1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <linux/shrinker.h> 24 #include <crypto/hash.h> 25 #include "misc.h" 26 #include "ctree.h" 27 #include "fs.h" 28 #include "btrfs_inode.h" 29 #include "bio.h" 30 #include "ordered-data.h" 31 #include "compression.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "subpage.h" 35 #include "messages.h" 36 #include "super.h" 37 38 static struct bio_set btrfs_compressed_bioset; 39 40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 41 42 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 43 { 44 switch (type) { 45 case BTRFS_COMPRESS_ZLIB: 46 case BTRFS_COMPRESS_LZO: 47 case BTRFS_COMPRESS_ZSTD: 48 case BTRFS_COMPRESS_NONE: 49 return btrfs_compress_types[type]; 50 default: 51 break; 52 } 53 54 return NULL; 55 } 56 57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) 58 { 59 return container_of(bbio, struct compressed_bio, bbio); 60 } 61 62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, 63 u64 start, blk_opf_t op, 64 btrfs_bio_end_io_t end_io) 65 { 66 struct btrfs_bio *bbio; 67 68 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op, 69 GFP_NOFS, &btrfs_compressed_bioset)); 70 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL); 71 bbio->inode = inode; 72 bbio->file_offset = start; 73 return to_compressed_bio(bbio); 74 } 75 76 bool btrfs_compress_is_valid_type(const char *str, size_t len) 77 { 78 int i; 79 80 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 81 size_t comp_len = strlen(btrfs_compress_types[i]); 82 83 if (len < comp_len) 84 continue; 85 86 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 87 return true; 88 } 89 return false; 90 } 91 92 static int compression_compress_pages(int type, struct list_head *ws, 93 struct address_space *mapping, u64 start, 94 struct folio **folios, unsigned long *out_folios, 95 unsigned long *total_in, unsigned long *total_out) 96 { 97 switch (type) { 98 case BTRFS_COMPRESS_ZLIB: 99 return zlib_compress_folios(ws, mapping, start, folios, 100 out_folios, total_in, total_out); 101 case BTRFS_COMPRESS_LZO: 102 return lzo_compress_folios(ws, mapping, start, folios, 103 out_folios, total_in, total_out); 104 case BTRFS_COMPRESS_ZSTD: 105 return zstd_compress_folios(ws, mapping, start, folios, 106 out_folios, total_in, total_out); 107 case BTRFS_COMPRESS_NONE: 108 default: 109 /* 110 * This can happen when compression races with remount setting 111 * it to 'no compress', while caller doesn't call 112 * inode_need_compress() to check if we really need to 113 * compress. 114 * 115 * Not a big deal, just need to inform caller that we 116 * haven't allocated any pages yet. 117 */ 118 *out_folios = 0; 119 return -E2BIG; 120 } 121 } 122 123 static int compression_decompress_bio(struct list_head *ws, 124 struct compressed_bio *cb) 125 { 126 switch (cb->compress_type) { 127 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 128 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 129 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 130 case BTRFS_COMPRESS_NONE: 131 default: 132 /* 133 * This can't happen, the type is validated several times 134 * before we get here. 135 */ 136 BUG(); 137 } 138 } 139 140 static int compression_decompress(int type, struct list_head *ws, 141 const u8 *data_in, struct page *dest_page, 142 unsigned long dest_pgoff, size_t srclen, size_t destlen) 143 { 144 switch (type) { 145 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 146 dest_pgoff, srclen, destlen); 147 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 148 dest_pgoff, srclen, destlen); 149 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 150 dest_pgoff, srclen, destlen); 151 case BTRFS_COMPRESS_NONE: 152 default: 153 /* 154 * This can't happen, the type is validated several times 155 * before we get here. 156 */ 157 BUG(); 158 } 159 } 160 161 static void btrfs_free_compressed_folios(struct compressed_bio *cb) 162 { 163 for (unsigned int i = 0; i < cb->nr_folios; i++) 164 btrfs_free_compr_folio(cb->compressed_folios[i]); 165 kfree(cb->compressed_folios); 166 } 167 168 static int btrfs_decompress_bio(struct compressed_bio *cb); 169 170 /* 171 * Global cache of last unused pages for compression/decompression. 172 */ 173 static struct btrfs_compr_pool { 174 struct shrinker *shrinker; 175 spinlock_t lock; 176 struct list_head list; 177 int count; 178 int thresh; 179 } compr_pool; 180 181 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc) 182 { 183 int ret; 184 185 /* 186 * We must not read the values more than once if 'ret' gets expanded in 187 * the return statement so we don't accidentally return a negative 188 * number, even if the first condition finds it positive. 189 */ 190 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh); 191 192 return ret > 0 ? ret : 0; 193 } 194 195 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc) 196 { 197 struct list_head remove; 198 struct list_head *tmp, *next; 199 int freed; 200 201 if (compr_pool.count == 0) 202 return SHRINK_STOP; 203 204 INIT_LIST_HEAD(&remove); 205 206 /* For now, just simply drain the whole list. */ 207 spin_lock(&compr_pool.lock); 208 list_splice_init(&compr_pool.list, &remove); 209 freed = compr_pool.count; 210 compr_pool.count = 0; 211 spin_unlock(&compr_pool.lock); 212 213 list_for_each_safe(tmp, next, &remove) { 214 struct page *page = list_entry(tmp, struct page, lru); 215 216 ASSERT(page_ref_count(page) == 1); 217 put_page(page); 218 } 219 220 return freed; 221 } 222 223 /* 224 * Common wrappers for page allocation from compression wrappers 225 */ 226 struct folio *btrfs_alloc_compr_folio(void) 227 { 228 struct folio *folio = NULL; 229 230 spin_lock(&compr_pool.lock); 231 if (compr_pool.count > 0) { 232 folio = list_first_entry(&compr_pool.list, struct folio, lru); 233 list_del_init(&folio->lru); 