1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "bcachefs.h" 4 #include "alloc_background.h" 5 #include "bkey_buf.h" 6 #include "btree_journal_iter.h" 7 #include "btree_node_scan.h" 8 #include "btree_update.h" 9 #include "btree_update_interior.h" 10 #include "btree_io.h" 11 #include "buckets.h" 12 #include "dirent.h" 13 #include "disk_accounting.h" 14 #include "errcode.h" 15 #include "error.h" 16 #include "fs-common.h" 17 #include "journal_io.h" 18 #include "journal_reclaim.h" 19 #include "journal_seq_blacklist.h" 20 #include "logged_ops.h" 21 #include "move.h" 22 #include "quota.h" 23 #include "rebalance.h" 24 #include "recovery.h" 25 #include "recovery_passes.h" 26 #include "replicas.h" 27 #include "sb-clean.h" 28 #include "sb-downgrade.h" 29 #include "snapshot.h" 30 #include "super-io.h" 31 32 #include <linux/sort.h> 33 #include <linux/stat.h> 34 35 #define QSTR(n) { { { .len = strlen(n) } }, .name = n } 36 37 void bch2_btree_lost_data(struct bch_fs *c, enum btree_id btree) 38 { 39 if (btree >= BTREE_ID_NR_MAX) 40 return; 41 42 u64 b = BIT_ULL(btree); 43 44 if (!(c->sb.btrees_lost_data & b)) { 45 bch_err(c, "flagging btree %s lost data", bch2_btree_id_str(btree)); 46 47 mutex_lock(&c->sb_lock); 48 bch2_sb_field_get(c->disk_sb.sb, ext)->btrees_lost_data |= cpu_to_le64(b); 49 bch2_write_super(c); 50 mutex_unlock(&c->sb_lock); 51 } 52 } 53 54 /* for -o reconstruct_alloc: */ 55 static void bch2_reconstruct_alloc(struct bch_fs *c) 56 { 57 bch2_journal_log_msg(c, "dropping alloc info"); 58 bch_info(c, "dropping and reconstructing all alloc info"); 59 60 mutex_lock(&c->sb_lock); 61 struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext); 62 63 __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_allocations, ext->recovery_passes_required); 64 __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_info, ext->recovery_passes_required); 65 __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_lrus, ext->recovery_passes_required); 66 __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_extents_to_backpointers, ext->recovery_passes_required); 67 __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_to_lru_refs, ext->recovery_passes_required); 68 69 __set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_alloc_key, ext->errors_silent); 70 __set_bit_le64(BCH_FSCK_ERR_ptr_gen_newer_than_bucket_gen, ext->errors_silent); 71 __set_bit_le64(BCH_FSCK_ERR_stale_dirty_ptr, ext->errors_silent); 72 73 __set_bit_le64(BCH_FSCK_ERR_dev_usage_buckets_wrong, ext->errors_silent); 74 __set_bit_le64(BCH_FSCK_ERR_dev_usage_sectors_wrong, ext->errors_silent); 75 __set_bit_le64(BCH_FSCK_ERR_dev_usage_fragmented_wrong, ext->errors_silent); 76 77 __set_bit_le64(BCH_FSCK_ERR_fs_usage_btree_wrong, ext->errors_silent); 78 __set_bit_le64(BCH_FSCK_ERR_fs_usage_cached_wrong, ext->errors_silent); 79 __set_bit_le64(BCH_FSCK_ERR_fs_usage_persistent_reserved_wrong, ext->errors_silent); 80 __set_bit_le64(BCH_FSCK_ERR_fs_usage_replicas_wrong, ext->errors_silent); 81 82 __set_bit_le64(BCH_FSCK_ERR_alloc_key_data_type_wrong, ext->errors_silent); 83 __set_bit_le64(BCH_FSCK_ERR_alloc_key_gen_wrong, ext->errors_silent); 84 __set_bit_le64(BCH_FSCK_ERR_alloc_key_dirty_sectors_wrong, ext->errors_silent); 85 __set_bit_le64(BCH_FSCK_ERR_alloc_key_cached_sectors_wrong, ext->errors_silent); 86 __set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_wrong, ext->errors_silent); 87 __set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_redundancy_wrong, ext->errors_silent); 88 __set_bit_le64(BCH_FSCK_ERR_need_discard_key_wrong, ext->errors_silent); 89 __set_bit_le64(BCH_FSCK_ERR_freespace_key_wrong, ext->errors_silent); 90 __set_bit_le64(BCH_FSCK_ERR_bucket_gens_key_wrong, ext->errors_silent); 91 __set_bit_le64(BCH_FSCK_ERR_freespace_hole_missing, ext->errors_silent); 92 __set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_backpointer, ext->errors_silent); 93 __set_bit_le64(BCH_FSCK_ERR_lru_entry_bad, ext->errors_silent); 94 __set_bit_le64(BCH_FSCK_ERR_accounting_mismatch, ext->errors_silent); 95 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); 96 97 bch2_write_super(c); 98 mutex_unlock(&c->sb_lock); 99 100 c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0])); 101 102 103 