1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-rsv.h" 6 #include "space-info.h" 7 #include "transaction.h" 8 #include "block-group.h" 9 #include "fs.h" 10 #include "accessors.h" 11 12 /* 13 * HOW DO BLOCK RESERVES WORK 14 * 15 * Think of block_rsv's as buckets for logically grouped metadata 16 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is 17 * how large we want our block rsv to be, ->reserved is how much space is 18 * currently reserved for this block reserve. 19 * 20 * ->failfast exists for the truncate case, and is described below. 21 * 22 * NORMAL OPERATION 23 * 24 * -> Reserve 25 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill 26 * 27 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is 28 * accounted for in space_info->bytes_may_use, and then add the bytes to 29 * ->reserved, and ->size in the case of btrfs_block_rsv_add. 30 * 31 * ->size is an over-estimation of how much we may use for a particular 32 * operation. 33 * 34 * -> Use 35 * Entrance: btrfs_use_block_rsv 36 * 37 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() 38 * to determine the appropriate block_rsv to use, and then verify that 39 * ->reserved has enough space for our tree block allocation. Once 40 * successful we subtract fs_info->nodesize from ->reserved. 41 * 42 * -> Finish 43 * Entrance: btrfs_block_rsv_release 44 * 45 * We are finished with our operation, subtract our individual reservation 46 * from ->size, and then subtract ->size from ->reserved and free up the 47 * excess if there is any. 48 * 49 * There is some logic here to refill the delayed refs rsv or the global rsv 50 * as needed, otherwise the excess is subtracted from 51 * space_info->bytes_may_use. 52 * 53 * TYPES OF BLOCK RESERVES 54 * 55 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK 56 * These behave normally, as described above, just within the confines of the 57 * lifetime of their particular operation (transaction for the whole trans 58 * handle lifetime, for example). 59 * 60 * BLOCK_RSV_GLOBAL 61 * It is impossible to properly account for all the space that may be required 62 * to make our extent tree updates. This block reserve acts as an overflow 63 * buffer in case our delayed refs reserve does not reserve enough space to 64 * update the extent tree. 65 * 66 * We can steal from this in some cases as well, notably on evict() or 67 * truncate() in order to help users recover from ENOSPC conditions. 68 * 69 * BLOCK_RSV_DELALLOC 70 * The individual item sizes are determined by the per-inode size 71 * calculations, which are described with the delalloc code. This is pretty 72 * straightforward, it's just the calculation of ->size encodes a lot of 73 * different items, and thus it gets used when updating inodes, inserting file 74 * extents, and inserting checksums. 75 * 76 * BLOCK_RSV_DELREFS 77 * We keep a running tally of how many delayed refs we have on the system. 78 * We assume each one of these delayed refs are going to use a full 79 * reservation. We use the transaction items and pre-reserve space for every 80 * operation, and use this reservation to refill any gap between ->size and 81 * ->reserved that may exist. 82 * 83 * From there it's straightforward, removing a delayed ref means we remove its 84 * count from ->size and free up reservations as necessary. Since this is 85 * the most dynamic block reserve in the system, we will try to refill this 86 * block reserve first with any excess returned by any other block reserve. 87 * 88 * BLOCK_RSV_EMPTY 89 * This is the fallback block reserve to make us try to reserve space if we 90 * don't have a specific bucket for this allocation. It is mostly used for 91 * updating the device tree and such, since that is a separate pool we're 92 * content to just reserve space from the space_info on demand. 93 * 94 * BLOCK_RSV_TEMP 95 * This is used by things like truncate and iput. We will temporarily 96 * allocate a block reserve, set it to some size, and then truncate bytes 97 * until we have no space left. With ->failfast set we'll simply return 98 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try 99 * to make a new reservation. This is because these operations are 100 * unbounded, so we want to do as much work as we can, and then back off and 101 * re-reserve. 