~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/ctree.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/sched.h>
  7 #include <linux/slab.h>
  8 #include <linux/rbtree.h>
  9 #include <linux/mm.h>
 10 #include <linux/error-injection.h>
 11 #include "messages.h"
 12 #include "ctree.h"
 13 #include "disk-io.h"
 14 #include "transaction.h"
 15 #include "print-tree.h"
 16 #include "locking.h"
 17 #include "volumes.h"
 18 #include "qgroup.h"
 19 #include "tree-mod-log.h"
 20 #include "tree-checker.h"
 21 #include "fs.h"
 22 #include "accessors.h"
 23 #include "extent-tree.h"
 24 #include "relocation.h"
 25 #include "file-item.h"
 26 
 27 static struct kmem_cache *btrfs_path_cachep;
 28 
 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
 30                       *root, struct btrfs_path *path, int level);
 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 32                       const struct btrfs_key *ins_key, struct btrfs_path *path,
 33                       int data_size, int extend);
 34 static int push_node_left(struct btrfs_trans_handle *trans,
 35                           struct extent_buffer *dst,
 36                           struct extent_buffer *src, int empty);
 37 static int balance_node_right(struct btrfs_trans_handle *trans,
 38                               struct extent_buffer *dst_buf,
 39                               struct extent_buffer *src_buf);
 40 
 41 static const struct btrfs_csums {
 42         u16             size;
 43         const char      name[10];
 44         const char      driver[12];
 45 } btrfs_csums[] = {
 46         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
 47         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
 48         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
 49         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
 50                                      .driver = "blake2b-256" },
 51 };
 52 
 53 /*
 54  * The leaf data grows from end-to-front in the node.  this returns the address
 55  * of the start of the last item, which is the stop of the leaf data stack.
 56  */
 57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
 58 {
 59         u32 nr = btrfs_header_nritems(leaf);
 60 
 61         if (nr == 0)
 62                 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
 63         return btrfs_item_offset(leaf, nr - 1);
 64 }
 65 
 66 /*
 67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
 68  *
 69  * @leaf:       leaf that we're doing a memmove on
 70  * @dst_offset: item data offset we're moving to
 71  * @src_offset: item data offset were' moving from
 72  * @len:        length of the data we're moving
 73  *
 74  * Wrapper around memmove_extent_buffer() that takes into account the header on
 75  * the leaf.  The btrfs_item offset's start directly after the header, so we
 76  * have to adjust any offsets to account for the header in the leaf.  This
 77  * handles that math to simplify the callers.
 78  */
 79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
 80                                      unsigned long dst_offset,
 81                                      unsigned long src_offset,
 82                                      unsigned long len)
 83 {
 84         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
 85                               btrfs_item_nr_offset(leaf, 0) + src_offset, len);
 86 }
 87 
 88 /*
 89  * Copy item data from @src into @dst at the given @offset.
 90  *
 91  * @dst:        destination leaf that we're copying into
 92  * @src:        source leaf that we're copying from
 93  * @dst_offset: item data offset we're copying to
 94  * @src_offset: item data offset were' copying from
 95  * @len:        length of the data we're copying
 96  *
 97  * Wrapper around copy_extent_buffer() that takes into account the header on
 98  * the leaf.  The btrfs_item offset's start directly after the header, so we
 99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103                                   const struct extent_buffer *src,
104                                   unsigned long dst_offset,
105                                   unsigned long src_offset, unsigned long len)
106 {
107         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108                            btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:        destination leaf for the items
115  * @dst_item:   the item nr we're copying into
116  * @src_item:   the item nr we're copying from
117  * @nr_items:   the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123                                       int dst_item, int src_item, int nr_items)
124 {
125         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126                               btrfs_item_nr_offset(leaf, src_item),
127                               nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:        destination leaf for the items
134  * @src:        source leaf for the items
135  * @dst_item:   the item nr we're copying into
136  * @src_item:   the item nr we're copying from
137  * @nr_items:   the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143                                    const struct extent_buffer *src,
144                                    int dst_item, int src_item, int nr_items)
145 {
146         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147                               btrfs_item_nr_offset(src, src_item),
148                               nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154         return btrfs_csums[type].size;
155 }
156 
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159         u16 t = btrfs_super_csum_type(s);
160         /*
161          * csum type is validated at mount time
162          */
163         return btrfs_csum_type_size(t);
164 }
165 
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168         /* csum type is validated at mount time */
169         return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178         /* csum type is validated at mount time */
179         return btrfs_csums[csum_type].driver[0] ?
180                 btrfs_csums[csum_type].driver :
181                 btrfs_csums[csum_type].name;
182 }
183 
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186         return ARRAY_SIZE(btrfs_csums);
187 }
188 
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191         might_sleep();
192 
193         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199         if (!p)
200                 return;
201         btrfs_release_path(p);
202         kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213         int i;
214 
215         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216                 p->slots[i] = 0;
217                 if (!p->nodes[i])
218                         continue;
219                 if (p->locks[i]) {
220                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221                         p->locks[i] = 0;
222                 }
223                 free_extent_buffer(p->nodes[i]);
224                 p->nodes[i] = NULL;
225         }
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int error)
234 {
235         switch (error) {
236         case -EIO:
237         case -EROFS:
238         case -ENOMEM:
239                 return false;
240         }
241         return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256         struct extent_buffer *eb;
257 
258         while (1) {
259                 rcu_read_lock();
260                 eb = rcu_dereference(root->node);
261 
262                 /*
263                  * RCU really hurts here, we could free up the root node because
264                  * it was COWed but we may not get the new root node yet so do
265                  * the inc_not_zero dance and if it doesn't work then
266                  * synchronize_rcu and try again.
267                  */
268                 if (atomic_inc_not_zero(&eb->refs)) {
269                         rcu_read_unlock();
270                         break;
271                 }
272                 rcu_read_unlock();
273                 synchronize_rcu();
274         }
275         return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285         struct btrfs_fs_info *fs_info = root->fs_info;
286 
287         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289                 return;
290 
291         spin_lock(&fs_info->trans_lock);
292         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293                 /* Want the extent tree to be the last on the list */
294                 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295                         list_move_tail(&root->dirty_list,
296                                        &fs_info->dirty_cowonly_roots);
297                 else
298                         list_move(&root->dirty_list,
299                                   &fs_info->dirty_cowonly_roots);
300         }
301         spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310                       struct btrfs_root *root,
311                       struct extent_buffer *buf,
312                       struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314         struct btrfs_fs_info *fs_info = root->fs_info;
315         struct extent_buffer *cow;
316         int ret = 0;
317         int level;
318         struct btrfs_disk_key disk_key;
319         u64 reloc_src_root = 0;
320 
321         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322                 trans->transid != fs_info->running_transaction->transid);
323         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324                 trans->transid != btrfs_get_root_last_trans(root));
325 
326         level = btrfs_header_level(buf);
327         if (level == 0)
328                 btrfs_item_key(buf, &disk_key, 0);
329         else
330                 btrfs_node_key(buf, &disk_key, 0);
331 
332         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333                 reloc_src_root = btrfs_header_owner(buf);
334         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335                                      &disk_key, level, buf->start, 0,
336                                      reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337         if (IS_ERR(cow))
338                 return PTR_ERR(cow);
339 
340         copy_extent_buffer_full(cow, buf);
341         btrfs_set_header_bytenr(cow, cow->start);
342         btrfs_set_header_generation(cow, trans->transid);
343         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345                                      BTRFS_HEADER_FLAG_RELOC);
346         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348         else
349                 btrfs_set_header_owner(cow, new_root_objectid);
350 
351         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352 
353         WARN_ON(btrfs_header_generation(buf) > trans->transid);
354         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355                 ret = btrfs_inc_ref(trans, root, cow, 1);
356         else
357                 ret = btrfs_inc_ref(trans, root, cow, 0);
358         if (ret) {
359                 btrfs_tree_unlock(cow);
360                 free_extent_buffer(cow);
361                 btrfs_abort_transaction(trans, ret);
362                 return ret;
363         }
364 
365         btrfs_mark_buffer_dirty(trans, cow);
366         *cow_ret = cow;
367         return 0;
368 }
369 
370 /*
371  * check if the tree block can be shared by multiple trees
372  */
373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374                                struct btrfs_root *root,
375                                struct extent_buffer *buf)
376 {
377         const u64 buf_gen = btrfs_header_generation(buf);
378 
379         /*
380          * Tree blocks not in shareable trees and tree roots are never shared.
381          * If a block was allocated after the last snapshot and the block was
382          * not allocated by tree relocation, we know the block is not shared.
383          */
384 
385         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386                 return false;
387 
388         if (buf == root->node)
389                 return false;
390 
391         if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393                 return false;
394 
395         if (buf != root->commit_root)
396                 return true;
397 
398         /*
399          * An extent buffer that used to be the commit root may still be shared
400          * because the tree height may have increased and it became a child of a
401          * higher level root. This can happen when snapshotting a subvolume
402          * created in the current transaction.
403          */
404         if (buf_gen == trans->transid)
405                 return true;
406 
407         return false;
408 }
409 
410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411                                        struct btrfs_root *root,
412                                        struct extent_buffer *buf,
413                                        struct extent_buffer *cow,
414                                        int *last_ref)
415 {
416         struct btrfs_fs_info *fs_info = root->fs_info;
417         u64 refs;
418         u64 owner;
419         u64 flags;
420         int ret;
421 
422         /*
423          * Backrefs update rules:
424          *
425          * Always use full backrefs for extent pointers in tree block
426          * allocated by tree relocation.
427          *
428          * If a shared tree block is no longer referenced by its owner
429          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
430          * use full backrefs for extent pointers in tree block.
431          *
432          * If a tree block is been relocating
433          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
434          * use full backrefs for extent pointers in tree block.
435          * The reason for this is some operations (such as drop tree)
436          * are only allowed for blocks use full backrefs.
437          */
438 
439         if (btrfs_block_can_be_shared(trans, root, buf)) {
440                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
441                                                btrfs_header_level(buf), 1,
442                                                &refs, &flags, NULL);
443                 if (ret)
444                         return ret;
445                 if (unlikely(refs == 0)) {
446                         btrfs_crit(fs_info,
447                 "found 0 references for tree block at bytenr %llu level %d root %llu",
448                                    buf->start, btrfs_header_level(buf),
449                                    btrfs_root_id(root));
450                         ret = -EUCLEAN;
451                         btrfs_abort_transaction(trans, ret);
452                         return ret;
453                 }
454         } else {
455                 refs = 1;
456                 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
457                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
459                 else
460                         flags = 0;
461         }
462 
463         owner = btrfs_header_owner(buf);
464         if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
465                      !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
466                 btrfs_crit(fs_info,
467 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
468                            buf->start, btrfs_header_level(buf),
469                            btrfs_root_id(root), refs, flags);
470                 ret = -EUCLEAN;
471                 btrfs_abort_transaction(trans, ret);
472                 return ret;
473         }
474 
475         if (refs > 1) {
476                 if ((owner == btrfs_root_id(root) ||
477                      btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
478                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
479                         ret = btrfs_inc_ref(trans, root, buf, 1);
480                         if (ret)
481                                 return ret;
482 
483                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
484                                 ret = btrfs_dec_ref(trans, root, buf, 0);
485                                 if (ret)
486                                         return ret;
487                                 ret = btrfs_inc_ref(trans, root, cow, 1);
488                                 if (ret)
489                                         return ret;
490                         }
491                         ret = btrfs_set_disk_extent_flags(trans, buf,
492                                                   BTRFS_BLOCK_FLAG_FULL_BACKREF);
493                         if (ret)
494                                 return ret;
495                 } else {
496 
497                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
498                                 ret = btrfs_inc_ref(trans, root, cow, 1);
499                         else
500                                 ret = btrfs_inc_ref(trans, root, cow, 0);
501                         if (ret)
502                                 return ret;
503                 }
504         } else {
505                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
506                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
507                                 ret = btrfs_inc_ref(trans, root, cow, 1);
508                         else
509                                 ret = btrfs_inc_ref(trans, root, cow, 0);
510                         if (ret)
511                                 return ret;
512                         ret = btrfs_dec_ref(trans, root, buf, 1);
513                         if (ret)
514                                 return ret;
515                 }
516                 btrfs_clear_buffer_dirty(trans, buf);
517                 *last_ref = 1;
518         }
519         return 0;
520 }
521 
522 /*
523  * does the dirty work in cow of a single block.  The parent block (if
524  * supplied) is updated to point to the new cow copy.  The new buffer is marked
525  * dirty and returned locked.  If you modify the block it needs to be marked
526  * dirty again.
527  *
528  * search_start -- an allocation hint for the new block
529  *
530  * empty_size -- a hint that you plan on doing more cow.  This is the size in
531  * bytes the allocator should try to find free next to the block it returns.
532  * This is just a hint and may be ignored by the allocator.