bch2_shoot_down_journal_keys(c, BTREE_ID_alloc, 104 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); 105 bch2_shoot_down_journal_keys(c, BTREE_ID_backpointers, 106 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); 107 bch2_shoot_down_journal_keys(c, BTREE_ID_need_discard, 108 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); 109 bch2_shoot_down_journal_keys(c, BTREE_ID_freespace, 110 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); 111 bch2_shoot_down_journal_keys(c, BTREE_ID_bucket_gens, 112 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); 113 } 114 115 /* 116 * Btree node pointers have a field to stack a pointer to the in memory btree 117 * node; we need to zero out this field when reading in btree nodes, or when 118 * reading in keys from the journal: 119 */ 120 static void zero_out_btree_mem_ptr(struct journal_keys *keys) 121 { 122 darray_for_each(*keys, i) 123 if (i->k->k.type == KEY_TYPE_btree_ptr_v2) 124 bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0; 125 } 126 127 /* journal replay: */ 128 129 static void replay_now_at(struct journal *j, u64 seq) 130 { 131 BUG_ON(seq < j->replay_journal_seq); 132 133 seq = min(seq, j->replay_journal_seq_end); 134 135 while (j->replay_journal_seq < seq) 136 bch2_journal_pin_put(j, j->replay_journal_seq++); 137 } 138 139 static int bch2_journal_replay_accounting_key(struct btree_trans *trans, 140 struct journal_key *k) 141 { 142 struct btree_iter iter; 143 bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p, 144 BTREE_MAX_DEPTH, k->level, 145 BTREE_ITER_intent); 146 int ret = bch2_btree_iter_traverse(&iter); 147 if (ret) 148 goto out; 149 150 struct bkey u; 151 struct bkey_s_c old = bch2_btree_path_peek_slot(btree_iter_path(trans, &iter), &u); 152 153 /* Has this delta already been applied to the btree? */ 154 if (bversion_cmp(old.k->version, k->k->k.version) >= 0) { 155 ret = 0; 156 goto out; 157 } 158 159 struct bkey_i *new = k->k; 160 if (old.k->type == KEY_TYPE_accounting) { 161 new = bch2_bkey_make_mut_noupdate(trans, bkey_i_to_s_c(k->k)); 162 ret = PTR_ERR_OR_ZERO(new); 163 if (ret) 164 goto out; 165 166 bch2_accounting_accumulate(bkey_i_to_accounting(new), 167 bkey_s_c_to_accounting(old)); 168 } 169 170 trans->journal_res.seq = k->journal_seq; 171 172 ret = bch2_trans_update(trans, &iter, new, BTREE_TRIGGER_norun); 173 out: 174 bch2_trans_iter_exit(trans, &iter); 175 return ret; 176 } 177 178 static int bch2_journal_replay_key(struct btree_trans *trans, 179 struct journal_key *k) 180 { 181 struct btree_iter iter; 182 unsigned iter_flags = 183 BTREE_ITER_intent| 184 BTREE_ITER_not_extents; 185 unsigned update_flags = BTREE_TRIGGER_norun; 186 int ret; 187 188 if (k->overwritten) 189 return 0; 190 191 trans->journal_res.seq = k->journal_seq; 192 193 /* 194 * BTREE_UPDATE_key_cache_reclaim disables key cache lookup/update to 195 * keep the key cache coherent with the underlying btree. Nothing 196 * besides the allocator is doing updates yet so we don't need key cache 197 * coherency for non-alloc btrees, and key cache fills for snapshots 198 * btrees use BTREE_ITER_filter_snapshots, which isn't available until 199 * the snapshots recovery pass runs. 200 */ 201 if (!k->level && k->btree_id == BTREE_ID_alloc) 202 iter_flags |= BTREE_ITER_cached; 203 else 204 update_flags |= BTREE_UPDATE_key_cache_reclaim; 205 206 bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p, 207 BTREE_MAX_DEPTH, k->level, 208 iter_flags); 209 ret = bch2_btree_iter_traverse(&iter); 210 if (ret) 211 goto out; 212 213 struct btree_path *path = btree_iter_path(trans, &iter); 214 if (unlikely(!btree_path_node(path, k->level))) { 215 bch2_trans_iter_exit(trans, &iter); 216 bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p, 217 BTREE_MAX_DEPTH, 0, iter_flags); 218 ret = bch2_btree_iter_traverse(&iter) ?: 219 bch2_btree_increase_depth(trans, iter.path, 0) ?: 220 -BCH_ERR_transaction_restart_nested; 221 goto out; 222 } 223 224 /* Must be checked with btree locked: */ 225 if (k->overwritten) 226 goto out; 227 228 if (k->k->k.type == KEY_TYPE_accounting) { 229 ret = bch2_trans_update_buffered(trans, BTREE_ID_accounting, k->k); 230 goto out; 231 } 232 233 ret = bch2_trans_update(trans, &iter, k->k, update_flags); 