~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/bcachefs/six.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 #include <linux/export.h>
  4 #include <linux/log2.h>
  5 #include <linux/percpu.h>
  6 #include <linux/preempt.h>
  7 #include <linux/rcupdate.h>
  8 #include <linux/sched.h>
  9 #include <linux/sched/clock.h>
 10 #include <linux/sched/rt.h>
 11 #include <linux/sched/task.h>
 12 #include <linux/slab.h>
 13 
 14 #include <trace/events/lock.h>
 15 
 16 #include "six.h"
 17 
 18 #ifdef DEBUG
 19 #define EBUG_ON(cond)                   BUG_ON(cond)
 20 #else
 21 #define EBUG_ON(cond)                   do {} while (0)
 22 #endif
 23 
 24 #define six_acquire(l, t, r, ip)        lock_acquire(l, 0, t, r, 1, NULL, ip)
 25 #define six_release(l, ip)              lock_release(l, ip)
 26 
 27 static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type);
 28 
 29 #define SIX_LOCK_HELD_read_OFFSET       0
 30 #define SIX_LOCK_HELD_read              ~(~0U << 26)
 31 #define SIX_LOCK_HELD_intent            (1U << 26)
 32 #define SIX_LOCK_HELD_write             (1U << 27)
 33 #define SIX_LOCK_WAITING_read           (1U << (28 + SIX_LOCK_read))
 34 #define SIX_LOCK_WAITING_write          (1U << (28 + SIX_LOCK_write))
 35 #define SIX_LOCK_NOSPIN                 (1U << 31)
 36 
 37 struct six_lock_vals {
 38         /* Value we add to the lock in order to take the lock: */
 39         u32                     lock_val;
 40 
 41         /* If the lock has this value (used as a mask), taking the lock fails: */
 42         u32                     lock_fail;
 43 
 44         /* Mask that indicates lock is held for this type: */
 45         u32                     held_mask;
 46 
 47         /* Waitlist we wakeup when releasing the lock: */
 48         enum six_lock_type      unlock_wakeup;
 49 };
 50 
 51 static const struct six_lock_vals l[] = {
 52         [SIX_LOCK_read] = {
 53                 .lock_val       = 1U << SIX_LOCK_HELD_read_OFFSET,
 54                 .lock_fail      = SIX_LOCK_HELD_write,
 55                 .held_mask      = SIX_LOCK_HELD_read,
 56                 .unlock_wakeup  = SIX_LOCK_write,
 57         },
 58         [SIX_LOCK_intent] = {
 59                 .lock_val       = SIX_LOCK_HELD_intent,
 60                 .lock_fail      = SIX_LOCK_HELD_intent,
 61                 .held_mask      = SIX_LOCK_HELD_intent,
 62                 .unlock_wakeup  = SIX_LOCK_intent,
 63         },
 64         [SIX_LOCK_write] = {
 65                 .lock_val       = SIX_LOCK_HELD_write,
 66                 .lock_fail      = SIX_LOCK_HELD_read,
 67                 .held_mask      = SIX_LOCK_HELD_write,
 68                 .unlock_wakeup  = SIX_LOCK_read,
 69         },
 70 };
 71 
 72 static inline void six_set_bitmask(struct six_lock *lock, u32 mask)
 73 {
 74         if ((atomic_read(&lock->state) & mask) != mask)
 75                 atomic_or(mask, &lock->state);
 76 }
 77 
 78 static inline void six_clear_bitmask(struct six_lock *lock, u32 mask)
 79 {
 80         if (atomic_read(&lock->state) & mask)
 81                 atomic_and(~mask, &lock->state);
 82 }
 83 
 84 static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
 85                                  u32 old, struct task_struct *owner)
 86 {
 87         if (type != SIX_LOCK_intent)
 88                 return;
 89 
 90         if (!(old & SIX_LOCK_HELD_intent)) {
 91                 EBUG_ON(lock->owner);
 92                 lock->owner = owner;
 93         } else {
 94                 EBUG_ON(lock->owner != current);
 95         }
 96 }
 97 
 98 static inline unsigned pcpu_read_count(struct six_lock *lock)
 99 {
100         unsigned read_count = 0;
101         int cpu;
102 
103         for_each_possible_cpu(cpu)
104                 read_count += *per_cpu_ptr(lock->readers, cpu);
105         return read_count;
106 }
107 
108 /*
109  * __do_six_trylock() - main trylock routine
110  *
111  * Returns 1 on success, 0 on failure
112  *
113  * In percpu reader mode, a failed trylock may cause a spurious trylock failure
114  * for anoter thread taking the competing lock type, and we may havve to do a
115  * wakeup: when a wakeup is required, we return -1 - wakeup_type.