533  */
534 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
535                           struct btrfs_root *root,
536                           struct extent_buffer *buf,
537                           struct extent_buffer *parent, int parent_slot,
538                           struct extent_buffer **cow_ret,
539                           u64 search_start, u64 empty_size,
540                           enum btrfs_lock_nesting nest)
541 {
542         struct btrfs_fs_info *fs_info = root->fs_info;
543         struct btrfs_disk_key disk_key;
544         struct extent_buffer *cow;
545         int level, ret;
546         int last_ref = 0;
547         int unlock_orig = 0;
548         u64 parent_start = 0;
549         u64 reloc_src_root = 0;
550 
551         if (*cow_ret == buf)
552                 unlock_orig = 1;
553 
554         btrfs_assert_tree_write_locked(buf);
555 
556         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
557                 trans->transid != fs_info->running_transaction->transid);
558         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
559                 trans->transid != btrfs_get_root_last_trans(root));
560 
561         level = btrfs_header_level(buf);
562 
563         if (level == 0)
564                 btrfs_item_key(buf, &disk_key, 0);
565         else
566                 btrfs_node_key(buf, &disk_key, 0);
567 
568         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
569                 if (parent)
570                         parent_start = parent->start;
571                 reloc_src_root = btrfs_header_owner(buf);
572         }
573         cow = btrfs_alloc_tree_block(trans, root, parent_start,
574                                      btrfs_root_id(root), &disk_key, level,
575                                      search_start, empty_size, reloc_src_root, nest);
576         if (IS_ERR(cow))
577                 return PTR_ERR(cow);
578 
579         /* cow is set to blocking by btrfs_init_new_buffer */
580 
581         copy_extent_buffer_full(cow, buf);
582         btrfs_set_header_bytenr(cow, cow->start);
583         btrfs_set_header_generation(cow, trans->transid);
584         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
585         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
586                                      BTRFS_HEADER_FLAG_RELOC);
587         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
588                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
589         else
590                 btrfs_set_header_owner(cow, btrfs_root_id(root));
591 
592         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
593 
594         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
595         if (ret) {
596                 btrfs_abort_transaction(trans, ret);
597                 goto error_unlock_cow;
598         }
599 
600         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
601                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
602                 if (ret) {
603                         btrfs_abort_transaction(trans, ret);
604                         goto error_unlock_cow;
605                 }
606         }
607 
608         if (buf == root->node) {
609                 WARN_ON(parent && parent != buf);
610                 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
611                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
612                         parent_start = buf->start;
613 
614                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
615                 if (ret < 0) {
616                         btrfs_abort_transaction(trans, ret);
617                         goto error_unlock_cow;
618                 }
619                 atomic_inc(&cow->refs);
620                 rcu_assign_pointer(root->node, cow);
621 
622                 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
623                                             parent_start, last_ref);
624                 free_extent_buffer(buf);
625                 add_root_to_dirty_list(root);
626                 if (ret < 0) {
627                         btrfs_abort_transaction(trans, ret);
628                         goto error_unlock_cow;
629                 }
630         } else {
631                 WARN_ON(trans->transid != btrfs_header_generation(parent));
632                 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633                                                     BTRFS_MOD_LOG_KEY_REPLACE);
634                 if (ret) {
635                         btrfs_abort_transaction(trans, ret);
636                         goto error_unlock_cow;
637                 }
638                 btrfs_set_node_blockptr(parent, parent_slot,
639                                         cow->start);
640                 btrfs_set_node_ptr_generation(parent, parent_slot,
641                                               trans->transid);
642                 btrfs_mark_buffer_dirty(trans, parent);
643                 if (last_ref) {
644                         ret = btrfs_tree_mod_log_free_eb(buf);
645                         if (ret) {
646                                 btrfs_abort_transaction(trans, ret);
647                                 goto error_unlock_cow;
648                         }
649                 }
650                 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
651                                             parent_start, last_ref);
652                 if (ret < 0) {
653                         btrfs_abort_transaction(trans, ret);
654                         goto error_unlock_cow;
655                 }
656         }
657         if (unlock_orig)
658                 btrfs_tree_unlock(buf);
659         free_extent_buffer_stale(buf);
660         btrfs_mark_buffer_dirty(trans, cow);
661         *cow_ret = cow;
662         return 0;
663 
664 error_unlock_cow:
665         btrfs_tree_unlock(cow);
666         free_extent_buffer(cow);
667         return ret;
668 }
669 
670 static inline int should_cow_block(struct btrfs_trans_handle *trans,
671                                    struct btrfs_root *root,
672                                    struct extent_buffer *buf)
673 {
674         if (btrfs_is_testing(root->fs_info))
675                 return 0;
676 
677         /* Ensure we can see the FORCE_COW bit */
678         smp_mb__before_atomic();
679 
680         /*
681          * We do not need to cow a block if
682          * 1) this block is not created or changed in this transaction;
683          * 2) this block does not belong to TREE_RELOC tree;
684          * 3) the root is not forced COW.
685          *
686          * What is forced COW:
687          *    when we create snapshot during committing the transaction,
688          *    after we've finished copying src root, we must COW the shared
689          *    block to ensure the metadata consistency.
690          */
691         if (btrfs_header_generation(buf) == trans->transid &&
692             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
693             !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
694               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
695             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
696                 return 0;
697         return 1;
698 }
699 
700 /*
701  * COWs a single block, see btrfs_force_cow_block() for the real work.
702  * This version of it has extra checks so that a block isn't COWed more than
703  * once per transaction, as long as it hasn't been written yet
704  */
705 int btrfs_cow_block(struct btrfs_trans_handle *trans,
706                     struct btrfs_root *root, struct extent_buffer *buf,
707                     struct extent_buffer *parent, int parent_slot,
708                     struct extent_buffer **cow_ret,
709                     enum btrfs_lock_nesting nest)
710 {
711         struct btrfs_fs_info *fs_info = root->fs_info;
712         u64 search_start;
713         int ret;
714 
715         if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
716                 btrfs_abort_transaction(trans, -EUCLEAN);
717                 btrfs_crit(fs_info,
718                    "attempt to COW block %llu on root %llu that is being deleted",
719                            buf->start, btrfs_root_id(root));
720                 return -EUCLEAN;
721         }
722 
723         /*
724          * COWing must happen through a running transaction, which always
725          * matches the current fs generation (it's a transaction with a state
726          * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
727          * into error state to prevent the commit of any transaction.
728          */
729         if (unlikely(trans->transaction != fs_info->running_transaction ||
730                      trans->transid != fs_info->generation)) {
731                 btrfs_abort_transaction(trans, -EUCLEAN);
732                 btrfs_crit(fs_info,
733 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
734                            buf->start, btrfs_root_id(root), trans->transid,
735                            fs_info->running_transaction->transid,
736                            fs_info->generation);
737                 return -EUCLEAN;
738         }
739 
740         if (!should_cow_block(trans, root, buf)) {
741                 *cow_ret = buf;
742                 return 0;
743         }
744 
745         search_start = round_down(buf->start, SZ_1G);
746 
747         /*
748          * Before CoWing this block for later modification, check if it's
749          * the subtree root and do the delayed subtree trace if needed.
750          *
751          * Also We don't care about the error, as it's handled internally.
752          */
753         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
754         ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
755                                     cow_ret, search_start, 0, nest);
756 
757         trace_btrfs_cow_block(root, buf, *cow_ret);
758 
759         return ret;
760 }
761 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
762 
763 /*
764  * same as comp_keys only with two btrfs_key's
765  */
766 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
767 {
768         if (k1->objectid > k2->objectid)
769                 return 1;
770         if (k1->objectid < k2->objectid)
771                 return -1;
772         if (k1->type > k2->type)
773                 return 1;
774         if (k1->type < k2->type)
775                 return -1;
776         if (k1->offset > k2->offset)
777                 return 1;
778         if (k1->offset < k2->offset)
779                 return -1;
780         return 0;
781 }
782 
783 /*
784  * Search for a key in the given extent_buffer.
785  *
786  * The lower boundary for the search is specified by the slot number @first_slot.
787  * Use a value of 0 to search over the whole extent buffer. Works for both
788  * leaves and nodes.
789  *
790  * The slot in the extent buffer is returned via @slot. If the key exists in the
791  * extent buffer, then @slot will point to the slot where the key is, otherwise
792  * it points to the slot where you would insert the key.
793  *
794  * Slot may point to the total number of items (i.e. one position beyond the last
795  * key) if the key is bigger than the last key in the extent buffer.
796  */
797 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
798                      const struct btrfs_key *key, int *slot)
799 {
800         unsigned long p;
801         int item_size;
802         /*
803          * Use unsigned types for the low and high slots, so that we get a more
804          * efficient division in the search loop below.
805          */
806         u32 low = first_slot;
807         u32 high = btrfs_header_nritems(eb);
808         int ret;
809         const int key_size = sizeof(struct btrfs_disk_key);
810 
811         if (unlikely(low > high)) {
812                 btrfs_err(eb->fs_info,
813                  "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
814                           __func__, low, high, eb->start,
815                           btrfs_header_owner(eb), btrfs_header_level(eb));
816                 return -EINVAL;
817         }
818 
819         if (btrfs_header_level(eb) == 0) {
820                 p = offsetof(struct btrfs_leaf, items);
821                 item_size = sizeof(struct btrfs_item);
822         } else {
823                 p = offsetof(struct btrfs_node, ptrs);
824                 item_size = sizeof(struct btrfs_key_ptr);
825         }
826 
827         while (low < high) {
828                 const int unit_size = eb->folio_size;
829                 unsigned long oil;
830                 unsigned long offset;
831                 struct btrfs_disk_key *tmp;
832                 struct btrfs_disk_key unaligned;
833                 int mid;
834 
835                 mid = (low + high) / 2;
836                 offset = p + mid * item_size;
837                 oil = get_eb_offset_in_folio(eb, offset);
838 
839                 if (oil + key_size <= unit_size) {
840                         const unsigned long idx = get_eb_folio_index(eb, offset);
841                         char *kaddr = folio_address(eb->folios[idx]);
842 
843                         oil = get_eb_offset_in_folio(eb, offset);
844                         tmp = (struct btrfs_disk_key *)(kaddr + oil);
845                 } else {
846                         read_extent_buffer(eb, &unaligned, offset, key_size);
847                         tmp = &unaligned;
848                 }
849 
850                 ret = btrfs_comp_keys(tmp, key);
851 
852                 if (ret < 0)
853                         low = mid + 1;
854                 else if (ret > 0)
855                         high = mid;
856                 else {
857                         *slot = mid;
858                         return 0;
859                 }
860         }
861         *slot = low;
862         return 1;
863 }
864 
865 static void root_add_used_bytes(struct btrfs_root *root)
866 {
867         spin_lock(&root->accounting_lock);
868         btrfs_set_root_used(&root->root_item,
869                 btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
870         spin_unlock(&root->accounting_lock);
871 }
872 
873 static void root_sub_used_bytes(struct btrfs_root *root)
874 {
875         spin_lock(&root->accounting_lock);
876         btrfs_set_root_used(&root->root_item,
877                 btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
878         spin_unlock(&root->accounting_lock);
879 }
880 
881 /* given a node and slot number, this reads the blocks it points to.  The
882  * extent buffer is returned with a reference taken (but unlocked).
883  */
884 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
885                                            int slot)
886 {
887         int level = btrfs_header_level(parent);
888         struct btrfs_tree_parent_check check = { 0 };
889         struct extent_buffer *eb;
890 
891         if (slot < 0 || slot >= btrfs_header_nritems(parent))
892                 return ERR_PTR(-ENOENT);
893 
894         ASSERT(level);
895 
896         check.level = level - 1;
897         check.transid = btrfs_node_ptr_generation(parent, slot);
898         check.owner_root = btrfs_header_owner(parent);
899         check.has_first_key = true;
900         btrfs_node_key_to_cpu(parent, &check.first_key, slot);
901 
902         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
903                              &check);
904         if (IS_ERR(eb))
905                 return eb;
906         if (!extent_buffer_uptodate(eb)) {
907                 free_extent_buffer(eb);
908                 return ERR_PTR(-EIO);
909         }
910 
911         return eb;
912 }
913 
914 /*
915  * node level balancing, used to make sure nodes are in proper order for
916  * item deletion.  We balance from the top down, so we have to make sure
917  * that a deletion won't leave an node completely empty later on.