234 out: 235 bch2_trans_iter_exit(trans, &iter); 236 return ret; 237 } 238 239 static int journal_sort_seq_cmp(const void *_l, const void *_r) 240 { 241 const struct journal_key *l = *((const struct journal_key **)_l); 242 const struct journal_key *r = *((const struct journal_key **)_r); 243 244 /* 245 * Map 0 to U64_MAX, so that keys with journal_seq === 0 come last 246 * 247 * journal_seq == 0 means that the key comes from early repair, and 248 * should be inserted last so as to avoid overflowing the journal 249 */ 250 return cmp_int(l->journal_seq - 1, r->journal_seq - 1); 251 } 252 253 int bch2_journal_replay(struct bch_fs *c) 254 { 255 struct journal_keys *keys = &c->journal_keys; 256 DARRAY(struct journal_key *) keys_sorted = { 0 }; 257 struct journal *j = &c->journal; 258 u64 start_seq = c->journal_replay_seq_start; 259 u64 end_seq = c->journal_replay_seq_start; 260 struct btree_trans *trans = NULL; 261 bool immediate_flush = false; 262 int ret = 0; 263 264 if (keys->nr) { 265 ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)", 266 keys->nr, start_seq, end_seq); 267 if (ret) 268 goto err; 269 } 270 271 BUG_ON(!atomic_read(&keys->ref)); 272 273 move_gap(keys, keys->nr); 274 trans = bch2_trans_get(c); 275 276 /* 277 * Replay accounting keys first: we can't allow the write buffer to 278 * flush accounting keys until we're done 279 */ 280 darray_for_each(*keys, k) { 281 if (!(k->k->k.type == KEY_TYPE_accounting && !k->allocated)) 282 continue; 283 284 cond_resched(); 285 286 ret = commit_do(trans, NULL, NULL, 287 BCH_TRANS_COMMIT_no_enospc| 288 BCH_TRANS_COMMIT_journal_reclaim| 289 BCH_TRANS_COMMIT_skip_accounting_apply| 290 BCH_TRANS_COMMIT_no_journal_res, 291 bch2_journal_replay_accounting_key(trans, k)); 292 if (bch2_fs_fatal_err_on(ret, c, "error replaying accounting; %s", bch2_err_str(ret))) 293 goto err; 294 295 k->overwritten = true; 296 } 297 298 set_bit(BCH_FS_accounting_replay_done, &c->flags); 299 300 /* 301 * First, attempt to replay keys in sorted order. This is more 302 * efficient - better locality of btree access - but some might fail if 303 * that would cause a journal deadlock. 304 */ 305 darray_for_each(*keys, k) { 306 cond_resched(); 307 308 /* 309 * k->allocated means the key wasn't read in from the journal, 310 * rather it was from early repair code 311 */ 312 if (k->allocated) 313 immediate_flush = true; 314 315 /* Skip fastpath if we're low on space in the journal */ 316 ret = c->journal.watermark ? -1 : 317 commit_do(trans, NULL, NULL, 318 BCH_TRANS_COMMIT_no_enospc| 319 BCH_TRANS_COMMIT_journal_reclaim| 320 BCH_TRANS_COMMIT_skip_accounting_apply| 321 (!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0), 322 bch2_journal_replay_key(trans, k)); 323 BUG_ON(!ret && !k->overwritten && k->k->k.type != KEY_TYPE_accounting); 324 if (ret) { 325 ret = darray_push(&keys_sorted, k); 326 if (ret) 327 goto err; 328 } 329 } 330 331 bch2_trans_unlock_long(trans); 332 /* 333 * Now, replay any remaining keys in the order in which they appear in 334 * the journal, unpinning those journal entries as we go: 335 */ 336 sort(keys_sorted.data, keys_sorted.nr, 337 sizeof(keys_sorted.data[0]), 338 journal_sort_seq_cmp, NULL); 339 340 darray_for_each(keys_sorted, kp) { 341 cond_resched(); 342 343 struct journal_key *k = *kp; 344 345 if (k->journal_seq) 346 replay_now_at(j, k->journal_seq); 347 else 348 replay_now_at(j, j->replay_journal_seq_end); 349 350 ret = commit_do(trans, NULL, NULL, 351 BCH_TRANS_COMMIT_no_enospc| 352 BCH_TRANS_COMMIT_skip_accounting_apply| 353 (!k->allocated 354 ? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim 355 : 0), 356 bch2_journal_replay_key(trans, k)); 357 bch_err_msg(c, ret, "while replaying key at btree %s level %u:", 358 bch2_btree_id_str(k->btree_id), k->level); 359 if (ret) 360 goto err; 361 362 BUG_ON(k->btree_id != BTREE_ID_accounting && !k->overwritten); 363 } 364 365 /* 366 * We need to put our btree_trans before calling flush_all_pins(), since 367 * that will use a btree_trans internally 368 */ 369 bch2_trans_put(trans); 370 trans = NULL; 371 372 if (!c->opts.retain_recovery_info && 373 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) 374 bch2_journal_keys_put_initial(c); 375 376 