234 compr_pool.count--; 235 } 236 spin_unlock(&compr_pool.lock); 237 238 if (folio) 239 return folio; 240 241 return folio_alloc(GFP_NOFS, 0); 242 } 243 244 void btrfs_free_compr_folio(struct folio *folio) 245 { 246 bool do_free = false; 247 248 spin_lock(&compr_pool.lock); 249 if (compr_pool.count > compr_pool.thresh) { 250 do_free = true; 251 } else { 252 list_add(&folio->lru, &compr_pool.list); 253 compr_pool.count++; 254 } 255 spin_unlock(&compr_pool.lock); 256 257 if (!do_free) 258 return; 259 260 ASSERT(folio_ref_count(folio) == 1); 261 folio_put(folio); 262 } 263 264 static void end_bbio_compressed_read(struct btrfs_bio *bbio) 265 { 266 struct compressed_bio *cb = to_compressed_bio(bbio); 267 blk_status_t status = bbio->bio.bi_status; 268 269 if (!status) 270 status = errno_to_blk_status(btrfs_decompress_bio(cb)); 271 272 btrfs_free_compressed_folios(cb); 273 btrfs_bio_end_io(cb->orig_bbio, status); 274 bio_put(&bbio->bio); 275 } 276 277 /* 278 * Clear the writeback bits on all of the file 279 * pages for a compressed write 280 */ 281 static noinline void end_compressed_writeback(const struct compressed_bio *cb) 282 { 283 struct inode *inode = &cb->bbio.inode->vfs_inode; 284 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 285 unsigned long index = cb->start >> PAGE_SHIFT; 286 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 287 struct folio_batch fbatch; 288 const int error = blk_status_to_errno(cb->bbio.bio.bi_status); 289 int i; 290 int ret; 291 292 if (error) 293 mapping_set_error(inode->i_mapping, error); 294 295 folio_batch_init(&fbatch); 296 while (index <= end_index) { 297 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 298 &fbatch); 299 300 if (ret == 0) 301 return; 302 303 for (i = 0; i < ret; i++) { 304 struct folio *folio = fbatch.folios[i]; 305 306 btrfs_folio_clamp_clear_writeback(fs_info, folio, 307 cb->start, cb->len); 308 } 309 folio_batch_release(&fbatch); 310 } 311 /* the inode may be gone now */ 312 } 313 314 static void btrfs_finish_compressed_write_work(struct work_struct *work) 315 { 316 struct compressed_bio *cb = 317 container_of(work, struct compressed_bio, write_end_work); 318 319 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len, 320 cb->bbio.bio.bi_status == BLK_STS_OK); 321 322 if (cb->writeback) 323 end_compressed_writeback(cb); 324 /* Note, our inode could be gone now */ 325 326 btrfs_free_compressed_folios(cb); 327 bio_put(&cb->bbio.bio); 328 } 329 330 /* 331 * Do the cleanup once all the compressed pages hit the disk. This will clear 332 * writeback on the file pages and free the compressed pages. 333 * 334 * This also calls the writeback end hooks for the file pages so that metadata 335 * and checksums can be updated in the file. 336 */ 337 static void end_bbio_compressed_write(struct btrfs_bio *bbio) 338 { 339 struct compressed_bio *cb = to_compressed_bio(bbio); 340 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 341 342 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 343 } 344 345 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb) 346 { 347 struct bio *bio = &cb->bbio.bio; 348 u32 offset = 0; 349 350 while (offset < cb->compressed_len) { 351 int ret; 352 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE); 353 354 /* Maximum compressed extent is smaller than bio size limit. */ 355 ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT], 356 len, 0); 357 ASSERT(ret); 358 offset += len; 359 } 360 } 361 362 /* 363 * worker function to build and submit bios for previously compressed pages. 364 * The corresponding pages in the inode should be marked for writeback 365 * and the compressed pages should have a reference on them for dropping 366 * when the IO is complete. 367 * 368 * This also checksums the file bytes and gets things ready for 369 * the end io hooks. 370 */ 371 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered, 372 struct folio **compressed_folios, 373 unsigned int nr_folios, 374 blk_opf_t write_flags, 375 bool writeback) 376 { 377 struct btrfs_inode *inode = ordered->inode; 378 struct btrfs_fs_info *fs_info = inode->root->fs_info; 379 struct compressed_bio *cb; 380 381 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize)); 382 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize)); 383 384 cb = alloc_compressed_bio(inode, ordered->file_offset, 385 REQ_OP_WRITE | write_flags, 386 end_bbio_compressed_write); 387 cb->start = ordered->file_offset; 388 cb->len = ordered->num_bytes; 389 cb->compressed_folios = compressed_folios; 390 cb->compressed_len = ordered->disk_num_bytes; 391 cb->writeback = writeback; 392 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 393 cb->nr_folios = nr_folios; 394 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT; 395 cb->bbio.ordered = ordered; 396 btrfs_add_compressed_bio_folios(cb); 397 398 btrfs_submit_bio(&cb->bbio, 0); 399 } 400 401 /* 402 * Add extra pages in the same compressed file extent so that we don't need to 403 * re-read the same extent again and again. 404 * 405 * NOTE: this won't work well for subpage, as for subpage read, we lock the 406 * full page then submit bio for each compressed/regular extents. 407 * 408 * This means, if we have several sectors in the same page points to the same 409 * on-disk compressed data, we will re-read the same extent many times and 410 * this function can only help for the next page. 411 */ 412 static noinline int add_ra_bio_pages(struct inode *inode, 413 u64 compressed_end, 414 struct compressed_bio *cb, 415 int *memstall, unsigned long *pflags) 416 { 417 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 418 unsigned long end_index; 419 struct bio *orig_bio = &cb->orig_bbio->bio; 420 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; 421 u64 isize = i_size_read(inode); 422 int ret; 423 struct page *page; 424 struct extent_map *em; 425 struct address_space *mapping = inode->i_mapping; 426 struct extent_map_tree *em_tree; 427 struct extent_io_tree *tree; 428 int sectors_missed = 0; 429 430 em_tree = &BTRFS_I(inode)->extent_tree; 431 tree = &BTRFS_I(inode)->io_tree; 432 433 if (isize == 0) 434 return 0; 435 436 /* 437 * For current subpage support, we only support 64K page size, 438 * which means maximum compressed extent size (128K) is just 2x page 439 * size. 440 * This makes readahead less effective, so here disable readahead for 441 * subpage for now, until full compressed write is supported. 