102 */ 103 104 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 105 struct btrfs_block_rsv *block_rsv, 106 struct btrfs_block_rsv *dest, u64 num_bytes, 107 u64 *qgroup_to_release_ret) 108 { 109 struct btrfs_space_info *space_info = block_rsv->space_info; 110 u64 qgroup_to_release = 0; 111 u64 ret; 112 113 spin_lock(&block_rsv->lock); 114 if (num_bytes == (u64)-1) { 115 num_bytes = block_rsv->size; 116 qgroup_to_release = block_rsv->qgroup_rsv_size; 117 } 118 block_rsv->size -= num_bytes; 119 if (block_rsv->reserved >= block_rsv->size) { 120 num_bytes = block_rsv->reserved - block_rsv->size; 121 block_rsv->reserved = block_rsv->size; 122 block_rsv->full = true; 123 } else { 124 num_bytes = 0; 125 } 126 if (qgroup_to_release_ret && 127 block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 128 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 129 block_rsv->qgroup_rsv_size; 130 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 131 } else { 132 qgroup_to_release = 0; 133 } 134 spin_unlock(&block_rsv->lock); 135 136 ret = num_bytes; 137 if (num_bytes > 0) { 138 if (dest) { 139 spin_lock(&dest->lock); 140 if (!dest->full) { 141 u64 bytes_to_add; 142 143 bytes_to_add = dest->size - dest->reserved; 144 bytes_to_add = min(num_bytes, bytes_to_add); 145 dest->reserved += bytes_to_add; 146 if (dest->reserved >= dest->size) 147 dest->full = true; 148 num_bytes -= bytes_to_add; 149 } 150 spin_unlock(&dest->lock); 151 } 152 if (num_bytes) 153 btrfs_space_info_free_bytes_may_use(fs_info, 154 space_info, 155 num_bytes); 156 } 157 if (qgroup_to_release_ret) 158 *qgroup_to_release_ret = qgroup_to_release; 159 return ret; 160 } 161 162 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 163 struct btrfs_block_rsv *dst, u64 num_bytes, 164 bool update_size) 165 { 166 int ret; 167 168 ret = btrfs_block_rsv_use_bytes(src, num_bytes); 169 if (ret) 170 return ret; 171 172 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); 173 return 0; 174 } 175 176 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) 177 { 178 memset(rsv, 0, sizeof(*rsv)); 179 spin_lock_init(&rsv->lock); 180 rsv->type = type; 181 } 182 183 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 184 struct btrfs_block_rsv *rsv, 185 enum btrfs_rsv_type type) 186 { 187 btrfs_init_block_rsv(rsv, type); 188 rsv->space_info = btrfs_find_space_info(fs_info, 189 BTRFS_BLOCK_GROUP_METADATA); 190 } 191 192 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 193 enum btrfs_rsv_type type) 194 { 195 struct btrfs_block_rsv *block_rsv; 196 197 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 198 if (!block_rsv) 199 return NULL; 200 201 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 202 return block_rsv; 203 } 204 205 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 206 struct btrfs_block_rsv *rsv) 207 { 208 if (!rsv) 209 return; 210 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 211 kfree(rsv); 212 } 213 214 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, 215 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 216 enum btrfs_reserve_flush_enum flush) 217 { 218 int ret; 219 220 if (num_bytes == 0) 221 return 0; 222 223 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, 224 num_bytes, flush); 225 if (!ret) 226 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); 227 228 return ret; 229 } 230 231 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent) 232 { 233 u64 num_bytes = 0; 234 int ret = -ENOSPC; 235 236 spin_lock(&block_rsv->lock); 237 num_bytes = mult_perc(block_rsv->size, min_percent); 238 if (block_rsv->reserved >= num_bytes) 239 ret = 0; 240 spin_unlock(&block_rsv->lock); 241 242 return ret; 243 } 244 245 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, 246 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 247 enum btrfs_reserve_flush_enum flush) 248 { 249 int ret = -ENOSPC; 250 251 if (!block_rsv) 252 return 0; 253 254 spin_lock(&block_rsv->lock); 255 if (block_rsv->reserved >= num_bytes) 256 ret = 0; 257 else 258 num_bytes -= block_rsv->reserved; 259 spin_unlock(&block_rsv->lock); 260 261 if (!ret) 262 return 0; 263 264 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, 265 num_bytes, flush); 266 if (!ret) { 267 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); 268 return 0; 269 } 270 271 return ret; 272 } 273 274 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 275 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 276 u64 *qgroup_to_release) 277 { 278 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 279 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 280 struct btrfs_block_rsv *target = NULL; 281 282 /* 283 * If we are a delayed block reserve then push to the global rsv, 284 * otherwise dump into the global delayed reserve if it is not full. 285 */ 286 if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS) 287 target = global_rsv; 