replay_now_at(j, j->replay_journal_seq_end); 377 j->replay_journal_seq = 0; 378 379 bch2_journal_set_replay_done(j); 380 381 /* if we did any repair, flush it immediately */ 382 if (immediate_flush) { 383 bch2_journal_flush_all_pins(&c->journal); 384 ret = bch2_journal_meta(&c->journal); 385 } 386 387 if (keys->nr) 388 bch2_journal_log_msg(c, "journal replay finished"); 389 err: 390 if (trans) 391 bch2_trans_put(trans); 392 darray_exit(&keys_sorted); 393 bch_err_fn(c, ret); 394 return ret; 395 } 396 397 /* journal replay early: */ 398 399 static int journal_replay_entry_early(struct bch_fs *c, 400 struct jset_entry *entry) 401 { 402 int ret = 0; 403 404 switch (entry->type) { 405 case BCH_JSET_ENTRY_btree_root: { 406 struct btree_root *r; 407 408 if (fsck_err_on(entry->btree_id >= BTREE_ID_NR_MAX, 409 c, invalid_btree_id, 410 "invalid btree id %u (max %u)", 411 entry->btree_id, BTREE_ID_NR_MAX)) 412 return 0; 413 414 while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) { 415 ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL }); 416 if (ret) 417 return ret; 418 } 419 420 r = bch2_btree_id_root(c, entry->btree_id); 421 422 if (entry->u64s) { 423 r->level = entry->level; 424 bkey_copy(&r->key, (struct bkey_i *) entry->start); 425 r->error = 0; 426 } else { 427 r->error = -BCH_ERR_btree_node_read_error; 428 } 429 r->alive = true; 430 break; 431 } 432 case BCH_JSET_ENTRY_usage: { 433 struct jset_entry_usage *u = 434 container_of(entry, struct jset_entry_usage, entry); 435 436 switch (entry->btree_id) { 437 case BCH_FS_USAGE_key_version: 438 atomic64_set(&c->key_version, le64_to_cpu(u->v)); 439 break; 440 } 441 break; 442 } 443 case BCH_JSET_ENTRY_blacklist: { 444 struct jset_entry_blacklist *bl_entry = 445 container_of(entry, struct jset_entry_blacklist, entry); 446 447 ret = bch2_journal_seq_blacklist_add(c, 448 le64_to_cpu(bl_entry->seq), 449 le64_to_cpu(bl_entry->seq) + 1); 450 break; 451 } 452 case BCH_JSET_ENTRY_blacklist_v2: { 453 struct jset_entry_blacklist_v2 *bl_entry = 454 container_of(entry, struct jset_entry_blacklist_v2, entry); 455 456 ret = bch2_journal_seq_blacklist_add(c, 457 le64_to_cpu(bl_entry->start), 458 le64_to_cpu(bl_entry->end) + 1); 459 break; 460 } 461 case BCH_JSET_ENTRY_clock: { 462 struct jset_entry_clock *clock = 463 container_of(entry, struct jset_entry_clock, entry); 464 465 atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time)); 466 } 467 } 468 fsck_err: 469 return ret; 470 } 471 472 static int journal_replay_early(struct bch_fs *c, 473 struct bch_sb_field_clean *clean) 474 { 475 if (clean) { 476 for (struct jset_entry *entry = clean->start; 477 entry != vstruct_end(&clean->field); 478 entry = vstruct_next(entry)) { 479 int ret = journal_replay_entry_early(c, entry); 480 if (ret) 481 return ret; 482 } 483 } else { 484 struct genradix_iter iter; 485 struct journal_replay *i, **_i; 486 487 genradix_for_each(&c->journal_entries, iter, _i) { 488 i = *_i; 489 490 if (journal_replay_ignore(i)) 491 continue; 492 493 vstruct_for_each(&i->j, entry) { 494 int ret = journal_replay_entry_early(c, entry); 495 if (ret) 496 return ret; 497 } 498 } 499 } 500 501 return 0; 502 } 503 504 /* sb clean section: */ 505 506 static int read_btree_roots(struct bch_fs *c) 507 { 508 int ret = 0; 509 510 for (unsigned i = 0; i < btree_id_nr_alive(c); i++) { 511 struct btree_root *r = bch2_btree_id_root(c, i); 512 513 if (!r->alive) 514 continue; 515 516 if (btree_id_is_alloc(i) && c->opts.reconstruct_alloc) 517 continue; 518 519 if (mustfix_fsck_err_on((ret = r->error), 520 c, btree_root_bkey_invalid, 521 "invalid btree root %s", 522 bch2_btree_id_str(i)) || 523 mustfix_fsck_err_on((ret = r->error = bch2_btree_root_read(c, i, &r->key, r->level)), 524 c, btree_root_read_error, 525 "error reading btree root %s l=%u: %s", 526 bch2_btree_id_str(i), r->level, bch2_err_str(ret))) { 527 if (btree_id_is_alloc(i)) { 528 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_allocations); 529 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_info); 530 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_lrus); 531 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_extents_to_backpointers); 532 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_to_lru_refs); 533 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); 534 r->error = 0; 535 } else if (!