1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcachefs setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcachefs.h" 11 #include "alloc_background.h" 12 #include "alloc_foreground.h" 13 #include "bkey_sort.h" 14 #include "btree_cache.h" 15 #include "btree_gc.h" 16 #include "btree_journal_iter.h" 17 #include "btree_key_cache.h" 18 #include "btree_node_scan.h" 19 #include "btree_update_interior.h" 20 #include "btree_io.h" 21 #include "btree_write_buffer.h" 22 #include "buckets_waiting_for_journal.h" 23 #include "chardev.h" 24 #include "checksum.h" 25 #include "clock.h" 26 #include "compress.h" 27 #include "debug.h" 28 #include "disk_accounting.h" 29 #include "disk_groups.h" 30 #include "ec.h" 31 #include "errcode.h" 32 #include "error.h" 33 #include "fs.h" 34 #include "fs-io.h" 35 #include "fs-io-buffered.h" 36 #include "fs-io-direct.h" 37 #include "fsck.h" 38 #include "inode.h" 39 #include "io_read.h" 40 #include "io_write.h" 41 #include "journal.h" 42 #include "journal_reclaim.h" 43 #include "journal_seq_blacklist.h" 44 #include "move.h" 45 #include "migrate.h" 46 #include "movinggc.h" 47 #include "nocow_locking.h" 48 #include "quota.h" 49 #include "rebalance.h" 50 #include "recovery.h" 51 #include "replicas.h" 52 #include "sb-clean.h" 53 #include "sb-counters.h" 54 #include "sb-errors.h" 55 #include "sb-members.h" 56 #include "snapshot.h" 57 #include "subvolume.h" 58 #include "super.h" 59 #include "super-io.h" 60 #include "sysfs.h" 61 #include "thread_with_file.h" 62 #include "trace.h" 63 64 #include <linux/backing-dev.h> 65 #include <linux/blkdev.h> 66 #include <linux/debugfs.h> 67 #include <linux/device.h> 68 #include <linux/idr.h> 69 #include <linux/module.h> 70 #include <linux/percpu.h> 71 #include <linux/random.h> 72 #include <linux/sysfs.h> 73 #include <crypto/hash.h> 74 75 MODULE_LICENSE("GPL"); 76 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 77 MODULE_DESCRIPTION("bcachefs filesystem"); 78 MODULE_SOFTDEP("pre: crc32c"); 79 MODULE_SOFTDEP("pre: crc64"); 80 MODULE_SOFTDEP("pre: sha256"); 81 MODULE_SOFTDEP("pre: chacha20"); 82 MODULE_SOFTDEP("pre: poly1305"); 83 MODULE_SOFTDEP("pre: xxhash"); 84 85 const char * const bch2_fs_flag_strs[] = { 86 #define x(n) #n, 87 BCH_FS_FLAGS() 88 #undef x 89 NULL 90 }; 91 92 void bch2_print_str(struct bch_fs *c, const char *str) 93 { 94 #ifdef __KERNEL__ 95 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 96 97 if (unlikely(stdio)) { 98 bch2_stdio_redirect_printf(stdio, true, "%s", str); 99 return; 100 } 101 #endif 102 bch2_print_string_as_lines(KERN_ERR, str); 103 } 104 105 __printf(2, 0) 106 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args) 107 { 108 #ifdef __KERNEL__ 109 if (unlikely(stdio)) { 110 if (fmt[0] == KERN_SOH[0]) 111 fmt += 2; 112 113 bch2_stdio_redirect_vprintf(stdio, true, fmt, args); 114 return; 115 } 116 #endif 117 vprintk(fmt, args); 118 } 119 120 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...) 121 { 122 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio; 123 124 va_list args; 125 va_start(args, fmt); 126 bch2_print_maybe_redirect(stdio, fmt, args); 127 va_end(args); 128 } 129 130 void __bch2_print(struct bch_fs *c, const char *fmt, ...) 131 { 132 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c); 133 134 va_list args; 135 va_start(args, fmt); 136 bch2_print_maybe_redirect(stdio, fmt, args); 137 va_end(args); 138 } 139 140 #define KTYPE(type) \ 141 static const struct attribute_group type ## _group = { \ 142 .attrs = type ## _files \ 143 }; \ 144 \ 145 static const struct attribute_group *type ## _groups[] = { \ 146 &type ## _group, \ 147 NULL \ 148 }; \ 149 \ 150 static const struct kobj_type type ## _ktype = { \ 151 .release = type ## _release, \ 152 .sysfs_ops = &type ## _sysfs_ops, \ 153 .default_groups = type ## _groups \ 154 } 155 156 static void bch2_fs_release(struct kobject *); 157 static void bch2_dev_release(struct kobject *); 158 static void bch2_fs_counters_release(struct kobject *k) 159 { 160 } 161 162 static void bch2_fs_internal_release(struct kobject *k) 163 { 164 } 165 166 static void bch2_fs_opts_dir_release(struct kobject *k) 167 { 168 } 169 170 static void bch2_fs_time_stats_release(struct kobject *k) 171 { 172 } 173 174 KTYPE(bch2_fs); 175 KTYPE(bch2_fs_counters); 176 KTYPE(bch2_fs_internal); 177 KTYPE(bch2_fs_opts_dir); 178 KTYPE(bch2_fs_time_stats); 179 KTYPE(bch2_dev); 180 181 static struct kset *bcachefs_kset; 182 static LIST_HEAD(bch_fs_list); 183 static DEFINE_MUTEX(bch_fs_list_lock); 184 185 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); 186 187 static void bch2_dev_free(struct bch_dev *); 188 static int bch2_dev_alloc(struct bch_fs *, unsigned); 189 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); 190 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); 191 192 struct bch_fs *bch2_dev_to_fs(dev_t dev) 193 { 194 struct bch_fs *c; 195 196 mutex_lock(&bch_fs_list_lock); 197 rcu_read_lock(); 198 199 list_for_each_entry(c, &bch_fs_list, list) 200 for_each_member_device_rcu(c, ca, NULL) 201 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { 202 closure_get(&c->cl); 203 goto found; 204 } 205 c = NULL; 206 found: 207 rcu_read_unlock(); 208 mutex_unlock(&bch_fs_list_lock); 209 210 return c; 211 } 212 213 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) 214 { 215 struct bch_fs *c; 216 217 lockdep_assert_held(&bch_fs_list_lock); 218 219 list_for_each_entry(c, &bch_fs_list, list) 220 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) 221 return c; 222 223 return NULL; 224 } 225 226 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) 227 { 228 struct bch_fs *c; 229 230 mutex_lock(&bch_fs_list_lock); 231 c = __bch2_uuid_to_fs(uuid); 232 if (c) 233 closure_get(&c->cl); 234 mutex_unlock(&bch_fs_list_lock); 235 236 return c; 237 } 238 239 /* Filesystem RO/RW: */ 240 241 /* 242 * For startup/shutdown of RW stuff, the dependencies are: 243 * 244 * - foreground writes depend on copygc and rebalance (to free up space) 245 * 246 * - copygc and rebalance depend on mark and sweep gc (they actually probably 247 * don't because they either reserve ahead of time or don't block if 248 * allocations fail, but allocations can require mark and sweep gc to run 249 * because of generation number wraparound) 250 * 251 * - all of the above depends on the allocator threads 252 * 253 * - allocator depends on the journal (when it rewrites prios and gens) 254 */ 255 256 static void __bch2_fs_read_only(struct bch_fs *c) 257 { 258 unsigned clean_passes = 0; 259 u64 seq = 0; 260 261 bch2_fs_ec_stop(c); 262 bch2_open_buckets_stop(c, NULL, true); 263 bch2_rebalance_stop(c); 264 bch2_copygc_stop(c); 265 bch2_fs_ec_flush(c); 266 267 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", 268 journal_cur_seq(&c->journal)); 269 270 do { 271 clean_passes++; 272 273 if (bch2_btree_interior_updates_flush(c) || 274 bch2_journal_flush_all_pins(&c->journal) || 275 bch2_btree_flush_all_writes(c) || 276 seq != atomic64_read(&c->journal.seq)) { 277 seq = atomic64_read(&c->journal.seq); 278 clean_passes = 0; 279 } 280 } while (clean_passes < 2); 281 282 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", 283 journal_cur_seq(&c->journal)); 284 285 if (test_bit(JOURNAL_replay_done, &c->journal.flags) && 286 !test_bit(BCH_FS_emergency_ro, &c->flags)) 287 set_bit(BCH_FS_clean_shutdown, &c->flags); 288 289 bch2_fs_journal_stop(&c->journal); 290 291 bch_info(c, "%sshutdown