288 else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv)) 289 target = delayed_rsv; 290 291 if (target && block_rsv->space_info != target->space_info) 292 target = NULL; 293 294 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, 295 qgroup_to_release); 296 } 297 298 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) 299 { 300 int ret = -ENOSPC; 301 302 spin_lock(&block_rsv->lock); 303 if (block_rsv->reserved >= num_bytes) { 304 block_rsv->reserved -= num_bytes; 305 if (block_rsv->reserved < block_rsv->size) 306 block_rsv->full = false; 307 ret = 0; 308 } 309 spin_unlock(&block_rsv->lock); 310 return ret; 311 } 312 313 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 314 u64 num_bytes, bool update_size) 315 { 316 spin_lock(&block_rsv->lock); 317 block_rsv->reserved += num_bytes; 318 if (update_size) 319 block_rsv->size += num_bytes; 320 else if (block_rsv->reserved >= block_rsv->size) 321 block_rsv->full = true; 322 spin_unlock(&block_rsv->lock); 323 } 324 325 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) 326 { 327 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 328 struct btrfs_space_info *sinfo = block_rsv->space_info; 329 struct btrfs_root *root, *tmp; 330 u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); 331 unsigned int min_items = 1; 332 333 /* 334 * The global block rsv is based on the size of the extent tree, the 335 * checksum tree and the root tree. If the fs is empty we want to set 336 * it to a minimal amount for safety. 337 * 338 * We also are going to need to modify the minimum of the tree root and 339 * any global roots we could touch. 340 */ 341 read_lock(&fs_info->global_root_lock); 342 rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, 343 rb_node) { 344 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID || 345 btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID || 346 btrfs_root_id(root) == BTRFS_FREE_SPACE_TREE_OBJECTID) { 347 num_bytes += btrfs_root_used(&root->root_item); 348 min_items++; 349 } 350 } 351 read_unlock(&fs_info->global_root_lock); 352 353 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 354 num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item); 355 min_items++; 356 } 357 358 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 359 num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item); 360 min_items++; 361 } 362 363 /* 364 * But we also want to reserve enough space so we can do the fallback 365 * global reserve for an unlink, which is an additional 366 * BTRFS_UNLINK_METADATA_UNITS items. 367 * 368 * But we also need space for the delayed ref updates from the unlink, 369 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for 370 * each unlink metadata item. 371 */ 372 min_items += BTRFS_UNLINK_METADATA_UNITS; 373 374 num_bytes = max_t(u64, num_bytes, 375 btrfs_calc_insert_metadata_size(fs_info, min_items) + 376 btrfs_calc_delayed_ref_bytes(fs_info, 377 BTRFS_UNLINK_METADATA_UNITS)); 378 379 spin_lock(&sinfo->lock); 380 spin_lock(&block_rsv->lock); 381 382 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 383 384 if (block_rsv->reserved < block_rsv->size) { 385 num_bytes = block_rsv->size - block_rsv->reserved; 386 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 387 num_bytes); 388 block_rsv->reserved = block_rsv->size; 389 } else if (block_rsv->reserved > block_rsv->size) { 390 num_bytes = block_rsv->reserved - block_rsv->size; 391 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 392 -num_bytes); 393 block_rsv->reserved = block_rsv->size; 394 btrfs_try_granting_tickets(fs_info, sinfo); 395 } 396 397 block_rsv->full = (block_rsv->reserved == block_rsv->size); 398 399 if (block_rsv->size >= sinfo->total_bytes) 400 sinfo->force_alloc = CHUNK_ALLOC_FORCE; 401 spin_unlock(&block_rsv->lock); 402 spin_unlock(&sinfo->lock); 403 } 404 405 void btrfs_init_root_block_rsv(struct btrfs_root *root) 406 { 407 struct btrfs_fs_info *fs_info = root->fs_info; 408 409 switch (btrfs_root_id(root)) { 410 case BTRFS_CSUM_TREE_OBJECTID: 411 case BTRFS_EXTENT_TREE_OBJECTID: 412 case BTRFS_FREE_SPACE_TREE_OBJECTID: 413 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 414 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 415 root->block_rsv = &fs_info->delayed_refs_rsv; 416 break; 417 case BTRFS_ROOT_TREE_OBJECTID: 418 case BTRFS_DEV_TREE_OBJECTID: 419 case BTRFS_QUOTA_TREE_OBJECTID: 420 root->block_rsv = &fs_info->global_block_rsv; 421 break; 422 case BTRFS_CHUNK_TREE_OBJECTID: 423 root->block_rsv = &fs_info->chunk_block_rsv; 424 break; 425 default: 426 root->block_rsv = NULL; 427 