(c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes))) { 536 bch_info(c, "will run btree node scan"); 537 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes); 538 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology); 539 } 540 541 ret = 0; 542 bch2_btree_lost_data(c, i); 543 } 544 } 545 546 for (unsigned i = 0; i < BTREE_ID_NR; i++) { 547 struct btree_root *r = bch2_btree_id_root(c, i); 548 549 if (!r->b && !r->error) { 550 r->alive = false; 551 r->level = 0; 552 bch2_btree_root_alloc_fake(c, i, 0); 553 } 554 } 555 fsck_err: 556 return ret; 557 } 558 559 static bool check_version_upgrade(struct bch_fs *c) 560 { 561 unsigned latest_version = bcachefs_metadata_version_current; 562 unsigned latest_compatible = min(latest_version, 563 bch2_latest_compatible_version(c->sb.version)); 564 unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version; 565 unsigned new_version = 0; 566 567 if (old_version < bcachefs_metadata_required_upgrade_below) { 568 if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible || 569 latest_compatible < bcachefs_metadata_required_upgrade_below) 570 new_version = latest_version; 571 else 572 new_version = latest_compatible; 573 } else { 574 switch (c->opts.version_upgrade) { 575 case BCH_VERSION_UPGRADE_compatible: 576 new_version = latest_compatible; 577 break; 578 case BCH_VERSION_UPGRADE_incompatible: 579 new_version = latest_version; 580 break; 581 case BCH_VERSION_UPGRADE_none: 582 new_version = min(old_version, latest_version); 583 break; 584 } 585 } 586 587 if (new_version > old_version) { 588 struct printbuf buf = PRINTBUF; 589 590 if (old_version < bcachefs_metadata_required_upgrade_below) 591 prt_str(&buf, "Version upgrade required:\n"); 592 593 if (old_version != c->sb.version) { 594 prt_str(&buf, "Version upgrade from "); 595 bch2_version_to_text(&buf, c->sb.version_upgrade_complete); 596 prt_str(&buf, " to "); 597 bch2_version_to_text(&buf, c->sb.version); 598 prt_str(&buf, " incomplete\n"); 599 } 600 601 prt_printf(&buf, "Doing %s version upgrade from ", 602 BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version) 603 ? "incompatible" : "compatible"); 604 bch2_version_to_text(&buf, old_version); 605 prt_str(&buf, " to "); 606 bch2_version_to_text(&buf, new_version); 607 prt_newline(&buf); 608 609 struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext); 610 __le64 passes = ext->recovery_passes_required[0]; 611 bch2_sb_set_upgrade(c, old_version, new_version); 612 passes = ext->recovery_passes_required[0] & ~passes; 613 614 if (passes) { 615 prt_str(&buf, " running recovery passes: "); 616 prt_bitflags(&buf, bch2_recovery_passes, 617 bch2_recovery_passes_from_stable(le64_to_cpu(passes))); 618 } 619 620 bch_info(c, "%s", buf.buf); 621 622 bch2_sb_upgrade(c, new_version); 623 624 printbuf_exit(&buf); 625 return true; 626 } 627 628 return false; 629 } 630 631 int bch2_fs_recovery(struct bch_fs *c) 632 { 633 struct bch_sb_field_clean *clean = NULL; 634 struct jset *last_journal_entry = NULL; 635 u64 last_seq = 0, blacklist_seq, journal_seq; 636 int ret = 0; 637 638 if (c->sb.clean) { 639 clean = bch2_read_superblock_clean(c); 640 ret = PTR_ERR_OR_ZERO(clean); 641 if (ret) 642 goto err; 643 644 bch_info(c, "recovering from clean shutdown, journal seq %llu", 645 le64_to_cpu(clean->journal_seq)); 646 } else { 647 bch_info(c, "recovering from unclean shutdown"); 648 } 649 650 if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) { 651 bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported"); 652 ret = -EINVAL; 653 goto err; 654 } 655 656 if (!c->sb.clean && 657 !