can't erasure code it: */
549         for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
550                 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
551 
552         bch2_open_buckets_put(c, &op->open_buckets);
553         return;
554 err:
555         keys->top = keys->keys;
556         op->error = ret;
557         op->flags |= BCH_WRITE_SUBMITTED;
558         goto out;
559 }
560 
561 static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
562 {
563         if (state != wp->state) {
564                 u64 now = ktime_get_ns();
565 
566                 if (wp->last_state_change &&
567                     time_after64(now, wp->last_state_change))
568                         wp->time[wp->state] += now - wp->last_state_change;
569                 wp->state = state;
570                 wp->last_state_change = now;
571         }
572 }
573 
574 static inline void wp_update_state(struct write_point *wp, bool running)
575 {
576         enum write_point_state state;
577 
578         state = running                  ? WRITE_POINT_running :
579                 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io
580                                          : WRITE_POINT_stopped;
581 
582         __wp_update_state(wp, state);
583 }
584 
585 static CLOSURE_CALLBACK(bch2_write_index)
586 {
587         closure_type(op, struct bch_write_op, cl);
588         struct write_point *wp = op->wp;
589         struct workqueue_struct *wq = index_update_wq(op);
590         unsigned long flags;
591 
592         if ((op->flags & BCH_WRITE_SUBMITTED) &&
593             (op->flags & BCH_WRITE_MOVE))
594                 bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
595 
596         spin_lock_irqsave(&wp->writes_lock, flags);
597         if (wp->state == WRITE_POINT_waiting_io)
598                 __wp_update_state(wp, WRITE_POINT_waiting_work);
599         list_add_tail(&op->wp_list, &wp->writes);
600         spin_unlock_irqrestore (&wp->writes_lock, flags);
601 
602         queue_work(wq, &wp->index_update_work);
603 }
604 
605 static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
606 {
607         op->wp = wp;
608 
609         if (wp->state == WRITE_POINT_stopped) {
610                 spin_lock_irq(&wp->writes_lock);
611                 __wp_update_state(wp, WRITE_POINT_waiting_io);
612                 spin_unlock_irq(&wp->writes_lock);
613         }
614 }
615 
616 void bch2_write_point_do_index_updates(struct work_struct *work)
617 {
618         struct write_point *wp =
619                 container_of(work, struct write_point, index_update_work);
620         struct bch_write_op *op;
621 
622         while (1) {
623                 spin_lock_irq(&wp->writes_lock);
624                 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
625                 if (op)
626                         list_del(&op->wp_list);
627                 wp_update_state(wp, op != NULL);
628                 spin_unlock_irq(&wp->writes_lock);
629 
630                 if (!op)
631                         break;
632 
633                 op->flags |= BCH_WRITE_IN_WORKER;
634 
635                 __bch2_write_index(op);
636 
637                 if (!(op->flags & BCH_WRITE_SUBMITTED))
638                         __bch2_write(op);
639                 else
640                         bch2_write_done(&op->cl);
641         }
642 }
643 
644 static void bch2_write_endio(struct bio *bio)
645 {
646         struct closure *cl              = bio->bi_private;
647         struct bch_write_op *op         = container_of(cl, struct bch_write_op, cl);
648         struct bch_write_bio *wbio      = to_wbio(bio);
649         struct bch_write_bio *parent    = wbio->split ? wbio->parent : NULL;
650         struct bch_fs *c                = wbio->c;
651         struct bch_dev *ca              = wbio->have_ioref
652                 ? bch2_dev_have_ref(c, wbio->dev)
653                 : NULL;
654 
655         if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
656                                     op->pos.inode,
657                                     wbio->inode_offset << 9,
658                                     "data write error: %s",
659                                     bch2_blk_status_to_str(bio->bi_status))) {
660                 set_bit(wbio->dev, op->failed.d);
661                 op->flags |= BCH_WRITE_IO_ERROR;
662         }
663 
664         if (wbio->nocow) {
665                 bch2_bucket_nocow_unlock(&c->nocow_locks,
666                                          POS(ca->dev_idx, wbio->nocow_bucket),
667                                          BUCKET_NOCOW_LOCK_UPDATE);
668                 set_bit(wbio->dev, op->devs_need_flush->d);
669         }
670 
671         if (wbio->have_ioref) {
672                 bch2_latency_acct(ca, wbio->submit_time, WRITE);
673                 percpu_ref_put(&ca->io_ref);
674         }
675 
676         if (wbio->bounce)
677                 bch2_bio_free_pages_pool(c, bio);
678 
679         if (wbio->put_bio)
680                 bio_put(bio);
681 
682         if (parent)
683                 bio_endio(&parent->bio);
684         else
685                 closure_put(cl);
686 }
687 
688 static void init_append_extent(struct bch_write_op *op,
689                                struct write_point *wp,
690                                struct bversion version,
691                                struct bch_extent_crc_unpacked crc)
692 {
693         struct bkey_i_extent *e;
694 
695         op->pos.offset += crc.uncompressed_size;
696 
697         e = bkey_extent_init(op->insert_keys.top);
698         e->k.p          = op->pos;
699         e->k.size       = crc.uncompressed_size;
700         e->k.version    = version;
701 
702         if (crc.csum_type ||
703             crc.compression_type ||
704             crc.nonce)
705                 bch2_extent_crc_append(&e->k_i, crc);
706 
707         bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
708                                        op->flags & BCH_WRITE_CACHED);
709 
710         bch2_keylist_push(&op->insert_keys);
711 }
712 
713 static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