complete, journal seq %llu", 292 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un", 293 c->journal.seq_ondisk); 294 295 /* 296 * After stopping journal: 297 */ 298 for_each_member_device(c, ca) 299 bch2_dev_allocator_remove(c, ca); 300 } 301 302 #ifndef BCH_WRITE_REF_DEBUG 303 static void bch2_writes_disabled(struct percpu_ref *writes) 304 { 305 struct bch_fs *c = container_of(writes, struct bch_fs, writes); 306 307 set_bit(BCH_FS_write_disable_complete, &c->flags); 308 wake_up(&bch2_read_only_wait); 309 } 310 #endif 311 312 void bch2_fs_read_only(struct bch_fs *c) 313 { 314 if (!test_bit(BCH_FS_rw, &c->flags)) { 315 bch2_journal_reclaim_stop(&c->journal); 316 return; 317 } 318 319 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags)); 320 321 bch_verbose(c, "going read-only"); 322 323 /* 324 * Block new foreground-end write operations from starting - any new 325 * writes will return -EROFS: 326 */ 327 set_bit(BCH_FS_going_ro, &c->flags); 328 #ifndef BCH_WRITE_REF_DEBUG 329 percpu_ref_kill(&c->writes); 330 #else 331 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 332 bch2_write_ref_put(c, i); 333 #endif 334 335 /* 336 * If we're not doing an emergency shutdown, we want to wait on 337 * outstanding writes to complete so they don't see spurious errors due 338 * to shutting down the allocator: 339 * 340 * If we are doing an emergency shutdown outstanding writes may 341 * hang until we shutdown the allocator so we don't want to wait 342 * on outstanding writes before shutting everything down - but 343 * we do need to wait on them before returning and signalling 344 * that going RO is complete: 345 */ 346 wait_event(bch2_read_only_wait, 347 test_bit(BCH_FS_write_disable_complete, &c->flags) || 348 test_bit(BCH_FS_emergency_ro, &c->flags)); 349 350 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags); 351 if (writes_disabled) 352 bch_verbose(c, "finished waiting for writes to stop"); 353 354 __bch2_fs_read_only(c); 355 356 wait_event(bch2_read_only_wait, 357 test_bit(BCH_FS_write_disable_complete, &c->flags)); 358 359 if (!writes_disabled) 360 bch_verbose(c, "finished waiting for writes to stop"); 361 362 clear_bit(BCH_FS_write_disable_complete, &c->flags); 363 clear_bit(BCH_FS_going_ro, &c->flags); 364 clear_bit(BCH_FS_rw, &c->flags); 365 366 if (!bch2_journal_error(&c->journal) && 367 !test_bit(BCH_FS_error, &c->flags) && 368 !test_bit(BCH_FS_emergency_ro, &c->flags) && 369 test_bit(BCH_FS_started, &c->flags) && 370 test_bit(BCH_FS_clean_shutdown, &c->flags) && 371 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) { 372 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); 373 BUG_ON(atomic_read(&c->btree_cache.dirty)); 374 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); 375 BUG_ON(c->btree_write_buffer.inc.keys.nr); 376 BUG_ON(c->btree_write_buffer.flushing.keys.nr); 377 bch2_verify_accounting_clean(c); 378 379 bch_verbose(c, "marking filesystem clean"); 380 bch2_fs_mark_clean(c); 381 } else { 382 bch_verbose(c, "done going read-only, filesystem not clean"); 383 } 384 } 385 386 static void bch2_fs_read_only_work(struct work_struct *work) 387 { 388 struct bch_fs *c = 389 container_of(work, struct bch_fs, read_only_work); 390 391 down_write(&c->state_lock); 392 bch2_fs_read_only(c); 393 up_write(&c->state_lock); 394 } 395 396 static void bch2_fs_read_only_async(struct bch_fs *c) 397 { 398 queue_work(system_long_wq, &c->read_only_work); 399 } 400 401 bool bch2_fs_emergency_read_only(struct bch_fs *c) 402 { 403 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags); 404 405 bch2_journal_halt(&c->journal); 406 bch2_fs_read_only_async(c); 407 408 wake_up(&bch2_read_only_wait); 409 return ret; 410 } 411 412 static int bch2_fs_read_write_late(struct bch_fs *c) 413 { 414 int ret; 415 416 /* 417 * Data move operations can't run until after check_snapshots has 418 * completed, and bch2_snapshot_is_ancestor() is available. 419 * 420 * Ideally we'd start copygc/rebalance earlier instead of waiting for 421 * all of recovery/fsck to complete: 422 */ 423 ret = bch2_copygc_start(c); 424 if (ret) { 425 bch_err(c, "error starting copygc thread"); 426 return ret; 427 } 428 429 ret = bch2_rebalance_start(c); 430 if (ret) { 431 bch_err(c, "error starting rebalance thread"); 432 return ret; 433 } 434 435 return 0; 436 } 437 438 static int __bch2_fs_read_write(struct bch_fs *c, bool early) 439 { 440 int ret; 441 442 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) { 443 bch_err(c, "cannot go rw, unfixed btree errors"); 444 return -BCH_ERR_erofs_unfixed_errors; 445 } 446 447 if (test_bit(BCH_FS_rw, &c->flags)) 448 return 0; 449 450 bch_info(c, "going read-write"); 451 452 ret = bch2_sb_members_v2_init(c); 453 if (ret) 454 goto err; 455 456 ret = bch2_fs_mark_dirty(c); 457 if (ret) 458 goto err; 459 460 clear_bit(BCH_FS_clean_shutdown, &c->flags); 461 462 /* 463 * First journal write must be a flush write: after a clean shutdown we 464 * don't read the journal, so the first journal write may end up 465 * overwriting whatever was there previously, and there must always be 466 * at least one non-flush write in the journal or recovery will fail: 467 */ 468 set_bit(JOURNAL_need_flush_write, &c->journal.flags); 469 set_bit(JOURNAL_running, &c->journal.flags); 470 471 for_each_rw_member(c, ca) 472 bch2_dev_allocator_add(c, ca); 473 bch2_recalc_capacity(c); 474 475 set_bit(BCH_FS_rw, &c->flags); 476 set_bit(BCH_FS_was_rw, &c->flags); 477 478 #ifndef BCH_WRITE_REF_DEBUG 479 percpu_ref_reinit(&c->writes); 480 #else 481 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) { 482 BUG_ON(atomic_long_read(&c->writes[i])); 483 atomic_long_inc(&c->writes[i]); 484 } 485 #endif 486 487 ret = bch2_journal_reclaim_start(&c->journal); 488 if (ret) 489 goto err; 490 491 if (!early) { 492 ret = bch2_fs_read_write_late(c); 493 if (ret) 494 goto err; 495 } 496 497 bch2_do_discards(c); 498 bch2_do_invalidates(c); 499 bch2_do_stripe_deletes(c); 500 bch2_do_pending_node_rewrites(c); 501 return 0; 502 err: 503 if (test_bit(BCH_FS_rw, &c->flags)) 504 bch2_fs_read_only(c); 505 else 506 __bch2_fs_read_only(c); 507 return ret; 508 } 509 510 int bch2_fs_read_write(struct bch_fs *c) 511 { 512 if (c->opts.recovery_pass_last && 513 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay) 514 return -BCH_ERR_erofs_norecovery; 515 516 if (c->opts.nochanges) 517 return -BCH_ERR_erofs_nochanges; 518 519 return __bch2_fs_read_write(c, false); 520 } 521 522 int bch2_fs_read_write_early(struct bch_fs *c) 523 { 524 lockdep_assert_held(&c->state_lock); 525 526 return __bch2_fs_read_write(c, true); 527 } 528 529 /* Filesystem startup/shutdown: */ 530 531 static void __bch2_fs_free(struct bch_fs *c) 532 { 533 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++) 534 bch2_time_stats_exit(&c->times[i]); 535 536 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 537 bch2_free_pending_node_rewrites(c); 538 bch2_fs_accounting_exit(c); 539 bch2_fs_sb_errors_exit(c); 540 bch2_fs_counters_exit(c); 541 bch2_fs_snapshots_exit(c); 542 bch2_fs_quota_exit(c); 543 bch2_fs_fs_io_direct_exit(c); 544 bch2_fs_fs_io_buffered_exit(c); 545 bch2_fs_fsio_exit(c); 546 bch2_fs_ec_exit(c); 547 bch2_fs_encryption_exit(c); 548 bch2_fs_nocow_locking_exit(c); 549 bch2_fs_io_write_exit(c); 550 bch2_fs_io_read_exit(c); 551 bch2_fs_buckets_waiting_for_journal_exit(c); 552 bch2_fs_btree_interior_update_exit(c); 553 