~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/block-group.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 #include <linux/sizes.h>
  4 #include <linux/list_sort.h>
  5 #include "misc.h"
  6 #include "ctree.h"
  7 #include "block-group.h"
  8 #include "space-info.h"
  9 #include "disk-io.h"
 10 #include "free-space-cache.h"
 11 #include "free-space-tree.h"
 12 #include "volumes.h"
 13 #include "transaction.h"
 14 #include "ref-verify.h"
 15 #include "sysfs.h"
 16 #include "tree-log.h"
 17 #include "delalloc-space.h"
 18 #include "discard.h"
 19 #include "raid56.h"
 20 #include "zoned.h"
 21 #include "fs.h"
 22 #include "accessors.h"
 23 #include "extent-tree.h"
 24 
 25 #ifdef CONFIG_BTRFS_DEBUG
 26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
 27 {
 28         struct btrfs_fs_info *fs_info = block_group->fs_info;
 29 
 30         return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
 31                 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
 32                (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
 33                 block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
 34 }
 35 #endif
 36 
 37 /*
 38  * Return target flags in extended format or 0 if restripe for this chunk_type
 39  * is not in progress
 40  *
 41  * Should be called with balance_lock held
 42  */
 43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
 44 {
 45         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 46         u64 target = 0;
 47 
 48         if (!bctl)
 49                 return 0;
 50 
 51         if (flags & BTRFS_BLOCK_GROUP_DATA &&
 52             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 53                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
 54         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
 55                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 56                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
 57         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
 58                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 59                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
 60         }
 61 
 62         return target;
 63 }
 64 
 65 /*
 66  * @flags: available profiles in extended format (see ctree.h)
 67  *
 68  * Return reduced profile in chunk format.  If profile changing is in progress
 69  * (either running or paused) picks the target profile (if it's already
 70  * available), otherwise falls back to plain reducing.
 71  */
 72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
 73 {
 74         u64 num_devices = fs_info->fs_devices->rw_devices;
 75         u64 target;
 76         u64 raid_type;
 77         u64 allowed = 0;
 78 
 79         /*
 80          * See if restripe for this chunk_type is in progress, if so try to
 81          * reduce to the target profile
 82          */
 83         spin_lock(&fs_info->balance_lock);
 84         target = get_restripe_target(fs_info, flags);
 85         if (target) {
 86                 spin_unlock(&fs_info->balance_lock);
 87                 return extended_to_chunk(target);
 88         }
 89         spin_unlock(&fs_info->balance_lock);
 90 
 91         /* First, mask out the RAID levels which aren't possible */
 92         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
 93                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
 94                         allowed |= btrfs_raid_array[raid_type].bg_flag;
 95         }
 96         allowed &= flags;
 97 
 98         /* Select the highest-redundancy RAID level. */
 99         if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100                 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101         else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102                 allowed = BTRFS_BLOCK_GROUP_RAID6;
103         else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104                 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106                 allowed = BTRFS_BLOCK_GROUP_RAID5;
107         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108                 allowed = BTRFS_BLOCK_GROUP_RAID10;
109         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110                 allowed = BTRFS_BLOCK_GROUP_RAID1;
111         else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112                 allowed = BTRFS_BLOCK_GROUP_DUP;
113         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114                 allowed = BTRFS_BLOCK_GROUP_RAID0;
115 
116         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117 
118         return extended_to_chunk(flags | allowed);
119 }
120 
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123         unsigned seq;
124         u64 flags;
125 
126         do {
127                 flags = orig_flags;
128                 seq = read_seqbegin(&fs_info->profiles_lock);
129 
130                 if (flags & BTRFS_BLOCK_GROUP_DATA)
131                         flags |= fs_info->avail_data_alloc_bits;
132                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133                         flags |= fs_info->avail_system_alloc_bits;
134                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135                         flags |= fs_info->avail_metadata_alloc_bits;
136         } while (read_seqretry(&fs_info->profiles_lock, seq));
137 
138         return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140 
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143         refcount_inc(&cache->refs);
144 }
145 
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148         if (refcount_dec_and_test(&cache->refs)) {
149                 WARN_ON(cache->pinned > 0);
150                 /*
151                  * If there was a failure to cleanup a log tree, very likely due
152                  * to an IO failure on a writeback attempt of one or more of its
153                  * extent buffers, we could not do proper (and cheap) unaccounting
154                  * of their reserved space, so don't warn on reserved > 0 in that
155                  * case.
156                  */
157                 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158                     !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159                         WARN_ON(cache->reserved > 0);
160 
161                 /*
162                  * A block_group shouldn't be on the discard_list anymore.
163                  * Remove the block_group from the discard_list to prevent us
164                  * from causing a panic due to NULL pointer dereference.
165                  */
166                 if (WARN_ON(!list_empty(&cache->discard_list)))
167                         btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168                                                   cache);
169 
170                 kfree(cache->free_space_ctl);
171                 btrfs_free_chunk_map(cache->physical_map);
172                 kfree(cache);
173         }
174 }
175 
176 /*
177  * This adds the block group to the fs_info rb tree for the block group cache
178  */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180                                        struct btrfs_block_group *block_group)
181 {
182         struct rb_node **p;
183         struct rb_node *parent = NULL;
184         struct btrfs_block_group *cache;
185         bool leftmost = true;
186 
187         ASSERT(block_group->length != 0);
188 
189         write_lock(&info->block_group_cache_lock);
190         p = &info->block_group_cache_tree.rb_root.rb_node;
191 
192         while (*p) {
193                 parent = *p;
194                 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195                 if (block_group->start < cache->start) {
196                         p = &(*p)->rb_left;
197                 } else if (block_group->start > cache->start) {
198                         p = &(*p)->rb_right;
199                         leftmost = false;
200                 } else {
201                         write_unlock(&info->block_group_cache_lock);
202                         return -EEXIST;
203                 }
204         }
205 
206         rb_link_node(&block_group->cache_node, parent, p);
207         rb_insert_color_cached(&block_group->cache_node,
208                                &info->block_group_cache_tree, leftmost);
209 
210         write_unlock(&info->block_group_cache_lock);
211 
212         return 0;
213 }
214 
215 /*
216  * This will return the block group at or after bytenr if contains is 0, else
217  * it will return the block group that contains the bytenr
218  */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220                 struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222         struct btrfs_block_group *cache, *ret = NULL;
223         struct rb_node *n;
224         u64 end, start;
225 
226         read_lock(&info->block_group_cache_lock);
227         n = info->block_group_cache_tree.rb_root.rb_node;
228 
229         while (n) {
230                 cache = rb_entry(n, struct btrfs_block_group, cache_node);
231                 end = cache->start + cache->length - 1;
232                 start = cache->start;
233 
234                 if (bytenr < start) {
235                         if (!contains && (!ret || start < ret->start))
236                                 ret = cache;
237                         n = n->rb_left;
238                 } else if (bytenr > start) {
239                         if (contains && bytenr <= end) {
240                                 ret = cache;
241                                 break;
242                         }
243                         n = n->rb_right;
244                 } else {
245                         ret = cache;
246                         break;
247                 }
248         }
249         if (ret)
250                 btrfs_get_block_group(ret);
251         read_unlock(&info->block_group_cache_lock);
252 
253         return ret;
254 }
255 
256 /*
257  * Return the block group that starts at or after bytenr
258  */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260                 struct btrfs_fs_info *info, u64 bytenr)
261 {
262         return block_group_cache_tree_search(info, bytenr, 0);
263 }
264 
265 /*
266  * Return the block group that contains the given bytenr
267  */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269                 struct btrfs_fs_info *info, u64 bytenr)
270 {
271         return block_group_cache_tree_search(info, bytenr, 1);
272 }
273 
274 struct btrfs_block_group *btrfs_next_block_group(
275                 struct btrfs_block_group *cache)
276 {
277         struct btrfs_fs_info *fs_info = cache->fs_info;
278         struct rb_node *node;
279 
280         read_lock(&fs_info->block_group_cache_lock);
281 
282         /* If our block group was removed, we need a full search. */
283         if (RB_EMPTY_NODE(&cache->cache_node)) {
284                 const u64 next_bytenr = cache->start + cache->length;
285 
286                 read_unlock(&fs_info->block_group_cache_lock);
287                 btrfs_put_block_group(cache);
288                 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289         }
290         node = rb_next(&cache->cache_node);
291         btrfs_put_block_group(cache);
292         if (node) {
293                 cache = rb_entry(node, struct btrfs_block_group, cache_node);
294                 btrfs_get_block_group(cache);
295         } else
296                 cache = NULL;
297         read_unlock(&fs_info->block_group_cache_lock);
298         return cache;
299 }
300 
301 /*
302  * Check if we can do a NOCOW write for a given extent.
303  *
304  * @fs_info:       The filesystem information object.
305  * @bytenr:        Logical start address of the extent.
306  *
307  * Check if we can do a NOCOW write for the given extent, and increments the
308  * number of NOCOW writers in the block group that contains the extent, as long
309  * as the block group exists and it's currently not in read-only mode.
310  *
311  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312  *          is responsible for calling btrfs_dec_nocow_writers() later.
313  *
314  *          Or NULL if we can not do a NOCOW write
315  */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317                                                   u64 bytenr)
318 {
319         struct btrfs_block_group *bg;
320         bool can_nocow = true;
321 
322         bg = btrfs_lookup_block_group(fs_info, bytenr);
323         if (!bg)
324                 return NULL;
325 
326         spin_lock(&bg->lock);
327         if (bg->ro)
328                 can_nocow = false;
329         else
330                 atomic_inc(&bg->nocow_writers);
331         spin_unlock(&bg->lock);
332 
333         if (!can_nocow) {
334                 btrfs_put_block_group(bg);
335                 return NULL;
336         }
337 
338         /* No put on block group, done by btrfs_dec_nocow_writers(). */
339         return bg;
340 }
341 
342 /*
343  * Decrement the number of NOCOW writers in a block group.
344  *
345  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346  * and on the block group returned by that call. Typically this is called after
347  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348  * relocation.
349  *
350  * After this call, the caller should not use the block group anymore. It it wants
351  * to use it, then it should get a reference on it before calling this function.
352  */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355         if (atomic_dec_and_test(&bg->nocow_writers))
356                 wake_up_var(&bg->nocow_writers);
357 
358         /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359         btrfs_put_block_group(bg);
360 }
361 
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366 
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368                                         const u64 start)
369 {
370         struct btrfs_block_group *bg;
371 
372         bg = btrfs_lookup_block_group(fs_info, start);
373         ASSERT(bg);
374         if (atomic_dec_and_test(&bg->reservations))
375                 wake_up_var(&bg->reservations);
376         btrfs_put_block_group(bg);
377 }
378 
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381         struct btrfs_space_info *space_info = bg->space_info;
382 
383         ASSERT(bg->ro);
384 
385         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386                 return;
387 
388         /*
389          * Our block group is read only but before we set it to read only,
390          * some task might have had allocated an extent from it already, but it
391          * has not yet created a respective ordered extent (and added it to a
392          * root's list of ordered extents).
393          * Therefore wait for any task currently allocating extents, since the
394          * block group's reservations counter is incremented while a read lock
395          * on the groups' semaphore is held and decremented after releasing
396          * the read access on that semaphore and creating the ordered extent.
397          */
398         down_write(&space_info->groups_sem);
399         up_write(&space_info->groups_sem);
400 
401         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403 
404 struct btrfs_caching_control *btrfs_get_caching_control(
405                 struct btrfs_block_group *cache)
406 {
407         struct btrfs_caching_control *ctl;
408 
409         spin_lock(&cache->lock);
410         if (!cache->caching_ctl) {
411                 spin_unlock(&cache->lock);
412                 return NULL;
413         }
414 
415         ctl = cache->caching_ctl;
416         refcount_inc(&ctl->count);
417         spin_unlock(&cache->lock);
418         return ctl;
419 }
420 
421 static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423         if (refcount_dec_and_test(&ctl->count))
424                 kfree(ctl);
425 }
426 
427 /*
428  * When we wait for progress in the block group caching, its because our
429  * allocation attempt failed at least once.  So, we must sleep and let some
430  * progress happen before we try again.
431  *
432  * This function will sleep at least once waiting for new free space to show
433  * up, and then it will check the block group free space numbers for our min
434  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
435  * a free extent of a given size, but this is a good start.
436  *
437  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438  * any of the information in this block group.
439  */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441                                            u64 num_bytes)
442 {
443         struct btrfs_caching_control *caching_ctl;
444         int progress;
445 
446         caching_ctl = btrfs_get_caching_control(cache);
447         if (!caching_ctl)
448                 return;
449 
450         /*
451          * We've already failed to allocate from this block group, so even if
452          * there's enough space in the block group it isn't contiguous enough to
453          * allow for an allocation, so wait for at least the next wakeup tick,
454          * or for the thing to be done.
455          */
456         progress = atomic_read(&caching_ctl->progress);
457 
458         wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459                    (progress != atomic_read(&caching_ctl->progress) &&
460                     (cache->free_space_ctl->free_space >= num_bytes)));
461 
462         btrfs_put_caching_control(caching_ctl);
463 }
464 
465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466                                        struct btrfs_caching_control *caching_ctl)
467 {
468         wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469         return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471 
472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474         struct btrfs_caching_control *caching_ctl;
475         int ret;
476 
477         caching_ctl = btrfs_get_caching_control(cache);
478         if (!caching_ctl)
479                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480         ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481         btrfs_put_caching_control(caching_ctl);
482         return ret;
483 }
484 
485 #ifdef CONFIG_BTRFS_DEBUG
486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488         struct btrfs_fs_info *fs_info = block_group->fs_info;
489         u64 start = block_group->start;
490         u64 len = block_group->length;
491         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492                 fs_info->nodesize : fs_info->sectorsize;
493         u64 step = chunk << 1;
494 
495         while (len > chunk) {
496                 btrfs_remove_free_space(block_group, start, chunk);
497                 start += step;
498                 if (len < step)
499                         len = 0;
500                 else
501                         len -= step;
502         }
503 }
504 #endif
505 
506 /*
507  * Add a free space range to the in memory free space cache of a block group.
508  * This checks if the range contains super block locations and any such
509  * locations are not added to the free space cache.
510  *
511  * @block_group:      The target block group.
512  * @start:            Start offset of the range.
513  * @end:              End offset of the range (exclusive).
514  * @total_added_ret:  Optional pointer to return the total amount of space
515  *                    added to the block group's free space cache.
516  *
517  * Returns 0 on success or < 0 on error.
518  */
519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520                              u64 end, u64 *total_added_ret)
521 {
522         struct btrfs_fs_info *info = block_group->fs_info;
523         u64 extent_start, extent_end, size;
524         int ret;
525 
526         if (total_added_ret)
527                 *total_added_ret = 0;
528 
529         while (start < end) {
530                 if (!find_first_extent_bit(&info->excluded_extents, start,
531                                            &extent_start, &extent_end,
532                                            EXTENT_DIRTY | EXTENT_UPTODATE,
533                                            NULL))
534                         break;
535 
536                 if (extent_start <= start) {
537                         start = extent_end + 1;
538                 } else if (extent_start > start && extent_start < end) {
539                         size = extent_start - start;
540                         ret = btrfs_add_free_space_async_trimmed(block_group,
541                                                                  start, size);
542                         if (ret)
543                                 return ret;
544                         if (total_added_ret)
545                                 *total_added_ret += size;
546                         start = extent_end + 1;
547                 } else {
548                         break;
549                 }
550         }
551 
552         if (start < end) {
553                 size = end - start;
554                 ret = btrfs_add_free_space_async_trimmed(block_group, start,
555                                                          size);
556                 if (ret)
557                         return ret;
558                 if (total_added_ret)
559                         *total_added_ret += size;
560         }
561 
562         return 0;
563 }
564 
565 /*
566  * Get an arbitrary extent item index / max_index through the block group
567  *
568  * @block_group   the block group to sample from
569  * @index:        the integral step through the block group to grab from
570  * @max_index:    the granularity of the sampling
571  * @key:          return value parameter for the item we find
572  *
573  * Pre-conditions on indices:
574  * 0 <= index <= max_index
575  * 0 < max_index
576  *
577  * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578  * error code on error.
579  */
580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581                                           struct btrfs_block_group *block_group,
582                                           int index, int max_index,
583                                           struct btrfs_key *found_key)
584 {
585         struct btrfs_fs_info *fs_info = block_group->fs_info;
586         struct btrfs_root *extent_root;
587         u64 search_offset;
588         u64 search_end = block_group->start + block_group->length;
589         struct btrfs_path *path;
590         struct btrfs_key search_key;
591         int ret = 0;
592 
593         ASSERT(index >= 0);
594         ASSERT(index <= max_index);
595         ASSERT(max_index > 0);
596         lockdep_assert_held(&caching_ctl->mutex);
597         lockdep_assert_held_read(&fs_info->commit_root_sem);
598 
599         path = btrfs_alloc_path();
600         if (!path)
601                 return -ENOMEM;
602 
603         extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604                                                        BTRFS_SUPER_INFO_OFFSET));
605 
606         path->skip_locking = 1;
607         path->search_commit_root = 1;
608         path->reada = READA_FORWARD;
609 
610         search_offset = index * div_u64(block_group->length, max_index);
611         search_key.objectid = block_group->start + search_offset;
612         search_key.type = BTRFS_EXTENT_ITEM_KEY;
613         search_key.offset = 0;
614 
615         btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616                 /* Success; sampled an extent item in the block group */
617                 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618                     found_key->objectid >= block_group->start &&
619                     found_key->objectid + found_key->offset <= search_end)
620                         break;
621 
622                 /* We can't possibly find a valid extent item anymore */
623                 if (found_key->objectid >= search_end) {
624                         ret = 1;
625                         break;
626                 }
627         }
628 
629         lockdep_assert_held(&caching_ctl->mutex);
630         lockdep_assert_held_read(&fs_info->commit_root_sem);
631         btrfs_free_path(path);
632         return ret;
633 }
634 
635 /*
636  * Best effort attempt to compute a block group's size class while caching it.
637  *
638  * @block_group: the block group we are caching
639  *
640  * We cannot infer the size class while adding free space extents, because that
641  * logic doesn't care about contiguous file extents (it doesn't differentiate
642  * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643  * file extent items. Reading all of them is quite wasteful, because usually
644  * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645  * them at even steps through the block group and pick the smallest size class
646  * we see. Since size class is best effort, and not guaranteed in general,
647  * inaccuracy is acceptable.
648  *
649  * To be more explicit about why this algorithm makes sense:
650  *
651  * If we are caching in a block group from disk, then there are three major cases
652  * to consider:
653  * 1. the block group is well behaved and all extents in it are the same size
654  *    class.
655  * 2. the block group is mostly one size class with rare exceptions for last
656  *    ditch allocations
657  * 3. the block group was populated before size classes and can have a totally
658  *    arbitrary mix of size classes.
659  *
660  * In case 1, looking at any extent in the block group will yield the correct
661  * result. For the mixed cases, taking the minimum size class seems like a good
662  * approximation, since gaps from frees will be usable to the size class. For
663  * 2., a small handful of file extents is likely to yield the right answer. For
664  * 3, we can either read every file extent, or admit that this is best effort
665  * anyway and try to stay fast.
666  *
667  * Returns: 0 on success, negative error code on error.