918  */
919 static noinline int balance_level(struct btrfs_trans_handle *trans,
920                          struct btrfs_root *root,
921                          struct btrfs_path *path, int level)
922 {
923         struct btrfs_fs_info *fs_info = root->fs_info;
924         struct extent_buffer *right = NULL;
925         struct extent_buffer *mid;
926         struct extent_buffer *left = NULL;
927         struct extent_buffer *parent = NULL;
928         int ret = 0;
929         int wret;
930         int pslot;
931         int orig_slot = path->slots[level];
932         u64 orig_ptr;
933 
934         ASSERT(level > 0);
935 
936         mid = path->nodes[level];
937 
938         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
939         WARN_ON(btrfs_header_generation(mid) != trans->transid);
940 
941         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
942 
943         if (level < BTRFS_MAX_LEVEL - 1) {
944                 parent = path->nodes[level + 1];
945                 pslot = path->slots[level + 1];
946         }
947 
948         /*
949          * deal with the case where there is only one pointer in the root
950          * by promoting the node below to a root
951          */
952         if (!parent) {
953                 struct extent_buffer *child;
954 
955                 if (btrfs_header_nritems(mid) != 1)
956                         return 0;
957 
958                 /* promote the child to a root */
959                 child = btrfs_read_node_slot(mid, 0);
960                 if (IS_ERR(child)) {
961                         ret = PTR_ERR(child);
962                         goto out;
963                 }
964 
965                 btrfs_tree_lock(child);
966                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
967                                       BTRFS_NESTING_COW);
968                 if (ret) {
969                         btrfs_tree_unlock(child);
970                         free_extent_buffer(child);
971                         goto out;
972                 }
973 
974                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
975                 if (ret < 0) {
976                         btrfs_tree_unlock(child);
977                         free_extent_buffer(child);
978                         btrfs_abort_transaction(trans, ret);
979                         goto out;
980                 }
981                 rcu_assign_pointer(root->node, child);
982 
983                 add_root_to_dirty_list(root);
984                 btrfs_tree_unlock(child);
985 
986                 path->locks[level] = 0;
987                 path->nodes[level] = NULL;
988                 btrfs_clear_buffer_dirty(trans, mid);
989                 btrfs_tree_unlock(mid);
990                 /* once for the path */
991                 free_extent_buffer(mid);
992 
993                 root_sub_used_bytes(root);
994                 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
995                 /* once for the root ptr */
996                 free_extent_buffer_stale(mid);
997                 if (ret < 0) {
998                         btrfs_abort_transaction(trans, ret);
999                         goto out;
1000                 }
1001                 return 0;
1002         }
1003         if (btrfs_header_nritems(mid) >
1004             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1005                 return 0;
1006 
1007         if (pslot) {
1008                 left = btrfs_read_node_slot(parent, pslot - 1);
1009                 if (IS_ERR(left)) {
1010                         ret = PTR_ERR(left);
1011                         left = NULL;
1012                         goto out;
1013                 }
1014 
1015                 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1016                 wret = btrfs_cow_block(trans, root, left,
1017                                        parent, pslot - 1, &left,
1018                                        BTRFS_NESTING_LEFT_COW);
1019                 if (wret) {
1020                         ret = wret;
1021                         goto out;
1022                 }
1023         }
1024 
1025         if (pslot + 1 < btrfs_header_nritems(parent)) {
1026                 right = btrfs_read_node_slot(parent, pslot + 1);
1027                 if (IS_ERR(right)) {
1028                         ret = PTR_ERR(right);
1029                         right = NULL;
1030                         goto out;
1031                 }
1032 
1033                 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1034                 wret = btrfs_cow_block(trans, root, right,
1035                                        parent, pslot + 1, &right,
1036                                        BTRFS_NESTING_RIGHT_COW);
1037                 if (wret) {
1038                         ret = wret;
1039                         goto out;
1040                 }
1041         }
1042 
1043         /* first, try to make some room in the middle buffer */
1044         if (left) {
1045                 orig_slot += btrfs_header_nritems(left);
1046                 wret = push_node_left(trans, left, mid, 1);
1047                 if (wret < 0)
1048                         ret = wret;
1049         }
1050 
1051         /*
1052          * then try to empty the right most buffer into the middle
1053          */
1054         if (right) {
1055                 wret = push_node_left(trans, mid, right, 1);
1056                 if (wret < 0 && wret != -ENOSPC)
1057                         ret = wret;
1058                 if (btrfs_header_nritems(right) == 0) {
1059                         btrfs_clear_buffer_dirty(trans, right);
1060                         btrfs_tree_unlock(right);
1061                         ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1062                         if (ret < 0) {
1063                                 free_extent_buffer_stale(right);
1064                                 right = NULL;
1065                                 goto out;
1066                         }
1067                         root_sub_used_bytes(root);
1068                         ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1069                                                     right, 0, 1);
1070                         free_extent_buffer_stale(right);
1071                         right = NULL;
1072                         if (ret < 0) {
1073                                 btrfs_abort_transaction(trans, ret);
1074                                 goto out;
1075                         }
1076                 } else {
1077                         struct btrfs_disk_key right_key;
1078                         btrfs_node_key(right, &right_key, 0);
1079                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1080                                         BTRFS_MOD_LOG_KEY_REPLACE);
1081                         if (ret < 0) {
1082                                 btrfs_abort_transaction(trans, ret);
1083                                 goto out;
1084                         }
1085                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1086                         btrfs_mark_buffer_dirty(trans, parent);
1087                 }
1088         }
1089         if (btrfs_header_nritems(mid) == 1) {
1090                 /*
1091                  * we're not allowed to leave a node with one item in the
1092                  * tree during a delete.  A deletion from lower in the tree
1093                  * could try to delete the only pointer in this node.
1094                  * So, pull some keys from the left.
1095                  * There has to be a left pointer at this point because
1096                  * otherwise we would have pulled some pointers from the
1097                  * right
1098                  */
1099                 if (unlikely(!left)) {
1100                         btrfs_crit(fs_info,
1101 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1102                                    parent->start, btrfs_header_level(parent),
1103                                    mid->start, btrfs_root_id(root));
1104                         ret = -EUCLEAN;
1105                         btrfs_abort_transaction(trans, ret);
1106                         goto out;
1107                 }
1108                 wret = balance_node_right(trans, mid, left);
1109                 if (wret < 0) {
1110                         ret = wret;
1111                         goto out;
1112                 }
1113                 if (wret == 1) {
1114                         wret = push_node_left(trans, left, mid, 1);
1115                         if (wret < 0)
1116                                 ret = wret;
1117                 }
1118                 BUG_ON(wret == 1);
1119         }
1120         if (btrfs_header_nritems(mid) == 0) {
1121                 btrfs_clear_buffer_dirty(trans, mid);
1122                 btrfs_tree_unlock(mid);
1123                 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1124                 if (ret < 0) {
1125                         free_extent_buffer_stale(mid);
1126                         mid = NULL;
1127                         goto out;
1128                 }
1129                 root_sub_used_bytes(root);
1130                 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1131                 free_extent_buffer_stale(mid);
1132                 mid = NULL;
1133                 if (ret < 0) {
1134                         btrfs_abort_transaction(trans, ret);
1135                         goto out;
1136                 }
1137         } else {
1138                 /* update the parent key to reflect our changes */
1139                 struct btrfs_disk_key mid_key;
1140                 btrfs_node_key(mid, &mid_key, 0);
1141                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1142                                                     BTRFS_MOD_LOG_KEY_REPLACE);
1143                 if (ret < 0) {
1144                         btrfs_abort_transaction(trans, ret);
1145                         goto out;
1146                 }
1147                 btrfs_set_node_key(parent, &mid_key, pslot);
1148                 btrfs_mark_buffer_dirty(trans, parent);
1149         }
1150 
1151         /* update the path */
1152         if (left) {
1153                 if (btrfs_header_nritems(left) > orig_slot) {
1154                         atomic_inc(&left->refs);
1155                         /* left was locked after cow */
1156                         path->nodes[level] = left;
1157                         path->slots[level + 1] -= 1;
1158                         path->slots[level] = orig_slot;
1159                         if (mid) {
1160                                 btrfs_tree_unlock(mid);
1161                                 free_extent_buffer(mid);
1162                         }
1163                 } else {
1164                         orig_slot -= btrfs_header_nritems(left);
1165                         path->slots[level] = orig_slot;
1166                 }
1167         }
1168         /* double check we haven't messed things up */
1169         if (orig_ptr !=
1170             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1171                 BUG();
1172 out:
1173         if (right) {
1174                 btrfs_tree_unlock(right);
1175                 free_extent_buffer(right);
1176         }
1177         if (left) {
1178                 if (path->nodes[level] != left)
1179                         btrfs_tree_unlock(left);
1180                 free_extent_buffer(left);
1181         }
1182         return ret;
1183 }
1184 
1185 /* Node balancing for insertion.  Here we only split or push nodes around
1186  * when they are completely full.  This is also done top down, so we
1187  * have to be pessimistic.
1188  */
1189 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1190                                           struct btrfs_root *root,
1191                                           struct btrfs_path *path, int level)
1192 {
1193         struct btrfs_fs_info *fs_info = root->fs_info;
1194         struct extent_buffer *right = NULL;
1195         struct extent_buffer *mid;
1196         struct extent_buffer *left = NULL;
1197         struct extent_buffer *parent = NULL;
1198         int ret = 0;
1199         int wret;
1200         int pslot;
1201         int orig_slot = path->slots[level];
1202 
1203         if (level == 0)
1204                 return 1;
1205 
1206         mid = path->nodes[level];
1207         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1208 
1209         if (level < BTRFS_MAX_LEVEL - 1) {
1210                 parent = path->nodes[level + 1];
1211                 pslot = path->slots[level + 1];
1212         }
1213 
1214         if (!parent)
1215                 return 1;
1216 
1217         /* first, try to make some room in the middle buffer */
1218         if (pslot) {
1219                 u32 left_nr;
1220 
1221                 left = btrfs_read_node_slot(parent, pslot - 1);
1222                 if (IS_ERR(left))
1223                         return PTR_ERR(left);
1224 
1225                 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1226 
1227                 left_nr = btrfs_header_nritems(left);
1228                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1229                         wret = 1;
1230                 } else {
1231                         ret = btrfs_cow_block(trans, root, left, parent,
1232                                               pslot - 1, &left,
1233                                               BTRFS_NESTING_LEFT_COW);
1234                         if (ret)
1235                                 wret = 1;
1236                         else {
1237                                 wret = push_node_left(trans, left, mid, 0);
1238                         }
1239                 }
1240                 if (wret < 0)
1241                         ret = wret;
1242                 if (wret == 0) {
1243                         struct btrfs_disk_key disk_key;
1244                         orig_slot += left_nr;
1245                         btrfs_node_key(mid, &disk_key, 0);
1246                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1247                                         BTRFS_MOD_LOG_KEY_REPLACE);
1248                         if (ret < 0) {
1249                                 btrfs_tree_unlock(left);
1250                                 free_extent_buffer(left);
1251                                 btrfs_abort_transaction(trans, ret);
1252                                 return ret;
1253                         }
1254                         btrfs_set_node_key(parent, &disk_key, pslot);
1255                         btrfs_mark_buffer_dirty(trans, parent);
1256                         if (btrfs_header_nritems(left) > orig_slot) {
1257                                 path->nodes[level] = left;
1258                                 path->slots[level + 1] -= 1;
1259                                 path->slots[level] = orig_slot;
1260                                 btrfs_tree_unlock(mid);
1261                                 free_extent_buffer(mid);
1262                         } else {
1263                                 orig_slot -=
1264                                         btrfs_header_nritems(left);
1265                                 path->slots[level] = orig_slot;
1266                                 btrfs_tree_unlock(left);
1267                                 free_extent_buffer(left);
1268                         }
1269                         return 0;
1270                 }
1271                 btrfs_tree_unlock(left);
1272                 free_extent_buffer(left);
1273         }
1274 
1275         /*
1276          * then try to empty the right most buffer into the middle
1277          */
1278         if (pslot + 1 < btrfs_header_nritems(parent)) {
1279                 u32 right_nr;
1280 
1281                 right = btrfs_read_node_slot(parent, pslot + 1);
1282                 if (IS_ERR(right))
1283                         return PTR_ERR(right);
1284 
1285                 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1286 
1287                 right_nr = btrfs_header_nritems(right);
1288                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1289                         wret = 1;
1290                 } else {
1291                         ret = btrfs_cow_block(trans, root, right,
1292                                               parent, pslot + 1,
1293                                               &right, BTRFS_NESTING_RIGHT_COW);
1294                         if (ret)
1295                                 wret = 1;
1296                         else {
1297                                 wret = balance_node_right(trans, right, mid);
1298                         }
1299                 }
1300                 if (wret < 0)
1301                         ret = wret;
1302                 if (wret == 0) {
1303                         struct btrfs_disk_key disk_key;
1304 
1305                         btrfs_node_key(right, &disk_key, 0);
1306                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1307                                         BTRFS_MOD_LOG_KEY_REPLACE);
1308                         if (ret < 0) {
1309                                 btrfs_tree_unlock(right);
1310                                 free_extent_buffer(right);
1311                                 btrfs_abort_transaction(trans, ret);
1312                                 return ret;
1313                         }
1314                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1315                         btrfs_mark_buffer_dirty(trans, parent);
1316 
1317                         if (btrfs_header_nritems(mid) <= orig_slot) {
1318                                 path->nodes[level] = right;
1319                                 path->slots[level + 1] += 1;
1320                                 path->slots[level] = orig_slot -
1321                                         btrfs_header_nritems(mid);
1322                                 btrfs_tree_unlock(mid);
1323                                 free_extent_buffer(mid);
1324                         } else {
1325                                 btrfs_tree_unlock(right);
1326                                 free_extent_buffer(right);
1327                         }
1328                         return 0;
1329                 }
1330                 btrfs_tree_unlock(right);
1331                 free_extent_buffer(right);
1332         }
1333         return 1;
1334 }
1335 
1336 /*
1337  * readahead one full node of leaves, finding things that are close
1338  * to the block in 'slot', and triggering ra on them.