bch2_fs_btree_key_cache_exit(&c->btree_key_cache); 554 bch2_fs_btree_cache_exit(c); 555 bch2_fs_btree_iter_exit(c); 556 bch2_fs_replicas_exit(c); 557 bch2_fs_journal_exit(&c->journal); 558 bch2_io_clock_exit(&c->io_clock[WRITE]); 559 bch2_io_clock_exit(&c->io_clock[READ]); 560 bch2_fs_compress_exit(c); 561 bch2_journal_keys_put_initial(c); 562 bch2_find_btree_nodes_exit(&c->found_btree_nodes); 563 BUG_ON(atomic_read(&c->journal_keys.ref)); 564 bch2_fs_btree_write_buffer_exit(c); 565 percpu_free_rwsem(&c->mark_lock); 566 if (c->online_reserved) { 567 u64 v = percpu_u64_get(c->online_reserved); 568 WARN(v, "online_reserved not 0 at shutdown: %lli", v); 569 free_percpu(c->online_reserved); 570 } 571 572 darray_exit(&c->btree_roots_extra); 573 free_percpu(c->pcpu); 574 free_percpu(c->usage); 575 mempool_exit(&c->large_bkey_pool); 576 mempool_exit(&c->btree_bounce_pool); 577 bioset_exit(&c->btree_bio); 578 mempool_exit(&c->fill_iter); 579 #ifndef BCH_WRITE_REF_DEBUG 580 percpu_ref_exit(&c->writes); 581 #endif 582 kfree(rcu_dereference_protected(c->disk_groups, 1)); 583 kfree(c->journal_seq_blacklist_table); 584 kfree(c->unused_inode_hints); 585 586 if (c->write_ref_wq) 587 destroy_workqueue(c->write_ref_wq); 588 if (c->btree_write_submit_wq) 589 destroy_workqueue(c->btree_write_submit_wq); 590 if (c->btree_read_complete_wq) 591 destroy_workqueue(c->btree_read_complete_wq); 592 if (c->copygc_wq) 593 destroy_workqueue(c->copygc_wq); 594 if (c->btree_io_complete_wq) 595 destroy_workqueue(c->btree_io_complete_wq); 596 if (c->btree_update_wq) 597 destroy_workqueue(c->btree_update_wq); 598 599 bch2_free_super(&c->disk_sb); 600 kvfree(c); 601 module_put(THIS_MODULE); 602 } 603 604 static void bch2_fs_release(struct kobject *kobj) 605 { 606 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); 607 608 __bch2_fs_free(c); 609 } 610 611 void __bch2_fs_stop(struct bch_fs *c) 612 { 613 bch_verbose(c, "shutting down"); 614 615 set_bit(BCH_FS_stopping, &c->flags); 616 617 down_write(&c->state_lock); 618 bch2_fs_read_only(c); 619 up_write(&c->state_lock); 620 621 for_each_member_device(c, ca) 622 if (ca->kobj.state_in_sysfs && 623 ca->disk_sb.bdev) 624 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 625 626 if (c->kobj.state_in_sysfs) 627 kobject_del(&c->kobj); 628 629 bch2_fs_debug_exit(c); 630 bch2_fs_chardev_exit(c); 631 632 bch2_ro_ref_put(c); 633 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref)); 634 635 kobject_put(&c->counters_kobj); 636 kobject_put(&c->time_stats); 637 kobject_put(&c->opts_dir); 638 kobject_put(&c->internal); 639 640 /* btree prefetch might have kicked off reads in the background: */ 641 bch2_btree_flush_all_reads(c); 642 643 for_each_member_device(c, ca) 644 cancel_work_sync(&ca->io_error_work); 645 646 cancel_work_sync(&c->read_only_work); 647 } 648 649 void bch2_fs_free(struct bch_fs *c) 650 { 651 unsigned i; 652 653 mutex_lock(&bch_fs_list_lock); 654 list_del(&c->list); 655 mutex_unlock(&bch_fs_list_lock); 656 657 closure_sync(&c->cl); 658 closure_debug_destroy(&c->cl); 659 660 for (i = 0; i < c->sb.nr_devices; i++) { 661 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); 662 663 if (ca) { 664 EBUG_ON(atomic_long_read(&ca->ref) != 1); 665 bch2_free_super(&ca->disk_sb); 666 bch2_dev_free(ca); 667 } 668 } 669 670 bch_verbose(c, "shutdown complete"); 671 672 kobject_put(&c->kobj); 673 } 674 675 void bch2_fs_stop(struct bch_fs *c) 676 { 677 __bch2_fs_stop(c); 678 bch2_fs_free(c); 679 } 680 681 static int bch2_fs_online(struct bch_fs *c) 682 { 683 int ret = 0; 684 685 lockdep_assert_held(&bch_fs_list_lock); 686 687 if (__bch2_uuid_to_fs(c->sb.uuid)) { 688 bch_err(c, "filesystem UUID already open"); 689 return -EINVAL; 690 } 691 692 ret = bch2_fs_chardev_init(c); 693 if (ret) { 694 bch_err(c, "error creating character device"); 695 return ret; 696 } 697 698 bch2_fs_debug_init(c); 699 700 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: 701 kobject_add(&c->internal, &c->kobj, "internal") ?: 702 kobject_add(&c->opts_dir, &c->kobj, "options") ?: 703 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT 704 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: 705 #endif 706 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: 707 bch2_opts_create_sysfs_files(&c->opts_dir); 708 if (ret) { 709 bch_err(c, "error creating sysfs objects"); 710 return ret; 711 } 712 713 down_write(&c->state_lock); 714 715 for_each_member_device(c, ca) { 716 ret = bch2_dev_sysfs_online(c, ca); 717 if (ret) { 718 bch_err(c, "error creating sysfs objects"); 719 bch2_dev_put(ca); 720 goto err; 721 } 722 } 723 724 BUG_ON(!list_empty(&c->list)); 725 list_add(&c->list, &bch_fs_list); 726 err: 727 up_write(&c->state_lock); 728 return ret; 729 } 730 731 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) 732 { 733 struct bch_fs *c; 734 struct printbuf name = PRINTBUF; 735 unsigned i, iter_size; 736 int ret = 0; 737 738 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); 739 if (!c) { 740 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); 741 goto out; 742 } 743 744 c->stdio = (void *)(unsigned long) opts.stdio; 745 746 __module_get(THIS_MODULE); 747 748 closure_init(&c->cl, NULL); 749 750 c->kobj.kset = bcachefs_kset; 751 kobject_init(&c->kobj, &bch2_fs_ktype); 752 kobject_init(&c->internal, &bch2_fs_internal_ktype); 753 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); 754 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); 755 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); 756 757 c->minor = -1; 758 c->disk_sb.fs_sb = true; 759 760 init_rwsem(&c->state_lock); 761 mutex_init(&c->sb_lock); 762 mutex_init(&c->replicas_gc_lock); 763 mutex_init(&c->btree_root_lock); 764 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); 765 766 refcount_set(&c->ro_ref, 1); 767 init_waitqueue_head(&c->ro_ref_wait); 768 sema_init(&c->online_fsck_mutex, 1); 769 770 init_rwsem(&c->gc_lock); 771 mutex_init(&c->gc_gens_lock); 772 atomic_set(&c->journal_keys.ref, 1); 773 c->journal_keys.initial_ref_held = true; 774 775 for (i = 0; i < BCH_TIME_STAT_NR; i++) 776 bch2_time_stats_init(&c->times[i]); 777 778 bch2_fs_gc_init(c); 779 bch2_fs_copygc_init(c); 780 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); 781 bch2_fs_btree_iter_init_early(c); 782 bch2_fs_btree_interior_update_init_early(c); 783 bch2_fs_allocator_background_init(c); 784 bch2_fs_allocator_foreground_init(c); 785 bch2_fs_rebalance_init(c); 786 bch2_fs_quota_init(c); 787 bch2_fs_ec_init_early(c); 788 bch2_fs_move_init(c); 789 bch2_fs_sb_errors_init_early(c); 790 791 INIT_LIST_HEAD(&c->list); 792 793 mutex_init(&c->bio_bounce_pages_lock); 794 mutex_init(&c->snapshot_table_lock); 795 init_rwsem(&c->snapshot_create_lock); 796 797 spin_lock_init(&c->btree_write_error_lock); 798 799 INIT_LIST_HEAD(&c->journal_iters); 800 801 INIT_LIST_HEAD(&c->fsck_error_msgs); 802 mutex_init(&c->fsck_error_msgs_lock); 803 804 seqcount_init(&c->usage_lock); 805 806 sema_init(&c->io_in_flight, 128); 807 808 INIT_LIST_HEAD(&c->vfs_inodes_list); 809 mutex_init(&c->vfs_inodes_lock); 810 811 c->copy_gc_enabled = 1; 812 c->rebalance.enabled = 1; 813 c->promote_whole_extents = true; 814 815 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; 816 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; 817 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; 818 819 bch2_fs_btree_cache_init_early(&c->btree_cache); 820 821 mutex_init(&c->sectors_available_lock); 822 823 ret = percpu_init_rwsem(&c->mark_lock); 824 if (ret) 825 goto err; 826 827 mutex_lock(&c->sb_lock); 828 ret = bch2_sb_to_fs(c, sb); 829 mutex_unlock(&c->sb_lock); 830 831 if (ret) 832 goto err; 833 834 pr_uuid(&name, c->sb.user_uuid.b); 835 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; 836 if (ret) 837 goto err; 838 839 strscpy(c->name, name.buf, sizeof(c->name)); 840 printbuf_exit(&name); 841 842 /* Compat: */ 843 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 844 !