668  */
669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670                                        struct btrfs_block_group *block_group)
671 {
672         struct btrfs_fs_info *fs_info = block_group->fs_info;
673         struct btrfs_key key;
674         int i;
675         u64 min_size = block_group->length;
676         enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677         int ret;
678 
679         if (!btrfs_block_group_should_use_size_class(block_group))
680                 return 0;
681 
682         lockdep_assert_held(&caching_ctl->mutex);
683         lockdep_assert_held_read(&fs_info->commit_root_sem);
684         for (i = 0; i < 5; ++i) {
685                 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686                 if (ret < 0)
687                         goto out;
688                 if (ret > 0)
689                         continue;
690                 min_size = min_t(u64, min_size, key.offset);
691                 size_class = btrfs_calc_block_group_size_class(min_size);
692         }
693         if (size_class != BTRFS_BG_SZ_NONE) {
694                 spin_lock(&block_group->lock);
695                 block_group->size_class = size_class;
696                 spin_unlock(&block_group->lock);
697         }
698 out:
699         return ret;
700 }
701 
702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704         struct btrfs_block_group *block_group = caching_ctl->block_group;
705         struct btrfs_fs_info *fs_info = block_group->fs_info;
706         struct btrfs_root *extent_root;
707         struct btrfs_path *path;
708         struct extent_buffer *leaf;
709         struct btrfs_key key;
710         u64 total_found = 0;
711         u64 last = 0;
712         u32 nritems;
713         int ret;
714         bool wakeup = true;
715 
716         path = btrfs_alloc_path();
717         if (!path)
718                 return -ENOMEM;
719 
720         last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721         extent_root = btrfs_extent_root(fs_info, last);
722 
723 #ifdef CONFIG_BTRFS_DEBUG
724         /*
725          * If we're fragmenting we don't want to make anybody think we can
726          * allocate from this block group until we've had a chance to fragment
727          * the free space.
728          */
729         if (btrfs_should_fragment_free_space(block_group))
730                 wakeup = false;
731 #endif
732         /*
733          * We don't want to deadlock with somebody trying to allocate a new
734          * extent for the extent root while also trying to search the extent
735          * root to add free space.  So we skip locking and search the commit
736          * root, since its read-only
737          */
738         path->skip_locking = 1;
739         path->search_commit_root = 1;
740         path->reada = READA_FORWARD;
741 
742         key.objectid = last;
743         key.offset = 0;
744         key.type = BTRFS_EXTENT_ITEM_KEY;
745 
746 next:
747         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748         if (ret < 0)
749                 goto out;
750 
751         leaf = path->nodes[0];
752         nritems = btrfs_header_nritems(leaf);
753 
754         while (1) {
755                 if (btrfs_fs_closing(fs_info) > 1) {
756                         last = (u64)-1;
757                         break;
758                 }
759 
760                 if (path->slots[0] < nritems) {
761                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762                 } else {
763                         ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764                         if (ret)
765                                 break;
766 
767                         if (need_resched() ||
768                             rwsem_is_contended(&fs_info->commit_root_sem)) {
769                                 btrfs_release_path(path);
770                                 up_read(&fs_info->commit_root_sem);
771                                 mutex_unlock(&caching_ctl->mutex);
772                                 cond_resched();
773                                 mutex_lock(&caching_ctl->mutex);
774                                 down_read(&fs_info->commit_root_sem);
775                                 goto next;
776                         }
777 
778                         ret = btrfs_next_leaf(extent_root, path);
779                         if (ret < 0)
780                                 goto out;
781                         if (ret)
782                                 break;
783                         leaf = path->nodes[0];
784                         nritems = btrfs_header_nritems(leaf);
785                         continue;
786                 }
787 
788                 if (key.objectid < last) {
789                         key.objectid = last;
790                         key.offset = 0;
791                         key.type = BTRFS_EXTENT_ITEM_KEY;
792                         btrfs_release_path(path);
793                         goto next;
794                 }
795 
796                 if (key.objectid < block_group->start) {
797                         path->slots[0]++;
798                         continue;
799                 }
800 
801                 if (key.objectid >= block_group->start + block_group->length)
802                         break;
803 
804                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805                     key.type == BTRFS_METADATA_ITEM_KEY) {
806                         u64 space_added;
807 
808                         ret = btrfs_add_new_free_space(block_group, last,
809                                                        key.objectid, &space_added);
810                         if (ret)
811                                 goto out;
812                         total_found += space_added;
813                         if (key.type == BTRFS_METADATA_ITEM_KEY)
814                                 last = key.objectid +
815                                         fs_info->nodesize;
816                         else
817                                 last = key.objectid + key.offset;
818 
819                         if (total_found > CACHING_CTL_WAKE_UP) {
820                                 total_found = 0;
821                                 if (wakeup) {
822                                         atomic_inc(&caching_ctl->progress);
823                                         wake_up(&caching_ctl->wait);
824                                 }
825                         }
826                 }
827                 path->slots[0]++;
828         }
829 
830         ret = btrfs_add_new_free_space(block_group, last,
831                                        block_group->start + block_group->length,
832                                        NULL);
833 out:
834         btrfs_free_path(path);
835         return ret;
836 }
837 
838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840         clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841                           bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843 
844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846         struct btrfs_block_group *block_group;
847         struct btrfs_fs_info *fs_info;
848         struct btrfs_caching_control *caching_ctl;
849         int ret;
850 
851         caching_ctl = container_of(work, struct btrfs_caching_control, work);
852         block_group = caching_ctl->block_group;
853         fs_info = block_group->fs_info;
854 
855         mutex_lock(&caching_ctl->mutex);
856         down_read(&fs_info->commit_root_sem);
857 
858         load_block_group_size_class(caching_ctl, block_group);
859         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860                 ret = load_free_space_cache(block_group);
861                 if (ret == 1) {
862                         ret = 0;
863                         goto done;
864                 }
865 
866                 /*
867                  * We failed to load the space cache, set ourselves to
868                  * CACHE_STARTED and carry on.
869                  */
870                 spin_lock(&block_group->lock);
871                 block_group->cached = BTRFS_CACHE_STARTED;
872                 spin_unlock(&block_group->lock);
873                 wake_up(&caching_ctl->wait);
874         }
875 
876         /*
877          * If we are in the transaction that populated the free space tree we
878          * can't actually cache from the free space tree as our commit root and
879          * real root are the same, so we could change the contents of the blocks
880          * while caching.  Instead do the slow caching in this case, and after
881          * the transaction has committed we will be safe.
882          */
883         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884             !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885                 ret = load_free_space_tree(caching_ctl);
886         else
887                 ret = load_extent_tree_free(caching_ctl);
888 done:
889         spin_lock(&block_group->lock);
890         block_group->caching_ctl = NULL;
891         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892         spin_unlock(&block_group->lock);
893 
894 #ifdef CONFIG_BTRFS_DEBUG
895         if (btrfs_should_fragment_free_space(block_group)) {
896                 u64 bytes_used;
897 
898                 spin_lock(&block_group->space_info->lock);
899                 spin_lock(&block_group->lock);
900                 bytes_used = block_group->length - block_group->used;
901                 block_group->space_info->bytes_used += bytes_used >> 1;
902                 spin_unlock(&block_group->lock);
903                 spin_unlock(&block_group->space_info->lock);
904                 fragment_free_space(block_group);
905         }
906 #endif
907 
908         up_read(&fs_info->commit_root_sem);
909         btrfs_free_excluded_extents(block_group);
910         mutex_unlock(&caching_ctl->mutex);
911 
912         wake_up(&caching_ctl->wait);
913 
914         btrfs_put_caching_control(caching_ctl);
915         btrfs_put_block_group(block_group);
916 }
917 
918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920         struct btrfs_fs_info *fs_info = cache->fs_info;
921         struct btrfs_caching_control *caching_ctl = NULL;
922         int ret = 0;
923 
924         /* Allocator for zoned filesystems does not use the cache at all */
925         if (btrfs_is_zoned(fs_info))
926                 return 0;
927 
928         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929         if (!caching_ctl)
930                 return -ENOMEM;
931 
932         INIT_LIST_HEAD(&caching_ctl->list);
933         mutex_init(&caching_ctl->mutex);
934         init_waitqueue_head(&caching_ctl->wait);
935         caching_ctl->block_group = cache;
936         refcount_set(&caching_ctl->count, 2);
937         atomic_set(&caching_ctl->progress, 0);
938         btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
939 
940         spin_lock(&cache->lock);
941         if (cache->cached != BTRFS_CACHE_NO) {
942                 kfree(caching_ctl);
943 
944                 caching_ctl = cache->caching_ctl;
945                 if (caching_ctl)
946                         refcount_inc(&caching_ctl->count);
947                 spin_unlock(&cache->lock);
948                 goto out;
949         }
950         WARN_ON(cache->caching_ctl);
951         cache->caching_ctl = caching_ctl;
952         cache->cached = BTRFS_CACHE_STARTED;
953         spin_unlock(&cache->lock);
954 
955         write_lock(&fs_info->block_group_cache_lock);
956         refcount_inc(&caching_ctl->count);
957         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958         write_unlock(&fs_info->block_group_cache_lock);
959 
960         btrfs_get_block_group(cache);
961 
962         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964         if (wait && caching_ctl)
965                 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966         if (caching_ctl)
967                 btrfs_put_caching_control(caching_ctl);
968 
969         return ret;
970 }
971 
972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974         u64 extra_flags = chunk_to_extended(flags) &
975                                 BTRFS_EXTENDED_PROFILE_MASK;
976 
977         write_seqlock(&fs_info->profiles_lock);
978         if (flags & BTRFS_BLOCK_GROUP_DATA)
979                 fs_info->avail_data_alloc_bits &= ~extra_flags;
980         if (flags & BTRFS_BLOCK_GROUP_METADATA)
981                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983                 fs_info->avail_system_alloc_bits &= ~extra_flags;
984         write_sequnlock(&fs_info->profiles_lock);
985 }
986 
987 /*
988  * Clear incompat bits for the following feature(s):
989  *
990  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991  *            in the whole filesystem
992  *
993  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994  */
995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997         bool found_raid56 = false;
998         bool found_raid1c34 = false;
999 
1000         if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001             (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002             (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003                 struct list_head *head = &fs_info->space_info;
1004                 struct btrfs_space_info *sinfo;
1005 
1006                 list_for_each_entry_rcu(sinfo, head, list) {
1007                         down_read(&sinfo->groups_sem);
1008                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009                                 found_raid56 = true;
1010                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011                                 found_raid56 = true;
1012                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013                                 found_raid1c34 = true;
1014                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015                                 found_raid1c34 = true;
1016                         up_read(&sinfo->groups_sem);
1017                 }
1018                 if (!found_raid56)
1019                         btrfs_clear_fs_incompat(fs_info, RAID56);
1020                 if (!found_raid1c34)
1021                         btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022         }
1023 }
1024 
1025 static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1026 {
1027         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1028                 return fs_info->block_group_root;
1029         return btrfs_extent_root(fs_info, 0);
1030 }
1031 
1032 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1033                                    struct btrfs_path *path,
1034                                    struct btrfs_block_group *block_group)
1035 {
1036         struct btrfs_fs_info *fs_info = trans->fs_info;
1037         struct btrfs_root *root;
1038         struct btrfs_key key;
1039         int ret;
1040 
1041         root = btrfs_block_group_root(fs_info);
1042         key.objectid = block_group->start;
1043         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1044         key.offset = block_group->length;
1045 
1046         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1047         if (ret > 0)
1048                 ret = -ENOENT;
1049         if (ret < 0)
1050                 return ret;
1051 
1052         ret = btrfs_del_item(trans, root, path);
1053         return ret;
1054 }
1055 
1056 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1057                              struct btrfs_chunk_map *map)
1058 {
1059         struct btrfs_fs_info *fs_info = trans->fs_info;
1060         struct btrfs_path *path;
1061         struct btrfs_block_group *block_group;
1062         struct btrfs_free_cluster *cluster;
1063         struct inode *inode;
1064         struct kobject *kobj = NULL;
1065         int ret;
1066         int index;
1067         int factor;
1068         struct btrfs_caching_control *caching_ctl = NULL;
1069         bool remove_map;
1070         bool remove_rsv = false;
1071 
1072         block_group = btrfs_lookup_block_group(fs_info, map->start);
1073         if (!block_group)
1074                 return -ENOENT;
1075 
1076         BUG_ON(!block_group->ro);
1077 
1078         trace_btrfs_remove_block_group(block_group);
1079         /*
1080          * Free the reserved super bytes from this block group before
1081          * remove it.
1082          */
1083         btrfs_free_excluded_extents(block_group);
1084         btrfs_free_ref_tree_range(fs_info, block_group->start,
1085                                   block_group->length);
1086 
1087         index = btrfs_bg_flags_to_raid_index(block_group->flags);
1088         factor = btrfs_bg_type_to_factor(block_group->flags);
1089 
1090         /* make sure this block group isn't part of an allocation cluster */
1091         cluster = &fs_info->data_alloc_cluster;
1092         spin_lock(&cluster->refill_lock);
1093         btrfs_return_cluster_to_free_space(block_group, cluster);
1094         spin_unlock(&cluster->refill_lock);
1095 
1096         /*
1097          * make sure this block group isn't part of a metadata
1098          * allocation cluster
1099          */
1100         cluster = &fs_info->meta_alloc_cluster;
1101         spin_lock(&cluster->refill_lock);
1102         btrfs_return_cluster_to_free_space(block_group, cluster);
1103         spin_unlock(&cluster->refill_lock);
1104 
1105         btrfs_clear_treelog_bg(block_group);
1106         btrfs_clear_data_reloc_bg(block_group);
1107 
1108         path = btrfs_alloc_path();
1109         if (!path) {
1110                 ret = -ENOMEM;
1111                 goto out;
1112         }
1113 
1114         /*
1115          * get the inode first so any iput calls done for the io_list
1116          * aren't the final iput (no unlinks allowed now)
1117          */
1118         inode = lookup_free_space_inode(block_group, path);
1119 
1120         mutex_lock(&trans->transaction->cache_write_mutex);
1121         /*
1122          * Make sure our free space cache IO is done before removing the
1123          * free space inode
1124          */
1125         spin_lock(&trans->transaction->dirty_bgs_lock);
1126         if (!list_empty(&block_group->io_list)) {
1127                 list_del_init(&block_group->io_list);
1128 
1129                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1130 
1131                 spin_unlock(&trans->transaction->dirty_bgs_lock);
1132                 btrfs_wait_cache_io(trans, block_group, path);
1133                 btrfs_put_block_group(block_group);
1134                 spin_lock(&trans->transaction->dirty_bgs_lock);
1135         }
1136 
1137         if (!list_empty(&block_group->dirty_list)) {
1138                 list_del_init(&block_group->dirty_list);
1139                 remove_rsv = true;
1140                 btrfs_put_block_group(block_group);
1141         }
1142         spin_unlock(&trans->transaction->dirty_bgs_lock);
1143         mutex_unlock(&trans->transaction->cache_write_mutex);
1144 
1145         ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1146         if (ret)
1147                 goto out;
1148 
1149         write_lock(&fs_info->block_group_cache_lock);
1150         rb_erase_cached(&block_group->cache_node,
1151                         &fs_info->block_group_cache_tree);
1152         RB_CLEAR_NODE(&block_group->cache_node);
1153 
1154         /* Once for the block groups rbtree */
1155         btrfs_put_block_group(block_group);
1156 
1157         write_unlock(&fs_info->block_group_cache_lock);
1158 
1159         down_write(&block_group->space_info->groups_sem);
1160         /*
1161          * we must use list_del_init so people can check to see if they
1162          * are still on the list after taking the semaphore
1163          */
1164         list_del_init(&block_group->list);
1165         if (list_empty(&block_group->space_info->block_groups[index])) {
1166                 kobj = block_group->space_info->block_group_kobjs[index];
1167                 block_group->space_info->block_group_kobjs[index] = NULL;
1168                 clear_avail_alloc_bits(fs_info, block_group->flags);
1169         }
1170         up_write(&block_group->space_info->groups_sem);
1171         clear_incompat_bg_bits(fs_info, block_group->flags);
1172         if (kobj) {
1173                 kobject_del(kobj);
1174                 kobject_put(kobj);
1175         }
1176 
1177         if (block_group->cached == BTRFS_CACHE_STARTED)
1178                 btrfs_wait_block_group_cache_done(block_group);
1179 
1180         write_lock(&fs_info->block_group_cache_lock);
1181         caching_ctl = btrfs_get_caching_control(block_group);
1182         if (!caching_ctl) {
1183                 struct btrfs_caching_control *ctl;
1184 
1185                 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1186                         if (ctl->block_group == block_group) {
1187                                 caching_ctl = ctl;
1188                                 refcount_inc(&caching_ctl->count);
1189                                 break;
1190                         }
1191                 }
1192         }
1193         if (caching_ctl)
1194                 list_del_init(&caching_ctl->list);
1195         write_unlock(&fs_info->block_group_cache_lock);
1196 
1197         if (caching_ctl) {
1198                 /* Once for the caching bgs list and once for us. */
1199                 btrfs_put_caching_control(caching_ctl);
1200                 btrfs_put_caching_control(caching_ctl);
1201         }
1202 
1203         spin_lock(&trans->transaction->dirty_bgs_lock);
1204         WARN_ON(!list_empty(&block_group->dirty_list));
1205         WARN_ON(!list_empty(&block_group->io_list));
1206         spin_unlock(&trans->transaction->dirty_bgs_lock);
1207 
1208         btrfs_remove_free_space_cache(block_group);
1209 
1210         spin_lock(&block_group->space_info->lock);
1211         list_del_init(&block_group->ro_list);
1212 
1213         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1214                 WARN_ON(block_group->space_info->total_bytes
1215                         < block_group->length);
1216                 WARN_ON(block_group->space_info->bytes_readonly
1217                         < block_group->length - block_group->zone_unusable);
1218                 WARN_ON(block_group->space_info->bytes_zone_unusable
1219                         < block_group->zone_unusable);
1220                 WARN_ON(block_group->space_info->disk_total
1221                         < block_group->length * factor);
1222         }
1223         block_group->space_info->total_bytes -= block_group->length;
1224         block_group->space_info->bytes_readonly -=
1225                 (block_group->length - block_group->zone_unusable);
1226         btrfs_space_info_update_bytes_zone_unusable(fs_info, block_group->space_info,
1227                                                     -block_group->zone_unusable);
1228         block_group->space_info->disk_total -= block_group->length * factor;
1229 
1230         spin_unlock(&block_group->space_info->lock);
1231 
1232         /*
1233          * Remove the free space for the block group from the free space tree
1234          * and the block group's item from the extent tree before marking the
1235          * block group as removed. This is to prevent races with tasks that
1236          * freeze and unfreeze a block group, this task and another task
1237          * allocating a new block group - the unfreeze task ends up removing
1238          * the block group's extent map before the task calling this function
1239          * deletes the block group item from the extent tree, allowing for
1240          * another task to attempt to create another block group with the same
1241          * item key (and failing with -EEXIST and a transaction abort).
1242          */
1243         ret = remove_block_group_free_space(trans, block_group);
1244         if (ret)
1245                 goto out;
1246 
1247         ret = remove_block_group_item(trans, path, block_group);
1248         if (ret < 0)
1249                 goto out;
1250 
1251         spin_lock(&block_group->lock);
1252         set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1253 
1254         /*
1255          * At this point trimming or scrub can't start on this block group,
1256          * because we removed the block group from the rbtree
1257          * fs_info->block_group_cache_tree so no one can't find it anymore and
1258          * even if someone already got this block group before we removed it
1259          * from the rbtree, they have already incremented block_group->frozen -
1260          * if they didn't, for the trimming case they won't find any free space
1261          * entries because we already removed them all when we called
1262          * btrfs_remove_free_space_cache().
1263          *
1264          * And we must not remove the chunk map from the fs_info->mapping_tree
1265          * to prevent the same logical address range and physical device space
1266          * ranges from being reused for a new block group. This is needed to
1267          * avoid races with trimming and scrub.