break; 428 } 429 } 430 431 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) 432 { 433 struct btrfs_space_info *space_info; 434 435 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 436 fs_info->chunk_block_rsv.space_info = space_info; 437 438 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 439 fs_info->global_block_rsv.space_info = space_info; 440 fs_info->trans_block_rsv.space_info = space_info; 441 fs_info->empty_block_rsv.space_info = space_info; 442 fs_info->delayed_block_rsv.space_info = space_info; 443 fs_info->delayed_refs_rsv.space_info = space_info; 444 445 btrfs_update_global_block_rsv(fs_info); 446 } 447 448 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) 449 { 450 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, 451 NULL); 452 WARN_ON(fs_info->trans_block_rsv.size > 0); 453 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 454 WARN_ON(fs_info->chunk_block_rsv.size > 0); 455 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 456 WARN_ON(fs_info->delayed_block_rsv.size > 0); 457 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 458 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); 459 WARN_ON(fs_info->delayed_refs_rsv.size > 0); 460 } 461 462 static struct btrfs_block_rsv *get_block_rsv( 463 const struct btrfs_trans_handle *trans, 464 const struct btrfs_root *root) 465 { 466 struct btrfs_fs_info *fs_info = root->fs_info; 467 struct btrfs_block_rsv *block_rsv = NULL; 468 469 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 470 (root == fs_info->uuid_root) || 471 (trans->adding_csums && btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID)) 472 block_rsv = trans->block_rsv; 473 474 if (!block_rsv) 475 block_rsv = root->block_rsv; 476 477 if (!block_rsv) 478 block_rsv = &fs_info->empty_block_rsv; 479 480 return block_rsv; 481 } 482 483 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, 484 struct btrfs_root *root, 485 u32 blocksize) 486 { 487 struct btrfs_fs_info *fs_info = root->fs_info; 488 struct btrfs_block_rsv *block_rsv; 489 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 490 int ret; 491 bool global_updated = false; 492 493 block_rsv = get_block_rsv(trans, root); 494 495 if (unlikely(btrfs_block_rsv_size(block_rsv) == 0)) 496 goto try_reserve; 497 again: 498 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); 499 if (!ret) 500 return block_rsv; 501 502 if (block_rsv->failfast) 503 return ERR_PTR(ret); 504 505 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 506 global_updated = true; 507 btrfs_update_global_block_rsv(fs_info); 508 goto again; 509 } 510 511 /* 512 * The global reserve still exists to save us from ourselves, so don't 513 * warn_on if we are short on our delayed refs reserve. 514 */ 515 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && 516 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 517 static DEFINE_RATELIMIT_STATE(_rs, 518 DEFAULT_RATELIMIT_INTERVAL * 10, 519 /*DEFAULT_RATELIMIT_BURST*/ 1); 520 if (__ratelimit(&_rs)) 521 WARN(1, KERN_DEBUG 522 "BTRFS: block rsv %d returned %d\n", 523 block_rsv->type, ret); 524 } 525 try_reserve: 526 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, 527 blocksize, BTRFS_RESERVE_NO_FLUSH); 528 if (!ret) 529 return block_rsv; 530 /* 531 * If we couldn't reserve metadata bytes try and use some from 532 * the global reserve if its space type is the same as the global 533 * reservation. 534 */ 535 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 536 block_rsv->space_info == global_rsv->space_info) { 537 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); 538 if (!ret) 539 return global_rsv; 540 } 541 542 /* 543 * All hope is lost, but of course our reservations are overly 544 * pessimistic, so instead of possibly having an ENOSPC abort here, try 545 * one last time to force a reservation if there's enough actual space 546 * on disk to make the reservation. 547 */ 548 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize, 549 BTRFS_RESERVE_FLUSH_EMERGENCY); 550 if (!ret) 551 return block_rsv; 552 553 return ERR_PTR(ret); 554 } 555 556 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 557 struct btrfs_block_rsv *rsv) 558 { 559 u64 needed_bytes; 560 int ret; 561 562 /* 1 for slack space, 1 for updating the inode */ 563 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 564 btrfs_calc_metadata_size(fs_info, 1); 565 566 spin_lock(&rsv->lock); 567 if (rsv->reserved < needed_bytes) 568 ret = -ENOSPC; 569 else 570 ret = 0; 571 spin_unlock(&rsv->lock); 572 return ret; 573 } 574
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.