116  */
117 static int __do_six_trylock(struct six_lock *lock, enum six_lock_type type,
118                             struct task_struct *task, bool try)
119 {
120         int ret;
121         u32 old;
122 
123         EBUG_ON(type == SIX_LOCK_write && lock->owner != task);
124         EBUG_ON(type == SIX_LOCK_write &&
125                 (try != !(atomic_read(&lock->state) & SIX_LOCK_HELD_write)));
126 
127         /*
128          * Percpu reader mode:
129          *
130          * The basic idea behind this algorithm is that you can implement a lock
131          * between two threads without any atomics, just memory barriers:
132          *
133          * For two threads you'll need two variables, one variable for "thread a
134          * has the lock" and another for "thread b has the lock".
135          *
136          * To take the lock, a thread sets its variable indicating that it holds
137          * the lock, then issues a full memory barrier, then reads from the
138          * other thread's variable to check if the other thread thinks it has
139          * the lock. If we raced, we backoff and retry/sleep.
140          *
141          * Failure to take the lock may cause a spurious trylock failure in
142          * another thread, because we temporarily set the lock to indicate that
143          * we held it. This would be a problem for a thread in six_lock(), when
144          * they are calling trylock after adding themself to the waitlist and
145          * prior to sleeping.
146          *
147          * Therefore, if we fail to get the lock, and there were waiters of the
148          * type we conflict with, we will have to issue a wakeup.
149          *
150          * Since we may be called under wait_lock (and by the wakeup code
151          * itself), we return that the wakeup has to be done instead of doing it
152          * here.
153          */
154         if (type == SIX_LOCK_read && lock->readers) {
155                 preempt_disable();
156                 this_cpu_inc(*lock->readers); /* signal that we own lock */
157 
158                 smp_mb();
159 
160                 old = atomic_read(&lock->state);
161                 ret = !(old & l[type].lock_fail);
162 
163                 this_cpu_sub(*lock->readers, !ret);
164                 preempt_enable();
165 
166                 if (!ret) {
167                         smp_mb();
168                         if (atomic_read(&lock->state) & SIX_LOCK_WAITING_write)
169                                 ret = -1 - SIX_LOCK_write;
170                 }
171         } else if (type == SIX_LOCK_write && lock->readers) {
172                 if (try) {
173                         atomic_add(SIX_LOCK_HELD_write, &lock->state);
174                         smp_mb__after_atomic();
175                 }
176 
177                 ret = !pcpu_read_count(lock);
178 
179                 if (try && !ret) {
180                         old = atomic_sub_return(SIX_LOCK_HELD_write, &lock->state);
181                         if (old & SIX_LOCK_WAITING_read)
182                                 ret = -1 - SIX_LOCK_read;
183                 }
184         } else {
185                 old = atomic_read(&lock->state);
186                 do {
187                         ret = !(old & l[type].lock_fail);
188                         if (!ret || (type == SIX_LOCK_write && !try)) {
189                                 smp_mb();
190                                 break;
191                         }
192                 } while (!atomic_try_cmpxchg_acquire(&lock->state, &old, old + l[type].lock_val));
193 
194                 EBUG_ON(ret && !(atomic_read(&lock->state) & l[type].held_mask));
195         }
196 
197         if (ret > 0)
198                 six_set_owner(lock, type, old, task);
199 
200         EBUG_ON(type == SIX_LOCK_write && try && ret <= 0 &&
201                 (atomic_read(&lock->state) & SIX_LOCK_HELD_write));
202 