1268          *
1269          * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1270          * completely transactionless, so while it is trimming a range the
1271          * currently running transaction might finish and a new one start,
1272          * allowing for new block groups to be created that can reuse the same
1273          * physical device locations unless we take this special care.
1274          *
1275          * There may also be an implicit trim operation if the file system
1276          * is mounted with -odiscard. The same protections must remain
1277          * in place until the extents have been discarded completely when
1278          * the transaction commit has completed.
1279          */
1280         remove_map = (atomic_read(&block_group->frozen) == 0);
1281         spin_unlock(&block_group->lock);
1282 
1283         if (remove_map)
1284                 btrfs_remove_chunk_map(fs_info, map);
1285 
1286 out:
1287         /* Once for the lookup reference */
1288         btrfs_put_block_group(block_group);
1289         if (remove_rsv)
1290                 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1291         btrfs_free_path(path);
1292         return ret;
1293 }
1294 
1295 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1296                 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1297 {
1298         struct btrfs_root *root = btrfs_block_group_root(fs_info);
1299         struct btrfs_chunk_map *map;
1300         unsigned int num_items;
1301 
1302         map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1303         ASSERT(map != NULL);
1304         ASSERT(map->start == chunk_offset);
1305 
1306         /*
1307          * We need to reserve 3 + N units from the metadata space info in order
1308          * to remove a block group (done at btrfs_remove_chunk() and at
1309          * btrfs_remove_block_group()), which are used for:
1310          *
1311          * 1 unit for adding the free space inode's orphan (located in the tree
1312          * of tree roots).
1313          * 1 unit for deleting the block group item (located in the extent
1314          * tree).
1315          * 1 unit for deleting the free space item (located in tree of tree
1316          * roots).
1317          * N units for deleting N device extent items corresponding to each
1318          * stripe (located in the device tree).
1319          *
1320          * In order to remove a block group we also need to reserve units in the
1321          * system space info in order to update the chunk tree (update one or
1322          * more device items and remove one chunk item), but this is done at
1323          * btrfs_remove_chunk() through a call to check_system_chunk().
1324          */
1325         num_items = 3 + map->num_stripes;
1326         btrfs_free_chunk_map(map);
1327 
1328         return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1329 }
1330 
1331 /*
1332  * Mark block group @cache read-only, so later write won't happen to block
1333  * group @cache.
1334  *
1335  * If @force is not set, this function will only mark the block group readonly
1336  * if we have enough free space (1M) in other metadata/system block groups.
1337  * If @force is not set, this function will mark the block group readonly
1338  * without checking free space.
1339  *
1340  * NOTE: This function doesn't care if other block groups can contain all the
1341  * data in this block group. That check should be done by relocation routine,
1342  * not this function.
1343  */
1344 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1345 {
1346         struct btrfs_space_info *sinfo = cache->space_info;
1347         u64 num_bytes;
1348         int ret = -ENOSPC;
1349 
1350         spin_lock(&sinfo->lock);
1351         spin_lock(&cache->lock);
1352 
1353         if (cache->swap_extents) {
1354                 ret = -ETXTBSY;
1355                 goto out;
1356         }
1357 
1358         if (cache->ro) {
1359                 cache->ro++;
1360                 ret = 0;
1361                 goto out;
1362         }
1363 
1364         num_bytes = cache->length - cache->reserved - cache->pinned -
1365                     cache->bytes_super - cache->zone_unusable - cache->used;
1366 
1367         /*
1368          * Data never overcommits, even in mixed mode, so do just the straight
1369          * check of left over space in how much we have allocated.
1370          */
1371         if (force) {
1372                 ret = 0;
1373         } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1374                 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1375 
1376                 /*
1377                  * Here we make sure if we mark this bg RO, we still have enough
1378                  * free space as buffer.
1379                  */
1380                 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1381                         ret = 0;
1382         } else {
1383                 /*
1384                  * We overcommit metadata, so we need to do the
1385                  * btrfs_can_overcommit check here, and we need to pass in
1386                  * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1387                  * leeway to allow us to mark this block group as read only.
1388                  */
1389                 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1390                                          BTRFS_RESERVE_NO_FLUSH))
1391                         ret = 0;
1392         }
1393 
1394         if (!ret) {
1395                 sinfo->bytes_readonly += num_bytes;
1396                 if (btrfs_is_zoned(cache->fs_info)) {
1397                         /* Migrate zone_unusable bytes to readonly */
1398                         sinfo->bytes_readonly += cache->zone_unusable;
1399                         btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
1400                                                                     -cache->zone_unusable);
1401                         cache->zone_unusable = 0;
1402                 }
1403                 cache->ro++;
1404                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1405         }
1406 out:
1407         spin_unlock(&cache->lock);
1408         spin_unlock(&sinfo->lock);
1409         if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1410                 btrfs_info(cache->fs_info,
1411                         "unable to make block group %llu ro", cache->start);
1412                 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1413         }
1414         return ret;
1415 }
1416 
1417 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1418                                  struct btrfs_block_group *bg)
1419 {
1420         struct btrfs_fs_info *fs_info = bg->fs_info;
1421         struct btrfs_transaction *prev_trans = NULL;
1422         const u64 start = bg->start;
1423         const u64 end = start + bg->length - 1;
1424         int ret;
1425 
1426         spin_lock(&fs_info->trans_lock);
1427         if (trans->transaction->list.prev != &fs_info->trans_list) {
1428                 prev_trans = list_last_entry(&trans->transaction->list,
1429                                              struct btrfs_transaction, list);
1430                 refcount_inc(&prev_trans->use_count);
1431         }
1432         spin_unlock(&fs_info->trans_lock);
1433 
1434         /*
1435          * Hold the unused_bg_unpin_mutex lock to avoid racing with
1436          * btrfs_finish_extent_commit(). If we are at transaction N, another
1437          * task might be running finish_extent_commit() for the previous
1438          * transaction N - 1, and have seen a range belonging to the block
1439          * group in pinned_extents before we were able to clear the whole block
1440          * group range from pinned_extents. This means that task can lookup for
1441          * the block group after we unpinned it from pinned_extents and removed
1442          * it, leading to an error at unpin_extent_range().
1443          */
1444         mutex_lock(&fs_info->unused_bg_unpin_mutex);
1445         if (prev_trans) {
1446                 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1447                                         EXTENT_DIRTY);
1448                 if (ret)
1449                         goto out;
1450         }
1451 
1452         ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1453                                 EXTENT_DIRTY);
1454 out:
1455         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1456         if (prev_trans)
1457                 btrfs_put_transaction(prev_trans);
1458 
1459         return ret == 0;
1460 }
1461 
1462 /*
1463  * Process the unused_bgs list and remove any that don't have any allocated
1464  * space inside of them.
1465  */
1466 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1467 {
1468         LIST_HEAD(retry_list);
1469         struct btrfs_block_group *block_group;
1470         struct btrfs_space_info *space_info;
1471         struct btrfs_trans_handle *trans;
1472         const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1473         int ret = 0;
1474 
1475         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1476                 return;
1477 
1478         if (btrfs_fs_closing(fs_info))
1479                 return;
1480 
1481         /*
1482          * Long running balances can keep us blocked here for eternity, so
1483          * simply skip deletion if we're unable to get the mutex.
1484          */
1485         if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1486                 return;
1487 
1488         spin_lock(&fs_info->unused_bgs_lock);
1489         while (!list_empty(&fs_info->unused_bgs)) {
1490                 u64 used;
1491                 int trimming;
1492 
1493                 block_group = list_first_entry(&fs_info->unused_bgs,
1494                                                struct btrfs_block_group,
1495                                                bg_list);
1496                 list_del_init(&block_group->bg_list);
1497 
1498                 space_info = block_group->space_info;
1499 
1500                 if (ret || btrfs_mixed_space_info(space_info)) {
1501                         btrfs_put_block_group(block_group);
1502                         continue;
1503                 }
1504                 spin_unlock(&fs_info->unused_bgs_lock);
1505 
1506                 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1507 
1508                 /* Don't want to race with allocators so take the groups_sem */
1509                 down_write(&space_info->groups_sem);
1510 
1511                 /*
1512                  * Async discard moves the final block group discard to be prior
1513                  * to the unused_bgs code path.  Therefore, if it's not fully
1514                  * trimmed, punt it back to the async discard lists.
1515                  */
1516                 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1517                     !btrfs_is_free_space_trimmed(block_group)) {
1518                         trace_btrfs_skip_unused_block_group(block_group);
1519                         up_write(&space_info->groups_sem);
1520                         /* Requeue if we failed because of async discard */
1521                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1522                                                  block_group);
1523                         goto next;
1524                 }
1525 
1526                 spin_lock(&space_info->lock);
1527                 spin_lock(&block_group->lock);
1528                 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1529                     list_is_singular(&block_group->list)) {
1530                         /*
1531                          * We want to bail if we made new allocations or have
1532                          * outstanding allocations in this block group.  We do
1533                          * the ro check in case balance is currently acting on
1534                          * this block group.
1535                          *
1536                          * Also bail out if this is the only block group for its
1537                          * type, because otherwise we would lose profile
1538                          * information from fs_info->avail_*_alloc_bits and the
1539                          * next block group of this type would be created with a
1540                          * "single" profile (even if we're in a raid fs) because
1541                          * fs_info->avail_*_alloc_bits would be 0.
1542                          */
1543                         trace_btrfs_skip_unused_block_group(block_group);
1544                         spin_unlock(&block_group->lock);
1545                         spin_unlock(&space_info->lock);
1546                         up_write(&space_info->groups_sem);
1547                         goto next;
1548                 }
1549 
1550                 /*
1551                  * The block group may be unused but there may be space reserved
1552                  * accounting with the existence of that block group, that is,
1553                  * space_info->bytes_may_use was incremented by a task but no
1554                  * space was yet allocated from the block group by the task.
1555                  * That space may or may not be allocated, as we are generally
1556                  * pessimistic about space reservation for metadata as well as
1557                  * for data when using compression (as we reserve space based on
1558                  * the worst case, when data can't be compressed, and before
1559                  * actually attempting compression, before starting writeback).
1560                  *
1561                  * So check if the total space of the space_info minus the size
1562                  * of this block group is less than the used space of the
1563                  * space_info - if that's the case, then it means we have tasks
1564                  * that might be relying on the block group in order to allocate
1565                  * extents, and add back the block group to the unused list when
1566                  * we finish, so that we retry later in case no tasks ended up
1567                  * needing to allocate extents from the block group.
1568                  */
1569                 used = btrfs_space_info_used(space_info, true);
1570                 if (space_info->total_bytes - block_group->length < used &&
1571                     block_group->zone_unusable < block_group->length) {
1572                         /*
1573                          * Add a reference for the list, compensate for the ref
1574                          * drop under the "next" label for the
1575                          * fs_info->unused_bgs list.
1576                          */
1577                         btrfs_get_block_group(block_group);
1578                         list_add_tail(&block_group->bg_list, &retry_list);
1579 
1580                         trace_btrfs_skip_unused_block_group(block_group);
1581                         spin_unlock(&block_group->lock);
1582                         spin_unlock(&space_info->lock);
1583                         up_write(&space_info->groups_sem);
1584                         goto next;
1585                 }
1586 
1587                 spin_unlock(&block_group->lock);
1588                 spin_unlock(&space_info->lock);
1589 
1590                 /* We don't want to force the issue, only flip if it's ok. */
1591                 ret = inc_block_group_ro(block_group, 0);
1592                 up_write(&space_info->groups_sem);
1593                 if (ret < 0) {
1594                         ret = 0;
1595                         goto next;
1596                 }
1597 
1598                 ret = btrfs_zone_finish(block_group);
1599                 if (ret < 0) {
1600                         btrfs_dec_block_group_ro(block_group);
1601                         if (ret == -EAGAIN)
1602                                 ret = 0;
1603                         goto next;
1604                 }
1605 
1606                 /*
1607                  * Want to do this before we do anything else so we can recover
1608                  * properly if we fail to join the transaction.
1609                  */
1610                 trans = btrfs_start_trans_remove_block_group(fs_info,
1611                                                      block_group->start);
1612                 if (IS_ERR(trans)) {
1613                         btrfs_dec_block_group_ro(block_group);
1614                         ret = PTR_ERR(trans);
1615                         goto next;
1616                 }
1617 
1618                 /*
1619                  * We could have pending pinned extents for this block group,
1620                  * just delete them, we don't care about them anymore.
1621                  */
1622                 if (!clean_pinned_extents(trans, block_group)) {
1623                         btrfs_dec_block_group_ro(block_group);
1624                         goto end_trans;
1625                 }
1626 
1627                 /*
1628                  * At this point, the block_group is read only and should fail
1629                  * new allocations.  However, btrfs_finish_extent_commit() can
1630                  * cause this block_group to be placed back on the discard
1631                  * lists because now the block_group isn't fully discarded.
1632                  * Bail here and try again later after discarding everything.
1633                  */
1634                 spin_lock(&fs_info->discard_ctl.lock);
1635                 if (!list_empty(&block_group->discard_list)) {
1636                         spin_unlock(&fs_info->discard_ctl.lock);
1637                         btrfs_dec_block_group_ro(block_group);
1638                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1639                                                  block_group);
1640                         goto end_trans;
1641                 }
1642                 spin_unlock(&fs_info->discard_ctl.lock);
1643 
1644                 /* Reset pinned so btrfs_put_block_group doesn't complain */
1645                 spin_lock(&space_info->lock);
1646                 spin_lock(&block_group->lock);
1647 
1648                 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1649                                                      -block_group->pinned);
1650                 space_info->bytes_readonly += block_group->pinned;
1651                 block_group->pinned = 0;
1652 
1653                 spin_unlock(&block_group->lock);
1654                 spin_unlock(&space_info->lock);
1655 
1656                 /*
1657                  * The normal path here is an unused block group is passed here,
1658                  * then trimming is handled in the transaction commit path.
1659                  * Async discard interposes before this to do the trimming
1660                  * before coming down the unused block group path as trimming
1661                  * will no longer be done later in the transaction commit path.
1662                  */
1663                 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1664                         goto flip_async;
1665 
1666                 /*
1667                  * DISCARD can flip during remount. On zoned filesystems, we
1668                  * need to reset sequential-required zones.
1669                  */
1670                 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1671                                 btrfs_is_zoned(fs_info);
1672 
1673                 /* Implicit trim during transaction commit. */
1674                 if (trimming)
1675                         btrfs_freeze_block_group(block_group);
1676 
1677                 /*
1678                  * Btrfs_remove_chunk will abort the transaction if things go
1679                  * horribly wrong.
1680                  */
1681                 ret = btrfs_remove_chunk(trans, block_group->start);
1682 
1683                 if (ret) {
1684                         if (trimming)
1685                                 btrfs_unfreeze_block_group(block_group);
1686                         goto end_trans;
1687                 }
1688 
1689                 /*
1690                  * If we're not mounted with -odiscard, we can just forget
1691                  * about this block group. Otherwise we'll need to wait
1692                  * until transaction commit to do the actual discard.
1693                  */
1694                 if (trimming) {
1695                         spin_lock(&fs_info->unused_bgs_lock);
1696                         /*
1697                          * A concurrent scrub might have added us to the list
1698                          * fs_info->unused_bgs, so use a list_move operation
1699                          * to add the block group to the deleted_bgs list.
1700                          */
1701                         list_move(&block_group->bg_list,
1702                                   &trans->transaction->deleted_bgs);
1703                         spin_unlock(&fs_info->unused_bgs_lock);
1704                         btrfs_get_block_group(block_group);
1705                 }
1706 end_trans:
1707                 btrfs_end_transaction(trans);
1708 next:
1709                 btrfs_put_block_group(block_group);
1710                 spin_lock(&fs_info->unused_bgs_lock);
1711         }
1712         list_splice_tail(&retry_list, &fs_info->unused_bgs);
1713         spin_unlock(&fs_info->unused_bgs_lock);
1714         mutex_unlock(&fs_info->reclaim_bgs_lock);
1715         return;
1716 
1717 flip_async:
1718         btrfs_end_transaction(trans);
1719         spin_lock(&fs_info->unused_bgs_lock);
1720         list_splice_tail(&retry_list, &fs_info->unused_bgs);
1721         spin_unlock(&fs_info->unused_bgs_lock);
1722         mutex_unlock(&fs_info->reclaim_bgs_lock);
1723         btrfs_put_block_group(block_group);
1724         btrfs_discard_punt_unused_bgs_list(fs_info);
1725 }
1726 
1727 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1728 {
1729         struct btrfs_fs_info *fs_info = bg->fs_info;
1730 
1731         spin_lock(&fs_info->unused_bgs_lock);
1732         if (list_empty(&bg->bg_list)) {
1733                 btrfs_get_block_group(bg);
1734                 trace_btrfs_add_unused_block_group(bg);
1735                 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1736         } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1737                 /* Pull out the block group from the reclaim_bgs list. */
1738                 trace_btrfs_add_unused_block_group(bg);
1739                 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1740         }
1741         spin_unlock(&fs_info->unused_bgs_lock);
1742 }
1743 
1744 /*
1745  * We want block groups with a low number of used bytes to be in the beginning
1746  * of the list, so they will get reclaimed first.
1747  */
1748 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1749                            const struct list_head *b)
1750 {
1751         const struct btrfs_block_group *bg1, *bg2;
1752 
1753         bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1754         bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1755 
1756         return bg1->used > bg2->used;
1757 }
1758 
1759 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1760 {
1761         if (btrfs_is_zoned(fs_info))
1762                 return btrfs_zoned_should_reclaim(fs_info);
1763         return true;
1764 }
1765 
1766 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1767 {
1768         const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1769         u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1770         const u64 new_val = bg->used;
1771         const u64 old_val = new_val + bytes_freed;
1772 
1773         if (thresh_bytes == 0)
1774                 return false;
1775 
1776         /*
1777          * If we were below the threshold before don't reclaim, we are likely a
1778          * brand new block group and we don't want to relocate new block groups.
1779          */
1780         if (old_val < thresh_bytes)
1781                 return false;
1782         if (new_val >= thresh_bytes)
1783                 return false;
1784         return true;
1785 }
1786 
1787 void btrfs_reclaim_bgs_work(struct work_struct *work)
1788 {
1789         struct btrfs_fs_info *fs_info =
1790                 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1791         struct btrfs_block_group *bg;
1792         struct btrfs_space_info *space_info;
1793         LIST_HEAD(retry_list);
1794 
1795         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1796                 return;
1797 
1798         if (btrfs_fs_closing(fs_info))
1799                 return;
1800 
1801         if (!btrfs_should_reclaim(fs_info))
1802                 return;
1803 
1804         sb_start_write(fs_info->sb);
1805 
1806         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1807                 sb_end_write(fs_info->sb);
1808                 return;
1809         }
1810 
1811         /*
1812          * Long running balances can keep us blocked here for eternity, so
1813          * simply skip reclaim if we're unable to get the mutex.
1814          */
1815         if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1816                 btrfs_exclop_finish(fs_info);
1817                 sb_end_write(fs_info->sb);
1818                 return;
1819         }
1820 
1821         spin_lock(&fs_info->unused_bgs_lock);
1822         /*
1823          * Sort happens under lock because we can't simply splice it and sort.
1824          * The block groups might still be in use and reachable via bg_list,
1825          * and their presence in the reclaim_bgs list must be preserved.
