1 /* 2 * linux/fs/befs/btree.c 3 * 4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com> 5 * 6 * Licensed under the GNU GPL. See the file COPYING for details. 7 * 8 * 2002-02-05: Sergey S. Kostyliov added binary search within 9 * btree nodes. 10 * 11 * Many thanks to: 12 * 13 * Dominic Giampaolo, author of "Practical File System 14 * Design with the Be File System", for such a helpful book. 15 * 16 * Marcus J. Ranum, author of the b+tree package in 17 * comp.sources.misc volume 10. This code is not copied from that 18 * work, but it is partially based on it. 19 * 20 * Makoto Kato, author of the original BeFS for linux filesystem 21 * driver. 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/string.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/buffer_head.h> 29 30 #include "befs.h" 31 #include "btree.h" 32 #include "datastream.h" 33 34 /* 35 * The btree functions in this file are built on top of the 36 * datastream.c interface, which is in turn built on top of the 37 * io.c interface. 38 */ 39 40 /* Befs B+tree structure: 41 * 42 * The first thing in the tree is the tree superblock. It tells you 43 * all kinds of useful things about the tree, like where the rootnode 44 * is located, and the size of the nodes (always 1024 with current version 45 * of BeOS). 46 * 47 * The rest of the tree consists of a series of nodes. Nodes contain a header 48 * (struct befs_btree_nodehead), the packed key data, an array of shorts 49 * containing the ending offsets for each of the keys, and an array of 50 * befs_off_t values. In interior nodes, the keys are the ending keys for 51 * the childnode they point to, and the values are offsets into the 52 * datastream containing the tree. 53 */ 54 55 /* Note: 56 * 57 * The book states 2 confusing things about befs b+trees. First, 58 * it states that the overflow field of node headers is used by internal nodes 59 * to point to another node that "effectively continues this one". Here is what 60 * I believe that means. Each key in internal nodes points to another node that 61 * contains key values less than itself. Inspection reveals that the last key 62 * in the internal node is not the last key in the index. Keys that are 63 * greater than the last key in the internal node go into the overflow node. 64 * I imagine there is a performance reason for this. 65 * 66 * Second, it states that the header of a btree node is sufficient to 67 * distinguish internal nodes from leaf nodes. Without saying exactly how. 68 * After figuring out the first, it becomes obvious that internal nodes have 69 * overflow nodes and leafnodes do not. 70 */ 71 72 /* 73 * Currently, this code is only good for directory B+trees. 74 * In order to be used for other BFS indexes, it needs to be extended to handle 75 * duplicate keys and non-string keytypes (int32, int64, float, double). 76 */ 77 78 /* 79 * In memory structure of each btree node 80 */ 81 struct befs_btree_node { 82 befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */ 83 struct buffer_head *bh; 84 befs_btree_nodehead *od_node; /* on disk node */ 85 }; 86 87 /* local constants */ 88 static const befs_off_t BEFS_BT_INVAL = 0xffffffffffffffffULL; 89 90 /* local functions */ 91 static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds, 92 befs_btree_super * bt_super, 93 struct befs_btree_node *this_node, 94 befs_off_t * node_off); 95 96 static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds, 97 befs_btree_super * sup); 98 99 static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds, 100 struct befs_btree_node *node, 101 befs_off_t node_off); 102 103 static int befs_leafnode(struct befs_btree_node *node); 104 105 static fs16 *befs_bt_keylen_index(struct befs_btree_node *node); 106 107 static fs64 *befs_bt_valarray(struct befs_btree_node *node); 108 109 static char *befs_bt_keydata(struct befs_btree_node *node); 110 111 static int befs_find_key(struct super_block *sb, 112 struct befs_btree_node *node, 113 const char *findkey, befs_off_t * value); 114 115 static char *befs_bt_get_key(struct super_block *sb, 116 struct befs_btree_node *node, 117 int index, u16 * keylen); 118 119 static int befs_compare_strings(const void *key1, int keylen1, 120 const void *key2, int keylen2); 121 122 /** 123 * befs_bt_read_super() - read in btree superblock convert to cpu byteorder 124 * @sb: Filesystem superblock 125 * @ds: Datastream to read from 126 * @sup: Buffer in which to place the btree superblock 127 * 128 * Calls befs_read_datastream to read in the btree superblock and 129 * makes sure it is in cpu byteorder, byteswapping if necessary. 