442 */ 443 if (fs_info->sectorsize < PAGE_SIZE) 444 return 0; 445 446 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 447 448 while (cur < compressed_end) { 449 u64 page_end; 450 u64 pg_index = cur >> PAGE_SHIFT; 451 u32 add_size; 452 453 if (pg_index > end_index) 454 break; 455 456 page = xa_load(&mapping->i_pages, pg_index); 457 if (page && !xa_is_value(page)) { 458 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 459 fs_info->sectorsize_bits; 460 461 /* Beyond threshold, no need to continue */ 462 if (sectors_missed > 4) 463 break; 464 465 /* 466 * Jump to next page start as we already have page for 467 * current offset. 468 */ 469 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 470 continue; 471 } 472 473 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 474 ~__GFP_FS)); 475 if (!page) 476 break; 477 478 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 479 put_page(page); 480 /* There is already a page, skip to page end */ 481 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 482 continue; 483 } 484 485 if (!*memstall && PageWorkingset(page)) { 486 psi_memstall_enter(pflags); 487 *memstall = 1; 488 } 489 490 ret = set_page_extent_mapped(page); 491 if (ret < 0) { 492 unlock_page(page); 493 put_page(page); 494 break; 495 } 496 497 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 498 lock_extent(tree, cur, page_end, NULL); 499 read_lock(&em_tree->lock); 500 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 501 read_unlock(&em_tree->lock); 502 503 /* 504 * At this point, we have a locked page in the page cache for 505 * these bytes in the file. But, we have to make sure they map 506 * to this compressed extent on disk. 507 */ 508 if (!em || cur < em->start || 509 (cur + fs_info->sectorsize > extent_map_end(em)) || 510 (extent_map_block_start(em) >> SECTOR_SHIFT) != 511 orig_bio->bi_iter.bi_sector) { 512 free_extent_map(em); 513 unlock_extent(tree, cur, page_end, NULL); 514 unlock_page(page); 515 put_page(page); 516 break; 517 } 518 add_size = min(em->start + em->len, page_end + 1) - cur; 519 free_extent_map(em); 520 521 if (page->index == end_index) { 522 size_t zero_offset = offset_in_page(isize); 523 524 if (zero_offset) { 525 int zeros; 526 zeros = PAGE_SIZE - zero_offset; 527 memzero_page(page, zero_offset, zeros); 528 } 529 } 530 531 ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur)); 532 if (ret != add_size) { 533 unlock_extent(tree, cur, page_end, NULL); 534 unlock_page(page); 535 put_page(page); 536 break; 537 } 538 /* 539 * If it's subpage, we also need to increase its 540 * subpage::readers number, as at endio we will decrease 541 * subpage::readers and to unlock the page. 542 */ 543 if (fs_info->sectorsize < PAGE_SIZE) 544 btrfs_subpage_start_reader(fs_info, page_folio(page), 545 cur, add_size); 546 put_page(page); 547 cur += add_size; 548 } 549 return 0; 550 } 551 552 /* 553 * for a compressed read, the bio we get passed has all the inode pages 554 * in it. We don't actually do IO on those pages but allocate new ones 555 * to hold the compressed pages on disk. 556 * 557 * bio->bi_iter.bi_sector points to the compressed extent on disk 558 * bio->bi_io_vec points to all of the inode pages 559 * 560 * After the compressed pages are read, we copy the bytes into the 561 * bio we were passed and then call the bio end_io calls 562 */ 563 void btrfs_submit_compressed_read(struct btrfs_bio *bbio) 564 { 565 struct btrfs_inode *inode = bbio->inode; 566 struct btrfs_fs_info *fs_info = inode->root->fs_info; 567 struct extent_map_tree *em_tree = &inode->extent_tree; 568 struct compressed_bio *cb; 569 unsigned int compressed_len; 570 u64 file_offset = bbio->file_offset; 571 u64 em_len; 572 u64 em_start; 573 struct extent_map *em; 574 unsigned long pflags; 575 int memstall = 0; 576 blk_status_t ret; 577 int ret2; 578 579 /* we need the actual starting offset of this extent in the file */ 580 read_lock(&em_tree->lock); 581 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 582 read_unlock(&em_tree->lock); 583 if (!em) { 584 ret = BLK_STS_IOERR; 585 goto out; 586 } 587 588 ASSERT(extent_map_is_compressed(em)); 589 compressed_len = em->disk_num_bytes; 590 591 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ, 592 end_bbio_compressed_read); 593 594 cb->start = em->start - em->offset; 595 em_len = em->len; 596 em_start = em->start; 597 598 cb->len = bbio->bio.bi_iter.bi_size; 599 cb->compressed_len = compressed_len; 600 cb->compress_type = extent_map_compression(em); 601 cb->orig_bbio = bbio; 602 603 free_extent_map(em); 604 605 cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 606 cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct page *), GFP_NOFS); 607 if (!cb->compressed_folios) { 608 ret = BLK_STS_RESOURCE; 609 goto out_free_bio; 610 } 611 612 ret2 = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios); 613 if (ret2) { 614 ret = BLK_STS_RESOURCE; 615 goto out_free_compressed_pages; 616 } 617 618 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall, 619 &pflags); 620 621 /* include any pages we added in add_ra-bio_pages */ 622 cb->len = bbio->bio.bi_iter.bi_size; 623 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; 