1826          */
1827         list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1828         while (!list_empty(&fs_info->reclaim_bgs)) {
1829                 u64 zone_unusable;
1830                 u64 reclaimed;
1831                 int ret = 0;
1832 
1833                 bg = list_first_entry(&fs_info->reclaim_bgs,
1834                                       struct btrfs_block_group,
1835                                       bg_list);
1836                 list_del_init(&bg->bg_list);
1837 
1838                 space_info = bg->space_info;
1839                 spin_unlock(&fs_info->unused_bgs_lock);
1840 
1841                 /* Don't race with allocators so take the groups_sem */
1842                 down_write(&space_info->groups_sem);
1843 
1844                 spin_lock(&space_info->lock);
1845                 spin_lock(&bg->lock);
1846                 if (bg->reserved || bg->pinned || bg->ro) {
1847                         /*
1848                          * We want to bail if we made new allocations or have
1849                          * outstanding allocations in this block group.  We do
1850                          * the ro check in case balance is currently acting on
1851                          * this block group.
1852                          */
1853                         spin_unlock(&bg->lock);
1854                         spin_unlock(&space_info->lock);
1855                         up_write(&space_info->groups_sem);
1856                         goto next;
1857                 }
1858                 if (bg->used == 0) {
1859                         /*
1860                          * It is possible that we trigger relocation on a block
1861                          * group as its extents are deleted and it first goes
1862                          * below the threshold, then shortly after goes empty.
1863                          *
1864                          * In this case, relocating it does delete it, but has
1865                          * some overhead in relocation specific metadata, looking
1866                          * for the non-existent extents and running some extra
1867                          * transactions, which we can avoid by using one of the
1868                          * other mechanisms for dealing with empty block groups.
1869                          */
1870                         if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1871                                 btrfs_mark_bg_unused(bg);
1872                         spin_unlock(&bg->lock);
1873                         spin_unlock(&space_info->lock);
1874                         up_write(&space_info->groups_sem);
1875                         goto next;
1876 
1877                 }
1878                 /*
1879                  * The block group might no longer meet the reclaim condition by
1880                  * the time we get around to reclaiming it, so to avoid
1881                  * reclaiming overly full block_groups, skip reclaiming them.
1882                  *
1883                  * Since the decision making process also depends on the amount
1884                  * being freed, pass in a fake giant value to skip that extra
1885                  * check, which is more meaningful when adding to the list in
1886                  * the first place.
1887                  */
1888                 if (!should_reclaim_block_group(bg, bg->length)) {
1889                         spin_unlock(&bg->lock);
1890                         spin_unlock(&space_info->lock);
1891                         up_write(&space_info->groups_sem);
1892                         goto next;
1893                 }
1894                 spin_unlock(&bg->lock);
1895                 spin_unlock(&space_info->lock);
1896 
1897                 /*
1898                  * Get out fast, in case we're read-only or unmounting the
1899                  * filesystem. It is OK to drop block groups from the list even
1900                  * for the read-only case. As we did sb_start_write(),
1901                  * "mount -o remount,ro" won't happen and read-only filesystem
1902                  * means it is forced read-only due to a fatal error. So, it
1903                  * never gets back to read-write to let us reclaim again.
1904                  */
1905                 if (btrfs_need_cleaner_sleep(fs_info)) {
1906                         up_write(&space_info->groups_sem);
1907                         goto next;
1908                 }
1909 
1910                 /*
1911                  * Cache the zone_unusable value before turning the block group
1912                  * to read only. As soon as the blog group is read only it's
1913                  * zone_unusable value gets moved to the block group's read-only
1914                  * bytes and isn't available for calculations anymore.
1915                  */
1916                 zone_unusable = bg->zone_unusable;
1917                 ret = inc_block_group_ro(bg, 0);
1918                 up_write(&space_info->groups_sem);
1919                 if (ret < 0)
1920                         goto next;
1921 
1922                 btrfs_info(fs_info,
1923                         "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1924                                 bg->start,
1925                                 div64_u64(bg->used * 100, bg->length),
1926                                 div64_u64(zone_unusable * 100, bg->length));
1927                 trace_btrfs_reclaim_block_group(bg);
1928                 reclaimed = bg->used;
1929                 ret = btrfs_relocate_chunk(fs_info, bg->start);
1930                 if (ret) {
1931                         btrfs_dec_block_group_ro(bg);
1932                         btrfs_err(fs_info, "error relocating chunk %llu",
1933                                   bg->start);
1934                         reclaimed = 0;
1935                         spin_lock(&space_info->lock);
1936                         space_info->reclaim_errors++;
1937                         if (READ_ONCE(space_info->periodic_reclaim))
1938                                 space_info->periodic_reclaim_ready = false;
1939                         spin_unlock(&space_info->lock);
1940                 }
1941                 spin_lock(&space_info->lock);
1942                 space_info->reclaim_count++;
1943                 space_info->reclaim_bytes += reclaimed;
1944                 spin_unlock(&space_info->lock);
1945 
1946 next:
1947                 if (ret && !READ_ONCE(space_info->periodic_reclaim)) {
1948                         /* Refcount held by the reclaim_bgs list after splice. */
1949                         spin_lock(&fs_info->unused_bgs_lock);
1950                         /*
1951                          * This block group might be added to the unused list
1952                          * during the above process. Move it back to the
1953                          * reclaim list otherwise.
1954                          */
1955                         if (list_empty(&bg->bg_list)) {
1956                                 btrfs_get_block_group(bg);
1957                                 list_add_tail(&bg->bg_list, &retry_list);
1958                         }
1959                         spin_unlock(&fs_info->unused_bgs_lock);
1960                 }
1961                 btrfs_put_block_group(bg);
1962 
1963                 mutex_unlock(&fs_info->reclaim_bgs_lock);
1964                 /*
1965                  * Reclaiming all the block groups in the list can take really
1966                  * long.  Prioritize cleaning up unused block groups.
1967                  */
1968                 btrfs_delete_unused_bgs(fs_info);
1969                 /*
1970                  * If we are interrupted by a balance, we can just bail out. The
1971                  * cleaner thread restart again if necessary.
1972                  */
1973                 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1974                         goto end;
1975                 spin_lock(&fs_info->unused_bgs_lock);
1976         }
1977         spin_unlock(&fs_info->unused_bgs_lock);
1978         mutex_unlock(&fs_info->reclaim_bgs_lock);
1979 end:
1980         spin_lock(&fs_info->unused_bgs_lock);
1981         list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
1982         spin_unlock(&fs_info->unused_bgs_lock);
1983         btrfs_exclop_finish(fs_info);
1984         sb_end_write(fs_info->sb);
1985 }
1986 
1987 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1988 {
1989         btrfs_reclaim_sweep(fs_info);
1990         spin_lock(&fs_info->unused_bgs_lock);
1991         if (!list_empty(&fs_info->reclaim_bgs))
1992                 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1993         spin_unlock(&fs_info->unused_bgs_lock);
1994 }
1995 
1996 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1997 {
1998         struct btrfs_fs_info *fs_info = bg->fs_info;
1999 
2000         spin_lock(&fs_info->unused_bgs_lock);
2001         if (list_empty(&bg->bg_list)) {
2002                 btrfs_get_block_group(bg);
2003                 trace_btrfs_add_reclaim_block_group(bg);
2004                 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
2005         }
2006         spin_unlock(&fs_info->unused_bgs_lock);
2007 }
2008 
2009 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
2010                            struct btrfs_path *path)
2011 {
2012         struct btrfs_chunk_map *map;
2013         struct btrfs_block_group_item bg;
2014         struct extent_buffer *leaf;
2015         int slot;
2016         u64 flags;
2017         int ret = 0;
2018 
2019         slot = path->slots[0];
2020         leaf = path->nodes[0];
2021 
2022         map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2023         if (!map) {
2024                 btrfs_err(fs_info,
2025                           "logical %llu len %llu found bg but no related chunk",
2026                           key->objectid, key->offset);
2027                 return -ENOENT;
2028         }
2029 
2030         if (map->start != key->objectid || map->chunk_len != key->offset) {
2031                 btrfs_err(fs_info,
2032                         "block group %llu len %llu mismatch with chunk %llu len %llu",
2033                           key->objectid, key->offset, map->start, map->chunk_len);
2034                 ret = -EUCLEAN;
2035                 goto out_free_map;
2036         }
2037 
2038         read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2039                            sizeof(bg));
2040         flags = btrfs_stack_block_group_flags(&bg) &
2041                 BTRFS_BLOCK_GROUP_TYPE_MASK;
2042 
2043         if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2044                 btrfs_err(fs_info,
2045 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2046                           key->objectid, key->offset, flags,
2047                           (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2048                 ret = -EUCLEAN;
2049         }
2050 
2051 out_free_map:
2052         btrfs_free_chunk_map(map);
2053         return ret;
2054 }
2055 
2056 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2057                                   struct btrfs_path *path,
2058                                   struct btrfs_key *key)
2059 {
2060         struct btrfs_root *root = btrfs_block_group_root(fs_info);
2061         int ret;
2062         struct btrfs_key found_key;
2063 
2064         btrfs_for_each_slot(root, key, &found_key, path, ret) {
2065                 if (found_key.objectid >= key->objectid &&
2066                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2067                         return read_bg_from_eb(fs_info, &found_key, path);
2068                 }
2069         }
2070         return ret;
2071 }
2072 
2073 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2074 {
2075         u64 extra_flags = chunk_to_extended(flags) &
2076                                 BTRFS_EXTENDED_PROFILE_MASK;
2077 
2078         write_seqlock(&fs_info->profiles_lock);
2079         if (flags & BTRFS_BLOCK_GROUP_DATA)
2080                 fs_info->avail_data_alloc_bits |= extra_flags;
2081         if (flags & BTRFS_BLOCK_GROUP_METADATA)
2082                 fs_info->avail_metadata_alloc_bits |= extra_flags;
2083         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2084                 fs_info->avail_system_alloc_bits |= extra_flags;
2085         write_sequnlock(&fs_info->profiles_lock);
2086 }
2087 
2088 /*
2089  * Map a physical disk address to a list of logical addresses.
2090  *
2091  * @fs_info:       the filesystem
2092  * @chunk_start:   logical address of block group
2093  * @physical:      physical address to map to logical addresses
2094  * @logical:       return array of logical addresses which map to @physical
2095  * @naddrs:        length of @logical
2096  * @stripe_len:    size of IO stripe for the given block group
2097  *
2098  * Maps a particular @physical disk address to a list of @logical addresses.
2099  * Used primarily to exclude those portions of a block group that contain super
2100  * block copies.
2101  */
2102 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2103                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2104 {
2105         struct btrfs_chunk_map *map;
2106         u64 *buf;
2107         u64 bytenr;
2108         u64 data_stripe_length;
2109         u64 io_stripe_size;
2110         int i, nr = 0;
2111         int ret = 0;
2112 
2113         map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2114         if (IS_ERR(map))
2115                 return -EIO;
2116 
2117         data_stripe_length = map->stripe_size;
2118         io_stripe_size = BTRFS_STRIPE_LEN;
2119         chunk_start = map->start;
2120 
2121         /* For RAID5/6 adjust to a full IO stripe length */
2122         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2123                 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2124 
2125         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2126         if (!buf) {
2127                 ret = -ENOMEM;
2128                 goto out;
2129         }
2130 
2131         for (i = 0; i < map->num_stripes; i++) {
2132                 bool already_inserted = false;
2133                 u32 stripe_nr;
2134                 u32 offset;
2135                 int j;
2136 
2137                 if (!in_range(physical, map->stripes[i].physical,
2138                               data_stripe_length))
2139                         continue;
2140 
2141                 stripe_nr = (physical - map->stripes[i].physical) >>
2142                             BTRFS_STRIPE_LEN_SHIFT;
2143                 offset = (physical - map->stripes[i].physical) &
2144                          BTRFS_STRIPE_LEN_MASK;
2145 
2146                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2147                                  BTRFS_BLOCK_GROUP_RAID10))
2148                         stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2149                                             map->sub_stripes);
2150                 /*
2151                  * The remaining case would be for RAID56, multiply by
2152                  * nr_data_stripes().  Alternatively, just use rmap_len below
2153                  * instead of map->stripe_len
2154                  */
2155                 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2156 
2157                 /* Ensure we don't add duplicate addresses */
2158                 for (j = 0; j < nr; j++) {
2159                         if (buf[j] == bytenr) {
2160                                 already_inserted = true;
2161                                 break;
2162                         }
2163                 }
2164 
2165                 if (!already_inserted)
2166                         buf[nr++] = bytenr;
2167         }
2168 
2169         *logical = buf;
2170         *naddrs = nr;
2171         *stripe_len = io_stripe_size;
2172 out:
2173         btrfs_free_chunk_map(map);
2174         return ret;
2175 }
2176 
2177 static int exclude_super_stripes(struct btrfs_block_group *cache)
2178 {
2179         struct btrfs_fs_info *fs_info = cache->fs_info;
2180         const bool zoned = btrfs_is_zoned(fs_info);
2181         u64 bytenr;
2182         u64 *logical;
2183         int stripe_len;
2184         int i, nr, ret;
2185 
2186         if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2187                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2188                 cache->bytes_super += stripe_len;
2189                 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2190                                      cache->start + stripe_len - 1,
2191                                      EXTENT_UPTODATE, NULL);
2192                 if (ret)
2193                         return ret;
2194         }
2195 
2196         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2197                 bytenr = btrfs_sb_offset(i);
2198                 ret = btrfs_rmap_block(fs_info, cache->start,
2199                                        bytenr, &logical, &nr, &stripe_len);
2200                 if (ret)
2201                         return ret;
2202 
2203                 /* Shouldn't have super stripes in sequential zones */
2204                 if (zoned && nr) {
2205                         kfree(logical);
2206                         btrfs_err(fs_info,
2207                         "zoned: block group %llu must not contain super block",
2208                                   cache->start);
2209                         return -EUCLEAN;
2210                 }
2211 
2212                 while (nr--) {
2213                         u64 len = min_t(u64, stripe_len,
2214                                 cache->start + cache->length - logical[nr]);
2215 
2216                         cache->bytes_super += len;
2217                         ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2218                                              logical[nr] + len - 1,
2219                                              EXTENT_UPTODATE, NULL);
2220                         if (ret) {
2221                                 kfree(logical);
2222                                 return ret;
2223                         }
2224                 }
2225 
2226                 kfree(logical);
2227         }
2228         return 0;
2229 }
2230 
2231 static struct btrfs_block_group *btrfs_create_block_group_cache(
2232                 struct btrfs_fs_info *fs_info, u64 start)
2233 {
2234         struct btrfs_block_group *cache;
2235 
2236         cache = kzalloc(sizeof(*cache), GFP_NOFS);
2237         if (!cache)
2238                 return NULL;
2239 
2240         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2241                                         GFP_NOFS);
2242         if (!cache->free_space_ctl) {
2243                 kfree(cache);
2244                 return NULL;
2245         }
2246 
2247         cache->start = start;
2248 
2249         cache->fs_info = fs_info;
2250         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2251 
2252         cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2253 
2254         refcount_set(&cache->refs, 1);
2255         spin_lock_init(&cache->lock);
2256         init_rwsem(&cache->data_rwsem);
2257         INIT_LIST_HEAD(&cache->list);
2258         INIT_LIST_HEAD(&cache->cluster_list);
2259         INIT_LIST_HEAD(&cache->bg_list);
2260         INIT_LIST_HEAD(&cache->ro_list);
2261         INIT_LIST_HEAD(&cache->discard_list);
2262         INIT_LIST_HEAD(&cache->dirty_list);
2263         INIT_LIST_HEAD(&cache->io_list);
2264         INIT_LIST_HEAD(&cache->active_bg_list);
2265         btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2266         atomic_set(&cache->frozen, 0);
2267         mutex_init(&cache->free_space_lock);
2268 
2269         return cache;
2270 }
2271 
2272 /*
2273  * Iterate all chunks and verify that each of them has the corresponding block
2274  * group
2275  */
2276 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2277 {
2278         u64 start = 0;
2279         int ret = 0;
2280 
2281         while (1) {
2282                 struct btrfs_chunk_map *map;
2283                 struct btrfs_block_group *bg;
2284 
2285                 /*
2286                  * btrfs_find_chunk_map() will return the first chunk map
2287                  * intersecting the range, so setting @length to 1 is enough to
2288                  * get the first chunk.
2289                  */
2290                 map = btrfs_find_chunk_map(fs_info, start, 1);
2291                 if (!map)
2292                         break;
2293 
2294                 bg = btrfs_lookup_block_group(fs_info, map->start);
2295                 if (!bg) {
2296                         btrfs_err(fs_info,
2297         "chunk start=%llu len=%llu doesn't have corresponding block group",
2298                                      map->start, map->chunk_len);
2299                         ret = -EUCLEAN;
2300                         btrfs_free_chunk_map(map);
2301                         break;
2302                 }
2303                 if (bg->start != map->start || bg->length != map->chunk_len ||
2304                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2305                     (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2306                         btrfs_err(fs_info,
2307 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2308                                 map->start, map->chunk_len,
2309                                 map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2310                                 bg->start, bg->length,
2311                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2312                         ret = -EUCLEAN;
2313                         btrfs_free_chunk_map(map);
2314                         btrfs_put_block_group(bg);
2315                         break;
2316                 }
2317                 start = map->start + map->chunk_len;
2318                 btrfs_free_chunk_map(map);
2319                 btrfs_put_block_group(bg);
2320         }
2321         return ret;
2322 }
2323 
2324 static int read_one_block_group(struct btrfs_fs_info *info,
2325                                 struct btrfs_block_group_item *bgi,
2326                                 const struct btrfs_key *key,
2327                                 int need_clear)
2328 {
2329         struct btrfs_block_group *cache;
2330         const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2331         int ret;
2332 
2333         ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2334 
2335         cache = btrfs_create_block_group_cache(info, key->objectid);
2336         if (!cache)
2337                 return -ENOMEM;
2338 
2339         cache->length = key->offset;
2340         cache->used = btrfs_stack_block_group_used(bgi);
2341         cache->commit_used = cache->used;
2342         cache->flags = btrfs_stack_block_group_flags(bgi);
2343         cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2344 
2345         set_free_space_tree_thresholds(cache);
2346 
2347         if (need_clear) {
2348                 /*
2349                  * When we mount with old space cache, we need to
2350                  * set BTRFS_DC_CLEAR and set dirty flag.
2351                  *
2352                  * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2353                  *    truncate the old free space cache inode and
2354                  *    setup a new one.
2355                  * b) Setting 'dirty flag' makes sure that we flush
2356                  *    the new space cache info onto disk.
2357                  */
2358                 if (btrfs_test_opt(info, SPACE_CACHE))
2359                         cache->disk_cache_state = BTRFS_DC_CLEAR;
2360         }
2361         if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2362             (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2363                         btrfs_err(info,
2364 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2365                                   cache->start);
2366                         ret = -EINVAL;
2367                         goto error;
2368         }
2369 
2370         ret = btrfs_load_block_group_zone_info(cache, false);
2371         if (ret) {
2372                 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2373                           cache->start);
2374                 goto error;
2375         }
2376 
2377         /*
2378          * We need to exclude the super stripes now so that the space info has
2379          * super bytes accounted for, otherwise we'll think we have more space
2380          * than we actually do.
2381          */
2382         ret = exclude_super_stripes(cache);
2383         if (ret) {
2384                 /* We may have excluded something, so call this just in case. */
2385                 btrfs_free_excluded_extents(cache);
2386                 goto error;
2387         }
2388 
2389         /*
2390          * For zoned filesystem, space after the allocation offset is the only
2391          * free space for a block group. So, we don't need any caching work.
2392          * btrfs_calc_zone_unusable() will set the amount of free space and
2393          * zone_unusable space.
2394          *
2395          * For regular filesystem, check for two cases, either we are full, and
2396          * therefore don't need to bother with the caching work since we won't
2397          * find any space, or we are empty, and we can just add all the space
2398          * in and be done with it.  This saves us _a_lot_ of time, particularly
2399          * in the full case.