203         return ret;
204 }
205 
206 static void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type)
207 {
208         struct six_lock_waiter *w, *next;
209         struct task_struct *task;
210         bool saw_one;
211         int ret;
212 again:
213         ret = 0;
214         saw_one = false;
215         raw_spin_lock(&lock->wait_lock);
216 
217         list_for_each_entry_safe(w, next, &lock->wait_list, list) {
218                 if (w->lock_want != lock_type)
219                         continue;
220 
221                 if (saw_one && lock_type != SIX_LOCK_read)
222                         goto unlock;
223                 saw_one = true;
224 
225                 ret = __do_six_trylock(lock, lock_type, w->task, false);
226                 if (ret <= 0)
227                         goto unlock;
228 
229                 /*
230                  * Similar to percpu_rwsem_wake_function(), we need to guard
231                  * against the wakee noticing w->lock_acquired, returning, and
232                  * then exiting before we do the wakeup:
233                  */
234                 task = get_task_struct(w->task);
235                 __list_del(w->list.prev, w->list.next);
236                 /*
237                  * The release barrier here ensures the ordering of the
238                  * __list_del before setting w->lock_acquired; @w is on the
239                  * stack of the thread doing the waiting and will be reused
240                  * after it sees w->lock_acquired with no other locking:
241                  * pairs with smp_load_acquire() in six_lock_slowpath()
242                  */
243                 smp_store_release(&w->lock_acquired, true);
244                 wake_up_process(task);
245                 put_task_struct(task);
246         }
247 
248         six_clear_bitmask(lock, SIX_LOCK_WAITING_read << lock_type);
249 unlock:
250         raw_spin_unlock(&lock->wait_lock);
251 
252         if (ret < 0) {
253                 lock_type = -ret - 1;
254                 goto again;
255         }
256 }
257 
258 __always_inline
259 static void six_lock_wakeup(struct six_lock *lock, u32 state,
260                             enum six_lock_type lock_type)
261 {
262         if (lock_type == SIX_LOCK_write && (state & SIX_LOCK_HELD_read))
263                 return;
264 
265         if (!(state & (SIX_LOCK_WAITING_read << lock_type)))
266                 return;
267 
268         __six_lock_wakeup(lock, lock_type);
269 }
270 
271 __always_inline
272 static bool do_six_trylock(struct six_lock *lock, enum six_lock_type type, bool try)
273 {
274         int ret;
275 
276         ret = __do_six_trylock(lock, type, current, try);
277         if (ret < 0)
278                 __six_lock_wakeup(lock, -ret - 1);
279 
280         return ret > 0;
281 }
282 
283 /**
284  * six_trylock_ip - attempt to take a six lock without blocking
285  * @lock:       lock to take
286  * @type:       SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
287  * @ip:         ip parameter for lockdep/lockstat, i.e. _THIS_IP_
288  *
289  * Return: true on success, false on failure.
290  */
291 bool six_trylock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
292 {
293         if (!do_six_trylock(lock, type, true))
294                 return false;
295 
296         if (type != SIX_LOCK_write)
297                 six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip);
298         return true;
299 }
300 EXPORT_SYMBOL_GPL(six_trylock_ip);
301 
302 /**
303  * six_relock_ip - attempt to re-take a lock that was held previously
304  * @lock:       lock to take
305  * @type:       SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
306  * @seq:        lock sequence number obtained from six_lock_seq() while lock was
307  *              held previously
308  * @ip:         ip parameter for lockdep/lockstat, i.e. _THIS_IP_
309  *
310  * Return: true on success, false on failure.