624 btrfs_add_compressed_bio_folios(cb); 625 626 if (memstall) 627 psi_memstall_leave(&pflags); 628 629 btrfs_submit_bio(&cb->bbio, 0); 630 return; 631 632 out_free_compressed_pages: 633 kfree(cb->compressed_folios); 634 out_free_bio: 635 bio_put(&cb->bbio.bio); 636 out: 637 btrfs_bio_end_io(bbio, ret); 638 } 639 640 /* 641 * Heuristic uses systematic sampling to collect data from the input data 642 * range, the logic can be tuned by the following constants: 643 * 644 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 645 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 646 */ 647 #define SAMPLING_READ_SIZE (16) 648 #define SAMPLING_INTERVAL (256) 649 650 /* 651 * For statistical analysis of the input data we consider bytes that form a 652 * Galois Field of 256 objects. Each object has an attribute count, ie. how 653 * many times the object appeared in the sample. 654 */ 655 #define BUCKET_SIZE (256) 656 657 /* 658 * The size of the sample is based on a statistical sampling rule of thumb. 659 * The common way is to perform sampling tests as long as the number of 660 * elements in each cell is at least 5. 661 * 662 * Instead of 5, we choose 32 to obtain more accurate results. 663 * If the data contain the maximum number of symbols, which is 256, we obtain a 664 * sample size bound by 8192. 665 * 666 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 667 * from up to 512 locations. 668 */ 669 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 670 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 671 672 struct bucket_item { 673 u32 count; 674 }; 675 676 struct heuristic_ws { 677 /* Partial copy of input data */ 678 u8 *sample; 679 u32 sample_size; 680 /* Buckets store counters for each byte value */ 681 struct bucket_item *bucket; 682 /* Sorting buffer */ 683 struct bucket_item *bucket_b; 684 struct list_head list; 685 }; 686 687 static struct workspace_manager heuristic_wsm; 688 689 static void free_heuristic_ws(struct list_head *ws) 690 { 691 struct heuristic_ws *workspace; 692 693 workspace = list_entry(ws, struct heuristic_ws, list); 694 695 kvfree(workspace->sample); 696 kfree(workspace->bucket); 697 kfree(workspace->bucket_b); 698 kfree(workspace); 699 } 700 701 static struct list_head *alloc_heuristic_ws(unsigned int level) 702 { 703 struct heuristic_ws *ws; 704 705 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 706 if (!ws) 707 return ERR_PTR(-ENOMEM); 708 709 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 710 if (!ws->sample) 711 goto fail; 712 713 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 714 if (!ws->bucket) 715 goto fail; 716 717 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 718 if (!ws->bucket_b) 719 goto fail; 720 721 INIT_LIST_HEAD(&ws->list); 722 return &ws->list; 723 fail: 724 free_heuristic_ws(&ws->list); 725 return ERR_PTR(-ENOMEM); 726 } 727 728 const struct btrfs_compress_op btrfs_heuristic_compress = { 729 .workspace_manager = &heuristic_wsm, 730 }; 731 732 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 733 /* The heuristic is represented as compression type 0 */ 734 &btrfs_heuristic_compress, 735 &btrfs_zlib_compress, 736 &btrfs_lzo_compress, 737 &btrfs_zstd_compress, 738 }; 739 740 static struct list_head *alloc_workspace(int type, unsigned int level) 741 { 742 switch (type) { 743 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 744 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 745 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 746 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 747 default: 748 /* 749 * This can't happen, the type is validated several times 750 * before we get here. 751 */ 752 BUG(); 753 } 754 } 755 756 static void free_workspace(int type, struct list_head *ws) 757 { 758 switch (type) { 759 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 760 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 761 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 762 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 763 default: 764 /* 765 * This can't happen, the type is validated several times 766 * before we get here. 767 */ 768 BUG(); 769 } 770 } 771 772 static void btrfs_init_workspace_manager(int type) 773 { 774 struct workspace_manager *wsm; 775 struct list_head *workspace; 776 777 wsm = btrfs_compress_op[type]->workspace_manager; 778 INIT_LIST_HEAD(&wsm->idle_ws); 779 spin_lock_init(&wsm->ws_lock); 780 atomic_set(&wsm->total_ws, 0); 781 init_waitqueue_head(&wsm->ws_wait); 782 783 /* 784 * Preallocate one workspace for each compression type so we can 785 * guarantee forward progress in the worst case 786 */ 787 workspace = alloc_workspace(type, 0); 788 if (IS_ERR(workspace)) { 789 pr_warn( 790 "BTRFS: cannot preallocate compression workspace, will try later\n"); 791 } else { 792 atomic_set(&wsm->total_ws, 1); 793 wsm->free_ws = 1; 794 list_add(workspace, &wsm->idle_ws); 795 } 796 } 797 798 static void btrfs_cleanup_workspace_manager(int type) 799 { 800 struct workspace_manager *wsman; 801 struct list_head *ws; 802 803 wsman = btrfs_compress_op[type]->workspace_manager; 804 while (!list_empty(&wsman->idle_ws)) { 805 ws = wsman->idle_ws.next; 806 list_del(ws); 807 free_workspace(type, ws); 808 atomic_dec(&wsman->total_ws); 809 } 810 } 811 812 /* 813 * This finds an available workspace or allocates a new one. 814 * If it's not possible to allocate a new one, waits until there's one. 815 * Preallocation makes a forward progress guarantees and we do not return 816 * errors. 