2400          */
2401         if (btrfs_is_zoned(info)) {
2402                 btrfs_calc_zone_unusable(cache);
2403                 /* Should not have any excluded extents. Just in case, though. */
2404                 btrfs_free_excluded_extents(cache);
2405         } else if (cache->length == cache->used) {
2406                 cache->cached = BTRFS_CACHE_FINISHED;
2407                 btrfs_free_excluded_extents(cache);
2408         } else if (cache->used == 0) {
2409                 cache->cached = BTRFS_CACHE_FINISHED;
2410                 ret = btrfs_add_new_free_space(cache, cache->start,
2411                                                cache->start + cache->length, NULL);
2412                 btrfs_free_excluded_extents(cache);
2413                 if (ret)
2414                         goto error;
2415         }
2416 
2417         ret = btrfs_add_block_group_cache(info, cache);
2418         if (ret) {
2419                 btrfs_remove_free_space_cache(cache);
2420                 goto error;
2421         }
2422         trace_btrfs_add_block_group(info, cache, 0);
2423         btrfs_add_bg_to_space_info(info, cache);
2424 
2425         set_avail_alloc_bits(info, cache->flags);
2426         if (btrfs_chunk_writeable(info, cache->start)) {
2427                 if (cache->used == 0) {
2428                         ASSERT(list_empty(&cache->bg_list));
2429                         if (btrfs_test_opt(info, DISCARD_ASYNC))
2430                                 btrfs_discard_queue_work(&info->discard_ctl, cache);
2431                         else
2432                                 btrfs_mark_bg_unused(cache);
2433                 }
2434         } else {
2435                 inc_block_group_ro(cache, 1);
2436         }
2437 
2438         return 0;
2439 error:
2440         btrfs_put_block_group(cache);
2441         return ret;
2442 }
2443 
2444 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2445 {
2446         struct rb_node *node;
2447         int ret = 0;
2448 
2449         for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2450                 struct btrfs_chunk_map *map;
2451                 struct btrfs_block_group *bg;
2452 
2453                 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2454                 bg = btrfs_create_block_group_cache(fs_info, map->start);
2455                 if (!bg) {
2456                         ret = -ENOMEM;
2457                         break;
2458                 }
2459 
2460                 /* Fill dummy cache as FULL */
2461                 bg->length = map->chunk_len;
2462                 bg->flags = map->type;
2463                 bg->cached = BTRFS_CACHE_FINISHED;
2464                 bg->used = map->chunk_len;
2465                 bg->flags = map->type;
2466                 ret = btrfs_add_block_group_cache(fs_info, bg);
2467                 /*
2468                  * We may have some valid block group cache added already, in
2469                  * that case we skip to the next one.
2470                  */
2471                 if (ret == -EEXIST) {
2472                         ret = 0;
2473                         btrfs_put_block_group(bg);
2474                         continue;
2475                 }
2476 
2477                 if (ret) {
2478                         btrfs_remove_free_space_cache(bg);
2479                         btrfs_put_block_group(bg);
2480                         break;
2481                 }
2482 
2483                 btrfs_add_bg_to_space_info(fs_info, bg);
2484 
2485                 set_avail_alloc_bits(fs_info, bg->flags);
2486         }
2487         if (!ret)
2488                 btrfs_init_global_block_rsv(fs_info);
2489         return ret;
2490 }
2491 
2492 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2493 {
2494         struct btrfs_root *root = btrfs_block_group_root(info);
2495         struct btrfs_path *path;
2496         int ret;
2497         struct btrfs_block_group *cache;
2498         struct btrfs_space_info *space_info;
2499         struct btrfs_key key;
2500         int need_clear = 0;
2501         u64 cache_gen;
2502 
2503         /*
2504          * Either no extent root (with ibadroots rescue option) or we have
2505          * unsupported RO options. The fs can never be mounted read-write, so no
2506          * need to waste time searching block group items.
2507          *
2508          * This also allows new extent tree related changes to be RO compat,
2509          * no need for a full incompat flag.
2510          */
2511         if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2512                       ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2513                 return fill_dummy_bgs(info);
2514 
2515         key.objectid = 0;
2516         key.offset = 0;
2517         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2518         path = btrfs_alloc_path();
2519         if (!path)
2520                 return -ENOMEM;
2521 
2522         cache_gen = btrfs_super_cache_generation(info->super_copy);
2523         if (btrfs_test_opt(info, SPACE_CACHE) &&
2524             btrfs_super_generation(info->super_copy) != cache_gen)
2525                 need_clear = 1;
2526         if (btrfs_test_opt(info, CLEAR_CACHE))
2527                 need_clear = 1;
2528 
2529         while (1) {
2530                 struct btrfs_block_group_item bgi;
2531                 struct extent_buffer *leaf;
2532                 int slot;
2533 
2534                 ret = find_first_block_group(info, path, &key);
2535                 if (ret > 0)
2536                         break;
2537                 if (ret != 0)
2538                         goto error;
2539 
2540                 leaf = path->nodes[0];
2541                 slot = path->slots[0];
2542 
2543                 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2544                                    sizeof(bgi));
2545 
2546                 btrfs_item_key_to_cpu(leaf, &key, slot);
2547                 btrfs_release_path(path);
2548                 ret = read_one_block_group(info, &bgi, &key, need_clear);
2549                 if (ret < 0)
2550                         goto error;
2551                 key.objectid += key.offset;
2552                 key.offset = 0;
2553         }
2554         btrfs_release_path(path);
2555 
2556         list_for_each_entry(space_info, &info->space_info, list) {
2557                 int i;
2558 
2559                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2560                         if (list_empty(&space_info->block_groups[i]))
2561                                 continue;
2562                         cache = list_first_entry(&space_info->block_groups[i],
2563                                                  struct btrfs_block_group,
2564                                                  list);
2565                         btrfs_sysfs_add_block_group_type(cache);
2566                 }
2567 
2568                 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2569                       (BTRFS_BLOCK_GROUP_RAID10 |
2570                        BTRFS_BLOCK_GROUP_RAID1_MASK |
2571                        BTRFS_BLOCK_GROUP_RAID56_MASK |
2572                        BTRFS_BLOCK_GROUP_DUP)))
2573                         continue;
2574                 /*
2575                  * Avoid allocating from un-mirrored block group if there are
2576                  * mirrored block groups.
2577                  */
2578                 list_for_each_entry(cache,
2579                                 &space_info->block_groups[BTRFS_RAID_RAID0],
2580                                 list)
2581                         inc_block_group_ro(cache, 1);
2582                 list_for_each_entry(cache,
2583                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
2584                                 list)
2585                         inc_block_group_ro(cache, 1);
2586         }
2587 
2588         btrfs_init_global_block_rsv(info);
2589         ret = check_chunk_block_group_mappings(info);
2590 error:
2591         btrfs_free_path(path);
2592         /*
2593          * We've hit some error while reading the extent tree, and have
2594          * rescue=ibadroots mount option.
2595          * Try to fill the tree using dummy block groups so that the user can
2596          * continue to mount and grab their data.
2597          */
2598         if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2599                 ret = fill_dummy_bgs(info);
2600         return ret;
2601 }
2602 
2603 /*
2604  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2605  * allocation.
2606  *
2607  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2608  * phases.
2609  */
2610 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2611                                    struct btrfs_block_group *block_group)
2612 {
2613         struct btrfs_fs_info *fs_info = trans->fs_info;
2614         struct btrfs_block_group_item bgi;
2615         struct btrfs_root *root = btrfs_block_group_root(fs_info);
2616         struct btrfs_key key;
2617         u64 old_commit_used;
2618         int ret;
2619 
2620         spin_lock(&block_group->lock);
2621         btrfs_set_stack_block_group_used(&bgi, block_group->used);
2622         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2623                                                    block_group->global_root_id);
2624         btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2625         old_commit_used = block_group->commit_used;
2626         block_group->commit_used = block_group->used;
2627         key.objectid = block_group->start;
2628         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2629         key.offset = block_group->length;
2630         spin_unlock(&block_group->lock);
2631 
2632         ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2633         if (ret < 0) {
2634                 spin_lock(&block_group->lock);
2635                 block_group->commit_used = old_commit_used;
2636                 spin_unlock(&block_group->lock);
2637         }
2638 
2639         return ret;
2640 }
2641 
2642 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2643                             struct btrfs_device *device, u64 chunk_offset,
2644                             u64 start, u64 num_bytes)
2645 {
2646         struct btrfs_fs_info *fs_info = device->fs_info;
2647         struct btrfs_root *root = fs_info->dev_root;
2648         struct btrfs_path *path;
2649         struct btrfs_dev_extent *extent;
2650         struct extent_buffer *leaf;
2651         struct btrfs_key key;
2652         int ret;
2653 
2654         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2655         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2656         path = btrfs_alloc_path();
2657         if (!path)
2658                 return -ENOMEM;
2659 
2660         key.objectid = device->devid;
2661         key.type = BTRFS_DEV_EXTENT_KEY;
2662         key.offset = start;
2663         ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2664         if (ret)
2665                 goto out;
2666 
2667         leaf = path->nodes[0];
2668         extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2669         btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2670         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2671                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2672         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2673 
2674         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2675         btrfs_mark_buffer_dirty(trans, leaf);
2676 out:
2677         btrfs_free_path(path);
2678         return ret;
2679 }
2680 
2681 /*
2682  * This function belongs to phase 2.
2683  *
2684  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2685  * phases.
2686  */
2687 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2688                                    u64 chunk_offset, u64 chunk_size)
2689 {
2690         struct btrfs_fs_info *fs_info = trans->fs_info;
2691         struct btrfs_device *device;
2692         struct btrfs_chunk_map *map;
2693         u64 dev_offset;
2694         int i;
2695         int ret = 0;
2696 
2697         map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2698         if (IS_ERR(map))
2699                 return PTR_ERR(map);
2700 
2701         /*
2702          * Take the device list mutex to prevent races with the final phase of
2703          * a device replace operation that replaces the device object associated
2704          * with the map's stripes, because the device object's id can change
2705          * at any time during that final phase of the device replace operation
2706          * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2707          * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2708          * resulting in persisting a device extent item with such ID.
2709          */
2710         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2711         for (i = 0; i < map->num_stripes; i++) {
2712                 device = map->stripes[i].dev;
2713                 dev_offset = map->stripes[i].physical;
2714 
2715                 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2716                                         map->stripe_size);
2717                 if (ret)
2718                         break;
2719         }
2720         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2721 
2722         btrfs_free_chunk_map(map);
2723         return ret;
2724 }
2725 
2726 /*
2727  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2728  * chunk allocation.
2729  *
2730  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2731  * phases.
2732  */
2733 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2734 {
2735         struct btrfs_fs_info *fs_info = trans->fs_info;
2736         struct btrfs_block_group *block_group;
2737         int ret = 0;
2738 
2739         while (!list_empty(&trans->new_bgs)) {
2740                 int index;
2741 
2742                 block_group = list_first_entry(&trans->new_bgs,
2743                                                struct btrfs_block_group,
2744                                                bg_list);
2745                 if (ret)
2746                         goto next;
2747 
2748                 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2749 
2750                 ret = insert_block_group_item(trans, block_group);
2751                 if (ret)
2752                         btrfs_abort_transaction(trans, ret);
2753                 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2754                               &block_group->runtime_flags)) {
2755                         mutex_lock(&fs_info->chunk_mutex);
2756                         ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2757                         mutex_unlock(&fs_info->chunk_mutex);
2758                         if (ret)
2759                                 btrfs_abort_transaction(trans, ret);
2760                 }
2761                 ret = insert_dev_extents(trans, block_group->start,
2762                                          block_group->length);
2763                 if (ret)
2764                         btrfs_abort_transaction(trans, ret);
2765                 add_block_group_free_space(trans, block_group);
2766 
2767                 /*
2768                  * If we restriped during balance, we may have added a new raid
2769                  * type, so now add the sysfs entries when it is safe to do so.
2770                  * We don't have to worry about locking here as it's handled in
2771                  * btrfs_sysfs_add_block_group_type.
2772                  */
2773                 if (block_group->space_info->block_group_kobjs[index] == NULL)
2774                         btrfs_sysfs_add_block_group_type(block_group);
2775 
2776                 /* Already aborted the transaction if it failed. */
2777 next:
2778                 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2779                 list_del_init(&block_group->bg_list);
2780                 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2781 
2782                 /*
2783                  * If the block group is still unused, add it to the list of
2784                  * unused block groups. The block group may have been created in
2785                  * order to satisfy a space reservation, in which case the
2786                  * extent allocation only happens later. But often we don't
2787                  * actually need to allocate space that we previously reserved,
2788                  * so the block group may become unused for a long time. For
2789                  * example for metadata we generally reserve space for a worst
2790                  * possible scenario, but then don't end up allocating all that
2791                  * space or none at all (due to no need to COW, extent buffers
2792                  * were already COWed in the current transaction and still
2793                  * unwritten, tree heights lower than the maximum possible
2794                  * height, etc). For data we generally reserve the axact amount
2795                  * of space we are going to allocate later, the exception is
2796                  * when using compression, as we must reserve space based on the
2797                  * uncompressed data size, because the compression is only done
2798                  * when writeback triggered and we don't know how much space we
2799                  * are actually going to need, so we reserve the uncompressed
2800                  * size because the data may be uncompressible in the worst case.
2801                  */
2802                 if (ret == 0) {
2803                         bool used;
2804 
2805                         spin_lock(&block_group->lock);
2806                         used = btrfs_is_block_group_used(block_group);
2807                         spin_unlock(&block_group->lock);
2808 
2809                         if (!used)
2810                                 btrfs_mark_bg_unused(block_group);
2811                 }
2812         }
2813         btrfs_trans_release_chunk_metadata(trans);
2814 }
2815 
2816 /*
2817  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2818  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2819  */
2820 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2821 {
2822         u64 div = SZ_1G;
2823         u64 index;
2824 
2825         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2826                 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2827 
2828         /* If we have a smaller fs index based on 128MiB. */
2829         if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2830                 div = SZ_128M;
2831 
2832         offset = div64_u64(offset, div);
2833         div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2834         return index;
2835 }
2836 
2837 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2838                                                  u64 type,
2839                                                  u64 chunk_offset, u64 size)
2840 {
2841         struct btrfs_fs_info *fs_info = trans->fs_info;
2842         struct btrfs_block_group *cache;
2843         int ret;
2844 
2845         btrfs_set_log_full_commit(trans);
2846 
2847         cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2848         if (!cache)
2849                 return ERR_PTR(-ENOMEM);
2850 
2851         /*
2852          * Mark it as new before adding it to the rbtree of block groups or any
2853          * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2854          * before the new flag is set.
2855          */
2856         set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2857 
2858         cache->length = size;
2859         set_free_space_tree_thresholds(cache);
2860         cache->flags = type;
2861         cache->cached = BTRFS_CACHE_FINISHED;
2862         cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2863 
2864         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2865                 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2866 
2867         ret = btrfs_load_block_group_zone_info(cache, true);
2868         if (ret) {
2869                 btrfs_put_block_group(cache);
2870                 return ERR_PTR(ret);
2871         }
2872 
2873         ret = exclude_super_stripes(cache);
2874         if (ret) {
2875                 /* We may have excluded something, so call this just in case */
2876                 btrfs_free_excluded_extents(cache);
2877                 btrfs_put_block_group(cache);
2878                 return ERR_PTR(ret);
2879         }
2880 
2881         ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2882         btrfs_free_excluded_extents(cache);
2883         if (ret) {
2884                 btrfs_put_block_group(cache);
2885                 return ERR_PTR(ret);
2886         }
2887 
2888         /*
2889          * Ensure the corresponding space_info object is created and
2890          * assigned to our block group. We want our bg to be added to the rbtree
2891          * with its ->space_info set.
2892          */
2893         cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2894         ASSERT(cache->space_info);
2895 
2896         ret = btrfs_add_block_group_cache(fs_info, cache);
2897         if (ret) {
2898                 btrfs_remove_free_space_cache(cache);
2899                 btrfs_put_block_group(cache);
2900                 return ERR_PTR(ret);
2901         }
2902 
2903         /*
2904          * Now that our block group has its ->space_info set and is inserted in
2905          * the rbtree, update the space info's counters.
2906          */
2907         trace_btrfs_add_block_group(fs_info, cache, 1);
2908         btrfs_add_bg_to_space_info(fs_info, cache);
2909         btrfs_update_global_block_rsv(fs_info);
2910 
2911 #ifdef CONFIG_BTRFS_DEBUG
2912         if (btrfs_should_fragment_free_space(cache)) {
2913                 cache->space_info->bytes_used += size >> 1;
2914                 fragment_free_space(cache);
2915         }
2916 #endif
2917 
2918         list_add_tail(&cache->bg_list, &trans->new_bgs);
2919         btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2920 
2921         set_avail_alloc_bits(fs_info, type);
2922         return cache;
2923 }
2924 
2925 /*
2926  * Mark one block group RO, can be called several times for the same block
2927  * group.
2928  *
2929  * @cache:              the destination block group
2930  * @do_chunk_alloc:     whether need to do chunk pre-allocation, this is to
2931  *                      ensure we still have some free space after marking this
2932  *                      block group RO.
2933  */
2934 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2935                              bool do_chunk_alloc)
2936 {
2937         struct btrfs_fs_info *fs_info = cache->fs_info;
2938         struct btrfs_trans_handle *trans;
2939         struct btrfs_root *root = btrfs_block_group_root(fs_info);
2940         u64 alloc_flags;
2941         int ret;
2942         bool dirty_bg_running;
2943 
2944         /*
2945          * This can only happen when we are doing read-only scrub on read-only
2946          * mount.
2947          * In that case we should not start a new transaction on read-only fs.
2948          * Thus here we skip all chunk allocations.
2949          */
2950         if (sb_rdonly(fs_info->sb)) {
2951                 mutex_lock(&fs_info->ro_block_group_mutex);
2952                 ret = inc_block_group_ro(cache, 0);
2953                 mutex_unlock(&fs_info->ro_block_group_mutex);
2954                 return ret;
2955         }
2956 
2957         do {
2958                 trans = btrfs_join_transaction(root);
2959                 if (IS_ERR(trans))
2960                         return PTR_ERR(trans);
2961 
2962                 dirty_bg_running = false;
2963 
2964                 /*
2965                  * We're not allowed to set block groups readonly after the dirty
2966                  * block group cache has started writing.  If it already started,
2967                  * back off and let this transaction commit.
2968                  */
2969                 mutex_lock(&fs_info->ro_block_group_mutex);
2970                 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2971                         u64 transid = trans->transid;
2972 
2973                         mutex_unlock(&fs_info->ro_block_group_mutex);
2974                         btrfs_end_transaction(trans);
2975 
2976                         ret = btrfs_wait_for_commit(fs_info, transid);
2977                         if (ret)
2978                                 return ret;
2979                         dirty_bg_running = true;
2980                 }
2981         } while (dirty_bg_running);
2982 
2983         if (do_chunk_alloc) {
2984                 /*
2985                  * If we are changing raid levels, try to allocate a
2986                  * corresponding block group with the new raid level.
2987                  */
2988                 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2989                 if (alloc_flags != cache->flags) {
2990                         ret = btrfs_chunk_alloc(trans, alloc_flags,
2991                                                 CHUNK_ALLOC_FORCE);
2992                         /*
2993                          * ENOSPC is allowed here, we may have enough space
2994                          * already allocated at the new raid level to carry on
2995                          */
2996                         if (ret == -ENOSPC)
2997                                 ret = 0;
2998                         if (ret < 0)
2999                                 goto out;
3000                 }
3001         }
3002 
3003         ret = inc_block_group_ro(cache, 0);
3004         if (!ret)
3005                 goto out;
3006         if (ret == -ETXTBSY)
3007                 goto unlock_out;
3008 
3009         /*
3010          * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3011          * chunk allocation storm to exhaust the system chunk array.  Otherwise
3012          * we still want to try our best to mark the block group read-only.