1339  */
1340 static void reada_for_search(struct btrfs_fs_info *fs_info,
1341                              struct btrfs_path *path,
1342                              int level, int slot, u64 objectid)
1343 {
1344         struct extent_buffer *node;
1345         struct btrfs_disk_key disk_key;
1346         u32 nritems;
1347         u64 search;
1348         u64 target;
1349         u64 nread = 0;
1350         u64 nread_max;
1351         u32 nr;
1352         u32 blocksize;
1353         u32 nscan = 0;
1354 
1355         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1356                 return;
1357 
1358         if (!path->nodes[level])
1359                 return;
1360 
1361         node = path->nodes[level];
1362 
1363         /*
1364          * Since the time between visiting leaves is much shorter than the time
1365          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1366          * much IO at once (possibly random).
1367          */
1368         if (path->reada == READA_FORWARD_ALWAYS) {
1369                 if (level > 1)
1370                         nread_max = node->fs_info->nodesize;
1371                 else
1372                         nread_max = SZ_128K;
1373         } else {
1374                 nread_max = SZ_64K;
1375         }
1376 
1377         search = btrfs_node_blockptr(node, slot);
1378         blocksize = fs_info->nodesize;
1379         if (path->reada != READA_FORWARD_ALWAYS) {
1380                 struct extent_buffer *eb;
1381 
1382                 eb = find_extent_buffer(fs_info, search);
1383                 if (eb) {
1384                         free_extent_buffer(eb);
1385                         return;
1386                 }
1387         }
1388 
1389         target = search;
1390 
1391         nritems = btrfs_header_nritems(node);
1392         nr = slot;
1393 
1394         while (1) {
1395                 if (path->reada == READA_BACK) {
1396                         if (nr == 0)
1397                                 break;
1398                         nr--;
1399                 } else if (path->reada == READA_FORWARD ||
1400                            path->reada == READA_FORWARD_ALWAYS) {
1401                         nr++;
1402                         if (nr >= nritems)
1403                                 break;
1404                 }
1405                 if (path->reada == READA_BACK && objectid) {
1406                         btrfs_node_key(node, &disk_key, nr);
1407                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1408                                 break;
1409                 }
1410                 search = btrfs_node_blockptr(node, nr);
1411                 if (path->reada == READA_FORWARD_ALWAYS ||
1412                     (search <= target && target - search <= 65536) ||
1413                     (search > target && search - target <= 65536)) {
1414                         btrfs_readahead_node_child(node, nr);
1415                         nread += blocksize;
1416                 }
1417                 nscan++;
1418                 if (nread > nread_max || nscan > 32)
1419                         break;
1420         }
1421 }
1422 
1423 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1424 {
1425         struct extent_buffer *parent;
1426         int slot;
1427         int nritems;
1428 
1429         parent = path->nodes[level + 1];
1430         if (!parent)
1431                 return;
1432 
1433         nritems = btrfs_header_nritems(parent);
1434         slot = path->slots[level + 1];
1435 
1436         if (slot > 0)
1437                 btrfs_readahead_node_child(parent, slot - 1);
1438         if (slot + 1 < nritems)
1439                 btrfs_readahead_node_child(parent, slot + 1);
1440 }
1441 
1442 
1443 /*
1444  * when we walk down the tree, it is usually safe to unlock the higher layers
1445  * in the tree.  The exceptions are when our path goes through slot 0, because
1446  * operations on the tree might require changing key pointers higher up in the
1447  * tree.
1448  *
1449  * callers might also have set path->keep_locks, which tells this code to keep
1450  * the lock if the path points to the last slot in the block.  This is part of
1451  * walking through the tree, and selecting the next slot in the higher block.
1452  *
1453  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1454  * if lowest_unlock is 1, level 0 won't be unlocked
1455  */
1456 static noinline void unlock_up(struct btrfs_path *path, int level,
1457                                int lowest_unlock, int min_write_lock_level,
1458                                int *write_lock_level)
1459 {
1460         int i;
1461         int skip_level = level;
1462         bool check_skip = true;
1463 
1464         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1465                 if (!path->nodes[i])
1466                         break;
1467                 if (!path->locks[i])
1468                         break;
1469 
1470                 if (check_skip) {
1471                         if (path->slots[i] == 0) {
1472                                 skip_level = i + 1;
1473                                 continue;
1474                         }
1475 
1476                         if (path->keep_locks) {
1477                                 u32 nritems;
1478 
1479                                 nritems = btrfs_header_nritems(path->nodes[i]);
1480                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1481                                         skip_level = i + 1;
1482                                         continue;
1483                                 }
1484                         }
1485                 }
1486 
1487                 if (i >= lowest_unlock && i > skip_level) {
1488                         check_skip = false;
1489                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1490                         path->locks[i] = 0;
1491                         if (write_lock_level &&
1492                             i > min_write_lock_level &&
1493                             i <= *write_lock_level) {
1494                                 *write_lock_level = i - 1;
1495                         }
1496                 }
1497         }
1498 }
1499 
1500 /*
1501  * Helper function for btrfs_search_slot() and other functions that do a search
1502  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1503  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1504  * its pages from disk.
1505  *
1506  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1507  * whole btree search, starting again from the current root node.
1508  */
1509 static int
1510 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1511                       struct extent_buffer **eb_ret, int level, int slot,
1512                       const struct btrfs_key *key)
1513 {
1514         struct btrfs_fs_info *fs_info = root->fs_info;
1515         struct btrfs_tree_parent_check check = { 0 };
1516         u64 blocknr;
1517         u64 gen;
1518         struct extent_buffer *tmp;
1519         int ret;
1520         int parent_level;
1521         bool unlock_up;
1522 
1523         unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1524         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1525         gen = btrfs_node_ptr_generation(*eb_ret, slot);
1526         parent_level = btrfs_header_level(*eb_ret);
1527         btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1528         check.has_first_key = true;
1529         check.level = parent_level - 1;
1530         check.transid = gen;
1531         check.owner_root = btrfs_root_id(root);
1532 
1533         /*
1534          * If we need to read an extent buffer from disk and we are holding locks
1535          * on upper level nodes, we unlock all the upper nodes before reading the
1536          * extent buffer, and then return -EAGAIN to the caller as it needs to
1537          * restart the search. We don't release the lock on the current level
1538          * because we need to walk this node to figure out which blocks to read.
1539          */
1540         tmp = find_extent_buffer(fs_info, blocknr);
1541         if (tmp) {
1542                 if (p->reada == READA_FORWARD_ALWAYS)
1543                         reada_for_search(fs_info, p, level, slot, key->objectid);
1544 
1545                 /* first we do an atomic uptodate check */
1546                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1547                         /*
1548                          * Do extra check for first_key, eb can be stale due to
1549                          * being cached, read from scrub, or have multiple
1550                          * parents (shared tree blocks).
1551                          */
1552                         if (btrfs_verify_level_key(tmp,
1553                                         parent_level - 1, &check.first_key, gen)) {
1554                                 free_extent_buffer(tmp);
1555                                 return -EUCLEAN;
1556                         }
1557                         *eb_ret = tmp;
1558                         return 0;
1559                 }
1560 
1561                 if (p->nowait) {
1562                         free_extent_buffer(tmp);
1563                         return -EAGAIN;
1564                 }
1565 
1566                 if (unlock_up)
1567                         btrfs_unlock_up_safe(p, level + 1);
1568 
1569                 /* now we're allowed to do a blocking uptodate check */
1570                 ret = btrfs_read_extent_buffer(tmp, &check);
1571                 if (ret) {
1572                         free_extent_buffer(tmp);
1573                         btrfs_release_path(p);
1574                         return ret;
1575                 }
1576 
1577                 if (unlock_up)
1578                         ret = -EAGAIN;
1579 
1580                 goto out;
1581         } else if (p->nowait) {
1582                 return -EAGAIN;
1583         }
1584 
1585         if (unlock_up) {
1586                 btrfs_unlock_up_safe(p, level + 1);
1587                 ret = -EAGAIN;
1588         } else {
1589                 ret = 0;
1590         }
1591 
1592         if (p->reada != READA_NONE)
1593                 reada_for_search(fs_info, p, level, slot, key->objectid);
1594 
1595         tmp = read_tree_block(fs_info, blocknr, &check);
1596         if (IS_ERR(tmp)) {
1597                 btrfs_release_path(p);
1598                 return PTR_ERR(tmp);
1599         }
1600         /*
1601          * If the read above didn't mark this buffer up to date,
1602          * it will never end up being up to date.  Set ret to EIO now
1603          * and give up so that our caller doesn't loop forever
1604          * on our EAGAINs.
1605          */
1606         if (!extent_buffer_uptodate(tmp))
1607                 ret = -EIO;
1608 
1609 out:
1610         if (ret == 0) {
1611                 *eb_ret = tmp;
1612         } else {
1613                 free_extent_buffer(tmp);
1614                 btrfs_release_path(p);
1615         }
1616 
1617         return ret;
1618 }
1619 
1620 /*
1621  * helper function for btrfs_search_slot.  This does all of the checks
1622  * for node-level blocks and does any balancing required based on
1623  * the ins_len.
1624  *
1625  * If no extra work was required, zero is returned.  If we had to
1626  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1627  * start over
1628  */
1629 static int
1630 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1631                        struct btrfs_root *root, struct btrfs_path *p,
1632                        struct extent_buffer *b, int level, int ins_len,
1633                        int *write_lock_level)
1634 {
1635         struct btrfs_fs_info *fs_info = root->fs_info;
1636         int ret = 0;
1637 
1638         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1639             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1640 
1641                 if (*write_lock_level < level + 1) {
1642                         *write_lock_level = level + 1;
1643                         btrfs_release_path(p);
1644                         return -EAGAIN;
1645                 }
1646 
1647                 reada_for_balance(p, level);
1648                 ret = split_node(trans, root, p, level);
1649 
1650                 b = p->nodes[level];
1651         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1652                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1653 
1654                 if (*write_lock_level < level + 1) {
1655                         *write_lock_level = level + 1;
1656                         btrfs_release_path(p);
1657                         return -EAGAIN;
1658                 }
1659 
1660                 reada_for_balance(p, level);
1661                 ret = balance_level(trans, root, p, level);
1662                 if (ret)
1663                         return ret;
1664 
1665                 b = p->nodes[level];
1666                 if (!b) {
1667                         btrfs_release_path(p);
1668                         return -EAGAIN;
1669                 }
1670                 BUG_ON(btrfs_header_nritems(b) == 1);
1671         }
1672         return ret;
1673 }
1674 
1675 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1676                 u64 iobjectid, u64 ioff, u8 key_type,
1677                 struct btrfs_key *found_key)
1678 {
1679         int ret;
1680         struct btrfs_key key;
1681         struct extent_buffer *eb;
1682 
1683         ASSERT(path);
1684         ASSERT(found_key);
1685 
1686         key.type = key_type;
1687         key.objectid = iobjectid;
1688         key.offset = ioff;
1689 
1690         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1691         if (ret < 0)
1692                 return ret;
1693 
1694         eb = path->nodes[0];
1695         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1696                 ret = btrfs_next_leaf(fs_root, path);
1697                 if (ret)
1698                         return ret;
1699                 eb = path->nodes[0];
1700         }
1701 
1702         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1703         if (found_key->type != key.type ||
1704                         found_key->objectid != key.objectid)
1705                 return 1;
1706 
1707         return 0;
1708 }
1709 
1710 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1711                                                         struct btrfs_path *p,
1712                                                         int write_lock_level)
1713 {
1714         struct extent_buffer *b;
1715         int root_lock = 0;
1716         int level = 0;
1717 
1718         if (p->search_commit_root) {
1719                 b = root->commit_root;
1720                 atomic_inc(&b->refs);
1721                 level = btrfs_header_level(b);
1722                 /*
1723                  * Ensure that all callers have set skip_locking when
1724                  * p->search_commit_root = 1.
1725                  */
1726                 ASSERT(p->skip_locking == 1);
1727 
1728                 goto out;
1729         }
1730 
1731         if (p->skip_locking) {
1732                 b = btrfs_root_node(root);
1733                 level = btrfs_header_level(b);
1734                 goto out;
1735         }
1736 
1737         /* We try very hard to do read locks on the root */
1738         root_lock = BTRFS_READ_LOCK;
1739 
1740         /*
1741          * If the level is set to maximum, we can skip trying to get the read
1742          * lock.