817 */ 818 struct list_head *btrfs_get_workspace(int type, unsigned int level) 819 { 820 struct workspace_manager *wsm; 821 struct list_head *workspace; 822 int cpus = num_online_cpus(); 823 unsigned nofs_flag; 824 struct list_head *idle_ws; 825 spinlock_t *ws_lock; 826 atomic_t *total_ws; 827 wait_queue_head_t *ws_wait; 828 int *free_ws; 829 830 wsm = btrfs_compress_op[type]->workspace_manager; 831 idle_ws = &wsm->idle_ws; 832 ws_lock = &wsm->ws_lock; 833 total_ws = &wsm->total_ws; 834 ws_wait = &wsm->ws_wait; 835 free_ws = &wsm->free_ws; 836 837 again: 838 spin_lock(ws_lock); 839 if (!list_empty(idle_ws)) { 840 workspace = idle_ws->next; 841 list_del(workspace); 842 (*free_ws)--; 843 spin_unlock(ws_lock); 844 return workspace; 845 846 } 847 if (atomic_read(total_ws) > cpus) { 848 DEFINE_WAIT(wait); 849 850 spin_unlock(ws_lock); 851 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 852 if (atomic_read(total_ws) > cpus && !*free_ws) 853 schedule(); 854 finish_wait(ws_wait, &wait); 855 goto again; 856 } 857 atomic_inc(total_ws); 858 spin_unlock(ws_lock); 859 860 /* 861 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 862 * to turn it off here because we might get called from the restricted 863 * context of btrfs_compress_bio/btrfs_compress_pages 864 */ 865 nofs_flag = memalloc_nofs_save(); 866 workspace = alloc_workspace(type, level); 867 memalloc_nofs_restore(nofs_flag); 868 869 if (IS_ERR(workspace)) { 870 atomic_dec(total_ws); 871 wake_up(ws_wait); 872 873 /* 874 * Do not return the error but go back to waiting. There's a 875 * workspace preallocated for each type and the compression 876 * time is bounded so we get to a workspace eventually. This 877 * makes our caller's life easier. 878 * 879 * To prevent silent and low-probability deadlocks (when the 880 * initial preallocation fails), check if there are any 881 * workspaces at all. 882 */ 883 if (atomic_read(total_ws) == 0) { 884 static DEFINE_RATELIMIT_STATE(_rs, 885 /* once per minute */ 60 * HZ, 886 /* no burst */ 1); 887 888 if (__ratelimit(&_rs)) { 889 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 890 } 891 } 892 goto again; 893 } 894 return workspace; 895 } 896 897 static struct list_head *get_workspace(int type, int level) 898 { 899 switch (type) { 900 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 901 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 902 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 903 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 904 default: 905 /* 906 * This can't happen, the type is validated several times 907 * before we get here. 908 */ 909 BUG(); 910 } 911 } 912 913 /* 914 * put a workspace struct back on the list or free it if we have enough 915 * idle ones sitting around 916 */ 917 void btrfs_put_workspace(int type, struct list_head *ws) 918 { 919 struct workspace_manager *wsm; 920 struct list_head *idle_ws; 921 spinlock_t *ws_lock; 922 atomic_t *total_ws; 923 wait_queue_head_t *ws_wait; 924 int *free_ws; 925 926 wsm = btrfs_compress_op[type]->workspace_manager; 927 idle_ws = &wsm->idle_ws; 928 ws_lock = &wsm->ws_lock; 929 total_ws = &wsm->total_ws; 930 ws_wait = &wsm->ws_wait; 931 free_ws = &wsm->free_ws; 932 933 spin_lock(ws_lock); 934 if (*free_ws <= num_online_cpus()) { 935 list_add(ws, idle_ws); 936 (*free_ws)++; 937 spin_unlock(ws_lock); 938 goto wake; 939 } 940 spin_unlock(ws_lock); 941 942 free_workspace(type, ws); 943 atomic_dec(total_ws); 944 wake: 945 cond_wake_up(ws_wait); 946 } 947 948 static void put_workspace(int type, struct list_head *ws) 949 { 950 switch (type) { 951 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 952 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 953 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 954 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 955 default: 956 /* 957 * This can't happen, the type is validated several times 958 * before we get here. 959 */ 960 BUG(); 961 } 962 } 963 964 /* 965 * Adjust @level according to the limits of the compression algorithm or 966 * fallback to default 967 */ 968 static unsigned int btrfs_compress_set_level(int type, unsigned level) 969 { 970 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 971 972 if (level == 0) 973 level = ops->default_level; 974 else 975 level = min(level, ops->max_level); 976 977 return level; 978 } 979 980 /* Wrapper around find_get_page(), with extra error message. */ 981 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start, 982 struct folio **in_folio_ret) 983 { 984 struct folio *in_folio; 985 986 /* 987 * The compressed write path should have the folio locked already, thus 988 * we only need to grab one reference. 989 */ 990 in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT); 991 if (IS_ERR(in_folio)) { 992 struct btrfs_inode *inode = BTRFS_I(mapping->host); 993 994 btrfs_crit(inode->root->fs_info, 995 "failed to get page cache, root %lld ino %llu file offset %llu", 996 btrfs_root_id(inode->root), btrfs_ino(inode), start); 997 return -ENOENT; 998 } 999 *in_folio_ret = in_folio; 1000 return 0; 1001 } 1002 1003 /* 1004 * Given an address space and start and length, compress the bytes into @pages 1005 * that are allocated on demand. 1006 * 1007 * @type_level is encoded algorithm and level, where level 0 means whatever 1008 * default the algorithm chooses and is opaque here; 1009 * - compression algo are 0-3 1010 * - the level are bits 4-7 1011 * 1012 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1013 * and returns number of actually allocated pages 1014 * 1015 * @total_in is used to return the number of bytes actually read. It 1016 * may be smaller than the input length if we had to exit early because we 1017 * ran out of room in the pages array or because we cross the 1018 * max_out threshold. 