3013          */
3014         if (!do_chunk_alloc && ret == -ENOSPC &&
3015             (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3016                 goto unlock_out;
3017 
3018         alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
3019         ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3020         if (ret < 0)
3021                 goto out;
3022         /*
3023          * We have allocated a new chunk. We also need to activate that chunk to
3024          * grant metadata tickets for zoned filesystem.
3025          */
3026         ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
3027         if (ret < 0)
3028                 goto out;
3029 
3030         ret = inc_block_group_ro(cache, 0);
3031         if (ret == -ETXTBSY)
3032                 goto unlock_out;
3033 out:
3034         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3035                 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3036                 mutex_lock(&fs_info->chunk_mutex);
3037                 check_system_chunk(trans, alloc_flags);
3038                 mutex_unlock(&fs_info->chunk_mutex);
3039         }
3040 unlock_out:
3041         mutex_unlock(&fs_info->ro_block_group_mutex);
3042 
3043         btrfs_end_transaction(trans);
3044         return ret;
3045 }
3046 
3047 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3048 {
3049         struct btrfs_space_info *sinfo = cache->space_info;
3050         u64 num_bytes;
3051 
3052         BUG_ON(!cache->ro);
3053 
3054         spin_lock(&sinfo->lock);
3055         spin_lock(&cache->lock);
3056         if (!--cache->ro) {
3057                 if (btrfs_is_zoned(cache->fs_info)) {
3058                         /* Migrate zone_unusable bytes back */
3059                         cache->zone_unusable =
3060                                 (cache->alloc_offset - cache->used - cache->pinned -
3061                                  cache->reserved) +
3062                                 (cache->length - cache->zone_capacity);
3063                         btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
3064                                                                     cache->zone_unusable);
3065                         sinfo->bytes_readonly -= cache->zone_unusable;
3066                 }
3067                 num_bytes = cache->length - cache->reserved -
3068                             cache->pinned - cache->bytes_super -
3069                             cache->zone_unusable - cache->used;
3070                 sinfo->bytes_readonly -= num_bytes;
3071                 list_del_init(&cache->ro_list);
3072         }
3073         spin_unlock(&cache->lock);
3074         spin_unlock(&sinfo->lock);
3075 }
3076 
3077 static int update_block_group_item(struct btrfs_trans_handle *trans,
3078                                    struct btrfs_path *path,
3079                                    struct btrfs_block_group *cache)
3080 {
3081         struct btrfs_fs_info *fs_info = trans->fs_info;
3082         int ret;
3083         struct btrfs_root *root = btrfs_block_group_root(fs_info);
3084         unsigned long bi;
3085         struct extent_buffer *leaf;
3086         struct btrfs_block_group_item bgi;
3087         struct btrfs_key key;
3088         u64 old_commit_used;
3089         u64 used;
3090 
3091         /*
3092          * Block group items update can be triggered out of commit transaction
3093          * critical section, thus we need a consistent view of used bytes.
3094          * We cannot use cache->used directly outside of the spin lock, as it
3095          * may be changed.
3096          */
3097         spin_lock(&cache->lock);
3098         old_commit_used = cache->commit_used;
3099         used = cache->used;
3100         /* No change in used bytes, can safely skip it. */
3101         if (cache->commit_used == used) {
3102                 spin_unlock(&cache->lock);
3103                 return 0;
3104         }
3105         cache->commit_used = used;
3106         spin_unlock(&cache->lock);
3107 
3108         key.objectid = cache->start;
3109         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3110         key.offset = cache->length;
3111 
3112         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3113         if (ret) {
3114                 if (ret > 0)
3115                         ret = -ENOENT;
3116                 goto fail;
3117         }
3118 
3119         leaf = path->nodes[0];
3120         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3121         btrfs_set_stack_block_group_used(&bgi, used);
3122         btrfs_set_stack_block_group_chunk_objectid(&bgi,
3123                                                    cache->global_root_id);
3124         btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3125         write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3126         btrfs_mark_buffer_dirty(trans, leaf);
3127 fail:
3128         btrfs_release_path(path);
3129         /*
3130          * We didn't update the block group item, need to revert commit_used
3131          * unless the block group item didn't exist yet - this is to prevent a
3132          * race with a concurrent insertion of the block group item, with
3133          * insert_block_group_item(), that happened just after we attempted to
3134          * update. In that case we would reset commit_used to 0 just after the
3135          * insertion set it to a value greater than 0 - if the block group later
3136          * becomes with 0 used bytes, we would incorrectly skip its update.
3137          */
3138         if (ret < 0 && ret != -ENOENT) {
3139                 spin_lock(&cache->lock);
3140                 cache->commit_used = old_commit_used;
3141                 spin_unlock(&cache->lock);
3142         }
3143         return ret;
3144 
3145 }
3146 
3147 static int cache_save_setup(struct btrfs_block_group *block_group,
3148                             struct btrfs_trans_handle *trans,
3149                             struct btrfs_path *path)
3150 {
3151         struct btrfs_fs_info *fs_info = block_group->fs_info;
3152         struct inode *inode = NULL;
3153         struct extent_changeset *data_reserved = NULL;
3154         u64 alloc_hint = 0;
3155         int dcs = BTRFS_DC_ERROR;
3156         u64 cache_size = 0;
3157         int retries = 0;
3158         int ret = 0;
3159 
3160         if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3161                 return 0;
3162 
3163         /*
3164          * If this block group is smaller than 100 megs don't bother caching the
3165          * block group.
3166          */
3167         if (block_group->length < (100 * SZ_1M)) {
3168                 spin_lock(&block_group->lock);
3169                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3170                 spin_unlock(&block_group->lock);
3171                 return 0;
3172         }
3173 
3174         if (TRANS_ABORTED(trans))
3175                 return 0;
3176 again:
3177         inode = lookup_free_space_inode(block_group, path);
3178         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3179                 ret = PTR_ERR(inode);
3180                 btrfs_release_path(path);
3181                 goto out;
3182         }
3183 
3184         if (IS_ERR(inode)) {
3185                 BUG_ON(retries);
3186                 retries++;
3187 
3188                 if (block_group->ro)
3189                         goto out_free;
3190 
3191                 ret = create_free_space_inode(trans, block_group, path);
3192                 if (ret)
3193                         goto out_free;
3194                 goto again;
3195         }
3196 
3197         /*
3198          * We want to set the generation to 0, that way if anything goes wrong
3199          * from here on out we know not to trust this cache when we load up next
3200          * time.
3201          */
3202         BTRFS_I(inode)->generation = 0;
3203         ret = btrfs_update_inode(trans, BTRFS_I(inode));
3204         if (ret) {
3205                 /*
3206                  * So theoretically we could recover from this, simply set the
3207                  * super cache generation to 0 so we know to invalidate the
3208                  * cache, but then we'd have to keep track of the block groups
3209                  * that fail this way so we know we _have_ to reset this cache
3210                  * before the next commit or risk reading stale cache.  So to
3211                  * limit our exposure to horrible edge cases lets just abort the
3212                  * transaction, this only happens in really bad situations
3213                  * anyway.
3214                  */
3215                 btrfs_abort_transaction(trans, ret);
3216                 goto out_put;
3217         }
3218         WARN_ON(ret);
3219 
3220         /* We've already setup this transaction, go ahead and exit */
3221         if (block_group->cache_generation == trans->transid &&
3222             i_size_read(inode)) {
3223                 dcs = BTRFS_DC_SETUP;
3224                 goto out_put;
3225         }
3226 
3227         if (i_size_read(inode) > 0) {
3228                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3229                                         &fs_info->global_block_rsv);
3230                 if (ret)
3231                         goto out_put;
3232 
3233                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3234                 if (ret)
3235                         goto out_put;
3236         }
3237 
3238         spin_lock(&block_group->lock);
3239         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3240             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3241                 /*
3242                  * don't bother trying to write stuff out _if_
3243                  * a) we're not cached,
3244                  * b) we're with nospace_cache mount option,
3245                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3246                  */
3247                 dcs = BTRFS_DC_WRITTEN;
3248                 spin_unlock(&block_group->lock);
3249                 goto out_put;
3250         }
3251         spin_unlock(&block_group->lock);
3252 
3253         /*
3254          * We hit an ENOSPC when setting up the cache in this transaction, just
3255          * skip doing the setup, we've already cleared the cache so we're safe.
3256          */
3257         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3258                 ret = -ENOSPC;
3259                 goto out_put;
3260         }
3261 
3262         /*
3263          * Try to preallocate enough space based on how big the block group is.
3264          * Keep in mind this has to include any pinned space which could end up
3265          * taking up quite a bit since it's not folded into the other space
3266          * cache.
3267          */
3268         cache_size = div_u64(block_group->length, SZ_256M);
3269         if (!cache_size)
3270                 cache_size = 1;
3271 
3272         cache_size *= 16;
3273         cache_size *= fs_info->sectorsize;
3274 
3275         ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3276                                           cache_size, false);
3277         if (ret)
3278                 goto out_put;
3279 
3280         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3281                                               cache_size, cache_size,
3282                                               &alloc_hint);
3283         /*
3284          * Our cache requires contiguous chunks so that we don't modify a bunch
3285          * of metadata or split extents when writing the cache out, which means
3286          * we can enospc if we are heavily fragmented in addition to just normal
3287          * out of space conditions.  So if we hit this just skip setting up any
3288          * other block groups for this transaction, maybe we'll unpin enough
3289          * space the next time around.
3290          */
3291         if (!ret)
3292                 dcs = BTRFS_DC_SETUP;
3293         else if (ret == -ENOSPC)
3294                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3295 
3296 out_put:
3297         iput(inode);
3298 out_free:
3299         btrfs_release_path(path);
3300 out:
3301         spin_lock(&block_group->lock);
3302         if (!ret && dcs == BTRFS_DC_SETUP)
3303                 block_group->cache_generation = trans->transid;
3304         block_group->disk_cache_state = dcs;
3305         spin_unlock(&block_group->lock);
3306 
3307         extent_changeset_free(data_reserved);
3308         return ret;
3309 }
3310 
3311 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3312 {
3313         struct btrfs_fs_info *fs_info = trans->fs_info;
3314         struct btrfs_block_group *cache, *tmp;
3315         struct btrfs_transaction *cur_trans = trans->transaction;
3316         struct btrfs_path *path;
3317 
3318         if (list_empty(&cur_trans->dirty_bgs) ||
3319             !btrfs_test_opt(fs_info, SPACE_CACHE))
3320                 return 0;
3321 
3322         path = btrfs_alloc_path();
3323         if (!path)
3324                 return -ENOMEM;
3325 
3326         /* Could add new block groups, use _safe just in case */
3327         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3328                                  dirty_list) {
3329                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3330                         cache_save_setup(cache, trans, path);
3331         }
3332 
3333         btrfs_free_path(path);
3334         return 0;
3335 }
3336 
3337 /*
3338  * Transaction commit does final block group cache writeback during a critical
3339  * section where nothing is allowed to change the FS.  This is required in
3340  * order for the cache to actually match the block group, but can introduce a
3341  * lot of latency into the commit.
3342  *
3343  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3344  * There's a chance we'll have to redo some of it if the block group changes
3345  * again during the commit, but it greatly reduces the commit latency by
3346  * getting rid of the easy block groups while we're still allowing others to
3347  * join the commit.
3348  */
3349 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3350 {
3351         struct btrfs_fs_info *fs_info = trans->fs_info;
3352         struct btrfs_block_group *cache;
3353         struct btrfs_transaction *cur_trans = trans->transaction;
3354         int ret = 0;
3355         int should_put;
3356         struct btrfs_path *path = NULL;
3357         LIST_HEAD(dirty);
3358         struct list_head *io = &cur_trans->io_bgs;
3359         int loops = 0;
3360 
3361         spin_lock(&cur_trans->dirty_bgs_lock);
3362         if (list_empty(&cur_trans->dirty_bgs)) {
3363                 spin_unlock(&cur_trans->dirty_bgs_lock);
3364                 return 0;
3365         }
3366         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3367         spin_unlock(&cur_trans->dirty_bgs_lock);
3368 
3369 again:
3370         /* Make sure all the block groups on our dirty list actually exist */
3371         btrfs_create_pending_block_groups(trans);
3372 
3373         if (!path) {
3374                 path = btrfs_alloc_path();
3375                 if (!path) {
3376                         ret = -ENOMEM;
3377                         goto out;
3378                 }
3379         }
3380 
3381         /*
3382          * cache_write_mutex is here only to save us from balance or automatic
3383          * removal of empty block groups deleting this block group while we are
3384          * writing out the cache
3385          */
3386         mutex_lock(&trans->transaction->cache_write_mutex);
3387         while (!list_empty(&dirty)) {
3388                 bool drop_reserve = true;
3389 
3390                 cache = list_first_entry(&dirty, struct btrfs_block_group,
3391                                          dirty_list);
3392                 /*
3393                  * This can happen if something re-dirties a block group that
3394                  * is already under IO.  Just wait for it to finish and then do
3395                  * it all again
3396                  */
3397                 if (!list_empty(&cache->io_list)) {
3398                         list_del_init(&cache->io_list);
3399                         btrfs_wait_cache_io(trans, cache, path);
3400                         btrfs_put_block_group(cache);
3401                 }
3402 
3403 
3404                 /*
3405                  * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3406                  * it should update the cache_state.  Don't delete until after
3407                  * we wait.
3408                  *
3409                  * Since we're not running in the commit critical section
3410                  * we need the dirty_bgs_lock to protect from update_block_group
3411                  */
3412                 spin_lock(&cur_trans->dirty_bgs_lock);
3413                 list_del_init(&cache->dirty_list);
3414                 spin_unlock(&cur_trans->dirty_bgs_lock);
3415 
3416                 should_put = 1;
3417 
3418                 cache_save_setup(cache, trans, path);
3419 
3420                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3421                         cache->io_ctl.inode = NULL;
3422                         ret = btrfs_write_out_cache(trans, cache, path);
3423                         if (ret == 0 && cache->io_ctl.inode) {
3424                                 should_put = 0;
3425 
3426                                 /*
3427                                  * The cache_write_mutex is protecting the
3428                                  * io_list, also refer to the definition of
3429                                  * btrfs_transaction::io_bgs for more details
3430                                  */
3431                                 list_add_tail(&cache->io_list, io);
3432                         } else {
3433                                 /*
3434                                  * If we failed to write the cache, the
3435                                  * generation will be bad and life goes on
3436                                  */
3437                                 ret = 0;
3438                         }
3439                 }
3440                 if (!ret) {
3441                         ret = update_block_group_item(trans, path, cache);
3442                         /*
3443                          * Our block group might still be attached to the list
3444                          * of new block groups in the transaction handle of some
3445                          * other task (struct btrfs_trans_handle->new_bgs). This
3446                          * means its block group item isn't yet in the extent
3447                          * tree. If this happens ignore the error, as we will
3448                          * try again later in the critical section of the
3449                          * transaction commit.
3450                          */
3451                         if (ret == -ENOENT) {
3452                                 ret = 0;
3453                                 spin_lock(&cur_trans->dirty_bgs_lock);
3454                                 if (list_empty(&cache->dirty_list)) {
3455                                         list_add_tail(&cache->dirty_list,
3456                                                       &cur_trans->dirty_bgs);
3457                                         btrfs_get_block_group(cache);
3458                                         drop_reserve = false;
3459                                 }
3460                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3461                         } else if (ret) {
3462                                 btrfs_abort_transaction(trans, ret);
3463                         }
3464                 }
3465 
3466                 /* If it's not on the io list, we need to put the block group */
3467                 if (should_put)
3468                         btrfs_put_block_group(cache);
3469                 if (drop_reserve)
3470                         btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3471                 /*
3472                  * Avoid blocking other tasks for too long. It might even save
3473                  * us from writing caches for block groups that are going to be
3474                  * removed.
3475                  */
3476                 mutex_unlock(&trans->transaction->cache_write_mutex);
3477                 if (ret)
3478                         goto out;
3479                 mutex_lock(&trans->transaction->cache_write_mutex);
3480         }
3481         mutex_unlock(&trans->transaction->cache_write_mutex);
3482 
3483         /*
3484          * Go through delayed refs for all the stuff we've just kicked off
3485          * and then loop back (just once)
3486          */
3487         if (!ret)
3488                 ret = btrfs_run_delayed_refs(trans, 0);
3489         if (!ret && loops == 0) {
3490                 loops++;
3491                 spin_lock(&cur_trans->dirty_bgs_lock);
3492                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3493                 /*
3494                  * dirty_bgs_lock protects us from concurrent block group
3495                  * deletes too (not just cache_write_mutex).
3496                  */
3497                 if (!list_empty(&dirty)) {
3498                         spin_unlock(&cur_trans->dirty_bgs_lock);
3499                         goto again;
3500                 }
3501                 spin_unlock(&cur_trans->dirty_bgs_lock);
3502         }
3503 out:
3504         if (ret < 0) {
3505                 spin_lock(&cur_trans->dirty_bgs_lock);
3506                 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3507                 spin_unlock(&cur_trans->dirty_bgs_lock);
3508                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3509         }
3510 
3511         btrfs_free_path(path);
3512         return ret;
3513 }
3514 
3515 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3516 {
3517         struct btrfs_fs_info *fs_info = trans->fs_info;
3518         struct btrfs_block_group *cache;
3519         struct btrfs_transaction *cur_trans = trans->transaction;
3520         int ret = 0;
3521         int should_put;
3522         struct btrfs_path *path;
3523         struct list_head *io = &cur_trans->io_bgs;
3524 
3525         path = btrfs_alloc_path();
3526         if (!path)
3527                 return -ENOMEM;
3528 
3529         /*
3530          * Even though we are in the critical section of the transaction commit,
3531          * we can still have concurrent tasks adding elements to this
3532          * transaction's list of dirty block groups. These tasks correspond to
3533          * endio free space workers started when writeback finishes for a
3534          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3535          * allocate new block groups as a result of COWing nodes of the root
3536          * tree when updating the free space inode. The writeback for the space
3537          * caches is triggered by an earlier call to
3538          * btrfs_start_dirty_block_groups() and iterations of the following
3539          * loop.
3540          * Also we want to do the cache_save_setup first and then run the
3541          * delayed refs to make sure we have the best chance at doing this all
3542          * in one shot.
3543          */
3544         spin_lock(&cur_trans->dirty_bgs_lock);
3545         while (!list_empty(&cur_trans->dirty_bgs)) {
3546                 cache = list_first_entry(&cur_trans->dirty_bgs,
3547                                          struct btrfs_block_group,
3548                                          dirty_list);
3549 
3550                 /*
3551                  * This can happen if cache_save_setup re-dirties a block group
3552                  * that is already under IO.  Just wait for it to finish and
3553                  * then do it all again
3554                  */
3555                 if (!list_empty(&cache->io_list)) {
3556                         spin_unlock(&cur_trans->dirty_bgs_lock);
3557                         list_del_init(&cache->io_list);
3558                         btrfs_wait_cache_io(trans, cache, path);
3559                         btrfs_put_block_group(cache);
3560                         spin_lock(&cur_trans->dirty_bgs_lock);
3561                 }
3562 
3563                 /*
3564                  * Don't remove from the dirty list until after we've waited on
3565                  * any pending IO
3566                  */
3567                 list_del_init(&cache->dirty_list);
3568                 spin_unlock(&cur_trans->dirty_bgs_lock);
3569                 should_put = 1;
3570 
3571                 cache_save_setup(cache, trans, path);
3572 
3573                 if (!ret)
3574                         ret = btrfs_run_delayed_refs(trans, U64_MAX);
3575 
3576                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3577                         cache->io_ctl.inode = NULL;
3578                         ret = btrfs_write_out_cache(trans, cache, path);
3579                         if (ret == 0 && cache->io_ctl.inode) {
3580                                 should_put = 0;
3581                                 list_add_tail(&cache->io_list, io);
3582                         } else {
3583                                 /*
3584                                  * If we failed to write the cache, the
3585                                  * generation will be bad and life goes on
3586                                  */
3587                                 ret = 0;
3588                         }
3589                 }
3590                 if (!ret) {
3591                         ret = update_block_group_item(trans, path, cache);
3592                         /*
3593                          * One of the free space endio workers might have
3594                          * created a new block group while updating a free space
3595                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3596                          * and hasn't released its transaction handle yet, in
3597                          * which case the new block group is still attached to
3598                          * its transaction handle and its creation has not
3599                          * finished yet (no block group item in the extent tree
3600                          * yet, etc). If this is the case, wait for all free
3601                          * space endio workers to finish and retry. This is a
3602                          * very rare case so no need for a more efficient and
3603                          * complex approach.