311  */
312 bool six_relock_ip(struct six_lock *lock, enum six_lock_type type,
313                    unsigned seq, unsigned long ip)
314 {
315         if (six_lock_seq(lock) != seq || !six_trylock_ip(lock, type, ip))
316                 return false;
317 
318         if (six_lock_seq(lock) != seq) {
319                 six_unlock_ip(lock, type, ip);
320                 return false;
321         }
322 
323         return true;
324 }
325 EXPORT_SYMBOL_GPL(six_relock_ip);
326 
327 #ifdef CONFIG_BCACHEFS_SIX_OPTIMISTIC_SPIN
328 
329 static inline bool six_owner_running(struct six_lock *lock)
330 {
331         /*
332          * When there's no owner, we might have preempted between the owner
333          * acquiring the lock and setting the owner field. If we're an RT task
334          * that will live-lock because we won't let the owner complete.
335          */
336         rcu_read_lock();
337         struct task_struct *owner = READ_ONCE(lock->owner);
338         bool ret = owner ? owner_on_cpu(owner) : !rt_task(current);
339         rcu_read_unlock();
340 
341         return ret;
342 }
343 
344 static inline bool six_optimistic_spin(struct six_lock *lock,
345                                        struct six_lock_waiter *wait,
346                                        enum six_lock_type type)
347 {
348         unsigned loop = 0;
349         u64 end_time;
350 
351         if (type == SIX_LOCK_write)
352                 return false;
353 
354         if (lock->wait_list.next != &wait->list)
355                 return false;
356 
357         if (atomic_read(&lock->state) & SIX_LOCK_NOSPIN)
358                 return false;
359 
360         preempt_disable();
361         end_time = sched_clock() + 10 * NSEC_PER_USEC;
362 
363         while (!need_resched() && six_owner_running(lock)) {
364                 /*
365                  * Ensures that writes to the waitlist entry happen after we see
366                  * wait->lock_acquired: pairs with the smp_store_release in
367                  * __six_lock_wakeup
368                  */
369                 if (smp_load_acquire(&wait->lock_acquired)) {
370                         preempt_enable();
371                         return true;
372                 }
373 
374                 if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) {
375                         six_set_bitmask(lock, SIX_LOCK_NOSPIN);
376                         break;
377                 }
378 
379                 /*
380                  * The cpu_relax() call is a compiler barrier which forces
381                  * everything in this loop to be re-loaded. We don't need
382                  * memory barriers as we'll eventually observe the right
383                  * values at the cost of a few extra spins.
384                  */
385                 cpu_relax();
386         }
387 
388         preempt_enable();
389         return false;
390 }
391 
392 #else /* CONFIG_LOCK_SPIN_ON_OWNER */
393 
394 static inline bool six_optimistic_spin(struct six_lock *lock,
395                                        struct six_lock_waiter *wait,
396                                        enum six_lock_type type)
397 {
398         return false;
399 }
400 
401 #endif
402 
403 noinline
404 static int six_lock_slowpath(struct six_lock *lock, enum six_lock_type type,
405                              struct six_lock_waiter *wait,
406                              six_lock_should_sleep_fn should_sleep_fn, void *p,
407                              unsigned long ip)
408 {
409         int ret = 0;
410 
411         if (type == SIX_LOCK_write) {
412                 EBUG_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
413                 atomic_add(SIX_LOCK_HELD_write, &lock->state);
414                 smp_mb__after_atomic();
415         }
416 
417         trace_contention_begin(lock, 0);
418         lock_contended(&lock->dep_map, ip);
419 
420         wait->task              = current;
421         wait->lock_want         = type;
422         wait->lock_acquired     = false;
423 
424         raw_spin_lock(&lock->wait_lock);
425         six_set_bitmask(lock, SIX_LOCK_WAITING_read << type);
426         /*
427          * Retry taking the lock after taking waitlist lock, in case we raced
428          * with an unlock:
429          */
430         ret = __do_six_trylock(lock, type, current, false);
431         if (ret <= 0) {
432                 wait->start_time = local_clock();