1019 * 1020 * @total_out is an in/out parameter, must be set to the input length and will 1021 * be also used to return the total number of compressed bytes 1022 */ 1023 int btrfs_compress_folios(unsigned int type_level, struct address_space *mapping, 1024 u64 start, struct folio **folios, unsigned long *out_folios, 1025 unsigned long *total_in, unsigned long *total_out) 1026 { 1027 int type = btrfs_compress_type(type_level); 1028 int level = btrfs_compress_level(type_level); 1029 struct list_head *workspace; 1030 int ret; 1031 1032 level = btrfs_compress_set_level(type, level); 1033 workspace = get_workspace(type, level); 1034 ret = compression_compress_pages(type, workspace, mapping, start, folios, 1035 out_folios, total_in, total_out); 1036 put_workspace(type, workspace); 1037 return ret; 1038 } 1039 1040 static int btrfs_decompress_bio(struct compressed_bio *cb) 1041 { 1042 struct list_head *workspace; 1043 int ret; 1044 int type = cb->compress_type; 1045 1046 workspace = get_workspace(type, 0); 1047 ret = compression_decompress_bio(workspace, cb); 1048 put_workspace(type, workspace); 1049 1050 if (!ret) 1051 zero_fill_bio(&cb->orig_bbio->bio); 1052 return ret; 1053 } 1054 1055 /* 1056 * a less complex decompression routine. Our compressed data fits in a 1057 * single page, and we want to read a single page out of it. 1058 * start_byte tells us the offset into the compressed data we're interested in 1059 */ 1060 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page, 1061 unsigned long dest_pgoff, size_t srclen, size_t destlen) 1062 { 1063 struct btrfs_fs_info *fs_info = page_to_fs_info(dest_page); 1064 struct list_head *workspace; 1065 const u32 sectorsize = fs_info->sectorsize; 1066 int ret; 1067 1068 /* 1069 * The full destination page range should not exceed the page size. 1070 * And the @destlen should not exceed sectorsize, as this is only called for 1071 * inline file extents, which should not exceed sectorsize. 1072 */ 1073 ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize); 1074 1075 workspace = get_workspace(type, 0); 1076 ret = compression_decompress(type, workspace, data_in, dest_page, 1077 dest_pgoff, srclen, destlen); 1078 put_workspace(type, workspace); 1079 1080 return ret; 1081 } 1082 1083 int __init btrfs_init_compress(void) 1084 { 1085 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, 1086 offsetof(struct compressed_bio, bbio.bio), 1087 BIOSET_NEED_BVECS)) 1088 return -ENOMEM; 1089 1090 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages"); 1091 if (!compr_pool.shrinker) 1092 return -ENOMEM; 1093 1094 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1095 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1096 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1097 zstd_init_workspace_manager(); 1098 1099 spin_lock_init(&compr_pool.lock); 1100 INIT_LIST_HEAD(&compr_pool.list); 1101 compr_pool.count = 0; 1102 /* 128K / 4K = 32, for 8 threads is 256 pages. */ 1103 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8; 1104 compr_pool.shrinker->count_objects = btrfs_compr_pool_count; 1105 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan; 1106 compr_pool.shrinker->batch = 32; 1107 compr_pool.shrinker->seeks = DEFAULT_SEEKS; 1108 shrinker_register(compr_pool.shrinker); 1109 1110 return 0; 1111 } 1112 1113 void __cold btrfs_exit_compress(void) 1114 { 1115 /* For now scan drains all pages and does not touch the parameters. */ 1116 btrfs_compr_pool_scan(NULL, NULL); 1117 shrinker_free(compr_pool.shrinker); 1118 1119 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1120 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1121 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1122 zstd_cleanup_workspace_manager(); 1123 bioset_exit(&btrfs_compressed_bioset); 1124 } 1125 1126 /* 1127 * Copy decompressed data from working buffer to pages. 1128 * 1129 * @buf: The decompressed data buffer 1130 * @buf_len: The decompressed data length 1131 * @decompressed: Number of bytes that are already decompressed inside the 1132 * compressed extent 1133 * @cb: The compressed extent descriptor 1134 * @orig_bio: The original bio that the caller wants to read for 1135 * 1136 * An easier to understand graph is like below: 1137 * 1138 * |<- orig_bio ->| |<- orig_bio->| 1139 * |<------- full decompressed extent ----->| 1140 * |<----------- @cb range ---->| 1141 * | |<-- @buf_len -->| 1142 * |<--- @decompressed --->| 1143 * 1144 * Note that, @cb can be a subpage of the full decompressed extent, but 1145 * @cb->start always has the same as the orig_file_offset value of the full 1146 * decompressed extent. 1147 * 1148 * When reading compressed extent, we have to read the full compressed extent, 1149 * while @orig_bio may only want part of the range. 1150 * Thus this function will ensure only data covered by @orig_bio will be copied 1151 * to. 1152 * 1153 * Return 0 if we have copied all needed contents for @orig_bio. 1154 * Return >0 if we need continue decompress. 1155 */ 1156 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1157 struct compressed_bio *cb, u32 decompressed) 1158 { 1159 struct bio *orig_bio = &cb->orig_bbio->bio; 1160 /* Offset inside the full decompressed extent */ 1161 u32 cur_offset; 1162 1163 cur_offset = decompressed; 1164 /* The main loop to do the copy */ 1165 while (cur_offset < decompressed + buf_len) { 1166 struct bio_vec bvec; 1167 size_t copy_len; 1168 u32 copy_start; 1169 /* Offset inside the full decompressed extent */ 1170 u32 bvec_offset; 1171 1172 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1173 /* 1174 * cb->start may underflow, but subtracting that value can still 1175 * give us correct offset inside the full decompressed extent. 