3604                          */
3605                         if (ret == -ENOENT) {
3606                                 wait_event(cur_trans->writer_wait,
3607                                    atomic_read(&cur_trans->num_writers) == 1);
3608                                 ret = update_block_group_item(trans, path, cache);
3609                         }
3610                         if (ret)
3611                                 btrfs_abort_transaction(trans, ret);
3612                 }
3613 
3614                 /* If its not on the io list, we need to put the block group */
3615                 if (should_put)
3616                         btrfs_put_block_group(cache);
3617                 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3618                 spin_lock(&cur_trans->dirty_bgs_lock);
3619         }
3620         spin_unlock(&cur_trans->dirty_bgs_lock);
3621 
3622         /*
3623          * Refer to the definition of io_bgs member for details why it's safe
3624          * to use it without any locking
3625          */
3626         while (!list_empty(io)) {
3627                 cache = list_first_entry(io, struct btrfs_block_group,
3628                                          io_list);
3629                 list_del_init(&cache->io_list);
3630                 btrfs_wait_cache_io(trans, cache, path);
3631                 btrfs_put_block_group(cache);
3632         }
3633 
3634         btrfs_free_path(path);
3635         return ret;
3636 }
3637 
3638 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3639                              u64 bytenr, u64 num_bytes, bool alloc)
3640 {
3641         struct btrfs_fs_info *info = trans->fs_info;
3642         struct btrfs_space_info *space_info;
3643         struct btrfs_block_group *cache;
3644         u64 old_val;
3645         bool reclaim = false;
3646         bool bg_already_dirty = true;
3647         int factor;
3648 
3649         /* Block accounting for super block */
3650         spin_lock(&info->delalloc_root_lock);
3651         old_val = btrfs_super_bytes_used(info->super_copy);
3652         if (alloc)
3653                 old_val += num_bytes;
3654         else
3655                 old_val -= num_bytes;
3656         btrfs_set_super_bytes_used(info->super_copy, old_val);
3657         spin_unlock(&info->delalloc_root_lock);
3658 
3659         cache = btrfs_lookup_block_group(info, bytenr);
3660         if (!cache)
3661                 return -ENOENT;
3662 
3663         /* An extent can not span multiple block groups. */
3664         ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3665 
3666         space_info = cache->space_info;
3667         factor = btrfs_bg_type_to_factor(cache->flags);
3668 
3669         /*
3670          * If this block group has free space cache written out, we need to make
3671          * sure to load it if we are removing space.  This is because we need
3672          * the unpinning stage to actually add the space back to the block group,
3673          * otherwise we will leak space.
3674          */
3675         if (!alloc && !btrfs_block_group_done(cache))
3676                 btrfs_cache_block_group(cache, true);
3677 
3678         spin_lock(&space_info->lock);
3679         spin_lock(&cache->lock);
3680 
3681         if (btrfs_test_opt(info, SPACE_CACHE) &&
3682             cache->disk_cache_state < BTRFS_DC_CLEAR)
3683                 cache->disk_cache_state = BTRFS_DC_CLEAR;
3684 
3685         old_val = cache->used;
3686         if (alloc) {
3687                 old_val += num_bytes;
3688                 cache->used = old_val;
3689                 cache->reserved -= num_bytes;
3690                 cache->reclaim_mark = 0;
3691                 space_info->bytes_reserved -= num_bytes;
3692                 space_info->bytes_used += num_bytes;
3693                 space_info->disk_used += num_bytes * factor;
3694                 if (READ_ONCE(space_info->periodic_reclaim))
3695                         btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3696                 spin_unlock(&cache->lock);
3697                 spin_unlock(&space_info->lock);
3698         } else {
3699                 old_val -= num_bytes;
3700                 cache->used = old_val;
3701                 cache->pinned += num_bytes;
3702                 btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes);
3703                 space_info->bytes_used -= num_bytes;
3704                 space_info->disk_used -= num_bytes * factor;
3705                 if (READ_ONCE(space_info->periodic_reclaim))
3706                         btrfs_space_info_update_reclaimable(space_info, num_bytes);
3707                 else
3708                         reclaim = should_reclaim_block_group(cache, num_bytes);
3709 
3710                 spin_unlock(&cache->lock);
3711                 spin_unlock(&space_info->lock);
3712 
3713                 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3714                                bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3715         }
3716 
3717         spin_lock(&trans->transaction->dirty_bgs_lock);
3718         if (list_empty(&cache->dirty_list)) {
3719                 list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3720                 bg_already_dirty = false;
3721                 btrfs_get_block_group(cache);
3722         }
3723         spin_unlock(&trans->transaction->dirty_bgs_lock);
3724 
3725         /*
3726          * No longer have used bytes in this block group, queue it for deletion.
3727          * We do this after adding the block group to the dirty list to avoid
3728          * races between cleaner kthread and space cache writeout.
3729          */
3730         if (!alloc && old_val == 0) {
3731                 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3732                         btrfs_mark_bg_unused(cache);
3733         } else if (!alloc && reclaim) {
3734                 btrfs_mark_bg_to_reclaim(cache);
3735         }
3736 
3737         btrfs_put_block_group(cache);
3738 
3739         /* Modified block groups are accounted for in the delayed_refs_rsv. */
3740         if (!bg_already_dirty)
3741                 btrfs_inc_delayed_refs_rsv_bg_updates(info);
3742 
3743         return 0;
3744 }
3745 
3746 /*
3747  * Update the block_group and space info counters.
3748  *
3749  * @cache:      The cache we are manipulating
3750  * @ram_bytes:  The number of bytes of file content, and will be same to
3751  *              @num_bytes except for the compress path.
3752  * @num_bytes:  The number of bytes in question
3753  * @delalloc:   The blocks are allocated for the delalloc write
3754  *
3755  * This is called by the allocator when it reserves space. If this is a
3756  * reservation and the block group has become read only we cannot make the
3757  * reservation and return -EAGAIN, otherwise this function always succeeds.
3758  */
3759 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3760                              u64 ram_bytes, u64 num_bytes, int delalloc,
3761                              bool force_wrong_size_class)
3762 {
3763         struct btrfs_space_info *space_info = cache->space_info;
3764         enum btrfs_block_group_size_class size_class;
3765         int ret = 0;
3766 
3767         spin_lock(&space_info->lock);
3768         spin_lock(&cache->lock);
3769         if (cache->ro) {
3770                 ret = -EAGAIN;
3771                 goto out;
3772         }
3773 
3774         if (btrfs_block_group_should_use_size_class(cache)) {
3775                 size_class = btrfs_calc_block_group_size_class(num_bytes);
3776                 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3777                 if (ret)
3778                         goto out;
3779         }
3780         cache->reserved += num_bytes;
3781         space_info->bytes_reserved += num_bytes;
3782         trace_btrfs_space_reservation(cache->fs_info, "space_info",
3783                                       space_info->flags, num_bytes, 1);
3784         btrfs_space_info_update_bytes_may_use(cache->fs_info,
3785                                               space_info, -ram_bytes);
3786         if (delalloc)
3787                 cache->delalloc_bytes += num_bytes;
3788 
3789         /*
3790          * Compression can use less space than we reserved, so wake tickets if
3791          * that happens.
3792          */
3793         if (num_bytes < ram_bytes)
3794                 btrfs_try_granting_tickets(cache->fs_info, space_info);
3795 out:
3796         spin_unlock(&cache->lock);
3797         spin_unlock(&space_info->lock);
3798         return ret;
3799 }
3800 
3801 /*
3802  * Update the block_group and space info counters.
3803  *
3804  * @cache:      The cache we are manipulating
3805  * @num_bytes:  The number of bytes in question
3806  * @delalloc:   The blocks are allocated for the delalloc write
3807  *
3808  * This is called by somebody who is freeing space that was never actually used
3809  * on disk.  For example if you reserve some space for a new leaf in transaction
3810  * A and before transaction A commits you free that leaf, you call this with
3811  * reserve set to 0 in order to clear the reservation.
3812  */
3813 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3814                                u64 num_bytes, int delalloc)
3815 {
3816         struct btrfs_space_info *space_info = cache->space_info;
3817 
3818         spin_lock(&space_info->lock);
3819         spin_lock(&cache->lock);
3820         if (cache->ro)
3821                 space_info->bytes_readonly += num_bytes;
3822         cache->reserved -= num_bytes;
3823         space_info->bytes_reserved -= num_bytes;
3824         space_info->max_extent_size = 0;
3825 
3826         if (delalloc)
3827                 cache->delalloc_bytes -= num_bytes;
3828         spin_unlock(&cache->lock);
3829 
3830         btrfs_try_granting_tickets(cache->fs_info, space_info);
3831         spin_unlock(&space_info->lock);
3832 }
3833 
3834 static void force_metadata_allocation(struct btrfs_fs_info *info)
3835 {
3836         struct list_head *head = &info->space_info;
3837         struct btrfs_space_info *found;
3838 
3839         list_for_each_entry(found, head, list) {
3840                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3841                         found->force_alloc = CHUNK_ALLOC_FORCE;
3842         }
3843 }
3844 
3845 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3846                               struct btrfs_space_info *sinfo, int force)
3847 {
3848         u64 bytes_used = btrfs_space_info_used(sinfo, false);
3849         u64 thresh;
3850 
3851         if (force == CHUNK_ALLOC_FORCE)
3852                 return 1;
3853 
3854         /*
3855          * in limited mode, we want to have some free space up to
3856          * about 1% of the FS size.
3857          */
3858         if (force == CHUNK_ALLOC_LIMITED) {
3859                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3860                 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3861 
3862                 if (sinfo->total_bytes - bytes_used < thresh)
3863                         return 1;
3864         }
3865 
3866         if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3867                 return 0;
3868         return 1;
3869 }
3870 
3871 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3872 {
3873         u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3874 
3875         return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3876 }
3877 
3878 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3879 {
3880         struct btrfs_block_group *bg;
3881         int ret;
3882 
3883         /*
3884          * Check if we have enough space in the system space info because we
3885          * will need to update device items in the chunk btree and insert a new
3886          * chunk item in the chunk btree as well. This will allocate a new
3887          * system block group if needed.
3888          */
3889         check_system_chunk(trans, flags);
3890 
3891         bg = btrfs_create_chunk(trans, flags);
3892         if (IS_ERR(bg)) {
3893                 ret = PTR_ERR(bg);
3894                 goto out;
3895         }
3896 
3897         ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3898         /*
3899          * Normally we are not expected to fail with -ENOSPC here, since we have
3900          * previously reserved space in the system space_info and allocated one
3901          * new system chunk if necessary. However there are three exceptions:
3902          *
3903          * 1) We may have enough free space in the system space_info but all the
3904          *    existing system block groups have a profile which can not be used
3905          *    for extent allocation.
3906          *
3907          *    This happens when mounting in degraded mode. For example we have a
3908          *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3909          *    using the other device in degraded mode. If we then allocate a chunk,
3910          *    we may have enough free space in the existing system space_info, but
3911          *    none of the block groups can be used for extent allocation since they
3912          *    have a RAID1 profile, and because we are in degraded mode with a
3913          *    single device, we are forced to allocate a new system chunk with a
3914          *    SINGLE profile. Making check_system_chunk() iterate over all system
3915          *    block groups and check if they have a usable profile and enough space
3916          *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3917          *    try again after forcing allocation of a new system chunk. Like this
3918          *    we avoid paying the cost of that search in normal circumstances, when
3919          *    we were not mounted in degraded mode;
3920          *
3921          * 2) We had enough free space info the system space_info, and one suitable
3922          *    block group to allocate from when we called check_system_chunk()
3923          *    above. However right after we called it, the only system block group
3924          *    with enough free space got turned into RO mode by a running scrub,
3925          *    and in this case we have to allocate a new one and retry. We only
3926          *    need do this allocate and retry once, since we have a transaction
3927          *    handle and scrub uses the commit root to search for block groups;
3928          *
3929          * 3) We had one system block group with enough free space when we called
3930          *    check_system_chunk(), but after that, right before we tried to
3931          *    allocate the last extent buffer we needed, a discard operation came
3932          *    in and it temporarily removed the last free space entry from the
3933          *    block group (discard removes a free space entry, discards it, and
3934          *    then adds back the entry to the block group cache).
3935          */
3936         if (ret == -ENOSPC) {
3937                 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3938                 struct btrfs_block_group *sys_bg;
3939 
3940                 sys_bg = btrfs_create_chunk(trans, sys_flags);
3941                 if (IS_ERR(sys_bg)) {
3942                         ret = PTR_ERR(sys_bg);
3943                         btrfs_abort_transaction(trans, ret);
3944                         goto out;
3945                 }
3946 
3947                 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3948                 if (ret) {
3949                         btrfs_abort_transaction(trans, ret);
3950                         goto out;
3951                 }
3952 
3953                 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3954                 if (ret) {
3955                         btrfs_abort_transaction(trans, ret);
3956                         goto out;
3957                 }
3958         } else if (ret) {
3959                 btrfs_abort_transaction(trans, ret);
3960                 goto out;
3961         }
3962 out:
3963         btrfs_trans_release_chunk_metadata(trans);
3964 
3965         if (ret)
3966                 return ERR_PTR(ret);
3967 
3968         btrfs_get_block_group(bg);
3969         return bg;
3970 }
3971 
3972 /*
3973  * Chunk allocation is done in 2 phases:
3974  *
3975  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3976  *    the chunk, the chunk mapping, create its block group and add the items
3977  *    that belong in the chunk btree to it - more specifically, we need to
3978  *    update device items in the chunk btree and add a new chunk item to it.
3979  *
3980  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3981  *    group item to the extent btree and the device extent items to the devices
3982  *    btree.
3983  *
3984  * This is done to prevent deadlocks. For example when COWing a node from the
3985  * extent btree we are holding a write lock on the node's parent and if we
3986  * trigger chunk allocation and attempted to insert the new block group item
3987  * in the extent btree right way, we could deadlock because the path for the
3988  * insertion can include that parent node. At first glance it seems impossible
3989  * to trigger chunk allocation after starting a transaction since tasks should
3990  * reserve enough transaction units (metadata space), however while that is true
3991  * most of the time, chunk allocation may still be triggered for several reasons:
3992  *
3993  * 1) When reserving metadata, we check if there is enough free space in the
3994  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3995  *    However later when the task actually tries to COW an extent buffer from
3996  *    the extent btree or from the device btree for example, it is forced to
3997  *    allocate a new block group (chunk) because the only one that had enough
3998  *    free space was just turned to RO mode by a running scrub for example (or
3999  *    device replace, block group reclaim thread, etc), so we can not use it
4000  *    for allocating an extent and end up being forced to allocate a new one;
4001  *
4002  * 2) Because we only check that the metadata space_info has enough free bytes,
4003  *    we end up not allocating a new metadata chunk in that case. However if
4004  *    the filesystem was mounted in degraded mode, none of the existing block
4005  *    groups might be suitable for extent allocation due to their incompatible
4006  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
4007  *    use a RAID1 profile, in degraded mode using a single device). In this case
4008  *    when the task attempts to COW some extent buffer of the extent btree for
4009  *    example, it will trigger allocation of a new metadata block group with a
4010  *    suitable profile (SINGLE profile in the example of the degraded mount of
4011  *    the RAID1 filesystem);
4012  *
4013  * 3) The task has reserved enough transaction units / metadata space, but when
4014  *    it attempts to COW an extent buffer from the extent or device btree for
4015  *    example, it does not find any free extent in any metadata block group,
4016  *    therefore forced to try to allocate a new metadata block group.
4017  *    This is because some other task allocated all available extents in the
4018  *    meanwhile - this typically happens with tasks that don't reserve space
4019  *    properly, either intentionally or as a bug. One example where this is
4020  *    done intentionally is fsync, as it does not reserve any transaction units
4021  *    and ends up allocating a variable number of metadata extents for log
4022  *    tree extent buffers;
4023  *
4024  * 4) The task has reserved enough transaction units / metadata space, but right
4025  *    before it tries to allocate the last extent buffer it needs, a discard
4026  *    operation comes in and, temporarily, removes the last free space entry from
4027  *    the only metadata block group that had free space (discard starts by
4028  *    removing a free space entry from a block group, then does the discard
4029  *    operation and, once it's done, it adds back the free space entry to the
4030  *    block group).
4031  *
4032  * We also need this 2 phases setup when adding a device to a filesystem with
4033  * a seed device - we must create new metadata and system chunks without adding
4034  * any of the block group items to the chunk, extent and device btrees. If we
4035  * did not do it this way, we would get ENOSPC when attempting to update those
4036  * btrees, since all the chunks from the seed device are read-only.
4037  *
4038  * Phase 1 does the updates and insertions to the chunk btree because if we had
4039  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4040  * parallel, we risk having too many system chunks allocated by many tasks if
4041  * many tasks reach phase 1 without the previous ones completing phase 2. In the
4042  * extreme case this leads to exhaustion of the system chunk array in the
4043  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4044  * and with RAID filesystems (so we have more device items in the chunk btree).
4045  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4046  * the system chunk array due to concurrent allocations") provides more details.
4047  *
4048  * Allocation of system chunks does not happen through this function. A task that
4049  * needs to update the chunk btree (the only btree that uses system chunks), must
4050  * preallocate chunk space by calling either check_system_chunk() or
4051  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4052  * metadata chunk or when removing a chunk, while the later is used before doing
4053  * a modification to the chunk btree - use cases for the later are adding,
4054  * removing and resizing a device as well as relocation of a system chunk.
4055  * See the comment below for more details.
4056  *
4057  * The reservation of system space, done through check_system_chunk(), as well
4058  * as all the updates and insertions into the chunk btree must be done while
4059  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4060  * an extent buffer from the chunks btree we never trigger allocation of a new
4061  * system chunk, which would result in a deadlock (trying to lock twice an
4062  * extent buffer of the chunk btree, first time before triggering the chunk
4063  * allocation and the second time during chunk allocation while attempting to
4064  * update the chunks btree). The system chunk array is also updated while holding
4065  * that mutex. The same logic applies to removing chunks - we must reserve system
4066  * space, update the chunk btree and the system chunk array in the superblock
4067  * while holding fs_info->chunk_mutex.
4068  *
4069  * This function, btrfs_chunk_alloc(), belongs to phase 1.
4070  *
4071  * If @force is CHUNK_ALLOC_FORCE:
4072  *    - return 1 if it successfully allocates a chunk,
4073  *    - return errors including -ENOSPC otherwise.