433 
434                 if (!list_empty(&lock->wait_list)) {
435                         struct six_lock_waiter *last =
436                                 list_last_entry(&lock->wait_list,
437                                         struct six_lock_waiter, list);
438 
439                         if (time_before_eq64(wait->start_time, last->start_time))
440                                 wait->start_time = last->start_time + 1;
441                 }
442 
443                 list_add_tail(&wait->list, &lock->wait_list);
444         }
445         raw_spin_unlock(&lock->wait_lock);
446 
447         if (unlikely(ret > 0)) {
448                 ret = 0;
449                 goto out;
450         }
451 
452         if (unlikely(ret < 0)) {
453                 __six_lock_wakeup(lock, -ret - 1);
454                 ret = 0;
455         }
456 
457         if (six_optimistic_spin(lock, wait, type))
458                 goto out;
459 
460         while (1) {
461                 set_current_state(TASK_UNINTERRUPTIBLE);
462 
463                 /*
464                  * Ensures that writes to the waitlist entry happen after we see
465                  * wait->lock_acquired: pairs with the smp_store_release in
466                  * __six_lock_wakeup
467                  */
468                 if (smp_load_acquire(&wait->lock_acquired))
469                         break;
470 
471                 ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
472                 if (unlikely(ret)) {
473                         bool acquired;
474 
475                         /*
476                          * If should_sleep_fn() returns an error, we are
477                          * required to return that error even if we already
478                          * acquired the lock - should_sleep_fn() might have
479                          * modified external state (e.g. when the deadlock cycle
480                          * detector in bcachefs issued a transaction restart)
481                          */
482                         raw_spin_lock(&lock->wait_lock);
483                         acquired = wait->lock_acquired;
484                         if (!acquired)
485                                 list_del(&wait->list);
486                         raw_spin_unlock(&lock->wait_lock);
487 
488                         if (unlikely(acquired))
489                                 do_six_unlock_type(lock, type);
490                         break;
491                 }
492 
493                 schedule();
494         }
495 
496         __set_current_state(TASK_RUNNING);
497 out:
498         if (ret && type == SIX_LOCK_write) {
499                 six_clear_bitmask(lock, SIX_LOCK_HELD_write);
500                 six_lock_wakeup(lock, atomic_read(&lock->state), SIX_LOCK_read);
501         }
502         trace_contention_end(lock, 0);
503 
504         return ret;
505 }
506 
507 /**
508  * six_lock_ip_waiter - take a lock, with full waitlist interface
509  * @lock:       lock to take
510  * @type:       SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
511  * @wait:       pointer to wait object, which will be added to lock's waitlist
512  * @should_sleep_fn: callback run after adding to waitlist, immediately prior
513  *              to scheduling
514  * @p:          passed through to @should_sleep_fn
515  * @ip:         ip parameter for lockdep/lockstat, i.e. _THIS_IP_
516  *
517  * This is the most general six_lock() variant, with parameters to support full
518  * cycle detection for deadlock avoidance.
519  *
520  * The code calling this function must implement tracking of held locks, and the
521  * @wait object should be embedded into the struct that tracks held locks -
522  * which must also be accessible in a thread-safe way.
523  *
524  * @should_sleep_fn should invoke the cycle detector; it should walk each
525  * lock's waiters, and for each waiter recursively walk their held locks.
526  *
527  * When this function must block, @wait will be added to @lock's waitlist before
528  * calling trylock, and before calling @should_sleep_fn, and @wait will not be
529  * removed from the lock waitlist until the lock has been successfully acquired,
530  * or we abort.
531  *
532  * @wait.start_time will be monotonically increasing for any given waitlist, and
533  * thus may be used as a loop cursor.
534  *
535  * Return: 0 on success, or the return code from @should_sleep_fn on failure.