1176 */ 1177 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1178 1179 /* Haven't reached the bvec range, exit */ 1180 if (decompressed + buf_len <= bvec_offset) 1181 return 1; 1182 1183 copy_start = max(cur_offset, bvec_offset); 1184 copy_len = min(bvec_offset + bvec.bv_len, 1185 decompressed + buf_len) - copy_start; 1186 ASSERT(copy_len); 1187 1188 /* 1189 * Extra range check to ensure we didn't go beyond 1190 * @buf + @buf_len. 1191 */ 1192 ASSERT(copy_start - decompressed < buf_len); 1193 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1194 buf + copy_start - decompressed, copy_len); 1195 cur_offset += copy_len; 1196 1197 bio_advance(orig_bio, copy_len); 1198 /* Finished the bio */ 1199 if (!orig_bio->bi_iter.bi_size) 1200 return 0; 1201 } 1202 return 1; 1203 } 1204 1205 /* 1206 * Shannon Entropy calculation 1207 * 1208 * Pure byte distribution analysis fails to determine compressibility of data. 1209 * Try calculating entropy to estimate the average minimum number of bits 1210 * needed to encode the sampled data. 1211 * 1212 * For convenience, return the percentage of needed bits, instead of amount of 1213 * bits directly. 1214 * 1215 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1216 * and can be compressible with high probability 1217 * 1218 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1219 * 1220 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1221 */ 1222 #define ENTROPY_LVL_ACEPTABLE (65) 1223 #define ENTROPY_LVL_HIGH (80) 1224 1225 /* 1226 * For increasead precision in shannon_entropy calculation, 1227 * let's do pow(n, M) to save more digits after comma: 1228 * 1229 * - maximum int bit length is 64 1230 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1231 * - 13 * 4 = 52 < 64 -> M = 4 1232 * 1233 * So use pow(n, 4). 1234 */ 1235 static inline u32 ilog2_w(u64 n) 1236 { 1237 return ilog2(n * n * n * n); 1238 } 1239 1240 static u32 shannon_entropy(struct heuristic_ws *ws) 1241 { 1242 const u32 entropy_max = 8 * ilog2_w(2); 1243 u32 entropy_sum = 0; 1244 u32 p, p_base, sz_base; 1245 u32 i; 1246 1247 sz_base = ilog2_w(ws->sample_size); 1248 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1249 p = ws->bucket[i].count; 1250 p_base = ilog2_w(p); 1251 entropy_sum += p * (sz_base - p_base); 1252 } 1253 1254 entropy_sum /= ws->sample_size; 1255 return entropy_sum * 100 / entropy_max; 1256 } 1257 1258 #define RADIX_BASE 4U 1259 #define COUNTERS_SIZE (1U << RADIX_BASE) 1260 1261 static u8 get4bits(u64 num, int shift) { 1262 u8 low4bits; 1263 1264 num >>= shift; 1265 /* Reverse order */ 1266 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1267 return low4bits; 1268 } 1269 1270 /* 1271 * Use 4 bits as radix base 1272 * Use 16 u32 counters for calculating new position in buf array 1273 * 1274 * @array - array that will be sorted 1275 * @array_buf - buffer array to store sorting results 1276 * must be equal in size to @array 1277 * @num - array size 1278 */ 1279 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1280 int num) 1281 { 1282 u64 max_num; 1283 u64 buf_num; 1284 u32 counters[COUNTERS_SIZE]; 1285 u32 new_addr; 1286 u32 addr; 1287 int bitlen; 1288 int shift; 1289 int i; 1290 1291 /* 1292 * Try avoid useless loop iterations for small numbers stored in big 1293 * counters. Example: 48 33 4 ... in 64bit array 1294 */ 1295 max_num = array[0].count; 1296 for (i = 1; i < num; i++) { 1297 buf_num = array[i].count; 1298 if (buf_num > max_num) 1299 max_num = buf_num; 1300 } 1301 1302 buf_num = ilog2(max_num); 1303 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1304 1305 shift = 0; 1306 while (shift < bitlen) { 1307 memset(counters, 0, sizeof(counters)); 1308 1309 for (i = 0; i < num; i++) { 1310 buf_num = array[i].count; 1311 addr = get4bits(buf_num, shift); 1312 counters[addr]++; 1313 } 1314 1315 for (i = 1; i < COUNTERS_SIZE; i++) 1316 counters[i] += counters[i - 1]; 1317 1318 for (i = num - 1; i >= 0; i--) { 1319 buf_num = array[i].count; 1320 addr = get4bits(buf_num, shift); 1321 counters[addr]--; 1322 new_addr = counters[addr]; 1323 array_buf[new_addr] = array[i]; 1324 } 1325 1326 shift += RADIX_BASE; 1327 1328 /* 1329 * Normal radix expects to move data from a temporary array, to 1330 * the main one. But that requires some CPU time. Avoid that 1331 * by doing another sort iteration to original array instead of 1332 * memcpy() 1333 */ 1334 memset(counters, 0, sizeof(counters)); 1335 1336 for (i = 0; i < num; i ++) { 1337 buf_num = array_buf[i].count; 1338 addr = get4bits(buf_num, shift); 1339 counters[addr]++; 1340 } 1341 1342 for (i = 1; i < COUNTERS_SIZE; i++) 1343 counters[i] += counters[i - 1]; 1344 1345 for (i = num - 1; i >= 0; i--) { 1346 buf_num = array_buf[i].count; 1347 addr = get4bits(buf_num, shift); 1348 counters[addr]--; 1349 new_addr = counters[addr]; 1350 array[new_addr] = array_buf[i]; 1351 } 1352 1353 shift += RADIX_BASE; 1354 } 1355 } 1356 1357 /* 1358 * Size of the core byte set - how many bytes cover 90% of the sample 1359 * 1360 * There are several types of structured binary data that use nearly all byte 1361 * values. The distribution can be uniform and counts in all buckets will be 1362 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1363 * 1364 * Other possibility is normal (Gaussian) distribution, where the data could 1365 * be potentially compressible, but we have to take a few more steps to decide 1366 * how much. 1367 * 1368 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1369 * compression algo can easy fix that 1370 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1371 * probability is not compressible 1372 */ 1373 #define BYTE_CORE_SET_LOW (64) 1374 #define BYTE_CORE_SET_HIGH (200) 1375 1376 static int byte_core_set_size(struct heuristic_ws *ws) 1377 { 1378 u32 i; 1379 u32 coreset_sum = 0; 1380 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1381 struct bucket_item *bucket = ws->bucket; 1382 1383 /* Sort in reverse order */ 1384 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1385 1386 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1387 coreset_sum += bucket[i].count; 1388 1389 if (coreset_sum > core_set_threshold) 1390 return i; 1391 1392 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1393 coreset_sum += bucket[i].count; 1394 if (coreset_sum > core_set_threshold) 1395 break; 1396 } 1397 1398 return i; 1399 } 1400 1401 /* 1402 * Count byte values in buckets. 