714                                         struct write_point *wp,
715                                         struct bio *src,
716                                         bool *page_alloc_failed,
717                                         void *buf)
718 {
719         struct bch_write_bio *wbio;
720         struct bio *bio;
721         unsigned output_available =
722                 min(wp->sectors_free << 9, src->bi_iter.bi_size);
723         unsigned pages = DIV_ROUND_UP(output_available +
724                                       (buf
725                                        ? ((unsigned long) buf & (PAGE_SIZE - 1))
726                                        : 0), PAGE_SIZE);
727 
728         pages = min(pages, BIO_MAX_VECS);
729 
730         bio = bio_alloc_bioset(NULL, pages, 0,
731                                GFP_NOFS, &c->bio_write);
732         wbio                    = wbio_init(bio);
733         wbio->put_bio           = true;
734         /* copy WRITE_SYNC flag */
735         wbio->bio.bi_opf        = src->bi_opf;
736 
737         if (buf) {
738                 bch2_bio_map(bio, buf, output_available);
739                 return bio;
740         }
741 
742         wbio->bounce            = true;
743 
744         /*
745          * We can't use mempool for more than c->sb.encoded_extent_max
746          * worth of pages, but we'd like to allocate more if we can:
747          */
748         bch2_bio_alloc_pages_pool(c, bio,
749                                   min_t(unsigned, output_available,
750                                         c->opts.encoded_extent_max));
751 
752         if (bio->bi_iter.bi_size < output_available)
753                 *page_alloc_failed =
754                         bch2_bio_alloc_pages(bio,
755                                              output_available -
756                                              bio->bi_iter.bi_size,
757                                              GFP_NOFS) != 0;
758 
759         return bio;
760 }
761 
762 static int bch2_write_rechecksum(struct bch_fs *c,
763                                  struct bch_write_op *op,
764                                  unsigned new_csum_type)
765 {
766         struct bio *bio = &op->wbio.bio;
767         struct bch_extent_crc_unpacked new_crc;
768         int ret;
769 
770         /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
771 
772         if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
773             bch2_csum_type_is_encryption(new_csum_type))
774                 new_csum_type = op->crc.csum_type;
775 
776         ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
777                                   NULL, &new_crc,
778                                   op->crc.offset, op->crc.live_size,
779                                   new_csum_type);
780         if (ret)
781                 return ret;
782 
783         bio_advance(bio, op->crc.offset << 9);
784         bio->bi_iter.bi_size = op->crc.live_size << 9;
785         op->crc = new_crc;
786         return 0;
787 }
788 
789 static int bch2_write_decrypt(struct bch_write_op *op)
790 {
791         struct bch_fs *c = op->c;
792         struct nonce nonce = extent_nonce(op->version, op->crc);
793         struct bch_csum csum;
794         int ret;
795 
796         if (!bch2_csum_type_is_encryption(op->crc.csum_type))
797                 return 0;
798 
799         /*
800          * If we need to decrypt data in the write path, we'll no longer be able
801          * to verify the existing checksum (poly1305 mac, in this case) after
802          * it's decrypted - this is the last point we'll be able to reverify the
803          * checksum:
804          */
805         csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
806         if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
807                 return -EIO;
808 
809         ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
810         op->crc.csum_type = 0;
811         op->crc.csum = (struct bch_csum) { 0, 0 };
812         return ret;
813 }
814 
815 static enum prep_encoded_ret {
816         PREP_ENCODED_OK,
817         PREP_ENCODED_ERR,
818         PREP_ENCODED_CHECKSUM_ERR,
819         PREP_ENCODED_DO_WRITE,
820 } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
821 {
822         struct bch_fs *c = op->c;
823         struct bio *bio = &op->wbio.bio;
824 
825         if (!(op->flags & BCH_WRITE_DATA_ENCODED))
826                 return PREP_ENCODED_OK;
827 
828         BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
829 
830         /* Can we just write the entire extent as is? */
831         if (op->crc.uncompressed_size == op->crc.live_size &&
832             op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
833             op->crc.compressed_size <= wp->sectors_free &&
834             (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
835              op->incompressible)) {
836                 if (!crc_is_compressed(op->crc) &&
837                     op->csum_type != op->crc.csum_type &&
838                     bch2_write_rechecksum(c, op, op->csum_type) &&
839                     !c->opts.no_data_io)
840                         return PREP_ENCODED_CHECKSUM_ERR;
841 
842                 return PREP_ENCODED_DO_WRITE;
843         }
844 
845         /*
846          * If the data is compressed and we couldn't write the entire extent as
847          * is, we have to decompress it:
848          */
849         if (crc_is_compressed(op->crc)) {
850                 struct bch_csum csum;
851 
852                 if (bch2_write_decrypt(op))
853                         return PREP_ENCODED_CHECKSUM_ERR;
854 
855                 /* Last point we can still verify checksum: */
856                 csum = bch2_checksum_bio(c, op->crc.csum_type,
857                                          extent_nonce(op->version, op->crc),
858                                          bio);
859                 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
860                         return PREP_ENCODED_CHECKSUM_ERR;
861 
862                 if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
863                         return PREP_ENCODED_ERR;