4074  * If @force is NOT CHUNK_ALLOC_FORCE:
4075  *    - return 0 if it doesn't need to allocate a new chunk,
4076  *    - return 1 if it successfully allocates a chunk,
4077  *    - return errors including -ENOSPC otherwise.
4078  */
4079 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4080                       enum btrfs_chunk_alloc_enum force)
4081 {
4082         struct btrfs_fs_info *fs_info = trans->fs_info;
4083         struct btrfs_space_info *space_info;
4084         struct btrfs_block_group *ret_bg;
4085         bool wait_for_alloc = false;
4086         bool should_alloc = false;
4087         bool from_extent_allocation = false;
4088         int ret = 0;
4089 
4090         if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4091                 from_extent_allocation = true;
4092                 force = CHUNK_ALLOC_FORCE;
4093         }
4094 
4095         /* Don't re-enter if we're already allocating a chunk */
4096         if (trans->allocating_chunk)
4097                 return -ENOSPC;
4098         /*
4099          * Allocation of system chunks can not happen through this path, as we
4100          * could end up in a deadlock if we are allocating a data or metadata
4101          * chunk and there is another task modifying the chunk btree.
4102          *
4103          * This is because while we are holding the chunk mutex, we will attempt
4104          * to add the new chunk item to the chunk btree or update an existing
4105          * device item in the chunk btree, while the other task that is modifying
4106          * the chunk btree is attempting to COW an extent buffer while holding a
4107          * lock on it and on its parent - if the COW operation triggers a system
4108          * chunk allocation, then we can deadlock because we are holding the
4109          * chunk mutex and we may need to access that extent buffer or its parent
4110          * in order to add the chunk item or update a device item.
4111          *
4112          * Tasks that want to modify the chunk tree should reserve system space
4113          * before updating the chunk btree, by calling either
4114          * btrfs_reserve_chunk_metadata() or check_system_chunk().
4115          * It's possible that after a task reserves the space, it still ends up
4116          * here - this happens in the cases described above at do_chunk_alloc().
4117          * The task will have to either retry or fail.
4118          */
4119         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4120                 return -ENOSPC;
4121 
4122         space_info = btrfs_find_space_info(fs_info, flags);
4123         ASSERT(space_info);
4124 
4125         do {
4126                 spin_lock(&space_info->lock);
4127                 if (force < space_info->force_alloc)
4128                         force = space_info->force_alloc;
4129                 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4130                 if (space_info->full) {
4131                         /* No more free physical space */
4132                         if (should_alloc)
4133                                 ret = -ENOSPC;
4134                         else
4135                                 ret = 0;
4136                         spin_unlock(&space_info->lock);
4137                         return ret;
4138                 } else if (!should_alloc) {
4139                         spin_unlock(&space_info->lock);
4140                         return 0;
4141                 } else if (space_info->chunk_alloc) {
4142                         /*
4143                          * Someone is already allocating, so we need to block
4144                          * until this someone is finished and then loop to
4145                          * recheck if we should continue with our allocation
4146                          * attempt.
4147                          */
4148                         wait_for_alloc = true;
4149                         force = CHUNK_ALLOC_NO_FORCE;
4150                         spin_unlock(&space_info->lock);
4151                         mutex_lock(&fs_info->chunk_mutex);
4152                         mutex_unlock(&fs_info->chunk_mutex);
4153                 } else {
4154                         /* Proceed with allocation */
4155                         space_info->chunk_alloc = 1;
4156                         wait_for_alloc = false;
4157                         spin_unlock(&space_info->lock);
4158                 }
4159 
4160                 cond_resched();
4161         } while (wait_for_alloc);
4162 
4163         mutex_lock(&fs_info->chunk_mutex);
4164         trans->allocating_chunk = true;
4165 
4166         /*
4167          * If we have mixed data/metadata chunks we want to make sure we keep
4168          * allocating mixed chunks instead of individual chunks.
4169          */
4170         if (btrfs_mixed_space_info(space_info))
4171                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4172 
4173         /*
4174          * if we're doing a data chunk, go ahead and make sure that
4175          * we keep a reasonable number of metadata chunks allocated in the
4176          * FS as well.
4177          */
4178         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4179                 fs_info->data_chunk_allocations++;
4180                 if (!(fs_info->data_chunk_allocations %
4181                       fs_info->metadata_ratio))
4182                         force_metadata_allocation(fs_info);
4183         }
4184 
4185         ret_bg = do_chunk_alloc(trans, flags);
4186         trans->allocating_chunk = false;
4187 
4188         if (IS_ERR(ret_bg)) {
4189                 ret = PTR_ERR(ret_bg);
4190         } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4191                 /*
4192                  * New block group is likely to be used soon. Try to activate
4193                  * it now. Failure is OK for now.
4194                  */
4195                 btrfs_zone_activate(ret_bg);
4196         }
4197 
4198         if (!ret)
4199                 btrfs_put_block_group(ret_bg);
4200 
4201         spin_lock(&space_info->lock);
4202         if (ret < 0) {
4203                 if (ret == -ENOSPC)
4204                         space_info->full = 1;
4205                 else
4206                         goto out;
4207         } else {
4208                 ret = 1;
4209                 space_info->max_extent_size = 0;
4210         }
4211 
4212         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4213 out:
4214         space_info->chunk_alloc = 0;
4215         spin_unlock(&space_info->lock);
4216         mutex_unlock(&fs_info->chunk_mutex);
4217 
4218         return ret;
4219 }
4220 
4221 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4222 {
4223         u64 num_dev;
4224 
4225         num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4226         if (!num_dev)
4227                 num_dev = fs_info->fs_devices->rw_devices;
4228 
4229         return num_dev;
4230 }
4231 
4232 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4233                                 u64 bytes,
4234                                 u64 type)
4235 {
4236         struct btrfs_fs_info *fs_info = trans->fs_info;
4237         struct btrfs_space_info *info;
4238         u64 left;
4239         int ret = 0;
4240 
4241         /*
4242          * Needed because we can end up allocating a system chunk and for an
4243          * atomic and race free space reservation in the chunk block reserve.
4244          */
4245         lockdep_assert_held(&fs_info->chunk_mutex);
4246 
4247         info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4248         spin_lock(&info->lock);
4249         left = info->total_bytes - btrfs_space_info_used(info, true);
4250         spin_unlock(&info->lock);
4251 
4252         if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4253                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4254                            left, bytes, type);
4255                 btrfs_dump_space_info(fs_info, info, 0, 0);
4256         }
4257 
4258         if (left < bytes) {
4259                 u64 flags = btrfs_system_alloc_profile(fs_info);
4260                 struct btrfs_block_group *bg;
4261 
4262                 /*
4263                  * Ignore failure to create system chunk. We might end up not
4264                  * needing it, as we might not need to COW all nodes/leafs from
4265                  * the paths we visit in the chunk tree (they were already COWed
4266                  * or created in the current transaction for example).
4267                  */
4268                 bg = btrfs_create_chunk(trans, flags);
4269                 if (IS_ERR(bg)) {
4270                         ret = PTR_ERR(bg);
4271                 } else {
4272                         /*
4273                          * We have a new chunk. We also need to activate it for
4274                          * zoned filesystem.
4275                          */
4276                         ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4277                         if (ret < 0)
4278                                 return;
4279 
4280                         /*
4281                          * If we fail to add the chunk item here, we end up
4282                          * trying again at phase 2 of chunk allocation, at
4283                          * btrfs_create_pending_block_groups(). So ignore
4284                          * any error here. An ENOSPC here could happen, due to
4285                          * the cases described at do_chunk_alloc() - the system
4286                          * block group we just created was just turned into RO
4287                          * mode by a scrub for example, or a running discard
4288                          * temporarily removed its free space entries, etc.
4289                          */
4290                         btrfs_chunk_alloc_add_chunk_item(trans, bg);
4291                 }
4292         }
4293 
4294         if (!ret) {
4295                 ret = btrfs_block_rsv_add(fs_info,
4296                                           &fs_info->chunk_block_rsv,
4297                                           bytes, BTRFS_RESERVE_NO_FLUSH);
4298                 if (!ret)
4299                         trans->chunk_bytes_reserved += bytes;
4300         }
4301 }
4302 
4303 /*
4304  * Reserve space in the system space for allocating or removing a chunk.
4305  * The caller must be holding fs_info->chunk_mutex.
4306  */
4307 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4308 {
4309         struct btrfs_fs_info *fs_info = trans->fs_info;
4310         const u64 num_devs = get_profile_num_devs(fs_info, type);
4311         u64 bytes;
4312 
4313         /* num_devs device items to update and 1 chunk item to add or remove. */
4314         bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4315                 btrfs_calc_insert_metadata_size(fs_info, 1);
4316 
4317         reserve_chunk_space(trans, bytes, type);
4318 }
4319 
4320 /*
4321  * Reserve space in the system space, if needed, for doing a modification to the
4322  * chunk btree.
4323  *
4324  * @trans:              A transaction handle.
4325  * @is_item_insertion:  Indicate if the modification is for inserting a new item
4326  *                      in the chunk btree or if it's for the deletion or update
4327  *                      of an existing item.
4328  *
4329  * This is used in a context where we need to update the chunk btree outside
4330  * block group allocation and removal, to avoid a deadlock with a concurrent
4331  * task that is allocating a metadata or data block group and therefore needs to
4332  * update the chunk btree while holding the chunk mutex. After the update to the
4333  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4334  *
4335  */
4336 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4337                                   bool is_item_insertion)
4338 {
4339         struct btrfs_fs_info *fs_info = trans->fs_info;
4340         u64 bytes;
4341 
4342         if (is_item_insertion)
4343                 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4344         else
4345                 bytes = btrfs_calc_metadata_size(fs_info, 1);
4346 
4347         mutex_lock(&fs_info->chunk_mutex);
4348         reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4349         mutex_unlock(&fs_info->chunk_mutex);
4350 }
4351 
4352 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4353 {
4354         struct btrfs_block_group *block_group;
4355 
4356         block_group = btrfs_lookup_first_block_group(info, 0);
4357         while (block_group) {
4358                 btrfs_wait_block_group_cache_done(block_group);
4359                 spin_lock(&block_group->lock);
4360                 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4361                                        &block_group->runtime_flags)) {
4362                         struct btrfs_inode *inode = block_group->inode;
4363 
4364                         block_group->inode = NULL;
4365                         spin_unlock(&block_group->lock);
4366 
4367                         ASSERT(block_group->io_ctl.inode == NULL);
4368                         iput(&inode->vfs_inode);
4369                 } else {
4370                         spin_unlock(&block_group->lock);
4371                 }
4372                 block_group = btrfs_next_block_group(block_group);
4373         }
4374 }
4375 
4376 /*
4377  * Must be called only after stopping all workers, since we could have block
4378  * group caching kthreads running, and therefore they could race with us if we
4379  * freed the block groups before stopping them.
4380  */
4381 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4382 {
4383         struct btrfs_block_group *block_group;
4384         struct btrfs_space_info *space_info;
4385         struct btrfs_caching_control *caching_ctl;
4386         struct rb_node *n;
4387 
4388         if (btrfs_is_zoned(info)) {
4389                 if (info->active_meta_bg) {
4390                         btrfs_put_block_group(info->active_meta_bg);
4391                         info->active_meta_bg = NULL;
4392                 }
4393                 if (info->active_system_bg) {
4394                         btrfs_put_block_group(info->active_system_bg);
4395                         info->active_system_bg = NULL;
4396                 }
4397         }
4398 
4399         write_lock(&info->block_group_cache_lock);
4400         while (!list_empty(&info->caching_block_groups)) {
4401                 caching_ctl = list_entry(info->caching_block_groups.next,
4402                                          struct btrfs_caching_control, list);
4403                 list_del(&caching_ctl->list);
4404                 btrfs_put_caching_control(caching_ctl);
4405         }
4406         write_unlock(&info->block_group_cache_lock);
4407 
4408         spin_lock(&info->unused_bgs_lock);
4409         while (!list_empty(&info->unused_bgs)) {
4410                 block_group = list_first_entry(&info->unused_bgs,
4411                                                struct btrfs_block_group,
4412                                                bg_list);
4413                 list_del_init(&block_group->bg_list);
4414                 btrfs_put_block_group(block_group);
4415         }
4416 
4417         while (!list_empty(&info->reclaim_bgs)) {
4418                 block_group = list_first_entry(&info->reclaim_bgs,
4419                                                struct btrfs_block_group,
4420                                                bg_list);
4421                 list_del_init(&block_group->bg_list);
4422                 btrfs_put_block_group(block_group);
4423         }
4424         spin_unlock(&info->unused_bgs_lock);
4425 
4426         spin_lock(&info->zone_active_bgs_lock);
4427         while (!list_empty(&info->zone_active_bgs)) {
4428                 block_group = list_first_entry(&info->zone_active_bgs,
4429                                                struct btrfs_block_group,
4430                                                active_bg_list);
4431                 list_del_init(&block_group->active_bg_list);
4432                 btrfs_put_block_group(block_group);
4433         }
4434         spin_unlock(&info->zone_active_bgs_lock);
4435 
4436         write_lock(&info->block_group_cache_lock);
4437         while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4438                 block_group = rb_entry(n, struct btrfs_block_group,
4439                                        cache_node);
4440                 rb_erase_cached(&block_group->cache_node,
4441                                 &info->block_group_cache_tree);
4442                 RB_CLEAR_NODE(&block_group->cache_node);
4443                 write_unlock(&info->block_group_cache_lock);
4444 
4445                 down_write(&block_group->space_info->groups_sem);
4446                 list_del(&block_group->list);
4447                 up_write(&block_group->space_info->groups_sem);
4448 
4449                 /*
4450                  * We haven't cached this block group, which means we could
4451                  * possibly have excluded extents on this block group.
4452                  */
4453                 if (block_group->cached == BTRFS_CACHE_NO ||
4454                     block_group->cached == BTRFS_CACHE_ERROR)
4455                         btrfs_free_excluded_extents(block_group);
4456 
4457                 btrfs_remove_free_space_cache(block_group);
4458                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4459                 ASSERT(list_empty(&block_group->dirty_list));
4460                 ASSERT(list_empty(&block_group->io_list));
4461                 ASSERT(list_empty(&block_group->bg_list));
4462                 ASSERT(refcount_read(&block_group->refs) == 1);
4463                 ASSERT(block_group->swap_extents == 0);
4464                 btrfs_put_block_group(block_group);
4465 
4466                 write_lock(&info->block_group_cache_lock);
4467         }
4468         write_unlock(&info->block_group_cache_lock);
4469 
4470         btrfs_release_global_block_rsv(info);
4471 
4472         while (!list_empty(&info->space_info)) {
4473                 space_info = list_entry(info->space_info.next,
4474                                         struct btrfs_space_info,
4475                                         list);
4476 
4477                 /*
4478                  * Do not hide this behind enospc_debug, this is actually
4479                  * important and indicates a real bug if this happens.
4480                  */
4481                 if (WARN_ON(space_info->bytes_pinned > 0 ||
4482                             space_info->bytes_may_use > 0))
4483                         btrfs_dump_space_info(info, space_info, 0, 0);
4484 
4485                 /*
4486                  * If there was a failure to cleanup a log tree, very likely due
4487                  * to an IO failure on a writeback attempt of one or more of its
4488                  * extent buffers, we could not do proper (and cheap) unaccounting
4489                  * of their reserved space, so don't warn on bytes_reserved > 0 in
4490                  * that case.
4491                  */
4492                 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4493                     !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4494                         if (WARN_ON(space_info->bytes_reserved > 0))
4495                                 btrfs_dump_space_info(info, space_info, 0, 0);
4496                 }
4497 
4498                 WARN_ON(space_info->reclaim_size > 0);
4499                 list_del(&space_info->list);
4500                 btrfs_sysfs_remove_space_info(space_info);
4501         }
4502         return 0;
4503 }
4504 
4505 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4506 {
4507         atomic_inc(&cache->frozen);
4508 }
4509 
4510 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4511 {
4512         struct btrfs_fs_info *fs_info = block_group->fs_info;
4513         bool cleanup;
4514 
4515         spin_lock(&block_group->lock);
4516         cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4517                    test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4518         spin_unlock(&block_group->lock);
4519 
4520         if (cleanup) {
4521                 struct btrfs_chunk_map *map;
4522 
4523                 map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4524                 /* Logic error, can't happen. */
4525                 ASSERT(map);
4526 
4527                 btrfs_remove_chunk_map(fs_info, map);
4528 
4529                 /* Once for our lookup reference. */
4530                 btrfs_free_chunk_map(map);
4531 
4532                 /*
4533                  * We may have left one free space entry and other possible
4534                  * tasks trimming this block group have left 1 entry each one.
4535                  * Free them if any.
4536                  */
4537                 btrfs_remove_free_space_cache(block_group);
4538         }
4539 }
4540 
4541 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4542 {
4543         bool ret = true;
4544 
4545         spin_lock(&bg->lock);
4546         if (bg->ro)
4547                 ret = false;
4548         else
4549                 bg->swap_extents++;
4550         spin_unlock(&bg->lock);
4551 
4552         return ret;
4553 }
4554 
4555 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4556 {
4557         spin_lock(&bg->lock);
4558         ASSERT(!bg->ro);
4559         ASSERT(bg->swap_extents >= amount);
4560         bg->swap_extents -= amount;
4561         spin_unlock(&bg->lock);
4562 }
4563 
4564 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4565 {
4566         if (size <= SZ_128K)
4567                 return BTRFS_BG_SZ_SMALL;
4568         if (size <= SZ_8M)
4569                 return BTRFS_BG_SZ_MEDIUM;
4570         return BTRFS_BG_SZ_LARGE;
4571 }
4572 
4573 /*
4574  * Handle a block group allocating an extent in a size class
4575  *
4576  * @bg:                         The block group we allocated in.
4577  * @size_class:                 The size class of the allocation.
4578  * @force_wrong_size_class:     Whether we are desperate enough to allow
4579  *                              mismatched size classes.
4580  *
4581  * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4582  * case of a race that leads to the wrong size class without
4583  * force_wrong_size_class set.
4584  *
4585  * find_free_extent will skip block groups with a mismatched size class until
4586  * it really needs to avoid ENOSPC. In that case it will set
4587  * force_wrong_size_class. However, if a block group is newly allocated and
4588  * doesn't yet have a size class, then it is possible for two allocations of
4589  * different sizes to race and both try to use it. The loser is caught here and
4590  * has to retry.
4591  */
4592 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4593                                      enum btrfs_block_group_size_class size_class,
4594                                      bool force_wrong_size_class)
4595 {
4596         ASSERT(size_class != BTRFS_BG_SZ_NONE);
4597 
4598         /* The new allocation is in the right size class, do nothing */
4599         if (bg->size_class == size_class)
4600                 return 0;
4601         /*
4602          * The new allocation is in a mismatched size class.
4603          * This means one of two things:
4604          *
4605          * 1. Two tasks in find_free_extent for different size_classes raced
4606          *    and hit the same empty block_group. Make the loser try again.
4607          * 2. A call to find_free_extent got desperate enough to set
4608          *    'force_wrong_slab'. Don't change the size_class, but allow the
4609          *    allocation.
4610          */
4611         if (bg->size_class != BTRFS_BG_SZ_NONE) {
4612                 if (force_wrong_size_class)
4613                         return 0;
4614                 return -EAGAIN;
4615         }
4616         /*
4617          * The happy new block group case: the new allocation is the first
4618          * one in the block_group so we set size_class.
4619          */
4620         bg->size_class = size_class;
4621 
4622         return 0;
4623 }
4624 
4625 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4626 {
4627         if (btrfs_is_zoned(bg->fs_info))
4628                 return false;
4629         if (!btrfs_is_block_group_data_only(bg))
4630                 return false;
4631         return true;
4632 }
4633 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php