1743          */
1744         if (write_lock_level < BTRFS_MAX_LEVEL) {
1745                 /*
1746                  * We don't know the level of the root node until we actually
1747                  * have it read locked
1748                  */
1749                 if (p->nowait) {
1750                         b = btrfs_try_read_lock_root_node(root);
1751                         if (IS_ERR(b))
1752                                 return b;
1753                 } else {
1754                         b = btrfs_read_lock_root_node(root);
1755                 }
1756                 level = btrfs_header_level(b);
1757                 if (level > write_lock_level)
1758                         goto out;
1759 
1760                 /* Whoops, must trade for write lock */
1761                 btrfs_tree_read_unlock(b);
1762                 free_extent_buffer(b);
1763         }
1764 
1765         b = btrfs_lock_root_node(root);
1766         root_lock = BTRFS_WRITE_LOCK;
1767 
1768         /* The level might have changed, check again */
1769         level = btrfs_header_level(b);
1770 
1771 out:
1772         /*
1773          * The root may have failed to write out at some point, and thus is no
1774          * longer valid, return an error in this case.
1775          */
1776         if (!extent_buffer_uptodate(b)) {
1777                 if (root_lock)
1778                         btrfs_tree_unlock_rw(b, root_lock);
1779                 free_extent_buffer(b);
1780                 return ERR_PTR(-EIO);
1781         }
1782 
1783         p->nodes[level] = b;
1784         if (!p->skip_locking)
1785                 p->locks[level] = root_lock;
1786         /*
1787          * Callers are responsible for dropping b's references.
1788          */
1789         return b;
1790 }
1791 
1792 /*
1793  * Replace the extent buffer at the lowest level of the path with a cloned
1794  * version. The purpose is to be able to use it safely, after releasing the
1795  * commit root semaphore, even if relocation is happening in parallel, the
1796  * transaction used for relocation is committed and the extent buffer is
1797  * reallocated in the next transaction.
1798  *
1799  * This is used in a context where the caller does not prevent transaction
1800  * commits from happening, either by holding a transaction handle or holding
1801  * some lock, while it's doing searches through a commit root.
1802  * At the moment it's only used for send operations.
1803  */
1804 static int finish_need_commit_sem_search(struct btrfs_path *path)
1805 {
1806         const int i = path->lowest_level;
1807         const int slot = path->slots[i];
1808         struct extent_buffer *lowest = path->nodes[i];
1809         struct extent_buffer *clone;
1810 
1811         ASSERT(path->need_commit_sem);
1812 
1813         if (!lowest)
1814                 return 0;
1815 
1816         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1817 
1818         clone = btrfs_clone_extent_buffer(lowest);
1819         if (!clone)
1820                 return -ENOMEM;
1821 
1822         btrfs_release_path(path);
1823         path->nodes[i] = clone;
1824         path->slots[i] = slot;
1825 
1826         return 0;
1827 }
1828 
1829 static inline int search_for_key_slot(struct extent_buffer *eb,
1830                                       int search_low_slot,
1831                                       const struct btrfs_key *key,
1832                                       int prev_cmp,
1833                                       int *slot)
1834 {
1835         /*
1836          * If a previous call to btrfs_bin_search() on a parent node returned an
1837          * exact match (prev_cmp == 0), we can safely assume the target key will
1838          * always be at slot 0 on lower levels, since each key pointer
1839          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1840          * subtree it points to. Thus we can skip searching lower levels.
1841          */
1842         if (prev_cmp == 0) {
1843                 *slot = 0;
1844                 return 0;
1845         }
1846 
1847         return btrfs_bin_search(eb, search_low_slot, key, slot);
1848 }
1849 
1850 static int search_leaf(struct btrfs_trans_handle *trans,
1851                        struct btrfs_root *root,
1852                        const struct btrfs_key *key,
1853                        struct btrfs_path *path,
1854                        int ins_len,
1855                        int prev_cmp)
1856 {
1857         struct extent_buffer *leaf = path->nodes[0];
1858         int leaf_free_space = -1;
1859         int search_low_slot = 0;
1860         int ret;
1861         bool do_bin_search = true;
1862 
1863         /*
1864          * If we are doing an insertion, the leaf has enough free space and the
1865          * destination slot for the key is not slot 0, then we can unlock our
1866          * write lock on the parent, and any other upper nodes, before doing the
1867          * binary search on the leaf (with search_for_key_slot()), allowing other
1868          * tasks to lock the parent and any other upper nodes.
1869          */
1870         if (ins_len > 0) {
1871                 /*
1872                  * Cache the leaf free space, since we will need it later and it
1873                  * will not change until then.
1874                  */
1875                 leaf_free_space = btrfs_leaf_free_space(leaf);
1876 
1877                 /*
1878                  * !path->locks[1] means we have a single node tree, the leaf is
1879                  * the root of the tree.
1880                  */
1881                 if (path->locks[1] && leaf_free_space >= ins_len) {
1882                         struct btrfs_disk_key first_key;
1883 
1884                         ASSERT(btrfs_header_nritems(leaf) > 0);
1885                         btrfs_item_key(leaf, &first_key, 0);
1886 
1887                         /*
1888                          * Doing the extra comparison with the first key is cheap,
1889                          * taking into account that the first key is very likely
1890                          * already in a cache line because it immediately follows
1891                          * the extent buffer's header and we have recently accessed
1892                          * the header's level field.
1893                          */
1894                         ret = btrfs_comp_keys(&first_key, key);
1895                         if (ret < 0) {
1896                                 /*
1897                                  * The first key is smaller than the key we want
1898                                  * to insert, so we are safe to unlock all upper
1899                                  * nodes and we have to do the binary search.
1900                                  *
1901                                  * We do use btrfs_unlock_up_safe() and not
1902                                  * unlock_up() because the later does not unlock
1903                                  * nodes with a slot of 0 - we can safely unlock
1904                                  * any node even if its slot is 0 since in this
1905                                  * case the key does not end up at slot 0 of the
1906                                  * leaf and there's no need to split the leaf.
1907                                  */
1908                                 btrfs_unlock_up_safe(path, 1);
1909                                 search_low_slot = 1;
1910                         } else {
1911                                 /*
1912                                  * The first key is >= then the key we want to
1913                                  * insert, so we can skip the binary search as
1914                                  * the target key will be at slot 0.
1915                                  *
1916                                  * We can not unlock upper nodes when the key is
1917                                  * less than the first key, because we will need
1918                                  * to update the key at slot 0 of the parent node
1919                                  * and possibly of other upper nodes too.
1920                                  * If the key matches the first key, then we can
1921                                  * unlock all the upper nodes, using
1922                                  * btrfs_unlock_up_safe() instead of unlock_up()
1923                                  * as stated above.
1924                                  */
1925                                 if (ret == 0)
1926                                         btrfs_unlock_up_safe(path, 1);
1927                                 /*
1928                                  * ret is already 0 or 1, matching the result of
1929                                  * a btrfs_bin_search() call, so there is no need
1930                                  * to adjust it.
1931                                  */
1932                                 do_bin_search = false;
1933                                 path->slots[0] = 0;
1934                         }
1935                 }
1936         }
1937 
1938         if (do_bin_search) {
1939                 ret = search_for_key_slot(leaf, search_low_slot, key,
1940                                           prev_cmp, &path->slots[0]);
1941                 if (ret < 0)
1942                         return ret;
1943         }
1944 
1945         if (ins_len > 0) {
1946                 /*
1947                  * Item key already exists. In this case, if we are allowed to
1948                  * insert the item (for example, in dir_item case, item key
1949                  * collision is allowed), it will be merged with the original
1950                  * item. Only the item size grows, no new btrfs item will be
1951                  * added. If search_for_extension is not set, ins_len already
1952                  * accounts the size btrfs_item, deduct it here so leaf space
1953                  * check will be correct.
1954                  */
1955                 if (ret == 0 && !path->search_for_extension) {
1956                         ASSERT(ins_len >= sizeof(struct btrfs_item));
1957                         ins_len -= sizeof(struct btrfs_item);
1958                 }
1959 
1960                 ASSERT(leaf_free_space >= 0);
1961 
1962                 if (leaf_free_space < ins_len) {
1963                         int err;
1964 
1965                         err = split_leaf(trans, root, key, path, ins_len,
1966                                          (ret == 0));
1967                         ASSERT(err <= 0);
1968                         if (WARN_ON(err > 0))
1969                                 err = -EUCLEAN;
1970                         if (err)
1971                                 ret = err;
1972                 }
1973         }
1974 
1975         return ret;
1976 }
1977 
1978 /*
1979  * Look for a key in a tree and perform necessary modifications to preserve
1980  * tree invariants.
1981  *
1982  * @trans:      Handle of transaction, used when modifying the tree
1983  * @p:          Holds all btree nodes along the search path
1984  * @root:       The root node of the tree
1985  * @key:        The key we are looking for
1986  * @ins_len:    Indicates purpose of search:
1987  *              >0  for inserts it's size of item inserted (*)
1988  *              <0  for deletions
1989  *               0  for plain searches, not modifying the tree
1990  *
1991  *              (*) If size of item inserted doesn't include
1992  *              sizeof(struct btrfs_item), then p->search_for_extension must
1993  *              be set.
1994  * @cow:        boolean should CoW operations be performed. Must always be 1
1995  *              when modifying the tree.
1996  *
1997  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1998  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1999  *
2000  * If @key is found, 0 is returned and you can find the item in the leaf level
2001  * of the path (level 0)
2002  *
2003  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2004  * points to the slot where it should be inserted
2005  *
2006  * If an error is encountered while searching the tree a negative error number
2007  * is returned
2008  */
2009 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2010                       const struct btrfs_key *key, struct btrfs_path *p,
2011                       int ins_len, int cow)
2012 {
2013         struct btrfs_fs_info *fs_info = root->fs_info;
2014         struct extent_buffer *b;
2015         int slot;
2016         int ret;
2017         int err;
2018         int level;
2019         int lowest_unlock = 1;
2020         /* everything at write_lock_level or lower must be write locked */
2021         int write_lock_level = 0;
2022         u8 lowest_level = 0;
2023         int min_write_lock_level;
2024         int prev_cmp;
2025 
2026         might_sleep();
2027 
2028         lowest_level = p->lowest_level;
2029         WARN_ON(lowest_level && ins_len > 0);
2030         WARN_ON(p->nodes[0] != NULL);
2031         BUG_ON(!cow && ins_len);
2032 
2033         /*
2034          * For now only allow nowait for read only operations.  There's no
2035          * strict reason why we can't, we just only need it for reads so it's
2036          * only implemented for reads.
2037          */
2038         ASSERT(!p->nowait || !cow);
2039 
2040         if (ins_len < 0) {
2041                 lowest_unlock = 2;
2042 
2043                 /* when we are removing items, we might have to go up to level
2044                  * two as we update tree pointers  Make sure we keep write
2045                  * for those levels as well
2046                  */
2047                 write_lock_level = 2;
2048         } else if (ins_len > 0) {
2049                 /*
2050                  * for inserting items, make sure we have a write lock on
2051                  * level 1 so we can update keys
2052                  */
2053                 write_lock_level = 1;
2054         }
2055 
2056         if (!cow)
2057                 write_lock_level = -1;
2058 
2059         if (cow && (p->keep_locks || p->lowest_level))
2060                 write_lock_level = BTRFS_MAX_LEVEL;
2061 
2062         min_write_lock_level = write_lock_level;
2063 
2064         if (p->need_commit_sem) {
2065                 ASSERT(p->search_commit_root);
2066                 if (p->nowait) {
2067                         if (!down_read_trylock(&fs_info->commit_root_sem))
2068                                 return -EAGAIN;
2069                 } else {
2070                         down_read(&fs_info->commit_root_sem);
2071                 }
2072         }
2073 
2074 again:
2075         prev_cmp = -1;
2076         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2077         if (IS_ERR(b)) {
2078                 ret = PTR_ERR(b);
2079                 goto done;
2080         }
2081 
2082         while (b) {
2083                 int dec = 0;
2084 
2085                 level = btrfs_header_level(b);
2086 
2087                 if (cow) {
2088                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2089 
2090                         /*
2091                          * if we don't really need to cow this block
2092                          * then we don't want to set the path blocking,
2093                          * so we test it here
2094                          */
2095                         if (!should_cow_block(trans, root, b))
2096                                 goto cow_done;
2097 
2098                         /*
2099                          * must have write locks on this node and the
2100                          * parent
2101                          */
2102                         if (level > write_lock_level ||
2103                             (level + 1 > write_lock_level &&
2104                             level + 1 < BTRFS_MAX_LEVEL &&
2105                             p->nodes[level + 1])) {
2106                                 write_lock_level = level + 1;
2107                                 btrfs_release_path(p);
2108                                 goto again;
2109                         }
2110 
2111                         if (last_level)
2112                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2113                                                       &b,
2114                                                       BTRFS_NESTING_COW);
2115                         else
2116                                 err = btrfs_cow_block(trans, root, b,
2117                                                       p->nodes[level + 1],
2118                                                       p->slots[level + 1], &b,
2119                                                       BTRFS_NESTING_COW);
2120                         if (err) {
2121                                 ret = err;
2122                                 goto done;
2123                         }
2124                 }
2125 cow_done:
2126                 p->nodes[level] = b;
2127 
2128                 /*
2129                  * we have a lock on b and as long as we aren't changing
2130                  * the tree, there is no way to for the items in b to change.