536  */
537 int six_lock_ip_waiter(struct six_lock *lock, enum six_lock_type type,
538                        struct six_lock_waiter *wait,
539                        six_lock_should_sleep_fn should_sleep_fn, void *p,
540                        unsigned long ip)
541 {
542         int ret;
543 
544         wait->start_time = 0;
545 
546         if (type != SIX_LOCK_write)
547                 six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip);
548 
549         ret = do_six_trylock(lock, type, true) ? 0
550                 : six_lock_slowpath(lock, type, wait, should_sleep_fn, p, ip);
551 
552         if (ret && type != SIX_LOCK_write)
553                 six_release(&lock->dep_map, ip);
554         if (!ret)
555                 lock_acquired(&lock->dep_map, ip);
556 
557         return ret;
558 }
559 EXPORT_SYMBOL_GPL(six_lock_ip_waiter);
560 
561 __always_inline
562 static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type)
563 {
564         u32 state;
565 
566         if (type == SIX_LOCK_intent)
567                 lock->owner = NULL;
568 
569         if (type == SIX_LOCK_read &&
570             lock->readers) {
571                 smp_mb(); /* unlock barrier */
572                 this_cpu_dec(*lock->readers);
573                 smp_mb(); /* between unlocking and checking for waiters */
574                 state = atomic_read(&lock->state);
575         } else {
576                 u32 v = l[type].lock_val;
577 
578                 if (type != SIX_LOCK_read)
579                         v += atomic_read(&lock->state) & SIX_LOCK_NOSPIN;
580 
581                 EBUG_ON(!(atomic_read(&lock->state) & l[type].held_mask));
582                 state = atomic_sub_return_release(v, &lock->state);
583         }
584 
585         six_lock_wakeup(lock, state, l[type].unlock_wakeup);
586 }
587 
588 /**
589  * six_unlock_ip - drop a six lock
590  * @lock:       lock to unlock
591  * @type:       SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
592  * @ip:         ip parameter for lockdep/lockstat, i.e. _THIS_IP_
593  *
594  * When a lock is held multiple times (because six_lock_incement()) was used),
595  * this decrements the 'lock held' counter by one.
596  *
597  * For example:
598  * six_lock_read(&foo->lock);                           read count 1
599  * six_lock_increment(&foo->lock, SIX_LOCK_read);       read count 2
600  * six_lock_unlock(&foo->lock, SIX_LOCK_read);          read count 1
601  * six_lock_unlock(&foo->lock, SIX_LOCK_read);          read count 0
602  */
603 void six_unlock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
604 {
605         EBUG_ON(type == SIX_LOCK_write &&
606                 !(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
607         EBUG_ON((type == SIX_LOCK_write ||
608                  type == SIX_LOCK_intent) &&
609                 lock->owner != current);
610 
611         if (type != SIX_LOCK_write)
612                 six_release(&lock->dep_map, ip);
613         else
614                 lock->seq++;
615 
616         if (type == SIX_LOCK_intent &&
617             lock->intent_lock_recurse) {
618                 --lock->intent_lock_recurse;
619                 return;
620         }
621 
622         do_six_unlock_type(lock, type);
623 }
624 EXPORT_SYMBOL_GPL(six_unlock_ip);
625 
626 /**
627  * six_lock_downgrade - convert an intent lock to a read lock
628  * @lock:       lock to dowgrade
629  *
630  * @lock will have read count incremented and intent count decremented
631  */
632 void six_lock_downgrade(struct six_lock *lock)
633 {
634         six_lock_increment(lock, SIX_LOCK_read);
635         six_unlock_intent(lock);
636 }
637 EXPORT_SYMBOL_GPL(six_lock_downgrade);
638 
639 /**
640  * six_lock_tryupgrade - attempt to convert read lock to an intent lock
641  * @lock:       lock to upgrade
642  *
643  * On success, @lock will have intent count incremented and read count
644  * decremented
645  *
646  * Return: true on success, false on failure
647  */
648 bool six_lock_tryupgrade(struct six_lock *lock)
649 {
650         u32 old = atomic_read(&lock->state), new;
651 
652         do {
653                 new = old;
654 
655                 if (new & SIX_LOCK_HELD_intent)
656                         return false;