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) 845 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); 846 847 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && 848 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) 849 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); 850 851 c->opts = bch2_opts_default; 852 ret = bch2_opts_from_sb(&c->opts, sb); 853 if (ret) 854 goto err; 855 856 bch2_opts_apply(&c->opts, opts); 857 858 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; 859 if (c->opts.inodes_use_key_cache) 860 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; 861 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; 862 863 c->block_bits = ilog2(block_sectors(c)); 864 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); 865 866 if (bch2_fs_init_fault("fs_alloc")) { 867 bch_err(c, "fs_alloc fault injected"); 868 ret = -EFAULT; 869 goto err; 870 } 871 872 iter_size = sizeof(struct sort_iter) + 873 (btree_blocks(c) + 1) * 2 * 874 sizeof(struct sort_iter_set); 875 876 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); 877 878 if (!(c->btree_update_wq = alloc_workqueue("bcachefs", 879 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) || 880 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", 881 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 882 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", 883 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || 884 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete", 885 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) || 886 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit", 887 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || 888 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", 889 WQ_FREEZABLE, 0)) || 890 #ifndef BCH_WRITE_REF_DEBUG 891 percpu_ref_init(&c->writes, bch2_writes_disabled, 892 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 893 #endif 894 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 895 bioset_init(&c->btree_bio, 1, 896 max(offsetof(struct btree_read_bio, bio), 897 offsetof(struct btree_write_bio, wbio.bio)), 898 BIOSET_NEED_BVECS) || 899 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || 900 !(c->usage = alloc_percpu(struct bch_fs_usage_base)) || 901 !(c->online_reserved = alloc_percpu(u64)) || 902 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1, 903 c->opts.btree_node_size) || 904 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || 905 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, 906 sizeof(u64), GFP_KERNEL))) { 907 ret = -BCH_ERR_ENOMEM_fs_other_alloc; 908 goto err; 909 } 910 911 ret = bch2_fs_counters_init(c) ?: 912 bch2_fs_sb_errors_init(c) ?: 913 bch2_io_clock_init(&c->io_clock[READ]) ?: 914 bch2_io_clock_init(&c->io_clock[WRITE]) ?: 915 bch2_fs_journal_init(&c->journal) ?: 916 bch2_fs_btree_iter_init(c) ?: 917 bch2_fs_btree_cache_init(c) ?: 918 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: 919 bch2_fs_btree_interior_update_init(c) ?: 920 bch2_fs_buckets_waiting_for_journal_init(c) ?: 921 bch2_fs_btree_write_buffer_init(c) ?: 922 bch2_fs_subvolumes_init(c) ?: 923 bch2_fs_io_read_init(c) ?: 924 bch2_fs_io_write_init(c) ?: 925 bch2_fs_nocow_locking_init(c) ?: 926 bch2_fs_encryption_init(c) ?: 927 bch2_fs_compress_init(c) ?: 928 bch2_fs_ec_init(c) ?: 929 bch2_fs_fsio_init(c) ?: 930 bch2_fs_fs_io_buffered_init(c) ?: 931 bch2_fs_fs_io_direct_init(c); 932 if (ret) 933 goto err; 934 935 for (i = 0; i < c->sb.nr_devices; i++) { 936 if (!bch2_member_exists(c->disk_sb.sb, i)) 937 continue; 938 ret = bch2_dev_alloc(c, i); 939 if (ret) 940 goto err; 941 } 942 943 bch2_journal_entry_res_resize(&c->journal, 944 &c->btree_root_journal_res, 945 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); 946 bch2_journal_entry_res_resize(&c->journal, 947 &c->clock_journal_res, 948 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); 949 950 mutex_lock(&bch_fs_list_lock); 951 ret = bch2_fs_online(c); 952 mutex_unlock(&bch_fs_list_lock); 953 954 if (ret) 955 goto err; 956 out: 957 return c; 958 err: 959 bch2_fs_free(c); 960 c = ERR_PTR(ret); 961 goto out; 962 } 963 964 noinline_for_stack 965 static void print_mount_opts(struct bch_fs *c) 966 { 967 enum bch_opt_id i; 968 struct printbuf p = PRINTBUF; 969 bool first = true; 970 971 prt_str(&p, "starting version "); 972 bch2_version_to_text(&p, c->sb.version); 973 974 if (c->opts.read_only) { 975 prt_str(&p, " opts="); 976 first = false; 977 prt_printf(&p, "ro"); 978 } 979 980 for (i = 0; i < bch2_opts_nr; i++) { 981 const struct bch_option *opt = &bch2_opt_table[i]; 982 u64 v = bch2_opt_get_by_id(&c->opts, i); 983 984 if (!(opt->flags & OPT_MOUNT)) 985 continue; 986 987 if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) 988 continue; 989 990 prt_str(&p, first ? " opts=" : ","); 991 first = false; 992 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); 993 } 994 995 bch_info(c, "%s", p.buf); 996 printbuf_exit(&p); 997 } 998 999 int bch2_fs_start(struct bch_fs *c) 1000 { 1001 time64_t now = ktime_get_real_seconds(); 1002 int ret; 1003 1004 print_mount_opts(c); 1005 1006 down_write(&c->state_lock); 1007 1008 BUG_ON(test_bit(BCH_FS_started, &c->flags)); 1009 1010 mutex_lock(&c->sb_lock); 1011 1012 ret = bch2_sb_members_v2_init(c); 1013 if (ret) { 1014 mutex_unlock(&c->sb_lock); 1015 goto err; 1016 } 1017 1018 for_each_online_member(c, ca) 1019 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now); 1020 1021 struct bch_sb_field_ext *ext = 1022 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64)); 1023 mutex_unlock(&c->sb_lock); 1024 1025 if (!ext) { 1026 bch_err(c, "insufficient space in superblock for sb_field_ext"); 1027 ret = -BCH_ERR_ENOSPC_sb; 1028 goto err; 1029 } 1030 1031 for_each_rw_member(c, ca) 1032 bch2_dev_allocator_add(c, ca); 1033 bch2_recalc_capacity(c); 1034 1035 ret = BCH_SB_INITIALIZED(c->disk_sb.sb) 1036 ? bch2_fs_recovery(c) 1037 : bch2_fs_initialize(c); 1038 if (ret) 1039 goto err; 1040 1041 ret = bch2_opts_check_may_set(c); 1042 if (ret) 1043 goto err; 1044 1045 if (bch2_fs_init_fault("fs_start")) { 1046 bch_err(c, "fs_start fault injected"); 1047 ret = -EINVAL; 1048 goto err; 1049 } 1050 1051 set_bit(BCH_FS_started, &c->flags); 1052 1053 if (c->opts.read_only) { 1054 bch2_fs_read_only(c); 1055 } else { 1056 ret = !test_bit(BCH_FS_rw, &c->flags) 1057 ? bch2_fs_read_write(c) 1058 : bch2_fs_read_write_late(c); 1059 if (ret) 1060 goto err; 1061 } 1062 1063 ret = 0; 1064 err: 1065 if (ret) 1066 bch_err_msg(c, ret, "starting filesystem"); 1067 else 1068 bch_verbose(c, "done starting filesystem"); 1069 up_write(&c->state_lock); 1070 return ret; 1071 } 1072 1073 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) 1074 { 1075 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); 1076 1077 if (le16_to_cpu(sb->block_size) != block_sectors(c)) 1078 return -BCH_ERR_mismatched_block_size; 1079 1080 if (le16_to_cpu(m.bucket_size) < 