2131                  * It is safe to drop the lock on our parent before we
2132                  * go through the expensive btree search on b.
2133                  *
2134                  * If we're inserting or deleting (ins_len != 0), then we might
2135                  * be changing slot zero, which may require changing the parent.
2136                  * So, we can't drop the lock until after we know which slot
2137                  * we're operating on.
2138                  */
2139                 if (!ins_len && !p->keep_locks) {
2140                         int u = level + 1;
2141 
2142                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2143                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2144                                 p->locks[u] = 0;
2145                         }
2146                 }
2147 
2148                 if (level == 0) {
2149                         if (ins_len > 0)
2150                                 ASSERT(write_lock_level >= 1);
2151 
2152                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2153                         if (!p->search_for_split)
2154                                 unlock_up(p, level, lowest_unlock,
2155                                           min_write_lock_level, NULL);
2156                         goto done;
2157                 }
2158 
2159                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2160                 if (ret < 0)
2161                         goto done;
2162                 prev_cmp = ret;
2163 
2164                 if (ret && slot > 0) {
2165                         dec = 1;
2166                         slot--;
2167                 }
2168                 p->slots[level] = slot;
2169                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2170                                              &write_lock_level);
2171                 if (err == -EAGAIN)
2172                         goto again;
2173                 if (err) {
2174                         ret = err;
2175                         goto done;
2176                 }
2177                 b = p->nodes[level];
2178                 slot = p->slots[level];
2179 
2180                 /*
2181                  * Slot 0 is special, if we change the key we have to update
2182                  * the parent pointer which means we must have a write lock on
2183                  * the parent
2184                  */
2185                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2186                         write_lock_level = level + 1;
2187                         btrfs_release_path(p);
2188                         goto again;
2189                 }
2190 
2191                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2192                           &write_lock_level);
2193 
2194                 if (level == lowest_level) {
2195                         if (dec)
2196                                 p->slots[level]++;
2197                         goto done;
2198                 }
2199 
2200                 err = read_block_for_search(root, p, &b, level, slot, key);
2201                 if (err == -EAGAIN)
2202                         goto again;
2203                 if (err) {
2204                         ret = err;
2205                         goto done;
2206                 }
2207 
2208                 if (!p->skip_locking) {
2209                         level = btrfs_header_level(b);
2210 
2211                         btrfs_maybe_reset_lockdep_class(root, b);
2212 
2213                         if (level <= write_lock_level) {
2214                                 btrfs_tree_lock(b);
2215                                 p->locks[level] = BTRFS_WRITE_LOCK;
2216                         } else {
2217                                 if (p->nowait) {
2218                                         if (!btrfs_try_tree_read_lock(b)) {
2219                                                 free_extent_buffer(b);
2220                                                 ret = -EAGAIN;
2221                                                 goto done;
2222                                         }
2223                                 } else {
2224                                         btrfs_tree_read_lock(b);
2225                                 }
2226                                 p->locks[level] = BTRFS_READ_LOCK;
2227                         }
2228                         p->nodes[level] = b;
2229                 }
2230         }
2231         ret = 1;
2232 done:
2233         if (ret < 0 && !p->skip_release_on_error)
2234                 btrfs_release_path(p);
2235 
2236         if (p->need_commit_sem) {
2237                 int ret2;
2238 
2239                 ret2 = finish_need_commit_sem_search(p);
2240                 up_read(&fs_info->commit_root_sem);
2241                 if (ret2)
2242                         ret = ret2;
2243         }
2244 
2245         return ret;
2246 }
2247 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2248 
2249 /*
2250  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2251  * current state of the tree together with the operations recorded in the tree
2252  * modification log to search for the key in a previous version of this tree, as
2253  * denoted by the time_seq parameter.
2254  *
2255  * Naturally, there is no support for insert, delete or cow operations.
2256  *
2257  * The resulting path and return value will be set up as if we called
2258  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2259  */
2260 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2261                           struct btrfs_path *p, u64 time_seq)
2262 {
2263         struct btrfs_fs_info *fs_info = root->fs_info;
2264         struct extent_buffer *b;
2265         int slot;
2266         int ret;
2267         int err;
2268         int level;
2269         int lowest_unlock = 1;
2270         u8 lowest_level = 0;
2271 
2272         lowest_level = p->lowest_level;
2273         WARN_ON(p->nodes[0] != NULL);
2274         ASSERT(!p->nowait);
2275 
2276         if (p->search_commit_root) {
2277                 BUG_ON(time_seq);
2278                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2279         }
2280 
2281 again:
2282         b = btrfs_get_old_root(root, time_seq);
2283         if (!b) {
2284                 ret = -EIO;
2285                 goto done;
2286         }
2287         level = btrfs_header_level(b);
2288         p->locks[level] = BTRFS_READ_LOCK;
2289 
2290         while (b) {
2291                 int dec = 0;
2292 
2293                 level = btrfs_header_level(b);
2294                 p->nodes[level] = b;
2295 
2296                 /*
2297                  * we have a lock on b and as long as we aren't changing
2298                  * the tree, there is no way to for the items in b to change.
2299                  * It is safe to drop the lock on our parent before we
2300                  * go through the expensive btree search on b.
2301                  */
2302                 btrfs_unlock_up_safe(p, level + 1);
2303 
2304                 ret = btrfs_bin_search(b, 0, key, &slot);
2305                 if (ret < 0)
2306                         goto done;
2307 
2308                 if (level == 0) {
2309                         p->slots[level] = slot;
2310                         unlock_up(p, level, lowest_unlock, 0, NULL);
2311                         goto done;
2312                 }
2313 
2314                 if (ret && slot > 0) {
2315                         dec = 1;
2316                         slot--;
2317                 }
2318                 p->slots[level] = slot;
2319                 unlock_up(p, level, lowest_unlock, 0, NULL);
2320 
2321                 if (level == lowest_level) {
2322                         if (dec)
2323                                 p->slots[level]++;
2324                         goto done;
2325                 }
2326 
2327                 err = read_block_for_search(root, p, &b, level, slot, key);
2328                 if (err == -EAGAIN)
2329                         goto again;
2330                 if (err) {
2331                         ret = err;
2332                         goto done;
2333                 }
2334 
2335                 level = btrfs_header_level(b);
2336                 btrfs_tree_read_lock(b);
2337                 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2338                 if (!b) {
2339                         ret = -ENOMEM;
2340                         goto done;
2341                 }
2342                 p->locks[level] = BTRFS_READ_LOCK;
2343                 p->nodes[level] = b;
2344         }
2345         ret = 1;
2346 done:
2347         if (ret < 0)
2348                 btrfs_release_path(p);
2349 
2350         return ret;
2351 }
2352 
2353 /*
2354  * Search the tree again to find a leaf with smaller keys.
2355  * Returns 0 if it found something.
2356  * Returns 1 if there are no smaller keys.
2357  * Returns < 0 on error.
2358  *
2359  * This may release the path, and so you may lose any locks held at the
2360  * time you call it.
2361  */
2362 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2363 {
2364         struct btrfs_key key;
2365         struct btrfs_key orig_key;
2366         struct btrfs_disk_key found_key;
2367         int ret;
2368 
2369         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2370         orig_key = key;
2371 
2372         if (key.offset > 0) {
2373                 key.offset--;
2374         } else if (key.type > 0) {
2375                 key.type--;
2376                 key.offset = (u64)-1;
2377         } else if (key.objectid > 0) {
2378                 key.objectid--;
2379                 key.type = (u8)-1;
2380                 key.offset = (u64)-1;
2381         } else {
2382                 return 1;
2383         }
2384 
2385         btrfs_release_path(path);
2386         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2387         if (ret <= 0)
2388                 return ret;
2389 
2390         /*
2391          * Previous key not found. Even if we were at slot 0 of the leaf we had
2392          * before releasing the path and calling btrfs_search_slot(), we now may
2393          * be in a slot pointing to the same original key - this can happen if
2394          * after we released the path, one of more items were moved from a
2395          * sibling leaf into the front of the leaf we had due to an insertion
2396          * (see push_leaf_right()).
2397          * If we hit this case and our slot is > 0 and just decrement the slot
2398          * so that the caller does not process the same key again, which may or
2399          * may not break the caller, depending on its logic.
2400          */
2401         if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2402                 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2403                 ret = btrfs_comp_keys(&found_key, &orig_key);
2404                 if (ret == 0) {
2405                         if (path->slots[0] > 0) {
2406                                 path->slots[0]--;
2407                                 return 0;
2408                         }
2409                         /*
2410                          * At slot 0, same key as before, it means orig_key is
2411                          * the lowest, leftmost, key in the tree. We're done.
2412                          */
2413                         return 1;
2414                 }
2415         }
2416 
2417         btrfs_item_key(path->nodes[0], &found_key, 0);
2418         ret = btrfs_comp_keys(&found_key, &key);
2419         /*
2420          * We might have had an item with the previous key in the tree right
2421          * before we released our path. And after we released our path, that
2422          * item might have been pushed to the first slot (0) of the leaf we
2423          * were holding due to a tree balance. Alternatively, an item with the
2424          * previous key can exist as the only element of a leaf (big fat item).
2425          * Therefore account for these 2 cases, so that our callers (like
2426          * btrfs_previous_item) don't miss an existing item with a key matching
2427          * the previous key we computed above.
2428          */
2429         if (ret <= 0)
2430                 return 0;
2431         return 1;
2432 }
2433 
2434 /*
2435  * helper to use instead of search slot if no exact match is needed but
2436  * instead the next or previous item should be returned.
2437  * When find_higher is true, the next higher item is returned, the next lower
2438  * otherwise.
2439  * When return_any and find_higher are both true, and no higher item is found,
2440  * return the next lower instead.
2441  * When return_any is true and find_higher is false, and no lower item is found,
2442  * return the next higher instead.
2443  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2444  * < 0 on error
2445  */
2446 int btrfs_search_slot_for_read(struct btrfs_root *root,
2447                                const struct btrfs_key *key,
2448                                struct btrfs_path *p, int find_higher,
2449                                int return_any)
2450 {
2451         int ret;
2452         struct extent_buffer *leaf;
2453 
2454 again:
2455         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2456         if (ret <= 0)
2457                 return ret;
2458         /*
2459          * a return value of 1 means the path is at the position where the
2460          * item should be inserted. Normally this is the next bigger item,
2461          * but in case the previous item is the last in a leaf, path points
2462          * to the first free slot in the previous leaf, i.e. at an invalid
2463          * item.
2464          */
2465         leaf = p->nodes[0];
2466 
2467         if (find_higher) {
2468                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2469                         ret = btrfs_next_leaf(root, p);
2470                         if (ret <= 0)
2471                                 return ret;
2472                         if (!return_any)
2473                                 return 1;
2474                         /*
2475                          * no higher item found, return the next
2476                          * lower instead
2477                          */
2478                         return_any = 0;
2479                         find_higher = 0;
2480                         btrfs_release_path(p);
2481                         goto again;
2482                 }
2483         } else {
2484                 if (p->slots[0] == 0) {
2485                         ret = btrfs_prev_leaf(root, p);
2486                         if (ret < 0)
2487                                 return ret;
2488                         if (!ret) {
2489                                 leaf = p->nodes[0];
2490                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2491                                         p->slots[0]--;
2492                                 return 0;
2493                         }
2494                         if (!return_any)
2495                                 return 1;
2496                         /*
2497                          * no lower item found, return the next
2498                          * higher instead
2499                          */
2500                         return_any = 0;
2501                         find_higher = 1;
2502                         btrfs_release_path(p);
2503                         goto again;
2504                 } else {
2505                         --p->slots[0];
2506                 }
2507         }
2508         return 0;
2509 }
2510 
2511 /*
2512  * Execute search and call btrfs_previous_item to traverse backwards if the item
2513  * was not found.
2514  *
2515  * Return 0 if found, 1 if not found and < 0 if error.
2516  */
2517 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2518                            struct btrfs_path *path)
2519 {
2520         int ret;
2521 
2522         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2523         if (ret > 0)
2524                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2525 
2526         if (ret == 0)
2527                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2528 
2529         return ret;
2530 }
2531 
2532 /*
2533  * Search for a valid slot for the given path.
2534  *
2535  * @root:       The root node of the tree.
2536  * @key:        Will contain a valid item if found.
2537  * @path:       The starting point to validate the slot.
2538  *
2539  * Return: 0  if the item is valid
2540  *         1  if not found
2541  *         <0 if error.
2542  */
2543 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2544                               struct btrfs_path *path)
2545 {
2546         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2547                 int ret;
2548 
2549                 ret = btrfs_next_leaf(root, path);
2550                 if (ret)
2551                         return ret;
2552         }
2553 
2554         btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2555         return 0;
2556 }
2557 
2558 /*
2559  * adjust the pointers going up the tree, starting at level
2560  * making sure the right key of each node is points to 'key'.