864         }
865 
866         /*
867          * No longer have compressed data after this point - data might be
868          * encrypted:
869          */
870 
871         /*
872          * If the data is checksummed and we're only writing a subset,
873          * rechecksum and adjust bio to point to currently live data:
874          */
875         if ((op->crc.live_size != op->crc.uncompressed_size ||
876              op->crc.csum_type != op->csum_type) &&
877             bch2_write_rechecksum(c, op, op->csum_type) &&
878             !c->opts.no_data_io)
879                 return PREP_ENCODED_CHECKSUM_ERR;
880 
881         /*
882          * If we want to compress the data, it has to be decrypted:
883          */
884         if ((op->compression_opt ||
885              bch2_csum_type_is_encryption(op->crc.csum_type) !=
886              bch2_csum_type_is_encryption(op->csum_type)) &&
887             bch2_write_decrypt(op))
888                 return PREP_ENCODED_CHECKSUM_ERR;
889 
890         return PREP_ENCODED_OK;
891 }
892 
893 static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
894                              struct bio **_dst)
895 {
896         struct bch_fs *c = op->c;
897         struct bio *src = &op->wbio.bio, *dst = src;
898         struct bvec_iter saved_iter;
899         void *ec_buf;
900         unsigned total_output = 0, total_input = 0;
901         bool bounce = false;
902         bool page_alloc_failed = false;
903         int ret, more = 0;
904 
905         BUG_ON(!bio_sectors(src));
906 
907         ec_buf = bch2_writepoint_ec_buf(c, wp);
908 
909         switch (bch2_write_prep_encoded_data(op, wp)) {
910         case PREP_ENCODED_OK:
911                 break;
912         case PREP_ENCODED_ERR:
913                 ret = -EIO;
914                 goto err;
915         case PREP_ENCODED_CHECKSUM_ERR:
916                 goto csum_err;
917         case PREP_ENCODED_DO_WRITE:
918                 /* XXX look for bug here */
919                 if (ec_buf) {
920                         dst = bch2_write_bio_alloc(c, wp, src,
921                                                    &page_alloc_failed,
922                                                    ec_buf);
923                         bio_copy_data(dst, src);
924                         bounce = true;
925                 }
926                 init_append_extent(op, wp, op->version, op->crc);
927                 goto do_write;
928         }
929 
930         if (ec_buf ||
931             op->compression_opt ||
932             (op->csum_type &&
933              !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
934             (bch2_csum_type_is_encryption(op->csum_type) &&
935              !(op->flags & BCH_WRITE_PAGES_OWNED))) {
936                 dst = bch2_write_bio_alloc(c, wp, src,
937                                            &page_alloc_failed,
938                                            ec_buf);
939                 bounce = true;
940         }
941 
942         saved_iter = dst->bi_iter;
943 
944         do {
945                 struct bch_extent_crc_unpacked crc = { 0 };
946                 struct bversion version = op->version;
947                 size_t dst_len = 0, src_len = 0;
948 
949                 if (page_alloc_failed &&
950                     dst->bi_iter.bi_size  < (wp->sectors_free << 9) &&
951                     dst->bi_iter.bi_size < c->opts.encoded_extent_max)
952                         break;
953 
954                 BUG_ON(op->compression_opt &&
955                        (op->flags & BCH_WRITE_DATA_ENCODED) &&
956                        bch2_csum_type_is_encryption(op->crc.csum_type));
957                 BUG_ON(op->compression_opt && !bounce);
958 
959                 crc.compression_type = op->incompressible
960                         ? BCH_COMPRESSION_TYPE_incompressible
961                         : op->compression_opt
962                         ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
963                                             op->compression_opt)
964                         : 0;
965                 if (!crc_is_compressed(crc)) {
966                         dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
967                         dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
968 
969                         if (op->csum_type)
970                                 dst_len = min_t(unsigned, dst_len,
971                                                 c->opts.encoded_extent_max);
972 
973                         if (bounce) {
974                                 swap(dst->bi_iter.bi_size, dst_len);
975                                 bio_copy_data(dst, src);
976                                 swap(dst->bi_iter.bi_size, dst_len);
977                         }
978 
979                         src_len = dst_len;
980                 }
981 
982                 BUG_ON(!src_len || !dst_len);
983 
984                 if (bch2_csum_type_is_encryption(op->csum_type)) {
985                         if (bversion_zero(version)) {
986                                 version.lo = atomic64_inc_return(&c->key_version);
987                         } else {
988                                 crc.nonce = op->nonce;
989                                 op->nonce += src_len >> 9;
990                         }
991                 }
992 
993                 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
994                     !crc_is_compressed(crc) &&
995                     bch2_csum_type_is_encryption(op->crc.csum_type) ==
996                     bch2_csum_type_is_encryption(op->csum_type)) {
997                         u8 compression_type = crc.compression_type;
998                         u16 nonce = crc.nonce;
999                         /*
1000                          * Note: when we're using rechecksum(), we need to be
1001                          * checksumming @src because it has all the data our
1002                          * existing checksum covers - if we bounced (because we
1003                          * were trying to compress), @dst will only have the
1004                          * part of the data the new checksum will cover.