1081 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) 1082 return -BCH_ERR_bucket_size_too_small; 1083 1084 return 0; 1085 } 1086 1087 static int bch2_dev_in_fs(struct bch_sb_handle *fs, 1088 struct bch_sb_handle *sb, 1089 struct bch_opts *opts) 1090 { 1091 if (fs == sb) 1092 return 0; 1093 1094 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid)) 1095 return -BCH_ERR_device_not_a_member_of_filesystem; 1096 1097 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx)) 1098 return -BCH_ERR_device_has_been_removed; 1099 1100 if (fs->sb->block_size != sb->sb->block_size) 1101 return -BCH_ERR_mismatched_block_size; 1102 1103 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq || 1104 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq) 1105 return 0; 1106 1107 if (fs->sb->seq == sb->sb->seq && 1108 fs->sb->write_time != sb->sb->write_time) { 1109 struct printbuf buf = PRINTBUF; 1110 1111 prt_str(&buf, "Split brain detected between "); 1112 prt_bdevname(&buf, sb->bdev); 1113 prt_str(&buf, " and "); 1114 prt_bdevname(&buf, fs->bdev); 1115 prt_char(&buf, ':'); 1116 prt_newline(&buf); 1117 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq)); 1118 prt_newline(&buf); 1119 1120 prt_bdevname(&buf, fs->bdev); 1121 prt_char(&buf, ' '); 1122 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));; 1123 prt_newline(&buf); 1124 1125 prt_bdevname(&buf, sb->bdev); 1126 prt_char(&buf, ' '); 1127 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));; 1128 prt_newline(&buf); 1129 1130 if (!opts->no_splitbrain_check) 1131 prt_printf(&buf, "Not using older sb"); 1132 1133 pr_err("%s", buf.buf); 1134 printbuf_exit(&buf); 1135 1136 if (!opts->no_splitbrain_check) 1137 return -BCH_ERR_device_splitbrain; 1138 } 1139 1140 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx); 1141 u64 seq_from_fs = le64_to_cpu(m.seq); 1142 u64 seq_from_member = le64_to_cpu(sb->sb->seq); 1143 1144 if (seq_from_fs && seq_from_fs < seq_from_member) { 1145 struct printbuf buf = PRINTBUF; 1146 1147 prt_str(&buf, "Split brain detected between "); 1148 prt_bdevname(&buf, sb->bdev); 1149 prt_str(&buf, " and "); 1150 prt_bdevname(&buf, fs->bdev); 1151 prt_char(&buf, ':'); 1152 prt_newline(&buf); 1153 1154 prt_bdevname(&buf, fs->bdev); 1155 prt_str(&buf, " believes seq of "); 1156 prt_bdevname(&buf, sb->bdev); 1157 prt_printf(&buf, " to be %llu, but ", seq_from_fs); 1158 prt_bdevname(&buf, sb->bdev); 1159 prt_printf(&buf, " has %llu\n", seq_from_member); 1160 1161 if (!opts->no_splitbrain_check) { 1162 prt_str(&buf, "Not using "); 1163 prt_bdevname(&buf, sb->bdev); 1164 } 1165 1166 pr_err("%s", buf.buf); 1167 printbuf_exit(&buf); 1168 1169 if (!opts->no_splitbrain_check) 1170 return -BCH_ERR_device_splitbrain; 1171 } 1172 1173 return 0; 1174 } 1175 1176 /* Device startup/shutdown: */ 1177 1178 static void bch2_dev_release(struct kobject *kobj) 1179 { 1180 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); 1181 1182 kfree(ca); 1183 } 1184 1185 static void bch2_dev_free(struct bch_dev *ca) 1186 { 1187 cancel_work_sync(&ca->io_error_work); 1188 1189 if (ca->kobj.state_in_sysfs && 1190 ca->disk_sb.bdev) 1191 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1192 1193 if (ca->kobj.state_in_sysfs) 1194 kobject_del(&ca->kobj); 1195 1196 bch2_free_super(&ca->disk_sb); 1197 bch2_dev_allocator_background_exit(ca); 1198 bch2_dev_journal_exit(ca); 1199 1200 free_percpu(ca->io_done); 1201 bch2_dev_buckets_free(ca); 1202 free_page((unsigned long) ca->sb_read_scratch); 1203 1204 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]); 1205 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]); 1206 1207 percpu_ref_exit(&ca->io_ref); 1208 #ifndef CONFIG_BCACHEFS_DEBUG 1209 percpu_ref_exit(&ca->ref); 1210 #endif 1211 kobject_put(&ca->kobj); 1212 } 1213 1214 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) 1215 { 1216 1217 lockdep_assert_held(&c->state_lock); 1218 1219 if (percpu_ref_is_zero(&ca->io_ref)) 1220 return; 1221 1222 __bch2_dev_read_only(c, ca); 1223 1224 reinit_completion(&ca->io_ref_completion); 1225 percpu_ref_kill(&ca->io_ref); 1226 wait_for_completion(&ca->io_ref_completion); 1227 1228 if (ca->kobj.state_in_sysfs) { 1229 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); 1230 sysfs_remove_link(&ca->kobj, "block"); 1231 } 1232 1233 bch2_free_super(&ca->disk_sb); 1234 bch2_dev_journal_exit(ca); 1235 } 1236 1237 #ifndef CONFIG_BCACHEFS_DEBUG 1238 static void bch2_dev_ref_complete(struct percpu_ref *ref) 1239 { 1240 struct bch_dev *ca = container_of(ref, struct bch_dev, ref); 1241 1242 complete(&ca->ref_completion); 1243 } 1244 #endif 1245 1246 static void bch2_dev_io_ref_complete(struct percpu_ref *ref) 1247 { 1248 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); 1249 1250 complete(&ca->io_ref_completion); 1251 } 1252 1253 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) 1254 { 1255 int ret; 1256 1257 if (!c->kobj.state_in_sysfs) 1258 return 0; 1259 1260 if (!ca->kobj.state_in_sysfs) { 1261 ret = kobject_add(&ca->kobj, &c->kobj, 1262 "dev-%u", ca->dev_idx); 1263 if (ret) 1264 return ret; 1265 } 1266 1267 if (ca->disk_sb.bdev) { 1268 struct kobject *block = bdev_kobj(ca->disk_sb.bdev); 1269 1270 ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); 1271 if (ret) 1272 return ret; 1273 1274 ret = sysfs_create_link(&ca->kobj, block, "block"); 1275 if (ret) 1276 return ret; 1277 } 1278 1279 return 0; 1280 } 1281 1282 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, 1283 struct bch_member *member) 1284 { 1285 struct bch_dev *ca; 1286 unsigned i; 1287 1288 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1289 if (!ca) 1290 return NULL; 1291 1292 kobject_init(&ca->kobj, &bch2_dev_ktype); 1293 init_completion(&ca->ref_completion); 1294 init_completion(&ca->io_ref_completion); 1295 1296 init_rwsem(&ca->bucket_lock); 1297 1298 INIT_WORK(&ca->io_error_work, bch2_io_error_work); 1299 1300 bch2_time_stats_quantiles_init(&ca->io_latency[READ]); 1301 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]); 1302 1303 ca->mi = bch2_mi_to_cpu(member); 1304 1305 for (i = 0; i < ARRAY_SIZE(member->errors); i++) 1306 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i])); 1307 1308 ca->uuid = member->uuid; 1309 1310 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, 1311 ca->mi.bucket_size / btree_sectors(c)); 1312 1313 #ifndef CONFIG_BCACHEFS_DEBUG 1314 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL)) 1315 goto err; 1316 #else 1317 atomic_long_set(&ca->ref, 1); 1318 #endif 1319 1320 bch2_dev_allocator_background_init(ca); 1321 1322 if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, 1323 PERCPU_REF_INIT_DEAD, GFP_KERNEL) || 1324 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || 1325 bch2_dev_buckets_alloc(c, ca) || 1326 !