657 
658                 if (!lock->readers) {
659                         EBUG_ON(!(new & SIX_LOCK_HELD_read));
660                         new -= l[SIX_LOCK_read].lock_val;
661                 }
662 
663                 new |= SIX_LOCK_HELD_intent;
664         } while (!atomic_try_cmpxchg_acquire(&lock->state, &old, new));
665 
666         if (lock->readers)
667                 this_cpu_dec(*lock->readers);
668 
669         six_set_owner(lock, SIX_LOCK_intent, old, current);
670 
671         return true;
672 }
673 EXPORT_SYMBOL_GPL(six_lock_tryupgrade);
674 
675 /**
676  * six_trylock_convert - attempt to convert a held lock from one type to another
677  * @lock:       lock to upgrade
678  * @from:       SIX_LOCK_read or SIX_LOCK_intent
679  * @to:         SIX_LOCK_read or SIX_LOCK_intent
680  *
681  * On success, @lock will have intent count incremented and read count
682  * decremented
683  *
684  * Return: true on success, false on failure
685  */
686 bool six_trylock_convert(struct six_lock *lock,
687                          enum six_lock_type from,
688                          enum six_lock_type to)
689 {
690         EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write);
691 
692         if (to == from)
693                 return true;
694 
695         if (to == SIX_LOCK_read) {
696                 six_lock_downgrade(lock);
697                 return true;
698         } else {
699                 return six_lock_tryupgrade(lock);
700         }
701 }
702 EXPORT_SYMBOL_GPL(six_trylock_convert);
703 
704 /**
705  * six_lock_increment - increase held lock count on a lock that is already held
706  * @lock:       lock to increment
707  * @type:       SIX_LOCK_read or SIX_LOCK_intent
708  *
709  * @lock must already be held, with a lock type that is greater than or equal to
710  * @type
711  *
712  * A corresponding six_unlock_type() call will be required for @lock to be fully
713  * unlocked.
714  */
715 void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
716 {
717         six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_);
718 
719         /* XXX: assert already locked, and that we don't overflow: */
720 
721         switch (type) {
722         case SIX_LOCK_read:
723                 if (lock->readers) {
724                         this_cpu_inc(*lock->readers);
725                 } else {
726                         EBUG_ON(!(atomic_read(&lock->state) &
727                                   (SIX_LOCK_HELD_read|
728                                    SIX_LOCK_HELD_intent)));
729                         atomic_add(l[type].lock_val, &lock->state);
730                 }
731                 break;
732         case SIX_LOCK_intent:
733                 EBUG_ON(!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
734                 lock->intent_lock_recurse++;
735                 break;
736         case SIX_LOCK_write:
737                 BUG();
738                 break;
739         }
740 }
741 EXPORT_SYMBOL_GPL(six_lock_increment);
742 
743 /**
744  * six_lock_wakeup_all - wake up all waiters on @lock
745  * @lock:       lock to wake up waiters for
746  *
747  * Wakeing up waiters will cause them to re-run should_sleep_fn, which may then
748  * abort the lock operation.
749  *
750  * This function is never needed in a bug-free program; it's only useful in
751  * debug code, e.g. to determine if a cycle detector is at fault.
752  */
753 void six_lock_wakeup_all(struct six_lock *lock)
754 {
755         u32 state = atomic_read(&lock->state);
756         struct six_lock_waiter *w;
757 
758         six_lock_wakeup(lock, state, SIX_LOCK_read);
759         six_lock_wakeup(lock, state, SIX_LOCK_intent);
760         six_lock_wakeup(lock, state, SIX_LOCK_write);
761 
762         raw_spin_lock(&lock->wait_lock);
763         list_for_each_entry(w, &lock->wait_list, list)
764                 wake_up_process(w->task);
765         raw_spin_unlock(&lock->wait_lock);
766 }
767 EXPORT_SYMBOL_GPL(six_lock_wakeup_all);
768 
769 /**
770  * six_lock_counts - return held lock counts, for each lock type
771  * @lock:       lock to return counters for
772  *
773  * Return: the number of times a lock is held for read, intent and write.