1005                          *
1006                          * But normally we want to be checksumming post bounce,
1007                          * because part of the reason for bouncing is so the
1008                          * data can't be modified (by userspace) while it's in
1009                          * flight.
1010                          */
1011                         if (bch2_rechecksum_bio(c, src, version, op->crc,
1012                                         &crc, &op->crc,
1013                                         src_len >> 9,
1014                                         bio_sectors(src) - (src_len >> 9),
1015                                         op->csum_type))
1016                                 goto csum_err;
1017                         /*
1018                          * rchecksum_bio sets compression_type on crc from op->crc,
1019                          * this isn't always correct as sometimes we're changing
1020                          * an extent from uncompressed to incompressible.
1021                          */
1022                         crc.compression_type = compression_type;
1023                         crc.nonce = nonce;
1024                 } else {
1025                         if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1026                             bch2_rechecksum_bio(c, src, version, op->crc,
1027                                         NULL, &op->crc,
1028                                         src_len >> 9,
1029                                         bio_sectors(src) - (src_len >> 9),
1030                                         op->crc.csum_type))
1031                                 goto csum_err;
1032 
1033                         crc.compressed_size     = dst_len >> 9;
1034                         crc.uncompressed_size   = src_len >> 9;
1035                         crc.live_size           = src_len >> 9;
1036 
1037                         swap(dst->bi_iter.bi_size, dst_len);
1038                         ret = bch2_encrypt_bio(c, op->csum_type,
1039                                                extent_nonce(version, crc), dst);
1040                         if (ret)
1041                                 goto err;
1042 
1043                         crc.csum = bch2_checksum_bio(c, op->csum_type,
1044                                          extent_nonce(version, crc), dst);
1045                         crc.csum_type = op->csum_type;
1046                         swap(dst->bi_iter.bi_size, dst_len);
1047                 }
1048 
1049                 init_append_extent(op, wp, version, crc);
1050 
1051                 if (dst != src)
1052                         bio_advance(dst, dst_len);
1053                 bio_advance(src, src_len);
1054                 total_output    += dst_len;
1055                 total_input     += src_len;
1056         } while (dst->bi_iter.bi_size &&
1057                  src->bi_iter.bi_size &&
1058                  wp->sectors_free &&
1059                  !bch2_keylist_realloc(&op->insert_keys,
1060                                       op->inline_keys,
1061                                       ARRAY_SIZE(op->inline_keys),
1062                                       BKEY_EXTENT_U64s_MAX));
1063 
1064         more = src->bi_iter.bi_size != 0;
1065 
1066         dst->bi_iter = saved_iter;
1067 
1068         if (dst == src && more) {
1069                 BUG_ON(total_output != total_input);
1070 
1071                 dst = bio_split(src, total_input >> 9,
1072                                 GFP_NOFS, &c->bio_write);
1073                 wbio_init(dst)->put_bio = true;
1074                 /* copy WRITE_SYNC flag */
1075                 dst->bi_opf             = src->bi_opf;
1076         }
1077 
1078         dst->bi_iter.bi_size = total_output;
1079 do_write:
1080         *_dst = dst;
1081         return more;
1082 csum_err:
1083         bch_err_inum_offset_ratelimited(c,
1084                 op->pos.inode,
1085                 op->pos.offset << 9,
1086                 "%s write error: error verifying existing checksum while rewriting existing data (memory corruption?)",
1087                 op->flags & BCH_WRITE_MOVE ? "move" : "user");
1088         ret = -EIO;
1089 err:
1090         if (to_wbio(dst)->bounce)
1091                 bch2_bio_free_pages_pool(c, dst);
1092         if (to_wbio(dst)->put_bio)
1093                 bio_put(dst);
1094 
1095         return ret;
1096 }
1097 
1098 static bool bch2_extent_is_writeable(struct bch_write_op *op,
1099                                      struct bkey_s_c k)
1100 {
1101         struct bch_fs *c = op->c;
1102         struct bkey_s_c_extent e;
1103         struct extent_ptr_decoded p;
1104         const union bch_extent_entry *entry;
1105         unsigned replicas = 0;
1106 
1107         if (k.k->type != KEY_TYPE_extent)
1108                 return false;
1109 
1110         e = bkey_s_c_to_extent(k);
1111 
1112         rcu_read_lock();
1113         extent_for_each_ptr_decode(e, p, entry) {
1114                 if (crc_is_encoded(p.crc) || p.has_ec) {
1115                         rcu_read_unlock();
1116                         return false;
1117                 }
1118 
1119                 replicas += bch2_extent_ptr_durability(c, &p);
1120         }
1121         rcu_read_unlock();
1122 
1123         return replicas >= op->opts.data_replicas;
1124 }
1125 
1126 static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1127                                                   struct btree_iter *iter,
1128                                                   struct bkey_i *orig,
1129                                                   struct bkey_s_c k,
1130                                                   u64 new_i_size)
1131 {
1132         if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1133                 /* trace this */
1134                 return 0;
1135         }
1136 
1137         struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
1138         int ret = PTR_ERR_OR_ZERO(new);
1139         if (ret)
1140                 return ret;
1141 