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) { 658 bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix"); 659 ret = -EINVAL; 660 goto err; 661 } 662 663 if (c->opts.norecovery) 664 c->opts.recovery_pass_last = BCH_RECOVERY_PASS_journal_replay - 1; 665 666 mutex_lock(&c->sb_lock); 667 struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext); 668 bool write_sb = false; 669 670 if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) { 671 ext->recovery_passes_required[0] |= 672 cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology))); 673 write_sb = true; 674 } 675 676 u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0])); 677 if (sb_passes) { 678 struct printbuf buf = PRINTBUF; 679 prt_str(&buf, "superblock requires following recovery passes to be run:\n "); 680 prt_bitflags(&buf, bch2_recovery_passes, sb_passes); 681 bch_info(c, "%s", buf.buf); 682 printbuf_exit(&buf); 683 } 684 685 if (bch2_check_version_downgrade(c)) { 686 struct printbuf buf = PRINTBUF; 687 688 prt_str(&buf, "Version downgrade required:"); 689 690 __le64 passes = ext->recovery_passes_required[0]; 691 bch2_sb_set_downgrade(c, 692 BCH_VERSION_MINOR(bcachefs_metadata_version_current), 693 BCH_VERSION_MINOR(c->sb.version)); 694 passes = ext->recovery_passes_required[0] & ~passes; 695 if (passes) { 696 prt_str(&buf, "\n running recovery passes: "); 697 prt_bitflags(&buf, bch2_recovery_passes, 698 bch2_recovery_passes_from_stable(le64_to_cpu(passes))); 699 } 700 701 bch_info(c, "%s", buf.buf); 702 printbuf_exit(&buf); 703 write_sb = true; 704 } 705 706 if (check_version_upgrade(c)) 707 write_sb = true; 708 709 c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0])); 710 711 if (write_sb) 712 bch2_write_super(c); 713 mutex_unlock(&c->sb_lock); 714 715 if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) 716 c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology); 717 718 if (c->opts.fsck) 719 set_bit(BCH_FS_fsck_running, &c->flags); 720 721 ret = bch2_blacklist_table_initialize(c); 722 if (ret) { 723 bch_err(c, "error initializing blacklist table"); 724 goto err; 725 } 726 727 bch2_journal_pos_from_member_info_resume(c); 728 729 if (!c->sb.clean || c->opts.retain_recovery_info) { 730 struct genradix_iter iter; 731 struct journal_replay **i; 732 733 bch_verbose(c, "starting journal read"); 734 ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq); 735 if (ret) 736 goto err; 737 738 /* 739 * note: cmd_list_journal needs the blacklist table fully up to date so 740 * it can asterisk ignored journal entries: 741 */ 742 if (c->opts.read_journal_only) 743 goto out; 744 745 genradix_for_each_reverse(&c->journal_entries, iter, i) 746 if (!journal_replay_ignore(*i)) { 747 last_journal_entry = &(*i)->j; 748 break; 749 } 750 751 if (mustfix_fsck_err_on(c->sb.clean && 752 last_journal_entry && 753 !journal_entry_empty(last_journal_entry), c, 754 clean_but_journal_not_empty, 755 "filesystem marked clean but journal not empty")) { 756 c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); 757 SET_BCH_SB_CLEAN(c->disk_sb.sb, false); 758 c->sb.clean = false; 759 } 760 761 if (!last_journal_entry) { 762 fsck_err_on(!c->sb.clean, c, 763 dirty_but_no_journal_entries, 764 "no journal entries found"); 765 if (clean) 766 goto use_clean; 767 768 genradix_for_each_reverse(&c->journal_entries, iter, i) 769 if (*i) { 770 last_journal_entry = &(*i)->j; 771 (*i)->ignore_blacklisted = false; 772 (*i)->ignore_not_dirty= false; 773 /* 774 * This was probably a NO_FLUSH entry, 775 * so last_seq was garbage - but we know 776 * we're only using a single journal 777 * entry, set it here: 778 */ 779 (*i)->j.last_seq = (*i)->j.seq; 780 break; 781 } 782 } 783 784 ret = bch2_journal_keys_sort(c); 785 if (ret) 786 goto err; 787 788 if (c->sb.clean && last_journal_entry) { 789 ret = bch2_verify_superblock_clean(c, &clean, 790 last_journal_entry); 791 if (ret) 792 goto err; 793 } 794 } else { 795 use_clean: 796 if (!clean) { 797 bch_err(c, "no superblock clean section found"); 798 ret = -BCH_ERR_fsck_repair_impossible; 799 goto err; 800 801 } 802 blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1; 803 } 804 805 c->journal_replay_seq_start = last_seq; 806 c->journal_replay_seq_end = blacklist_seq - 1; 807 808 if (c->opts.reconstruct_alloc) 809 bch2_reconstruct_alloc(c); 810 811 zero_out_btree_mem_ptr(&c->journal_keys); 812 813 ret = journal_replay_early(c, clean); 814 if (ret) 815 goto err; 816 817 /* 818 * After an unclean shutdown, skip then next few journal sequence 819 * numbers as they may have been referenced by btree writes that 820 * happened before their corresponding journal writes - those btree 821 * writes need to be ignored, by skipping and blacklisting the next few 822 * journal sequence numbers: 823 */ 824 if (!c->sb.clean) 825 journal_seq += 8; 826 827 if (blacklist_seq != journal_seq) { 828 ret = bch2_journal_log_msg(c, "blacklisting entries %llu-%llu", 829 blacklist_seq, journal_seq) ?: 830 bch2_journal_seq_blacklist_add(c, 831 blacklist_seq, journal_seq); 832 if (ret) { 833 bch_err_msg(c, ret, "error creating new journal seq blacklist entry"); 834 goto err; 835 } 836 } 837 838 ret = bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu", 839 journal_seq, last_seq, blacklist_seq - 1) ?: 840 bch2_fs_journal_start(&c->journal, journal_seq); 841 if (ret) 842 goto err; 843 844 /* 845 * Skip past versions that might have possibly been used (as nonces), 846 * but hadn't had their pointers written: 847 */ 848 if (c->sb.encryption_type && !c->sb.clean) 849 atomic64_add(1 << 16, &c->key_version); 850 851 ret = read_btree_roots(c); 852 if (ret) 853 goto err; 854 855 set_bit(BCH_FS_btree_running, &c->flags); 856 857 ret = bch2_sb_set_upgrade_extra(c); 858 859 ret = bch2_run_recovery_passes(c); 860 if (ret) 861 goto err; 862 863 clear_bit(BCH_FS_fsck_running, &c->flags); 864 865 /* fsync if we fixed errors */ 866 if (test_bit(BCH_FS_errors_fixed, &c->flags) && 867 bch2_write_ref_tryget(c, BCH_WRITE_REF_fsync)) { 868 bch2_journal_flush_all_pins(&c->journal); 869 bch2_journal_meta(&c->journal); 870 bch2_write_ref_put(c, BCH_WRITE_REF_fsync); 871 } 872 873 /* If we fixed errors, verify that fs is actually clean now: */ 874 if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) && 875 test_bit(BCH_FS_errors_fixed, &c->flags) && 876 !test_bit(BCH_FS_errors_not_fixed, &c->flags) && 877 !test_bit(BCH_FS_error, &c->flags)) { 878 bch2_flush_fsck_errs(c); 879 880 bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean"); 881 clear_bit(BCH_FS_errors_fixed, &c->flags); 882 883 c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info; 884 885 ret = bch2_run_recovery_passes(c); 886 if (ret) 887 goto err; 888 889 if (test_bit(BCH_FS_errors_fixed, &c->flags) || 890 test_bit(BCH_FS_errors_not_fixed, &c->flags)) { 891 bch_err(c, "Second fsck run was not clean"); 892 set_bit(BCH_FS_errors_not_fixed, &c->flags); 893 } 894 895 set_bit(BCH_FS_errors_fixed, &c->flags); 896 } 897 898 if (enabled_qtypes(c)) { 899 bch_verbose(c, "reading quotas"); 900 ret = bch2_fs_quota_read(c); 901 if (ret) 902 goto err; 903 bch_verbose(c, "quotas done"); 904 } 905 906 mutex_lock(&c->sb_lock); 907 ext = bch2_sb_field_get(c->disk_sb.sb, ext); 908 write_sb = false; 909 910 if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) { 911 SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version)); 912 write_sb = true; 913 } 914 915 if (!test_bit(BCH_FS_error, &c->flags) && 916 !(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) { 917 c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info); 918 write_sb = true; 919 } 920 921 if (!test_bit(BCH_FS_error, &c->flags) && 922 !bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent))) { 923 memset(ext->errors_silent, 0, sizeof(ext->errors_silent)); 924 write_sb = true; 925 } 926 927 if (c->opts.fsck && 928 !test_bit(BCH_FS_error, &c->flags) && 929 c->recovery_pass_done == BCH_RECOVERY_PASS_NR - 1 && 930 ext->btrees_lost_data) { 931 ext->btrees_lost_data = 0; 932 write_sb = true; 933 } 934 935 if (c->opts.fsck && 936 !test_bit(BCH_FS_error, &c->flags) && 937 !test_bit(BCH_FS_errors_not_fixed, &c->flags)) { 938 SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0); 939 SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0); 940 write_sb = true; 941 } 942 943 if (bch2_blacklist_entries_gc(c)) 944 write_sb = true; 945 946 if (write_sb) 947 bch2_write_super(c); 948 mutex_unlock(&c->sb_lock); 949 950 if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) || 951 c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) { 952 struct bch_move_stats stats; 953 954 bch2_move_stats_init(&stats, "recovery"); 955 956 struct printbuf buf = PRINTBUF; 957 bch2_version_to_text(&buf, c->sb.version_min); 958 bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf); 959 printbuf_exit(&buf); 960 961 ret = bch2_fs_read_write_early(c) ?: 962 bch2_scan_old_btree_nodes(c, &stats); 963 if (ret) 964 goto err; 965 bch_info(c, "scanning for old btree nodes done"); 966 } 967 968 ret = 0; 