774  */
775 struct six_lock_count six_lock_counts(struct six_lock *lock)
776 {
777         struct six_lock_count ret;
778 
779         ret.n[SIX_LOCK_read]    = !lock->readers
780                 ? atomic_read(&lock->state) & SIX_LOCK_HELD_read
781                 : pcpu_read_count(lock);
782         ret.n[SIX_LOCK_intent]  = !!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent) +
783                 lock->intent_lock_recurse;
784         ret.n[SIX_LOCK_write]   = !!(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
785 
786         return ret;
787 }
788 EXPORT_SYMBOL_GPL(six_lock_counts);
789 
790 /**
791  * six_lock_readers_add - directly manipulate reader count of a lock
792  * @lock:       lock to add/subtract readers for
793  * @nr:         reader count to add/subtract
794  *
795  * When an upper layer is implementing lock reentrency, we may have both read
796  * and intent locks on the same lock.
797  *
798  * When we need to take a write lock, the read locks will cause self-deadlock,
799  * because six locks themselves do not track which read locks are held by the
800  * current thread and which are held by a different thread - it does no
801  * per-thread tracking of held locks.
802  *
803  * The upper layer that is tracking held locks may however, if trylock() has
804  * failed, count up its own read locks, subtract them, take the write lock, and
805  * then re-add them.
806  *
807  * As in any other situation when taking a write lock, @lock must be held for
808  * intent one (or more) times, so @lock will never be left unlocked.
809  */
810 void six_lock_readers_add(struct six_lock *lock, int nr)
811 {
812         if (lock->readers) {
813                 this_cpu_add(*lock->readers, nr);
814         } else {
815                 EBUG_ON((int) (atomic_read(&lock->state) & SIX_LOCK_HELD_read) + nr < 0);
816                 /* reader count starts at bit 0 */
817                 atomic_add(nr, &lock->state);
818         }
819 }
820 EXPORT_SYMBOL_GPL(six_lock_readers_add);
821 
822 /**
823  * six_lock_exit - release resources held by a lock prior to freeing
824  * @lock:       lock to exit
825  *
826  * When a lock was initialized in percpu mode (SIX_OLCK_INIT_PCPU), this is
827  * required to free the percpu read counts.
828  */
829 void six_lock_exit(struct six_lock *lock)
830 {
831         WARN_ON(lock->readers && pcpu_read_count(lock));
832         WARN_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_read);
833 
834         free_percpu(lock->readers);
835         lock->readers = NULL;
836 }
837 EXPORT_SYMBOL_GPL(six_lock_exit);
838 
839 void __six_lock_init(struct six_lock *lock, const char *name,
840                      struct lock_class_key *key, enum six_lock_init_flags flags)
841 {
842         atomic_set(&lock->state, 0);
843         raw_spin_lock_init(&lock->wait_lock);
844         INIT_LIST_HEAD(&lock->wait_list);
845 #ifdef CONFIG_DEBUG_LOCK_ALLOC
846         debug_check_no_locks_freed((void *) lock, sizeof(*lock));
847         lockdep_init_map(&lock->dep_map, name, key, 0);
848 #endif
849 
850         /*
851          * Don't assume that we have real percpu variables available in
852          * userspace:
853          */
854 #ifdef __KERNEL__
855         if (flags & SIX_LOCK_INIT_PCPU) {
856                 /*
857                  * We don't return an error here on memory allocation failure
858                  * since percpu is an optimization, and locks will work with the
859                  * same semantics in non-percpu mode: callers can check for
860                  * failure if they wish by checking lock->readers, but generally
861                  * will not want to treat it as an error.
862                  */
863                 lock->readers = alloc_percpu(unsigned);
864         }
865 #endif
866 }
867 EXPORT_SYMBOL_GPL(__six_lock_init);
868 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php