1142         bch2_cut_front(bkey_start_pos(&orig->k), new);
1143         bch2_cut_back(orig->k.p, new);
1144 
1145         struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1146         bkey_for_each_ptr(ptrs, ptr)
1147                 ptr->unwritten = 0;
1148 
1149         /*
1150          * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1151          * that was done when we kicked off the write, and here it's important
1152          * that we update the extent that we wrote to - even if a snapshot has
1153          * since been created. The write is still outstanding, so we're ok
1154          * w.r.t. snapshot atomicity:
1155          */
1156         return  bch2_extent_update_i_size_sectors(trans, iter,
1157                                         min(new->k.p.offset << 9, new_i_size), 0) ?:
1158                 bch2_trans_update(trans, iter, new,
1159                                   BTREE_UPDATE_internal_snapshot_node);
1160 }
1161 
1162 static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1163 {
1164         struct bch_fs *c = op->c;
1165         struct btree_trans *trans = bch2_trans_get(c);
1166 
1167         for_each_keylist_key(&op->insert_keys, orig) {
1168                 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1169                                      bkey_start_pos(&orig->k), orig->k.p,
1170                                      BTREE_ITER_intent, k,
1171                                      NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
1172                         bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1173                 }));
1174 
1175                 if (ret && !bch2_err_matches(ret, EROFS)) {
1176                         struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1177 
1178                         bch_err_inum_offset_ratelimited(c,
1179                                 insert->k.p.inode, insert->k.p.offset << 9,
1180                                 "%s write error while doing btree update: %s",
1181                                 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1182                                 bch2_err_str(ret));
1183                 }
1184 
1185                 if (ret) {
1186                         op->error = ret;
1187                         break;
1188                 }
1189         }
1190 
1191         bch2_trans_put(trans);
1192 }
1193 
1194 static void __bch2_nocow_write_done(struct bch_write_op *op)
1195 {
1196         if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1197                 op->error = -EIO;
1198         } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1199                 bch2_nocow_write_convert_unwritten(op);
1200 }
1201 
1202 static CLOSURE_CALLBACK(bch2_nocow_write_done)
1203 {
1204         closure_type(op, struct bch_write_op, cl);
1205 
1206         __bch2_nocow_write_done(op);
1207         bch2_write_done(cl);
1208 }
1209 
1210 struct bucket_to_lock {
1211         struct bpos             b;
1212         unsigned                gen;
1213         struct nocow_lock_bucket *l;
1214 };
1215 
1216 static void bch2_nocow_write(struct bch_write_op *op)
1217 {
1218         struct bch_fs *c = op->c;
1219         struct btree_trans *trans;
1220         struct btree_iter iter;
1221         struct bkey_s_c k;
1222         DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1223         u32 snapshot;
1224         struct bucket_to_lock *stale_at;
1225         int stale, ret;
1226 
1227         if (op->flags & BCH_WRITE_MOVE)
1228                 return;
1229 
1230         darray_init(&buckets);
1231         trans = bch2_trans_get(c);
1232 retry:
1233         bch2_trans_begin(trans);
1234 
1235         ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1236         if (unlikely(ret))
1237                 goto err;
1238 
1239         bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1240                              SPOS(op->pos.inode, op->pos.offset, snapshot),
1241                              BTREE_ITER_slots);
1242         while (1) {
1243                 struct bio *bio = &op->wbio.bio;
1244 
1245                 buckets.nr = 0;
1246 
1247                 ret = bch2_trans_relock(trans);
1248                 if (ret)
1249                         break;
1250 
1251                 k = bch2_btree_iter_peek_slot(&iter);
1252                 ret = bkey_err(k);
1253                 if (ret)
1254                         break;
1255 
1256                 /* fall back to normal cow write path? */
1257                 if (unlikely(k.k->p.snapshot != snapshot ||
1258                              !bch2_extent_is_writeable(op, k)))
1259                         break;
1260 
1261                 if (bch2_keylist_realloc(&op->insert_keys,
1262                                          op->inline_keys,
1263                                          ARRAY_SIZE(op->inline_keys),
1264                                          k.k->u64s))
1265                         break;
1266 
1267                 /* Get iorefs before dropping btree locks: */
1268                 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1269                 bkey_for_each_ptr(ptrs, ptr) {
1270                         struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE);
1271                         if (unlikely(!ca))
1272                                 goto err_get_ioref;
1273 
1274                         struct bpos b = PTR_BUCKET_POS(ca, ptr);
1275                         struct nocow_lock_bucket *l =
1276                                 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
1277                         prefetch(l);
1278 
1279                         /* XXX allocating memory with btree locks held - rare */
1280                         darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1281                                                    .b = b, .gen = ptr->gen, .l = l,
1282                                                    }), GFP_KERNEL|__GFP_NOFAIL);
1283 
1284                         if (ptr->unwritten)
1285                                 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1286                 }