130 * Return: BEFS_OK on success and if *@sup contains the btree superblock in cpu 131 * byte order. Otherwise return BEFS_ERR on error. 132 */ 133 static int 134 befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds, 135 befs_btree_super * sup) 136 { 137 struct buffer_head *bh; 138 befs_disk_btree_super *od_sup; 139 140 befs_debug(sb, "---> %s", __func__); 141 142 bh = befs_read_datastream(sb, ds, 0, NULL); 143 144 if (!bh) { 145 befs_error(sb, "Couldn't read index header."); 146 goto error; 147 } 148 od_sup = (befs_disk_btree_super *) bh->b_data; 149 befs_dump_index_entry(sb, od_sup); 150 151 sup->magic = fs32_to_cpu(sb, od_sup->magic); 152 sup->node_size = fs32_to_cpu(sb, od_sup->node_size); 153 sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth); 154 sup->data_type = fs32_to_cpu(sb, od_sup->data_type); 155 sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr); 156 157 brelse(bh); 158 if (sup->magic != BEFS_BTREE_MAGIC) { 159 befs_error(sb, "Index header has bad magic."); 160 goto error; 161 } 162 163 befs_debug(sb, "<--- %s", __func__); 164 return BEFS_OK; 165 166 error: 167 befs_debug(sb, "<--- %s ERROR", __func__); 168 return BEFS_ERR; 169 } 170 171 /** 172 * befs_bt_read_node - read in btree node and convert to cpu byteorder 173 * @sb: Filesystem superblock 174 * @ds: Datastream to read from 175 * @node: Buffer in which to place the btree node 176 * @node_off: Starting offset (in bytes) of the node in @ds 177 * 178 * Calls befs_read_datastream to read in the indicated btree node and 179 * makes sure its header fields are in cpu byteorder, byteswapping if 180 * necessary. 181 * Note: node->bh must be NULL when this function is called the first time. 182 * Don't forget brelse(node->bh) after last call. 183 * 184 * On success, returns BEFS_OK and *@node contains the btree node that 185 * starts at @node_off, with the node->head fields in cpu byte order. 186 * 187 * On failure, BEFS_ERR is returned. 188 */ 189 190 static int 191 befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds, 192 struct befs_btree_node *node, befs_off_t node_off) 193 { 194 uint off = 0; 195 196 befs_debug(sb, "---> %s", __func__); 197 198 if (node->bh) 199 brelse(node->bh); 200 201 node->bh = befs_read_datastream(sb, ds, node_off, &off); 202 if (!node->bh) { 203 befs_error(sb, "%s failed to read " 204 "node at %llu", __func__, node_off); 205 befs_debug(sb, "<--- %s ERROR", __func__); 206 207 return BEFS_ERR; 208 } 209 node->od_node = 210 (befs_btree_nodehead *) ((void *) node->bh->b_data + off); 211 212 befs_dump_index_node(sb, node->od_node); 213 214 node->head.left = fs64_to_cpu(sb, node->od_node->left); 215 node->head.right = fs64_to_cpu(sb, node->od_node->right); 216 node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow); 217 node->head.all_key_count = 218 fs16_to_cpu(sb, node->od_node->all_key_count); 219 node->head.all_key_length = 220 fs16_to_cpu(sb, node->od_node->all_key_length); 221 222 befs_debug(sb, "<--- %s", __func__); 223 return BEFS_OK; 224 } 225 226 /** 227 * befs_btree_find - Find a key in a befs B+tree 228 * @sb: Filesystem superblock 229 * @ds: Datastream containing btree 230 * @key: Key string to lookup in btree 231 * @value: Value stored with @key 232 * 233 * On success, returns BEFS_OK and sets *@value to the value stored 234 * with @key (usually the disk block number of an inode). 