(ca->io_done = alloc_percpu(*ca->io_done))) 1327 goto err; 1328 1329 return ca; 1330 err: 1331 bch2_dev_free(ca); 1332 return NULL; 1333 } 1334 1335 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, 1336 unsigned dev_idx) 1337 { 1338 ca->dev_idx = dev_idx; 1339 __set_bit(ca->dev_idx, ca->self.d); 1340 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); 1341 1342 ca->fs = c; 1343 rcu_assign_pointer(c->devs[ca->dev_idx], ca); 1344 1345 if (bch2_dev_sysfs_online(c, ca)) 1346 pr_warn("error creating sysfs objects"); 1347 } 1348 1349 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) 1350 { 1351 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1352 struct bch_dev *ca = NULL; 1353 int ret = 0; 1354 1355 if (bch2_fs_init_fault("dev_alloc")) 1356 goto err; 1357 1358 ca = __bch2_dev_alloc(c, &member); 1359 if (!ca) 1360 goto err; 1361 1362 ca->fs = c; 1363 1364 bch2_dev_attach(c, ca, dev_idx); 1365 return ret; 1366 err: 1367 if (ca) 1368 bch2_dev_free(ca); 1369 return -BCH_ERR_ENOMEM_dev_alloc; 1370 } 1371 1372 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) 1373 { 1374 unsigned ret; 1375 1376 if (bch2_dev_is_online(ca)) { 1377 bch_err(ca, "already have device online in slot %u", 1378 sb->sb->dev_idx); 1379 return -BCH_ERR_device_already_online; 1380 } 1381 1382 if (get_capacity(sb->bdev->bd_disk) < 1383 ca->mi.bucket_size * ca->mi.nbuckets) { 1384 bch_err(ca, "cannot online: device too small"); 1385 return -BCH_ERR_device_size_too_small; 1386 } 1387 1388 BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); 1389 1390 ret = bch2_dev_journal_init(ca, sb->sb); 1391 if (ret) 1392 return ret; 1393 1394 /* Commit: */ 1395 ca->disk_sb = *sb; 1396 memset(sb, 0, sizeof(*sb)); 1397 1398 ca->dev = ca->disk_sb.bdev->bd_dev; 1399 1400 percpu_ref_reinit(&ca->io_ref); 1401 1402 return 0; 1403 } 1404 1405 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) 1406 { 1407 struct bch_dev *ca; 1408 int ret; 1409 1410 lockdep_assert_held(&c->state_lock); 1411 1412 if (le64_to_cpu(sb->sb->seq) > 1413 le64_to_cpu(c->disk_sb.sb->seq)) 1414 bch2_sb_to_fs(c, sb->sb); 1415 1416 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx)); 1417 1418 ca = bch2_dev_locked(c, sb->sb->dev_idx); 1419 1420 ret = __bch2_dev_attach_bdev(ca, sb); 1421 if (ret) 1422 return ret; 1423 1424 bch2_dev_sysfs_online(c, ca); 1425 1426 struct printbuf name = PRINTBUF; 1427 prt_bdevname(&name, ca->disk_sb.bdev); 1428 1429 if (c->sb.nr_devices == 1) 1430 strscpy(c->name, name.buf, sizeof(c->name)); 1431 strscpy(ca->name, name.buf, sizeof(ca->name)); 1432 1433 printbuf_exit(&name); 1434 1435 rebalance_wakeup(c); 1436 return 0; 1437 } 1438 1439 /* Device management: */ 1440 1441 /* 1442 * Note: this function is also used by the error paths - when a particular 1443 * device sees an error, we call it to determine whether we can just set the 1444 * device RO, or - if this function returns false - we'll set the whole 1445 * filesystem RO: 1446 * 1447 * XXX: maybe we should be more explicit about whether we're changing state 1448 * because we got an error or what have you? 1449 */ 1450 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, 1451 enum bch_member_state new_state, int flags) 1452 { 1453 struct bch_devs_mask new_online_devs; 1454 int nr_rw = 0, required; 1455 1456 lockdep_assert_held(&c->state_lock); 1457 1458 switch (new_state) { 1459 case BCH_MEMBER_STATE_rw: 1460 return true; 1461 case BCH_MEMBER_STATE_ro: 1462 if (ca->mi.state != BCH_MEMBER_STATE_rw) 1463 return true; 1464 1465 /* do we have enough devices to write to? */ 1466 for_each_member_device(c, ca2) 1467 if (ca2 != ca) 1468 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; 1469 1470 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) 1471 ? c->opts.metadata_replicas 1472 : metadata_replicas_required(c), 1473 !(flags & BCH_FORCE_IF_DATA_DEGRADED) 1474 ? c->opts.data_replicas 1475 : data_replicas_required(c)); 1476 1477 return nr_rw >= required; 1478 case BCH_MEMBER_STATE_failed: 1479 case BCH_MEMBER_STATE_spare: 1480 if (ca->mi.state != BCH_MEMBER_STATE_rw && 1481 ca->mi.state != BCH_MEMBER_STATE_ro) 1482 return true; 1483 1484 /* do we have enough devices to read from? */ 1485 new_online_devs = bch2_online_devs(c); 1486 __clear_bit(ca->dev_idx, new_online_devs.d); 1487 1488 return bch2_have_enough_devs(c, new_online_devs, flags, false); 1489 default: 1490 BUG(); 1491 } 1492 } 1493 1494 static bool bch2_fs_may_start(struct bch_fs *c) 1495 { 1496 struct bch_dev *ca; 1497 unsigned i, flags = 0; 1498 1499 if (c->opts.very_degraded) 1500 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; 1501 1502 if (c->opts.degraded) 1503 flags |= BCH_FORCE_IF_DEGRADED; 1504 1505 if (!c->opts.degraded && 1506 !c->opts.very_degraded) { 1507 mutex_lock(&c->sb_lock); 1508 1509 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { 1510 if (!bch2_member_exists(c->disk_sb.sb, i)) 1511 continue; 1512 1513 ca = bch2_dev_locked(c, i); 1514 1515 if (!bch2_dev_is_online(ca) && 1516 (ca->mi.state == BCH_MEMBER_STATE_rw || 1517 ca->mi.state == BCH_MEMBER_STATE_ro)) { 1518 mutex_unlock(&c->sb_lock); 1519 return false; 1520 } 1521 } 1522 mutex_unlock(&c->sb_lock); 1523 } 1524 1525 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); 1526 } 1527 1528 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) 1529 { 1530 /* 1531 * The allocator thread itself allocates btree nodes, so stop it first: 1532 */ 1533 bch2_dev_allocator_remove(c, ca); 1534 bch2_recalc_capacity(c); 1535 bch2_dev_journal_stop(&c->journal, ca); 1536 } 1537 1538 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) 1539 { 1540 lockdep_assert_held(&c->state_lock); 1541 1542 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); 1543 1544 bch2_dev_allocator_add(c, ca); 1545 bch2_recalc_capacity(c); 1546 bch2_dev_do_discards(ca); 1547 } 1548 1549 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1550 enum bch_member_state new_state, int flags) 1551 { 1552 struct bch_member *m; 1553 int ret = 0; 1554 1555 if (ca->mi.state == new_state) 1556 return 0; 1557 1558 if (!bch2_dev_state_allowed(c, ca, new_state, flags)) 1559 return -BCH_ERR_device_state_not_allowed; 1560 1561 if (new_state != BCH_MEMBER_STATE_rw) 1562 __bch2_dev_read_only(c, ca); 1563 1564 bch_notice(ca, "%s", bch2_member_states[new_state]); 1565 1566 mutex_lock(&c->sb_lock); 1567 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 1568 SET_BCH_MEMBER_STATE(m, new_state); 1569 bch2_write_super(c); 1570 mutex_unlock(&c->sb_lock); 1571 1572 if (new_state == BCH_MEMBER_STATE_rw) 1573 __bch2_dev_read_write(c, ca); 1574 1575 rebalance_wakeup(c); 1576 1577 return ret; 1578 } 1579 1580 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, 1581 enum bch_member_state new_state, int flags) 1582 { 1583 int ret; 1584 1585 down_write(&c->state_lock); 1586 ret = __bch2_dev_set_state(c, ca, new_state, flags); 1587 up_write(&c->state_lock); 1588 1589 return ret; 1590 } 1591 1592 /* Device add/removal: */ 1593 1594 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) 1595 { 1596 struct bpos start = POS(ca->dev_idx, 0); 1597 struct bpos end = POS(ca->dev_idx, U64_MAX); 1598 int ret; 1599 1600 /* 1601 * We clear the LRU and need_discard btrees first so that we don't race 1602 * with bch2_do_invalidates() and bch2_do_discards() 1603 */ 1604 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, 1605 BTREE_TRIGGER_norun, NULL) ?: 1606 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, 1607 BTREE_TRIGGER_norun, NULL) ?: 1608 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, 1609 BTREE_TRIGGER_norun, NULL) ?: 1610 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, 1611 BTREE_TRIGGER_norun, NULL) ?: 1612 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, 1613 BTREE_TRIGGER_norun, NULL) ?: 1614 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, 1615 BTREE_TRIGGER_norun, NULL) ?: 1616 bch2_dev_usage_remove(c, ca->dev_idx); 1617 bch_err_msg(c, ret, "removing dev alloc info"); 1618 return ret; 1619 } 1620 1621 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) 1622 { 1623 struct bch_member *m; 1624 unsigned dev_idx = ca->dev_idx, data; 1625 int ret; 1626 1627 down_write(&c->state_lock); 1628 1629 /* 1630 * We consume a reference to ca->ref, regardless of whether we succeed 1631 * or fail: 1632 */ 1633 bch2_dev_put(ca); 1634 1635 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1636 bch_err(ca, "Cannot remove without losing data"); 1637 ret = -BCH_ERR_device_state_not_allowed; 1638 goto err; 1639 } 1640 1641 __bch2_dev_read_only(c, ca); 1642 1643 ret = bch2_dev_data_drop(c, ca->dev_idx, flags); 1644 bch_err_msg(ca, ret, "bch2_dev_data_drop()"); 1645 if (ret) 1646 goto err; 1647 1648 ret = bch2_dev_remove_alloc(c, ca); 1649 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()"); 1650 if (ret) 1651 goto err; 1652 1653 /* 1654 * We need to flush the entire journal to get rid of keys that reference 1655 * the device being removed before removing the superblock entry 1656 */ 1657 bch2_journal_flush_all_pins(&c->journal); 1658 1659 /* 1660 * this is really just needed for the bch2_replicas_gc_(start|end) 1661 * calls, and could be cleaned up: 1662 */ 1663 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); 1664 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()"); 1665 if (ret) 1666 goto err; 1667 1668 ret = bch2_journal_flush(&c->journal); 1669 bch_err_msg(ca, ret, "bch2_journal_flush()"); 1670 if (ret) 1671 goto err; 1672 1673 ret = bch2_replicas_gc2(c); 1674 bch_err_msg(ca, ret, "bch2_replicas_gc2()"); 1675 if (ret) 1676 goto err; 1677 1678 data = bch2_dev_has_data(c, ca); 1679 if (data) { 1680 struct printbuf data_has = PRINTBUF; 1681 1682 prt_bitflags(&data_has, __bch2_data_types, data); 1683 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); 1684 printbuf_exit(&data_has); 1685 ret = -EBUSY; 1686 goto err; 1687 } 1688 1689 __bch2_dev_offline(c, ca); 1690 1691 mutex_lock(&c->sb_lock); 1692 rcu_assign_pointer(c->devs[ca->dev_idx], NULL); 1693 mutex_unlock(&c->sb_lock); 1694 1695 #ifndef CONFIG_BCACHEFS_DEBUG 1696 percpu_ref_kill(&ca->ref); 1697 #else 1698 ca->dying = true; 1699 bch2_dev_put(ca); 1700 #endif 1701 wait_for_completion(&ca->ref_completion); 1702 1703 bch2_dev_free(ca); 1704 1705 /* 1706 * Free this device's slot in the bch_member array - all pointers to 1707 * this device must be gone: 1708 */ 1709 mutex_lock(&c->sb_lock); 1710 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1711 memset(&m->uuid, 0, sizeof(m->uuid)); 1712 1713 bch2_write_super(c); 1714 1715 mutex_unlock(&c->sb_lock); 1716 up_write(&c->state_lock); 1717 return 0; 1718 err: 1719 if (ca->mi.state == BCH_MEMBER_STATE_rw && 1720 !percpu_ref_is_zero(&ca->io_ref)) 1721 __bch2_dev_read_write(c, ca); 1722 up_write(&c->state_lock); 1723 return ret; 1724 } 1725 1726 /* Add new device to running filesystem: */ 1727 int bch2_dev_add(struct bch_fs *c, const char *path) 1728 { 1729 struct bch_opts opts = bch2_opts_empty(); 1730 struct bch_sb_handle sb; 1731 struct bch_dev *ca = NULL; 1732 struct bch_sb_field_members_v2 *mi; 1733 struct bch_member dev_mi; 1734 unsigned dev_idx, nr_devices, u64s; 1735 struct printbuf errbuf = PRINTBUF; 1736 struct printbuf label = PRINTBUF; 1737 int ret; 1738 1739 ret = bch2_read_super(path, &opts, &sb); 1740 bch_err_msg(c, ret, "reading super"); 1741 if (ret) 1742 goto err; 1743 1744 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); 1745 1746 if (BCH_MEMBER_GROUP(&dev_mi)) { 1747 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); 1748 if (label.allocation_failure) { 1749 ret = -ENOMEM; 1750 goto err; 1751 } 1752 } 1753 1754 ret = bch2_dev_may_add(sb.sb, c); 1755 if (ret) 1756 goto err; 1757 1758 ca = __bch2_dev_alloc(c, &dev_mi); 1759 if (!ca) { 1760 ret = -ENOMEM; 1761 goto err; 1762 } 1763 1764 ret = __bch2_dev_attach_bdev(ca, &sb); 1765 if (ret) 1766 goto err; 1767 1768 ret = bch2_dev_journal_alloc(ca, true); 1769 bch_err_msg(c, ret, "allocating journal"); 1770 if (ret) 1771 goto err; 1772 1773 down_write(&c->state_lock); 1774 mutex_lock(&c->sb_lock); 1775 1776 ret = bch2_sb_from_fs(c, ca); 1777 bch_err_msg(c, ret, "setting up new superblock"); 1778 if (ret) 1779 goto err_unlock; 1780 1781 if (dynamic_fault("bcachefs:add:no_slot")) 1782 goto no_slot; 1783 1784 if (c->sb.nr_devices < BCH_SB_MEMBERS_MAX) { 1785 dev_idx = c->sb.nr_devices; 1786 goto have_slot; 1787 } 1788 1789 int best = -1; 1790 u64 best_last_mount = 0; 1791 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) { 1792 struct bch_member m = bch2_sb_member_get(c->disk_sb.sb, dev_idx); 1793 if (bch2_member_alive(&m)) 1794 continue; 1795 1796 u64 last_mount = le64_to_cpu(m.last_mount); 1797 if (best < 0 || last_mount < best_last_mount) { 1798 best = dev_idx; 1799 best_last_mount = last_mount; 1800 } 1801 } 1802 if (best >= 0) { 1803 dev_idx = best; 1804 goto have_slot; 1805 } 1806 no_slot: 1807 ret = -BCH_ERR_ENOSPC_sb_members; 1808 bch_err_msg(c, ret, "setting up new superblock"); 1809 goto err_unlock; 1810 1811 have_slot: 1812 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); 1813 1814 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); 1815 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + 1816 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); 1817 1818 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); 1819 if (!mi) { 1820 ret = -BCH_ERR_ENOSPC_sb_members; 1821 bch_err_msg(c, ret, "setting up new superblock"); 1822 goto err_unlock; 1823 } 1824 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); 1825 1826 /* success: */ 1827 1828 *m = dev_mi; 1829 m->last_mount = cpu_to_le64(ktime_get_real_seconds()); 1830 c->disk_sb.sb->nr_devices = nr_devices; 1831 1832 ca->disk_sb.sb->dev_idx = dev_idx; 1833 bch2_dev_attach(c, ca, dev_idx); 1834 1835 if (BCH_MEMBER_GROUP(&dev_mi)) { 1836 ret = __bch2_dev_group_set(c, ca, label.buf); 1837 bch_err_msg(c, ret, "creating new label"); 1838 if (ret) 1839 goto err_unlock; 1840 } 1841 1842 bch2_write_super(c); 1843 mutex_unlock(&c->sb_lock); 1844 1845 ret = bch2_dev_usage_init(ca, false); 1846 if (ret) 1847 goto err_late; 1848 1849 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1850 bch_err_msg(ca, ret, "marking new superblock"); 1851 if (ret) 1852 goto err_late; 1853 1854 ret = bch2_fs_freespace_init(c); 1855 bch_err_msg(ca, ret, "initializing free space"); 1856 if (ret) 1857 goto err_late; 1858 1859 ca->new_fs_bucket_idx = 0; 1860 1861 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1862 __bch2_dev_read_write(c, ca); 1863 1864 up_write(&c->state_lock); 1865 return 0; 1866 1867 err_unlock: 1868 mutex_unlock(&c->sb_lock); 1869 up_write(&c->state_lock); 1870 err: 1871 if (ca) 1872 bch2_dev_free(ca); 1873 bch2_free_super(&sb); 1874 printbuf_exit(&label); 1875 printbuf_exit(&errbuf); 1876 bch_err_fn(c, ret); 1877 return ret; 1878 err_late: 1879 up_write(&c->state_lock); 1880 ca = NULL; 1881 goto err; 1882 } 1883 1884 /* Hot add existing device to running filesystem: */ 1885 int bch2_dev_online(struct bch_fs *c, const char *path) 1886 { 1887 struct bch_opts opts = bch2_opts_empty(); 1888 struct bch_sb_handle sb = { NULL }; 1889 struct bch_dev *ca; 1890 unsigned dev_idx; 1891 int ret; 1892 1893 down_write(&c->state_lock); 1894 1895 ret = bch2_read_super(path, &opts, &sb); 1896 if (ret) { 1897 up_write(&c->state_lock); 1898 return ret; 1899 } 1900 1901 dev_idx = sb.sb->dev_idx; 1902 1903 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts); 1904 bch_err_msg(c, ret, "bringing %s online", path); 1905 if (ret) 