1287 
1288                 /* Unlock before taking nocow locks, doing IO: */
1289                 bkey_reassemble(op->insert_keys.top, k);
1290                 bch2_trans_unlock(trans);
1291 
1292                 bch2_cut_front(op->pos, op->insert_keys.top);
1293                 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1294                         bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1295 
1296                 darray_for_each(buckets, i) {
1297                         struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode);
1298 
1299                         __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1300                                                  bucket_to_u64(i->b),
1301                                                  BUCKET_NOCOW_LOCK_UPDATE);
1302 
1303                         rcu_read_lock();
1304                         u8 *gen = bucket_gen(ca, i->b.offset);
1305                         stale = !gen ? -1 : gen_after(*gen, i->gen);
1306                         rcu_read_unlock();
1307 
1308                         if (unlikely(stale)) {
1309                                 stale_at = i;
1310                                 goto err_bucket_stale;
1311                         }
1312                 }
1313 
1314                 bio = &op->wbio.bio;
1315                 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1316                         bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1317                                         GFP_KERNEL, &c->bio_write);
1318                         wbio_init(bio)->put_bio = true;
1319                         bio->bi_opf = op->wbio.bio.bi_opf;
1320                 } else {
1321                         op->flags |= BCH_WRITE_SUBMITTED;
1322                 }
1323 
1324                 op->pos.offset += bio_sectors(bio);
1325                 op->written += bio_sectors(bio);
1326 
1327                 bio->bi_end_io  = bch2_write_endio;
1328                 bio->bi_private = &op->cl;
1329                 bio->bi_opf |= REQ_OP_WRITE;
1330                 closure_get(&op->cl);
1331                 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1332                                           op->insert_keys.top, true);
1333 
1334                 bch2_keylist_push(&op->insert_keys);
1335                 if (op->flags & BCH_WRITE_SUBMITTED)
1336                         break;
1337                 bch2_btree_iter_advance(&iter);
1338         }
1339 out:
1340         bch2_trans_iter_exit(trans, &iter);
1341 err:
1342         if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1343                 goto retry;
1344 
1345         if (ret) {
1346                 bch_err_inum_offset_ratelimited(c,
1347                         op->pos.inode, op->pos.offset << 9,
1348                         "%s: btree lookup error %s", __func__, bch2_err_str(ret));
1349                 op->error = ret;
1350                 op->flags |= BCH_WRITE_SUBMITTED;
1351         }
1352 
1353         bch2_trans_put(trans);
1354         darray_exit(&buckets);
1355 
1356         /* fallback to cow write path? */
1357         if (!(op->flags & BCH_WRITE_SUBMITTED)) {
1358                 closure_sync(&op->cl);
1359                 __bch2_nocow_write_done(op);
1360                 op->insert_keys.top = op->insert_keys.keys;
1361         } else if (op->flags & BCH_WRITE_SYNC) {
1362                 closure_sync(&op->cl);
1363                 bch2_nocow_write_done(&op->cl.work);
1364         } else {
1365                 /*
1366                  * XXX
1367                  * needs to run out of process context because ei_quota_lock is
1368                  * a mutex
1369                  */
1370                 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1371         }
1372         return;
1373 err_get_ioref:
1374         darray_for_each(buckets, i)
1375                 percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref);
1376 
1377         /* Fall back to COW path: */
1378         goto out;
1379 err_bucket_stale:
1380         darray_for_each(buckets, i) {
1381                 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1382                 if (i == stale_at)
1383                         break;
1384         }
1385 
1386         struct printbuf buf = PRINTBUF;
1387         if (bch2_fs_inconsistent_on(stale < 0, c,
1388                                     "pointer to invalid bucket in nocow path on device %llu\n  %s",
1389                                     stale_at->b.inode,
1390                                     (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
1391                 ret = -EIO;
1392         } else {
1393                 /* We can retry this: */
1394                 ret = -BCH_ERR_transaction_restart;
1395         }
1396         printbuf_exit(&buf);
1397 
1398         goto err_get_ioref;
1399 }
1400 
1401 static void __bch2_write(struct bch_write_op *op)
1402 {
1403         struct bch_fs *c = op->c;
1404         struct write_point *wp = NULL;
1405         struct bio *bio = NULL;
1406         unsigned nofs_flags;
1407         int ret;
1408 
1409         nofs_flags = memalloc_nofs_save();
1410 
1411         if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1412                 bch2_nocow_write(op);
1413                 if (op->flags & BCH_WRITE_SUBMITTED)
1414                         goto out_nofs_restore;
1415         }
1416 again:
1417         memset(&op->failed, 0, sizeof(op->failed));
1418 
1419         do {
1420                 struct bkey_i *key_to_write;
1421                 unsigned key_to_write_offset = op->insert_keys.top_p -
1422                         op->insert_keys.keys_p;
1423 
1424                 /* +1 for possible cache device: */
1425                 if (op->open_buckets.nr + op->nr_replicas + 1 >
1426                     ARRAY_SIZE(op->open_buckets.v))
1427                         break;
1428 
1429                 if (bch2_keylist_realloc(&op->insert_keys,
1430                                         op->inline_keys,