235 * 236 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND. 237 * 238 * Algorithm: 239 * Read the superblock and rootnode of the b+tree. 240 * Drill down through the interior nodes using befs_find_key(). 241 * Once at the correct leaf node, use befs_find_key() again to get the 242 * actual value stored with the key. 243 */ 244 int 245 befs_btree_find(struct super_block *sb, const befs_data_stream *ds, 246 const char *key, befs_off_t * value) 247 { 248 struct befs_btree_node *this_node; 249 befs_btree_super bt_super; 250 befs_off_t node_off; 251 int res; 252 253 befs_debug(sb, "---> %s Key: %s", __func__, key); 254 255 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { 256 befs_error(sb, 257 "befs_btree_find() failed to read index superblock"); 258 goto error; 259 } 260 261 this_node = kmalloc(sizeof(struct befs_btree_node), 262 GFP_NOFS); 263 if (!this_node) { 264 befs_error(sb, "befs_btree_find() failed to allocate %zu " 265 "bytes of memory", sizeof(struct befs_btree_node)); 266 goto error; 267 } 268 269 this_node->bh = NULL; 270 271 /* read in root node */ 272 node_off = bt_super.root_node_ptr; 273 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 274 befs_error(sb, "befs_btree_find() failed to read " 275 "node at %llu", node_off); 276 goto error_alloc; 277 } 278 279 while (!befs_leafnode(this_node)) { 280 res = befs_find_key(sb, this_node, key, &node_off); 281 /* if no key set, try the overflow node */ 282 if (res == BEFS_BT_OVERFLOW) 283 node_off = this_node->head.overflow; 284 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 285 befs_error(sb, "befs_btree_find() failed to read " 286 "node at %llu", node_off); 287 goto error_alloc; 288 } 289 } 290 291 /* at a leaf node now, check if it is correct */ 292 res = befs_find_key(sb, this_node, key, value); 293 294 brelse(this_node->bh); 295 kfree(this_node); 296 297 if (res != BEFS_BT_MATCH) { 298 befs_error(sb, "<--- %s Key %s not found", __func__, key); 299 befs_debug(sb, "<--- %s ERROR", __func__); 300 *value = 0; 301 return BEFS_BT_NOT_FOUND; 302 } 303 befs_debug(sb, "<--- %s Found key %s, value %llu", __func__, 304 key, *value); 305 return BEFS_OK; 306 307 error_alloc: 308 kfree(this_node); 309 error: 310 *value = 0; 311 befs_debug(sb, "<--- %s ERROR", __func__); 312 return BEFS_ERR; 313 } 314 315 /** 316 * befs_find_key - Search for a key within a node 317 * @sb: Filesystem superblock 318 * @node: Node to find the key within 319 * @findkey: Keystring to search for 320 * @value: If key is found, the value stored with the key is put here 321 * 322 * Finds exact match if one exists, and returns BEFS_BT_MATCH. 323 * If there is no match and node's value array is too small for key, return 324 * BEFS_BT_OVERFLOW. 325 * If no match and node should countain this key, return BEFS_BT_NOT_FOUND. 326 * 327 * Uses binary search instead of a linear. 328 */ 329 static int 330 befs_find_key(struct super_block *sb, struct befs_btree_node *node, 331 const char *findkey, befs_off_t * value) 332 { 333 int first, last, mid; 334 int eq; 335 u16 keylen; 336 int findkey_len; 337 char *thiskey; 338 fs64 *valarray; 339 340 befs_debug(sb, "---> %s %s", __func__, findkey); 341 342 findkey_len = strlen(findkey); 343 344 /* if node can not contain key, just skip this node */ 345 last = node->head.all_key_count - 1; 346 thiskey = befs_bt_get_key(sb, node, last, &keylen); 347 348 eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len); 349 if (eq < 0) { 350 befs_debug(sb, "<--- node can't contain %s", findkey); 351 return BEFS_BT_OVERFLOW; 352 } 353 354 valarray = befs_bt_valarray(node); 355 356 /* simple binary search */ 357 first = 0; 358 mid = 0; 359 while (last >= first) { 360 mid = (last + first) / 2; 361 befs_debug(sb, "first: %d, last: %d, mid: %d", first, last, 362 mid); 363 thiskey = befs_bt_get_key(sb, node, mid, &keylen); 364 eq = befs_compare_strings(thiskey, keylen, findkey, 365 findkey_len); 366 367 if (eq == 0) { 368 befs_debug(sb, "<--- %s found %s at %d", 369 __func__, thiskey, mid); 370 371 *value = fs64_to_cpu(sb, valarray[mid]); 372 return BEFS_BT_MATCH; 373 } 374 if (eq > 0) 375 last = mid - 1; 376 else 377 first = mid + 1; 378 } 379 380 /* return an existing value so caller can arrive to a leaf node */ 381 if (eq < 0) 382 *value = fs64_to_cpu(sb, valarray[mid + 1]); 383 else 384 *value = fs64_to_cpu(sb, valarray[mid]); 385 befs_error(sb, "<--- %s %s not found", __func__, findkey); 386 befs_debug(sb, "<--- %s ERROR", __func__); 387 return BEFS_BT_NOT_FOUND; 388 } 389 390 /** 391 * befs_btree_read - Traverse leafnodes of a btree 392 * @sb: Filesystem superblock 393 * @ds: Datastream containing btree 394 * @key_no: Key number (alphabetical order) of key to read 395 * @bufsize: Size of the buffer to return key in 396 * @keybuf: Pointer to a buffer to put the key in 397 * @keysize: Length of the returned key 398 * @value: Value stored with the returned key 399 * 400 * Here's how it works: Key_no is the index of the key/value pair to 401 * return in keybuf/value. 402 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is 403 * the number of characters in the key (just a convenience). 404 * 405 * Algorithm: 406 * Get the first leafnode of the tree. See if the requested key is in that 407 * node. If not, follow the node->right link to the next leafnode. Repeat 408 * until the (key_no)th key is found or the tree is out of keys. 409 */ 410 int 411 befs_btree_read(struct super_block *sb, const befs_data_stream *ds, 412 loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize, 413 befs_off_t * value) 414 { 415 struct befs_btree_node *this_node; 416 befs_btree_super bt_super; 417 befs_off_t node_off; 418 int cur_key; 419 fs64 *valarray; 420 char *keystart; 421 u16 keylen; 422 int res; 423 424 uint key_sum = 0; 425 426 befs_debug(sb, "---> %s", __func__); 427 428 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { 429 befs_error(sb, 430 "befs_btree_read() failed to read index superblock"); 431 goto error; 432 } 433 434 this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS); 435 if (this_node == NULL) { 436 befs_error(sb, "befs_btree_read() failed to allocate %zu " 437 "bytes of memory", sizeof(struct befs_btree_node)); 438 goto error; 439 } 440 441 node_off = bt_super.root_node_ptr; 442 this_node->bh = NULL; 443 444 /* seeks down to first leafnode, reads it into this_node */ 445 res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off); 446 if (res == BEFS_BT_EMPTY) { 447 brelse(this_node->bh); 448 kfree(this_node); 449 *value = 0; 450 *keysize = 0; 451 befs_debug(sb, "<--- %s Tree is EMPTY", __func__); 452 return BEFS_BT_EMPTY; 453 } else if (res == BEFS_ERR) { 454 goto error_alloc; 455 } 456 457 /* find the leaf node containing the key_no key */ 458 459 while (key_sum + this_node->head.all_key_count <= key_no) { 460 461 /* no more nodes to look in: key_no is too large */ 462 if (this_node->head.right == BEFS_BT_INVAL) { 463 *keysize = 0; 464 *value = 0; 465 befs_debug(sb, 466 "<--- %s END of keys at %llu", __func__, 467 (unsigned long long) 468 key_sum + this_node->head.all_key_count); 469 brelse(this_node->bh); 470 kfree(this_node); 471 return BEFS_BT_END; 472 } 473 474 key_sum += this_node->head.all_key_count; 475 node_off = this_node->head.right; 476 477 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { 478 befs_error(sb, "%s failed to read node at %llu", 479 __func__, (unsigned long long)node_off); 480 goto error_alloc; 481 } 482 } 483 484 /* how many keys into this_node is key_no */ 485 cur_key = key_no - key_sum; 486 487 /* get pointers to datastructures within the node body */ 488 valarray = befs_bt_valarray(this_node); 489 490 keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen); 491 492 befs_debug(sb, "Read [%llu,%d]: keysize %d", 493 (long long unsigned int)node_off, (int)cur_key, 494 (int)keylen); 495 496 if (bufsize < keylen + 1) { 497 befs_error(sb, "%s keybuf too small (%zu) " 498 "for key of size %d", __func__, bufsize, keylen); 499 brelse(this_node->bh); 500 goto error_alloc; 501 } 502 503 