1403 * This heuristic can detect textual data (configs, xml, json, html, etc). 1404 * Because in most text-like data byte set is restricted to limited number of 1405 * possible characters, and that restriction in most cases makes data easy to 1406 * compress. 1407 * 1408 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1409 * less - compressible 1410 * more - need additional analysis 1411 */ 1412 #define BYTE_SET_THRESHOLD (64) 1413 1414 static u32 byte_set_size(const struct heuristic_ws *ws) 1415 { 1416 u32 i; 1417 u32 byte_set_size = 0; 1418 1419 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1420 if (ws->bucket[i].count > 0) 1421 byte_set_size++; 1422 } 1423 1424 /* 1425 * Continue collecting count of byte values in buckets. If the byte 1426 * set size is bigger then the threshold, it's pointless to continue, 1427 * the detection technique would fail for this type of data. 1428 */ 1429 for (; i < BUCKET_SIZE; i++) { 1430 if (ws->bucket[i].count > 0) { 1431 byte_set_size++; 1432 if (byte_set_size > BYTE_SET_THRESHOLD) 1433 return byte_set_size; 1434 } 1435 } 1436 1437 return byte_set_size; 1438 } 1439 1440 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1441 { 1442 const u32 half_of_sample = ws->sample_size / 2; 1443 const u8 *data = ws->sample; 1444 1445 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1446 } 1447 1448 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1449 struct heuristic_ws *ws) 1450 { 1451 struct page *page; 1452 u64 index, index_end; 1453 u32 i, curr_sample_pos; 1454 u8 *in_data; 1455 1456 /* 1457 * Compression handles the input data by chunks of 128KiB 1458 * (defined by BTRFS_MAX_UNCOMPRESSED) 1459 * 1460 * We do the same for the heuristic and loop over the whole range. 1461 * 1462 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1463 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1464 */ 1465 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1466 end = start + BTRFS_MAX_UNCOMPRESSED; 1467 1468 index = start >> PAGE_SHIFT; 1469 index_end = end >> PAGE_SHIFT; 1470 1471 /* Don't miss unaligned end */ 1472 if (!PAGE_ALIGNED(end)) 1473 index_end++; 1474 1475 curr_sample_pos = 0; 1476 while (index < index_end) { 1477 page = find_get_page(inode->i_mapping, index); 1478 in_data = kmap_local_page(page); 1479 /* Handle case where the start is not aligned to PAGE_SIZE */ 1480 i = start % PAGE_SIZE; 1481 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1482 /* Don't sample any garbage from the last page */ 1483 if (start > end - SAMPLING_READ_SIZE) 1484 break; 1485 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1486 SAMPLING_READ_SIZE); 1487 i += SAMPLING_INTERVAL; 1488 start += SAMPLING_INTERVAL; 1489 curr_sample_pos += SAMPLING_READ_SIZE; 1490 } 1491 kunmap_local(in_data); 1492 put_page(page); 1493 1494 index++; 1495 } 1496 1497 ws->sample_size = curr_sample_pos; 1498 } 1499 1500 /* 1501 * Compression heuristic. 1502 * 1503 * The following types of analysis can be performed: 1504 * - detect mostly zero data 1505 * - detect data with low "byte set" size (text, etc) 1506 * - detect data with low/high "core byte" set 1507 * 1508 * Return non-zero if the compression should be done, 0 otherwise. 1509 */ 1510 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end) 1511 { 1512 struct list_head *ws_list = get_workspace(0, 0); 1513 struct heuristic_ws *ws; 1514 u32 i; 1515 u8 byte; 1516 int ret = 0; 1517 1518 ws = list_entry(ws_list, struct heuristic_ws, list); 1519 1520 heuristic_collect_sample(&inode->vfs_inode, start, end, ws); 1521 1522 if (sample_repeated_patterns(ws)) { 1523 ret = 1; 1524 goto out; 1525 } 1526 1527 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1528 1529 for (i = 0; i < ws->sample_size; i++) { 1530 byte = ws->sample[i]; 1531 ws->bucket[byte].count++; 1532 } 1533 1534 i = byte_set_size(ws); 1535 if (i < BYTE_SET_THRESHOLD) { 1536 ret = 2; 1537 goto out; 1538 } 1539 1540 i = byte_core_set_size(ws); 1541 if (i <= BYTE_CORE_SET_LOW) { 1542 ret = 3; 1543 goto out; 1544 } 1545 1546 if (i >= BYTE_CORE_SET_HIGH) { 1547 ret = 0; 1548 goto out; 1549 } 1550 1551 i = shannon_entropy(ws); 1552 if (i <= ENTROPY_LVL_ACEPTABLE) { 1553 ret = 4; 1554 goto out; 1555 } 1556 1557 /* 1558 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1559 * needed to give green light to compression. 1560 * 1561 * For now just assume that compression at that level is not worth the 1562 * resources because: 1563 * 1564 * 1. it is possible to defrag the data later 1565 * 1566 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1567 * values, every bucket has counter at level ~54. The heuristic would 1568 * be confused. This can happen when data have some internal repeated 1569 * patterns like "abbacbbc...". This can be detected by analyzing 1570 * pairs of bytes, which is too costly. 1571 */ 1572 if (i < ENTROPY_LVL_HIGH) { 1573 ret = 5; 1574 goto out; 1575 } else { 1576 ret = 0; 1577 goto out; 1578 } 1579 1580 out: 1581 put_workspace(0, ws_list); 1582 return ret; 1583 } 1584 1585 /* 1586 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1587 * level, unrecognized string will set the default level 1588 */ 1589 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1590 { 1591 unsigned int level = 0; 1592 int ret; 1593 1594 if (!type) 1595 return 0; 1596 1597 if (str[0] == ':') { 1598 ret = kstrtouint(str + 1, 10, &level); 1599 if (ret) 1600 level = 0; 1601 } 1602 1603 level = btrfs_compress_set_level(type, level); 1604 1605 return level; 1606 } 1607
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.