1431                                         ARRAY_SIZE(op->inline_keys),
1432                                         BKEY_EXTENT_U64s_MAX))
1433                         break;
1434 
1435                 /*
1436                  * The copygc thread is now global, which means it's no longer
1437                  * freeing up space on specific disks, which means that
1438                  * allocations for specific disks may hang arbitrarily long:
1439                  */
1440                 ret = bch2_trans_do(c, NULL, NULL, 0,
1441                         bch2_alloc_sectors_start_trans(trans,
1442                                 op->target,
1443                                 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1444                                 op->write_point,
1445                                 &op->devs_have,
1446                                 op->nr_replicas,
1447                                 op->nr_replicas_required,
1448                                 op->watermark,
1449                                 op->flags,
1450                                 (op->flags & (BCH_WRITE_ALLOC_NOWAIT|
1451                                               BCH_WRITE_ONLY_SPECIFIED_DEVS))
1452                                 ? NULL : &op->cl, &wp));
1453                 if (unlikely(ret)) {
1454                         if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1455                                 break;
1456 
1457                         goto err;
1458                 }
1459 
1460                 EBUG_ON(!wp);
1461 
1462                 bch2_open_bucket_get(c, wp, &op->open_buckets);
1463                 ret = bch2_write_extent(op, wp, &bio);
1464 
1465                 bch2_alloc_sectors_done_inlined(c, wp);
1466 err:
1467                 if (ret <= 0) {
1468                         op->flags |= BCH_WRITE_SUBMITTED;
1469 
1470                         if (ret < 0) {
1471                                 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT))
1472                                         bch_err_inum_offset_ratelimited(c,
1473                                                 op->pos.inode,
1474                                                 op->pos.offset << 9,
1475                                                 "%s(): %s error: %s", __func__,
1476                                                 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1477                                                 bch2_err_str(ret));
1478                                 op->error = ret;
1479                                 break;
1480                         }
1481                 }
1482 
1483                 bio->bi_end_io  = bch2_write_endio;
1484                 bio->bi_private = &op->cl;
1485                 bio->bi_opf |= REQ_OP_WRITE;
1486 
1487                 closure_get(bio->bi_private);
1488 
1489                 key_to_write = (void *) (op->insert_keys.keys_p +
1490                                          key_to_write_offset);
1491 
1492                 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1493                                           key_to_write, false);
1494         } while (ret);
1495 
1496         /*
1497          * Sync or no?
1498          *
1499          * If we're running asynchronously, wne may still want to block
1500          * synchronously here if we weren't able to submit all of the IO at
1501          * once, as that signals backpressure to the caller.
1502          */
1503         if ((op->flags & BCH_WRITE_SYNC) ||
1504             (!(op->flags & BCH_WRITE_SUBMITTED) &&
1505              !(op->flags & BCH_WRITE_IN_WORKER))) {
1506                 bch2_wait_on_allocator(c, &op->cl);
1507 
1508                 __bch2_write_index(op);
1509 
1510                 if (!(op->flags & BCH_WRITE_SUBMITTED))
1511                         goto again;
1512                 bch2_write_done(&op->cl);
1513         } else {
1514                 bch2_write_queue(op, wp);
1515                 continue_at(&op->cl, bch2_write_index, NULL);
1516         }
1517 out_nofs_restore:
1518         memalloc_nofs_restore(nofs_flags);
1519 }
1520 
1521 static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1522 {
1523         struct bio *bio = &op->wbio.bio;
1524         struct bvec_iter iter;
1525         struct bkey_i_inline_data *id;
1526         unsigned sectors;
1527         int ret;
1528 
1529         memset(&op->failed, 0, sizeof(op->failed));
1530 
1531         op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1532         op->flags |= BCH_WRITE_SUBMITTED;
1533 
1534         bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1535 
1536         ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1537                                    ARRAY_SIZE(op->inline_keys),
1538                                    BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1539         if (ret) {
1540                 op->error = ret;
1541                 goto err;
1542         }
1543 
1544         sectors = bio_sectors(bio);
1545         op->pos.offset += sectors;
1546 
1547         id = bkey_inline_data_init(op->insert_keys.top);
1548         id->k.p         = op->pos;
1549         id->k.version   = op->version;
1550         id->k.size      = sectors;
1551 
1552         iter = bio->bi_iter;
1553         iter.bi_size = data_len;
1554         memcpy_from_bio(id->v.data, bio, iter);
1555 
1556         while (data_len & 7)
1557                 id->v.data[data_len++] = '\0';
1558         set_bkey_val_bytes(&id->k, data_len);
1559         bch2_keylist_push(&op->insert_keys);
1560 
1561         __bch2_write_index(op);
1562 err:
1563         bch2_write_done(&op->cl);
1564 }
1565 
1566 /**
1567  * bch2_write() - handle a write to a cache device or flash only volume
1568  * @cl:         &bch_write_op->cl
1569  *
1570  * This is the starting point for any data to end up in a cache device; it could
1571  * be from a normal write, or a writeback write, or a write to a flash only
1572  * volume - it's also used by the moving garbage collector to compact data in
1573  * mostly empty buckets.