strscpy(keybuf, keystart, keylen + 1); 504 *value = fs64_to_cpu(sb, valarray[cur_key]); 505 *keysize = keylen; 506 507 befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off, 508 cur_key, keylen, keybuf, *value); 509 510 brelse(this_node->bh); 511 kfree(this_node); 512 513 befs_debug(sb, "<--- %s", __func__); 514 515 return BEFS_OK; 516 517 error_alloc: 518 kfree(this_node); 519 520 error: 521 *keysize = 0; 522 *value = 0; 523 befs_debug(sb, "<--- %s ERROR", __func__); 524 return BEFS_ERR; 525 } 526 527 /** 528 * befs_btree_seekleaf - Find the first leafnode in the btree 529 * @sb: Filesystem superblock 530 * @ds: Datastream containing btree 531 * @bt_super: Pointer to the superblock of the btree 532 * @this_node: Buffer to return the leafnode in 533 * @node_off: Pointer to offset of current node within datastream. Modified 534 * by the function. 535 * 536 * Helper function for btree traverse. Moves the current position to the 537 * start of the first leaf node. 538 * 539 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY. 540 */ 541 static int 542 befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds, 543 befs_btree_super *bt_super, 544 struct befs_btree_node *this_node, 545 befs_off_t * node_off) 546 { 547 548 befs_debug(sb, "---> %s", __func__); 549 550 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { 551 befs_error(sb, "%s failed to read " 552 "node at %llu", __func__, *node_off); 553 goto error; 554 } 555 befs_debug(sb, "Seekleaf to root node %llu", *node_off); 556 557 if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) { 558 befs_debug(sb, "<--- %s Tree is EMPTY", __func__); 559 return BEFS_BT_EMPTY; 560 } 561 562 while (!befs_leafnode(this_node)) { 563 564 if (this_node->head.all_key_count == 0) { 565 befs_debug(sb, "%s encountered " 566 "an empty interior node: %llu. Using Overflow " 567 "node: %llu", __func__, *node_off, 568 this_node->head.overflow); 569 *node_off = this_node->head.overflow; 570 } else { 571 fs64 *valarray = befs_bt_valarray(this_node); 572 *node_off = fs64_to_cpu(sb, valarray[0]); 573 } 574 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { 575 befs_error(sb, "%s failed to read " 576 "node at %llu", __func__, *node_off); 577 goto error; 578 } 579 580 befs_debug(sb, "Seekleaf to child node %llu", *node_off); 581 } 582 befs_debug(sb, "Node %llu is a leaf node", *node_off); 583 584 return BEFS_OK; 585 586 error: 587 befs_debug(sb, "<--- %s ERROR", __func__); 588 return BEFS_ERR; 589 } 590 591 /** 592 * befs_leafnode - Determine if the btree node is a leaf node or an 593 * interior node 594 * @node: Pointer to node structure to test 595 * 596 * Return 1 if leaf, 0 if interior 597 */ 598 static int 599 befs_leafnode(struct befs_btree_node *node) 600 { 601 /* all interior nodes (and only interior nodes) have an overflow node */ 602 if (node->head.overflow == BEFS_BT_INVAL) 603 return 1; 604 else 605 return 0; 606 } 607 608 /** 609 * befs_bt_keylen_index - Finds start of keylen index in a node 610 * @node: Pointer to the node structure to find the keylen index within 611 * 612 * Returns a pointer to the start of the key length index array 613 * of the B+tree node *@node 614 * 615 * "The length of all the keys in the node is added to the size of the 616 * header and then rounded up to a multiple of four to get the beginning 617 * of the key length index" (p.88, practical filesystem design). 618 * 619 * Except that rounding up to 8 works, and rounding up to 4 doesn't. 620 */ 621 static fs16 * 622 befs_bt_keylen_index(struct befs_btree_node *node) 623 { 624 const int keylen_align = 8; 625 unsigned long int off = 626 (sizeof (befs_btree_nodehead) + node->head.all_key_length); 627 ulong tmp = off % keylen_align; 628 629 if (tmp) 630 off += keylen_align - tmp; 631 632 return (fs16 *) ((void *) node->od_node + off); 633 } 634 635 /** 636 * befs_bt_valarray - Finds the start of value array in a node 637 * @node: Pointer to the node structure to find the value array within 638 * 639 * Returns a pointer