2561  * This is used after shifting pointers to the left, so it stops
2562  * fixing up pointers when a given leaf/node is not in slot 0 of the
2563  * higher levels
2564  *
2565  */
2566 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2567                            struct btrfs_path *path,
2568                            struct btrfs_disk_key *key, int level)
2569 {
2570         int i;
2571         struct extent_buffer *t;
2572         int ret;
2573 
2574         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2575                 int tslot = path->slots[i];
2576 
2577                 if (!path->nodes[i])
2578                         break;
2579                 t = path->nodes[i];
2580                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2581                                                     BTRFS_MOD_LOG_KEY_REPLACE);
2582                 BUG_ON(ret < 0);
2583                 btrfs_set_node_key(t, key, tslot);
2584                 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2585                 if (tslot != 0)
2586                         break;
2587         }
2588 }
2589 
2590 /*
2591  * update item key.
2592  *
2593  * This function isn't completely safe. It's the caller's responsibility
2594  * that the new key won't break the order
2595  */
2596 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2597                              struct btrfs_path *path,
2598                              const struct btrfs_key *new_key)
2599 {
2600         struct btrfs_fs_info *fs_info = trans->fs_info;
2601         struct btrfs_disk_key disk_key;
2602         struct extent_buffer *eb;
2603         int slot;
2604 
2605         eb = path->nodes[0];
2606         slot = path->slots[0];
2607         if (slot > 0) {
2608                 btrfs_item_key(eb, &disk_key, slot - 1);
2609                 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2610                         btrfs_print_leaf(eb);
2611                         btrfs_crit(fs_info,
2612                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2613                                    slot, btrfs_disk_key_objectid(&disk_key),
2614                                    btrfs_disk_key_type(&disk_key),
2615                                    btrfs_disk_key_offset(&disk_key),
2616                                    new_key->objectid, new_key->type,
2617                                    new_key->offset);
2618                         BUG();
2619                 }
2620         }
2621         if (slot < btrfs_header_nritems(eb) - 1) {
2622                 btrfs_item_key(eb, &disk_key, slot + 1);
2623                 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2624                         btrfs_print_leaf(eb);
2625                         btrfs_crit(fs_info,
2626                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2627                                    slot, btrfs_disk_key_objectid(&disk_key),
2628                                    btrfs_disk_key_type(&disk_key),
2629                                    btrfs_disk_key_offset(&disk_key),
2630                                    new_key->objectid, new_key->type,
2631                                    new_key->offset);
2632                         BUG();
2633                 }
2634         }
2635 
2636         btrfs_cpu_key_to_disk(&disk_key, new_key);
2637         btrfs_set_item_key(eb, &disk_key, slot);
2638         btrfs_mark_buffer_dirty(trans, eb);
2639         if (slot == 0)
2640                 fixup_low_keys(trans, path, &disk_key, 1);
2641 }
2642 
2643 /*
2644  * Check key order of two sibling extent buffers.
2645  *
2646  * Return true if something is wrong.
2647  * Return false if everything is fine.
2648  *
2649  * Tree-checker only works inside one tree block, thus the following
2650  * corruption can not be detected by tree-checker:
2651  *
2652  * Leaf @left                   | Leaf @right
2653  * --------------------------------------------------------------
2654  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2655  *
2656  * Key f6 in leaf @left itself is valid, but not valid when the next
2657  * key in leaf @right is 7.
2658  * This can only be checked at tree block merge time.
2659  * And since tree checker has ensured all key order in each tree block
2660  * is correct, we only need to bother the last key of @left and the first
2661  * key of @right.
2662  */
2663 static bool check_sibling_keys(struct extent_buffer *left,
2664                                struct extent_buffer *right)
2665 {
2666         struct btrfs_key left_last;
2667         struct btrfs_key right_first;
2668         int level = btrfs_header_level(left);
2669         int nr_left = btrfs_header_nritems(left);
2670         int nr_right = btrfs_header_nritems(right);
2671 
2672         /* No key to check in one of the tree blocks */
2673         if (!nr_left || !nr_right)
2674                 return false;
2675 
2676         if (level) {
2677                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2678                 btrfs_node_key_to_cpu(right, &right_first, 0);
2679         } else {
2680                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2681                 btrfs_item_key_to_cpu(right, &right_first, 0);
2682         }
2683 
2684         if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2685                 btrfs_crit(left->fs_info, "left extent buffer:");
2686                 btrfs_print_tree(left, false);
2687                 btrfs_crit(left->fs_info, "right extent buffer:");
2688                 btrfs_print_tree(right, false);
2689                 btrfs_crit(left->fs_info,
2690 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2691                            left_last.objectid, left_last.type,
2692                            left_last.offset, right_first.objectid,
2693                            right_first.type, right_first.offset);
2694                 return true;
2695         }
2696         return false;
2697 }
2698 
2699 /*
2700  * try to push data from one node into the next node left in the
2701  * tree.
2702  *
2703  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2704  * error, and > 0 if there was no room in the left hand block.
2705  */
2706 static int push_node_left(struct btrfs_trans_handle *trans,
2707                           struct extent_buffer *dst,
2708                           struct extent_buffer *src, int empty)
2709 {
2710         struct btrfs_fs_info *fs_info = trans->fs_info;
2711         int push_items = 0;
2712         int src_nritems;
2713         int dst_nritems;
2714         int ret = 0;
2715 
2716         src_nritems = btrfs_header_nritems(src);
2717         dst_nritems = btrfs_header_nritems(dst);
2718         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2719         WARN_ON(btrfs_header_generation(src) != trans->transid);
2720         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2721 
2722         if (!empty && src_nritems <= 8)
2723                 return 1;
2724 
2725         if (push_items <= 0)
2726                 return 1;
2727 
2728         if (empty) {
2729                 push_items = min(src_nritems, push_items);
2730                 if (push_items < src_nritems) {
2731                         /* leave at least 8 pointers in the node if
2732                          * we aren't going to empty it
2733                          */
2734                         if (src_nritems - push_items < 8) {
2735                                 if (push_items <= 8)
2736                                         return 1;
2737                                 push_items -= 8;
2738                         }
2739                 }
2740         } else
2741                 push_items = min(src_nritems - 8, push_items);
2742 
2743         /* dst is the left eb, src is the middle eb */
2744         if (check_sibling_keys(dst, src)) {
2745                 ret = -EUCLEAN;
2746                 btrfs_abort_transaction(trans, ret);
2747                 return ret;
2748         }
2749         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2750         if (ret) {
2751                 btrfs_abort_transaction(trans, ret);
2752                 return ret;
2753         }
2754         copy_extent_buffer(dst, src,
2755                            btrfs_node_key_ptr_offset(dst, dst_nritems),
2756                            btrfs_node_key_ptr_offset(src, 0),
2757                            push_items * sizeof(struct btrfs_key_ptr));
2758 
2759         if (push_items < src_nritems) {
2760                 /*
2761                  * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2762                  * don't need to do an explicit tree mod log operation for it.
2763                  */
2764                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2765                                       btrfs_node_key_ptr_offset(src, push_items),
2766                                       (src_nritems - push_items) *
2767                                       sizeof(struct btrfs_key_ptr));
2768         }
2769         btrfs_set_header_nritems(src, src_nritems - push_items);
2770         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2771         btrfs_mark_buffer_dirty(trans, src);
2772         btrfs_mark_buffer_dirty(trans, dst);
2773 
2774         return ret;
2775 }
2776 
2777 /*
2778  * try to push data from one node into the next node right in the
2779  * tree.
2780  *
2781  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2782  * error, and > 0 if there was no room in the right hand block.
2783  *
2784  * this will  only push up to 1/2 the contents of the left node over
2785  */
2786 static int balance_node_right(struct btrfs_trans_handle *trans,
2787                               struct extent_buffer *dst,
2788                               struct extent_buffer *src)
2789 {
2790         struct btrfs_fs_info *fs_info = trans->fs_info;
2791         int push_items = 0;
2792         int max_push;
2793         int src_nritems;
2794         int dst_nritems;
2795         int ret = 0;
2796 
2797         WARN_ON(btrfs_header_generation(src) != trans->transid);
2798         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2799 
2800         src_nritems = btrfs_header_nritems(src);
2801         dst_nritems = btrfs_header_nritems(dst);
2802         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2803         if (push_items <= 0)
2804                 return 1;
2805 
2806         if (src_nritems < 4)
2807                 return 1;
2808 
2809         max_push = src_nritems / 2 + 1;
2810         /* don't try to empty the node */
2811         if (max_push >= src_nritems)
2812                 return 1;
2813 
2814         if (max_push < push_items)
2815                 push_items = max_push;
2816 
2817         /* dst is the right eb, src is the middle eb */
2818         if (check_sibling_keys(src, dst)) {
2819                 ret = -EUCLEAN;
2820                 btrfs_abort_transaction(trans, ret);
2821                 return ret;
2822         }
2823 
2824         /*
2825          * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2826          * need to do an explicit tree mod log operation for it.
2827          */
2828         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2829                                       btrfs_node_key_ptr_offset(dst, 0),
2830                                       (dst_nritems) *
2831                                       sizeof(struct btrfs_key_ptr));
2832 
2833         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2834                                          push_items);
2835         if (ret) {
2836                 btrfs_abort_transaction(trans, ret);
2837                 return ret;
2838         }
2839         copy_extent_buffer(dst, src,
2840                            btrfs_node_key_ptr_offset(dst, 0),
2841                            btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2842                            push_items * sizeof(struct btrfs_key_ptr));
2843 
2844         btrfs_set_header_nritems(src, src_nritems - push_items);
2845         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2846 
2847         btrfs_mark_buffer_dirty(trans, src);
2848         btrfs_mark_buffer_dirty(trans, dst);
2849 
2850         return ret;
2851 }
2852 
2853 /*
2854  * helper function to insert a new root level in the tree.
2855  * A new node is allocated, and a single item is inserted to
2856  * point to the existing root
2857  *
2858  * returns zero on success or < 0 on failure.
2859  */
2860 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2861                            struct btrfs_root *root,
2862                            struct btrfs_path *path, int level)
2863 {
2864         u64 lower_gen;
2865         struct extent_buffer *lower;
2866         struct extent_buffer *c;
2867         struct extent_buffer *old;
2868         struct btrfs_disk_key lower_key;
2869         int ret;
2870 
2871         BUG_ON(path->nodes[level]);
2872         BUG_ON(path->nodes[level-1] != root->node);
2873 
2874         lower = path->nodes[level-1];
2875         if (level == 1)
2876                 btrfs_item_key(lower, &lower_key, 0);
2877         else
2878                 btrfs_node_key(lower, &lower_key, 0);
2879 
2880         c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2881                                    &lower_key, level, root->node->start, 0,
2882                                    0, BTRFS_NESTING_NEW_ROOT);
2883         if (IS_ERR(c))
2884                 return PTR_ERR(c);
2885 
2886         root_add_used_bytes(root);
2887 
2888         btrfs_set_header_nritems(c, 1);
2889         btrfs_set_node_key(c, &lower_key, 0);
2890         btrfs_set_node_blockptr(c, 0, lower->start);
2891         lower_gen = btrfs_header_generation(lower);
2892         WARN_ON(lower_gen != trans->transid);
2893 
2894         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2895 
2896         btrfs_mark_buffer_dirty(trans, c);
2897 
2898         old = root->node;
2899         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2900         if (ret < 0) {
2901                 int ret2;
2902 
2903                 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2904                 if (ret2 < 0)
2905                         btrfs_abort_transaction(trans, ret2);
2906                 btrfs_tree_unlock(c);
2907                 free_extent_buffer(c);
2908                 return ret;
2909         }
2910         rcu_assign_pointer(root->node, c);
2911 
2912         /* the super has an extra ref to root->node */
2913         free_extent_buffer(old);
2914 
2915         add_root_to_dirty_list(root);
2916         atomic_inc(&c->refs);
2917         path->nodes[level] = c;
2918         path->locks[level] = BTRFS_WRITE_LOCK;
2919         path->slots[level] = 0;
2920         return 0;
2921 }
2922 
2923 /*
2924  * worker function to insert a single pointer in a node.
2925  * the node should have enough room for the pointer already
2926  *
2927  * slot and level indicate where you want the key to go, and
2928  * blocknr is the block the key points to.
2929  */
2930 static int insert_ptr(struct btrfs_trans_handle *trans,
2931                       struct btrfs_path *path,
2932                       struct btrfs_disk_key *key, u64 bytenr,
2933                       int slot, int level)
2934 {
2935         struct extent_buffer *lower;
2936         int nritems;
2937         int ret;
2938 
2939         BUG_ON(!path->nodes[level]);
2940         btrfs_assert_tree_write_locked(path->nodes[level]);
2941         lower = path->nodes[level];
2942         nritems = btrfs_header_nritems(lower);
2943         BUG_ON(slot > nritems);
2944         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2945         if (slot != nritems) {
2946                 if (level) {
2947                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2948                                         slot, nritems - slot);
2949                         if (ret < 0) {
2950                                 btrfs_abort_transaction(trans, ret);
2951                                 return ret;
2952                         }
2953                 }
2954                 memmove_extent_buffer(lower,
2955                               btrfs_node_key_ptr_offset(lower, slot + 1),
2956                               btrfs_node_key_ptr_offset(lower, slot),
2957                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2958         }
2959         if (level) {
2960                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2961                                                     BTRFS_MOD_LOG_KEY_ADD);
2962                 if (ret < 0) {
2963                         btrfs_abort_transaction(trans, ret);
2964                         return ret;
2965                 }
2966         }
2967         btrfs_set_node_key(lower, key, slot);
2968         btrfs_set_node_blockptr(lower, slot, bytenr);
2969         WARN_ON(trans->transid == 0);
2970         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2971         btrfs_set_header_nritems(lower, nritems + 1);
2972         btrfs_mark_buffer_dirty(trans, lower);
2973 
2974         return 0;
2975 }
2976 
2977 /*
2978  * split the node at the specified level in path in two.