1574  *
1575  * It first writes the data to the cache, creating a list of keys to be inserted
1576  * (if the data won't fit in a single open bucket, there will be multiple keys);
1577  * after the data is written it calls bch_journal, and after the keys have been
1578  * added to the next journal write they're inserted into the btree.
1579  *
1580  * If op->discard is true, instead of inserting the data it invalidates the
1581  * region of the cache represented by op->bio and op->inode.
1582  */
1583 CLOSURE_CALLBACK(bch2_write)
1584 {
1585         closure_type(op, struct bch_write_op, cl);
1586         struct bio *bio = &op->wbio.bio;
1587         struct bch_fs *c = op->c;
1588         unsigned data_len;
1589 
1590         EBUG_ON(op->cl.parent);
1591         BUG_ON(!op->nr_replicas);
1592         BUG_ON(!op->write_point.v);
1593         BUG_ON(bkey_eq(op->pos, POS_MAX));
1594 
1595         op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
1596         op->start_time = local_clock();
1597         bch2_keylist_init(&op->insert_keys, op->inline_keys);
1598         wbio_init(bio)->put_bio = false;
1599 
1600         if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1601                 bch_err_inum_offset_ratelimited(c,
1602                         op->pos.inode,
1603                         op->pos.offset << 9,
1604                         "%s write error: misaligned write",
1605                         op->flags & BCH_WRITE_MOVE ? "move" : "user");
1606                 op->error = -EIO;
1607                 goto err;
1608         }
1609 
1610         if (c->opts.nochanges) {
1611                 op->error = -BCH_ERR_erofs_no_writes;
1612                 goto err;
1613         }
1614 
1615         if (!(op->flags & BCH_WRITE_MOVE) &&
1616             !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1617                 op->error = -BCH_ERR_erofs_no_writes;
1618                 goto err;
1619         }
1620 
1621         this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1622         bch2_increment_clock(c, bio_sectors(bio), WRITE);
1623 
1624         data_len = min_t(u64, bio->bi_iter.bi_size,
1625                          op->new_i_size - (op->pos.offset << 9));
1626 
1627         if (c->opts.inline_data &&
1628             data_len <= min(block_bytes(c) / 2, 1024U)) {
1629                 bch2_write_data_inline(op, data_len);
1630                 return;
1631         }
1632 
1633         __bch2_write(op);
1634         return;
1635 err:
1636         bch2_disk_reservation_put(c, &op->res);
1637 
1638         closure_debug_destroy(&op->cl);
1639         if (op->end_io)
1640                 op->end_io(op);
1641 }
1642 
1643 static const char * const bch2_write_flags[] = {
1644 #define x(f)    #f,
1645         BCH_WRITE_FLAGS()
1646 #undef x
1647         NULL
1648 };
1649 
1650 void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1651 {
1652         prt_str(out, "pos: ");
1653         bch2_bpos_to_text(out, op->pos);
1654         prt_newline(out);
1655         printbuf_indent_add(out, 2);
1656 
1657         prt_str(out, "started: ");
1658         bch2_pr_time_units(out, local_clock() - op->start_time);
1659         prt_newline(out);
1660 
1661         prt_str(out, "flags: ");
1662         prt_bitflags(out, bch2_write_flags, op->flags);
1663         prt_newline(out);
1664 
1665         prt_printf(out, "ref: %u\n", closure_nr_remaining(&op->cl));
1666 
1667         printbuf_indent_sub(out, 2);
1668 }
1669 
1670 void bch2_fs_io_write_exit(struct bch_fs *c)
1671 {
1672         mempool_exit(&c->bio_bounce_pages);
1673         bioset_exit(&c->replica_set);
1674         bioset_exit(&c->bio_write);
1675 }
1676 
1677 int bch2_fs_io_write_init(struct bch_fs *c)
1678 {
1679         if (bioset_init(&c->bio_write,   1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) ||
1680             bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0))
1681                 return -BCH_ERR_ENOMEM_bio_write_init;
1682 
1683         if (mempool_init_page_pool(&c->bio_bounce_pages,
1684                                    max_t(unsigned,
1685                                          c->opts.btree_node_size,
1686                                          c->opts.encoded_extent_max) /
1687                                    PAGE_SIZE, 0))
1688                 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1689 
1690         return 0;
1691 }
1692 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php