to the start of the value array 640 * of the node pointed to by the node header 641 */ 642 static fs64 * 643 befs_bt_valarray(struct befs_btree_node *node) 644 { 645 void *keylen_index_start = (void *) befs_bt_keylen_index(node); 646 size_t keylen_index_size = node->head.all_key_count * sizeof (fs16); 647 648 return (fs64 *) (keylen_index_start + keylen_index_size); 649 } 650 651 /** 652 * befs_bt_keydata - Finds start of keydata array in a node 653 * @node: Pointer to the node structure to find the keydata array within 654 * 655 * Returns a pointer to the start of the keydata array 656 * of the node pointed to by the node header 657 */ 658 static char * 659 befs_bt_keydata(struct befs_btree_node *node) 660 { 661 return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead)); 662 } 663 664 /** 665 * befs_bt_get_key - returns a pointer to the start of a key 666 * @sb: filesystem superblock 667 * @node: node in which to look for the key 668 * @index: the index of the key to get 669 * @keylen: modified to be the length of the key at @index 670 * 671 * Returns a valid pointer into @node on success. 672 * Returns NULL on failure (bad input) and sets *@keylen = 0 673 */ 674 static char * 675 befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node, 676 int index, u16 * keylen) 677 { 678 int prev_key_end; 679 char *keystart; 680 fs16 *keylen_index; 681 682 if (index < 0 || index > node->head.all_key_count) { 683 *keylen = 0; 684 return NULL; 685 } 686 687 keystart = befs_bt_keydata(node); 688 keylen_index = befs_bt_keylen_index(node); 689 690 if (index == 0) 691 prev_key_end = 0; 692 else 693 prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]); 694 695 *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end; 696 697 return keystart + prev_key_end; 698 } 699 700 /** 701 * befs_compare_strings - compare two strings 702 * @key1: pointer to the first key to be compared 703 * @keylen1: length in bytes of key1 704 * @key2: pointer to the second key to be compared 705 * @keylen2: length in bytes of key2 706 * 707 * Returns 0 if @key1 and @key2 are equal. 708 * Returns >0 if @key1 is greater. 709 * Returns <0 if @key2 is greater. 710 */ 711 static int 712 befs_compare_strings(const void *key1, int keylen1, 713 const void *key2, int keylen2) 714 { 715 int len = min_t(int, keylen1, keylen2); 716 int result = strncmp(key1, key2, len); 717 if (result == 0) 718 result = keylen1 - keylen2; 719 return result; 720 } 721 722 /* These will be used for non-string keyed btrees */ 723 #if 0 724 static int 725 btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2) 726 { 727 return *(int32_t *) key1 - *(int32_t *) key2; 728 } 729 730 static int 731 btree_compare_uint32(cont void *key1, int keylen1, 732 const void *key2, int keylen2) 733 { 734 if (*(u_int32_t *) key1 == *(u_int32_t *) key2) 735 return 0; 736 else if (*(u_int32_t *) key1 > *(u_int32_t *) key2) 737 return 1; 738 739 return -1; 740 } 741 static int 742 btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2) 743 { 744 if (*(int64_t *) key1 == *(int64_t *) key2) 745 return 0; 746 else if (*(int64_t *) key1 > *(int64_t *) key2) 747 return 1; 748 749 return -1; 750 } 751 752 static int 753 btree_compare_uint64(cont void *key1, int keylen1, 754 const void *key2, int keylen2) 755 { 756 if (*(u_int64_t *) key1 == *(u_int64_t *) key2) 757 return 0; 758 else if (*(u_int64_t *) key1 > *(u_int64_t *) key2) 759 return 1; 760 761 return -1; 762 } 763 764 static int 765 btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2) 766 { 767 float result = *(float *) key1 - *(float *) key2; 768 if (result == 0.0f) 769 return 0; 770 771 return (result < 0.0f) ? -1 : 1; 772 } 773 774 static int 775 btree_compare_double(cont void *key1, int keylen1, 776 const void *key2, int keylen2) 777 { 778 double result = *(double *) key1 - *(double *) key2; 779 if (result == 0.0) 780 return 0; 781 782 return (result < 0.0) ? -1 : 1; 783 } 784 #endif // 785
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.