969 out: 970 bch2_flush_fsck_errs(c); 971 972 if (!c->opts.retain_recovery_info) { 973 bch2_journal_keys_put_initial(c); 974 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 975 } 976 if (!IS_ERR(clean)) 977 kfree(clean); 978 979 if (!ret && 980 test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) && 981 !c->opts.nochanges) { 982 bch2_fs_read_write_early(c); 983 bch2_delete_dead_snapshots_async(c); 984 } 985 986 bch_err_fn(c, ret); 987 return ret; 988 err: 989 fsck_err: 990 bch2_fs_emergency_read_only(c); 991 goto out; 992 } 993 994 int bch2_fs_initialize(struct bch_fs *c) 995 { 996 struct bch_inode_unpacked root_inode, lostfound_inode; 997 struct bkey_inode_buf packed_inode; 998 struct qstr lostfound = QSTR("lost+found"); 999 int ret; 1000 1001 bch_notice(c, "initializing new filesystem"); 1002 set_bit(BCH_FS_new_fs, &c->flags); 1003 1004 mutex_lock(&c->sb_lock); 1005 c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done); 1006 c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done); 1007 1008 bch2_check_version_downgrade(c); 1009 1010 if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) { 1011 bch2_sb_upgrade(c, bcachefs_metadata_version_current); 1012 SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current); 1013 bch2_write_super(c); 1014 } 1015 mutex_unlock(&c->sb_lock); 1016 1017 c->curr_recovery_pass = BCH_RECOVERY_PASS_NR; 1018 set_bit(BCH_FS_btree_running, &c->flags); 1019 set_bit(BCH_FS_may_go_rw, &c->flags); 1020 1021 for (unsigned i = 0; i < BTREE_ID_NR; i++) 1022 bch2_btree_root_alloc_fake(c, i, 0); 1023 1024 ret = bch2_fs_journal_alloc(c); 1025 if (ret) 1026 goto err; 1027 1028 /* 1029 * journal_res_get() will crash if called before this has 1030 * set up the journal.pin FIFO and journal.cur pointer: 1031 */ 1032 bch2_fs_journal_start(&c->journal, 1); 1033 set_bit(BCH_FS_accounting_replay_done, &c->flags); 1034 bch2_journal_set_replay_done(&c->journal); 1035 1036 ret = bch2_fs_read_write_early(c); 1037 if (ret) 1038 goto err; 1039 1040 for_each_member_device(c, ca) { 1041 ret = bch2_dev_usage_init(ca, false); 1042 if (ret) { 1043 bch2_dev_put(ca); 1044 goto err; 1045 } 1046 } 1047 1048 /* 1049 * Write out the superblock and journal buckets, now that we can do 1050 * btree updates 1051 */ 1052 bch_verbose(c, "marking superblocks"); 1053 ret = bch2_trans_mark_dev_sbs(c); 1054 bch_err_msg(c, ret, "marking superblocks"); 1055 if (ret) 1056 goto err; 1057 1058 for_each_online_member(c, ca) 1059 ca->new_fs_bucket_idx = 0; 1060 1061 ret = bch2_fs_freespace_init(c); 1062 if (ret) 1063 goto err; 1064 1065 ret = bch2_initialize_subvolumes(c); 1066 if (ret) 1067 goto err; 1068 1069 bch_verbose(c, "reading snapshots table"); 1070 ret = bch2_snapshots_read(c); 1071 if (ret) 1072 goto err; 1073 bch_verbose(c, "reading snapshots done"); 1074 1075 bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL); 1076 root_inode.bi_inum = BCACHEFS_ROOT_INO; 1077 root_inode.bi_subvol = BCACHEFS_ROOT_SUBVOL; 1078 bch2_inode_pack(&packed_inode, &root_inode); 1079 packed_inode.inode.k.p.snapshot = U32_MAX; 1080 1081 ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0, 0); 1082 bch_err_msg(c, ret, "creating root directory"); 1083 if (ret) 1084 goto err; 1085 1086 bch2_inode_init_early(c, &lostfound_inode); 1087 1088 ret = bch2_trans_do(c, NULL, NULL, 0, 1089 bch2_create_trans(trans, 1090 BCACHEFS_ROOT_SUBVOL_INUM, 1091 &root_inode, &lostfound_inode, 1092 &lostfound, 1093 0, 0, S_IFDIR|0700, 0, 1094 NULL, NULL, (subvol_inum) { 0 }, 0)); 1095 bch_err_msg(c, ret, "creating lost+found"); 1096 if (ret) 1097 goto err; 1098 1099 c->recovery_pass_done = BCH_RECOVERY_PASS_NR - 1; 1100 1101 if (enabled_qtypes(c)) { 1102 ret = bch2_fs_quota_read(c); 1103 if (ret) 1104 goto err; 1105 } 1106 1107 ret = bch2_journal_flush(&c->journal); 1108 bch_err_msg(c, ret, "writing first journal entry"); 1109 if (ret) 1110 goto err; 1111 1112 mutex_lock(&c->sb_lock); 1113 SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true); 1114 SET_BCH_SB_CLEAN(c->disk_sb.sb, false); 1115 1116 bch2_write_super(c); 1117 mutex_unlock(&c->sb_lock); 1118 1119 return 0; 1120 err: 1121 bch_err_fn(c, ret); 1122 return ret; 1123 } 1124
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.