1906 goto err; 1907 1908 ret = bch2_dev_attach_bdev(c, &sb); 1909 if (ret) 1910 goto err; 1911 1912 ca = bch2_dev_locked(c, dev_idx); 1913 1914 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 1915 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); 1916 if (ret) 1917 goto err; 1918 1919 if (ca->mi.state == BCH_MEMBER_STATE_rw) 1920 __bch2_dev_read_write(c, ca); 1921 1922 if (!ca->mi.freespace_initialized) { 1923 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); 1924 bch_err_msg(ca, ret, "initializing free space"); 1925 if (ret) 1926 goto err; 1927 } 1928 1929 if (!ca->journal.nr) { 1930 ret = bch2_dev_journal_alloc(ca, false); 1931 bch_err_msg(ca, ret, "allocating journal"); 1932 if (ret) 1933 goto err; 1934 } 1935 1936 mutex_lock(&c->sb_lock); 1937 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = 1938 cpu_to_le64(ktime_get_real_seconds()); 1939 bch2_write_super(c); 1940 mutex_unlock(&c->sb_lock); 1941 1942 up_write(&c->state_lock); 1943 return 0; 1944 err: 1945 up_write(&c->state_lock); 1946 bch2_free_super(&sb); 1947 return ret; 1948 } 1949 1950 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) 1951 { 1952 down_write(&c->state_lock); 1953 1954 if (!bch2_dev_is_online(ca)) { 1955 bch_err(ca, "Already offline"); 1956 up_write(&c->state_lock); 1957 return 0; 1958 } 1959 1960 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { 1961 bch_err(ca, "Cannot offline required disk"); 1962 up_write(&c->state_lock); 1963 return -BCH_ERR_device_state_not_allowed; 1964 } 1965 1966 __bch2_dev_offline(c, ca); 1967 1968 up_write(&c->state_lock); 1969 return 0; 1970 } 1971 1972 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) 1973 { 1974 struct bch_member *m; 1975 u64 old_nbuckets; 1976 int ret = 0; 1977 1978 down_write(&c->state_lock); 1979 old_nbuckets = ca->mi.nbuckets; 1980 1981 if (nbuckets < ca->mi.nbuckets) { 1982 bch_err(ca, "Cannot shrink yet"); 1983 ret = -EINVAL; 1984 goto err; 1985 } 1986 1987 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) { 1988 bch_err(ca, "New device size too big (%llu greater than max %u)", 1989 nbuckets, BCH_MEMBER_NBUCKETS_MAX); 1990 ret = -BCH_ERR_device_size_too_big; 1991 goto err; 1992 } 1993 1994 if (bch2_dev_is_online(ca) && 1995 get_capacity(ca->disk_sb.bdev->bd_disk) < 1996 ca->mi.bucket_size * nbuckets) { 1997 bch_err(ca, "New size larger than device"); 1998 ret = -BCH_ERR_device_size_too_small; 1999 goto err; 2000 } 2001 2002 ret = bch2_dev_buckets_resize(c, ca, nbuckets); 2003 bch_err_msg(ca, ret, "resizing buckets"); 2004 if (ret) 2005 goto err; 2006 2007 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional); 2008 if (ret) 2009 goto err; 2010 2011 mutex_lock(&c->sb_lock); 2012 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); 2013 m->nbuckets = cpu_to_le64(nbuckets); 2014 2015 bch2_write_super(c); 2016 mutex_unlock(&c->sb_lock); 2017 2018 if (ca->mi.freespace_initialized) { 2019 struct disk_accounting_pos acc = { 2020 .type = BCH_DISK_ACCOUNTING_dev_data_type, 2021 .dev_data_type.dev = ca->dev_idx, 2022 .dev_data_type.data_type = BCH_DATA_free, 2023 }; 2024 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 }; 2025 2026 ret = bch2_trans_do(ca->fs, NULL, NULL, 0, 2027 bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), false)) ?: 2028 bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); 2029 if (ret) 2030 goto err; 2031 } 2032 2033 bch2_recalc_capacity(c); 2034 err: 2035 up_write(&c->state_lock); 2036 return ret; 2037 } 2038 2039 /* return with ref on ca->ref: */ 2040 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) 2041 { 2042 if (!strncmp(name, "/dev/", strlen("/dev/"))) 2043 name += strlen("/dev/"); 2044 2045 for_each_member_device(c, ca) 2046 if (!strcmp(name, ca->name)) 2047 return ca; 2048 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); 2049 } 2050 2051 /* Filesystem open: */ 2052 2053 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r) 2054 { 2055 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?: 2056 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time)); 2057 } 2058 2059 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, 2060 struct bch_opts opts) 2061 { 2062 DARRAY(struct bch_sb_handle) sbs = { 0 }; 2063 struct bch_fs *c = NULL; 2064 struct bch_sb_handle *best = NULL; 2065 struct printbuf errbuf = PRINTBUF; 2066 int ret = 0; 2067 2068 if (!try_module_get(THIS_MODULE)) 2069 return ERR_PTR(-ENODEV); 2070 2071 if (!nr_devices) { 2072 ret = -EINVAL; 2073 goto err; 2074 } 2075 2076 ret = darray_make_room(&sbs, nr_devices); 2077 if (ret) 2078 goto err; 2079 2080 for (unsigned i = 0; i < nr_devices; i++) { 2081 struct bch_sb_handle sb = { NULL }; 2082 2083 ret = bch2_read_super(devices[i], &opts, &sb); 2084 if (ret) 2085 goto err; 2086 2087 BUG_ON(darray_push(&sbs, sb)); 2088 } 2089 2090 if (opts.nochanges && !opts.read_only) { 2091 ret = -BCH_ERR_erofs_nochanges; 2092 goto err_print; 2093 } 2094 2095 darray_for_each(sbs, sb) 2096 if (!best || sb_cmp(sb->sb, best->sb) > 0) 2097 best = sb; 2098 2099 darray_for_each_reverse(sbs, sb) { 2100 ret = bch2_dev_in_fs(best, sb, &opts); 2101 2102 if (ret == -BCH_ERR_device_has_been_removed || 2103 ret == -BCH_ERR_device_splitbrain) { 2104 bch2_free_super(sb); 2105 darray_remove_item(&sbs, sb); 2106 best -= best > sb; 2107 ret = 0; 2108 continue; 2109 } 2110 2111 if (ret) 2112 goto err_print; 2113 } 2114 2115 c = bch2_fs_alloc(best->sb, opts); 2116 ret = PTR_ERR_OR_ZERO(c); 2117 if (ret) 2118 goto err; 2119 2120 down_write(&c->state_lock); 2121 darray_for_each(sbs, sb) { 2122 ret = bch2_dev_attach_bdev(c, sb); 2123 if (ret) { 2124 up_write(&c->state_lock); 2125 goto err; 2126 } 2127 } 2128 up_write(&c->state_lock); 2129 2130 if (!bch2_fs_may_start(c)) { 2131 ret = -BCH_ERR_insufficient_devices_to_start; 2132 goto err_print; 2133 } 2134 2135 if (!c->opts.nostart) { 2136 ret = bch2_fs_start(c); 2137 if (ret) 2138 goto err; 2139 } 2140 out: 2141 darray_for_each(sbs, sb) 2142 bch2_free_super(sb); 2143 darray_exit(&sbs); 2144 printbuf_exit(&errbuf); 2145 module_put(THIS_MODULE); 2146 return c; 2147 err_print: 2148 pr_err("bch_fs_open err opening %s: %s", 2149 devices[0], bch2_err_str(ret)); 2150 err: 2151 if (!IS_ERR_OR_NULL(c)) 2152 bch2_fs_stop(c); 2153 c = ERR_PTR(ret); 2154 goto out; 2155 } 2156 2157 /* Global interfaces/init */ 2158 2159 static void bcachefs_exit(void) 2160 { 2161 bch2_debug_exit(); 2162 bch2_vfs_exit(); 2163 bch2_chardev_exit(); 2164 bch2_btree_key_cache_exit(); 2165 if (bcachefs_kset) 2166 kset_unregister(bcachefs_kset); 2167 } 2168 2169 static int __init bcachefs_init(void) 2170 { 2171 bch2_bkey_pack_test(); 2172 2173 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || 2174 bch2_btree_key_cache_init() || 2175 bch2_chardev_init() || 2176 bch2_vfs_init() || 2177 bch2_debug_init()) 2178 goto err; 2179 2180 return 0; 2181 err: 2182 bcachefs_exit(); 2183 return -ENOMEM; 2184 } 2185 2186 #define BCH_DEBUG_PARAM(name, description) \ 2187 bool bch2_##name; \ 2188 module_param_named(name, bch2_##name, bool, 0644); \ 2189 MODULE_PARM_DESC(name, description); 2190 BCH_DEBUG_PARAMS() 2191 #undef BCH_DEBUG_PARAM 2192 2193 __maybe_unused 2194 static unsigned bch2_metadata_version = bcachefs_metadata_version_current; 2195 module_param_named(version, bch2_metadata_version, uint, 0400); 2196 2197 module_exit(bcachefs_exit); 2198 module_init(bcachefs_init); 2199
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.