2979  * The path is corrected to point to the appropriate node after the split
2980  *
2981  * Before splitting this tries to make some room in the node by pushing
2982  * left and right, if either one works, it returns right away.
2983  *
2984  * returns 0 on success and < 0 on failure
2985  */
2986 static noinline int split_node(struct btrfs_trans_handle *trans,
2987                                struct btrfs_root *root,
2988                                struct btrfs_path *path, int level)
2989 {
2990         struct btrfs_fs_info *fs_info = root->fs_info;
2991         struct extent_buffer *c;
2992         struct extent_buffer *split;
2993         struct btrfs_disk_key disk_key;
2994         int mid;
2995         int ret;
2996         u32 c_nritems;
2997 
2998         c = path->nodes[level];
2999         WARN_ON(btrfs_header_generation(c) != trans->transid);
3000         if (c == root->node) {
3001                 /*
3002                  * trying to split the root, lets make a new one
3003                  *
3004                  * tree mod log: We don't log_removal old root in
3005                  * insert_new_root, because that root buffer will be kept as a
3006                  * normal node. We are going to log removal of half of the
3007                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
3008                  * holding a tree lock on the buffer, which is why we cannot
3009                  * race with other tree_mod_log users.
3010                  */
3011                 ret = insert_new_root(trans, root, path, level + 1);
3012                 if (ret)
3013                         return ret;
3014         } else {
3015                 ret = push_nodes_for_insert(trans, root, path, level);
3016                 c = path->nodes[level];
3017                 if (!ret && btrfs_header_nritems(c) <
3018                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3019                         return 0;
3020                 if (ret < 0)
3021                         return ret;
3022         }
3023 
3024         c_nritems = btrfs_header_nritems(c);
3025         mid = (c_nritems + 1) / 2;
3026         btrfs_node_key(c, &disk_key, mid);
3027 
3028         split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3029                                        &disk_key, level, c->start, 0,
3030                                        0, BTRFS_NESTING_SPLIT);
3031         if (IS_ERR(split))
3032                 return PTR_ERR(split);
3033 
3034         root_add_used_bytes(root);
3035         ASSERT(btrfs_header_level(c) == level);
3036 
3037         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3038         if (ret) {
3039                 btrfs_tree_unlock(split);
3040                 free_extent_buffer(split);
3041                 btrfs_abort_transaction(trans, ret);
3042                 return ret;
3043         }
3044         copy_extent_buffer(split, c,
3045                            btrfs_node_key_ptr_offset(split, 0),
3046                            btrfs_node_key_ptr_offset(c, mid),
3047                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3048         btrfs_set_header_nritems(split, c_nritems - mid);
3049         btrfs_set_header_nritems(c, mid);
3050 
3051         btrfs_mark_buffer_dirty(trans, c);
3052         btrfs_mark_buffer_dirty(trans, split);
3053 
3054         ret = insert_ptr(trans, path, &disk_key, split->start,
3055                          path->slots[level + 1] + 1, level + 1);
3056         if (ret < 0) {
3057                 btrfs_tree_unlock(split);
3058                 free_extent_buffer(split);
3059                 return ret;
3060         }
3061 
3062         if (path->slots[level] >= mid) {
3063                 path->slots[level] -= mid;
3064                 btrfs_tree_unlock(c);
3065                 free_extent_buffer(c);
3066                 path->nodes[level] = split;
3067                 path->slots[level + 1] += 1;
3068         } else {
3069                 btrfs_tree_unlock(split);
3070                 free_extent_buffer(split);
3071         }
3072         return 0;
3073 }
3074 
3075 /*
3076  * how many bytes are required to store the items in a leaf.  start
3077  * and nr indicate which items in the leaf to check.  This totals up the
3078  * space used both by the item structs and the item data
3079  */
3080 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3081 {
3082         int data_len;
3083         int nritems = btrfs_header_nritems(l);
3084         int end = min(nritems, start + nr) - 1;
3085 
3086         if (!nr)
3087                 return 0;
3088         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3089         data_len = data_len - btrfs_item_offset(l, end);
3090         data_len += sizeof(struct btrfs_item) * nr;
3091         WARN_ON(data_len < 0);
3092         return data_len;
3093 }
3094 
3095 /*
3096  * The space between the end of the leaf items and
3097  * the start of the leaf data.  IOW, how much room
3098  * the leaf has left for both items and data
3099  */
3100 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3101 {
3102         struct btrfs_fs_info *fs_info = leaf->fs_info;
3103         int nritems = btrfs_header_nritems(leaf);
3104         int ret;
3105 
3106         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3107         if (ret < 0) {
3108                 btrfs_crit(fs_info,
3109                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3110                            ret,
3111                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3112                            leaf_space_used(leaf, 0, nritems), nritems);
3113         }
3114         return ret;
3115 }
3116 
3117 /*
3118  * min slot controls the lowest index we're willing to push to the
3119  * right.  We'll push up to and including min_slot, but no lower
3120  */
3121 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3122                                       struct btrfs_path *path,
3123                                       int data_size, int empty,
3124                                       struct extent_buffer *right,
3125                                       int free_space, u32 left_nritems,
3126                                       u32 min_slot)
3127 {
3128         struct btrfs_fs_info *fs_info = right->fs_info;
3129         struct extent_buffer *left = path->nodes[0];
3130         struct extent_buffer *upper = path->nodes[1];
3131         struct btrfs_map_token token;
3132         struct btrfs_disk_key disk_key;
3133         int slot;
3134         u32 i;
3135         int push_space = 0;
3136         int push_items = 0;
3137         u32 nr;
3138         u32 right_nritems;
3139         u32 data_end;
3140         u32 this_item_size;
3141 
3142         if (empty)
3143                 nr = 0;
3144         else
3145                 nr = max_t(u32, 1, min_slot);
3146 
3147         if (path->slots[0] >= left_nritems)
3148                 push_space += data_size;
3149 
3150         slot = path->slots[1];
3151         i = left_nritems - 1;
3152         while (i >= nr) {
3153                 if (!empty && push_items > 0) {
3154                         if (path->slots[0] > i)
3155                                 break;
3156                         if (path->slots[0] == i) {
3157                                 int space = btrfs_leaf_free_space(left);
3158 
3159                                 if (space + push_space * 2 > free_space)
3160                                         break;
3161                         }
3162                 }
3163 
3164                 if (path->slots[0] == i)
3165                         push_space += data_size;
3166 
3167                 this_item_size = btrfs_item_size(left, i);
3168                 if (this_item_size + sizeof(struct btrfs_item) +
3169                     push_space > free_space)
3170                         break;
3171 
3172                 push_items++;
3173                 push_space += this_item_size + sizeof(struct btrfs_item);
3174                 if (i == 0)
3175                         break;
3176                 i--;
3177         }
3178 
3179         if (push_items == 0)
3180                 goto out_unlock;
3181 
3182         WARN_ON(!empty && push_items == left_nritems);
3183 
3184         /* push left to right */
3185         right_nritems = btrfs_header_nritems(right);
3186 
3187         push_space = btrfs_item_data_end(left, left_nritems - push_items);
3188         push_space -= leaf_data_end(left);
3189 
3190         /* make room in the right data area */
3191         data_end = leaf_data_end(right);
3192         memmove_leaf_data(right, data_end - push_space, data_end,
3193                           BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3194 
3195         /* copy from the left data area */
3196         copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3197                        leaf_data_end(left), push_space);
3198 
3199         memmove_leaf_items(right, push_items, 0, right_nritems);
3200 
3201         /* copy the items from left to right */
3202         copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3203 
3204         /* update the item pointers */
3205         btrfs_init_map_token(&token, right);
3206         right_nritems += push_items;
3207         btrfs_set_header_nritems(right, right_nritems);
3208         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3209         for (i = 0; i < right_nritems; i++) {
3210                 push_space -= btrfs_token_item_size(&token, i);
3211                 btrfs_set_token_item_offset(&token, i, push_space);
3212         }
3213 
3214         left_nritems -= push_items;
3215         btrfs_set_header_nritems(left, left_nritems);
3216 
3217         if (left_nritems)
3218                 btrfs_mark_buffer_dirty(trans, left);
3219         else
3220                 btrfs_clear_buffer_dirty(trans, left);
3221 
3222         btrfs_mark_buffer_dirty(trans, right);
3223 
3224         btrfs_item_key(right, &disk_key, 0);
3225         btrfs_set_node_key(upper, &disk_key, slot + 1);
3226         btrfs_mark_buffer_dirty(trans, upper);
3227 
3228         /* then fixup the leaf pointer in the path */
3229         if (path->slots[0] >= left_nritems) {
3230                 path->slots[0] -= left_nritems;
3231                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3232                         btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3233                 btrfs_tree_unlock(path->nodes[0]);
3234                 free_extent_buffer(path->nodes[0]);
3235                 path->nodes[0] = right;
3236                 path->slots[1] += 1;
3237         } else {
3238                 btrfs_tree_unlock(right);
3239                 free_extent_buffer(right);
3240         }
3241         return 0;
3242 
3243 out_unlock:
3244         btrfs_tree_unlock(right);
3245         free_extent_buffer(right);
3246         return 1;
3247 }
3248 
3249 /*
3250  * push some data in the path leaf to the right, trying to free up at
3251  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3252  *
3253  * returns 1 if the push failed because the other node didn't have enough
3254  * room, 0 if everything worked out and < 0 if there were major errors.
3255  *
3256  * this will push starting from min_slot to the end of the leaf.  It won't
3257  * push any slot lower than min_slot
3258  */
3259 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3260                            *root, struct btrfs_path *path,
3261                            int min_data_size, int data_size,
3262                            int empty, u32 min_slot)
3263 {
3264         struct extent_buffer *left = path->nodes[0];
3265         struct extent_buffer *right;
3266         struct extent_buffer *upper;
3267         int slot;
3268         int free_space;
3269         u32 left_nritems;
3270         int ret;
3271 
3272         if (!path->nodes[1])
3273                 return 1;
3274 
3275         slot = path->slots[1];
3276         upper = path->nodes[1];
3277         if (slot >= btrfs_header_nritems(upper) - 1)
3278                 return 1;
3279 
3280         btrfs_assert_tree_write_locked(path->nodes[1]);
3281 
3282         right = btrfs_read_node_slot(upper, slot + 1);
3283         if (IS_ERR(right))
3284                 return PTR_ERR(right);
3285 
3286         btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3287 
3288         free_space = btrfs_leaf_free_space(right);
3289         if (free_space < data_size)
3290                 goto out_unlock;
3291 
3292         ret = btrfs_cow_block(trans, root, right, upper,
3293                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3294         if (ret)
3295                 goto out_unlock;
3296 
3297         left_nritems = btrfs_header_nritems(left);
3298         if (left_nritems == 0)
3299                 goto out_unlock;
3300 
3301         if (check_sibling_keys(left, right)) {
3302                 ret = -EUCLEAN;
3303                 btrfs_abort_transaction(trans, ret);
3304                 btrfs_tree_unlock(right);
3305                 free_extent_buffer(right);
3306                 return ret;
3307         }
3308         if (path->slots[0] == left_nritems && !empty) {
3309                 /* Key greater than all keys in the leaf, right neighbor has
3310                  * enough room for it and we're not emptying our leaf to delete
3311                  * it, therefore use right neighbor to insert the new item and
3312                  * no need to touch/dirty our left leaf. */
3313                 btrfs_tree_unlock(left);
3314                 free_extent_buffer(left);
3315                 path->nodes[0] = right;
3316                 path->slots[0] = 0;
3317                 path->slots[1]++;
3318                 return 0;
3319         }
3320 
3321         return __push_leaf_right(trans, path, min_data_size, empty, right,
3322                                  free_space, left_nritems, min_slot);
3323 out_unlock:
3324         btrfs_tree_unlock(right);
3325         free_extent_buffer(right);
3326         return 1;
3327 }
3328 
3329 /*
3330  * push some data in the path leaf to the left, trying to free up at
3331  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3332  *
3333  * max_slot can put a limit on how far into the leaf we'll push items.  The
3334  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3335  * items
3336  */
3337 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3338                                      struct btrfs_path *path, int data_size,
3339                                      int empty, struct extent_buffer *left,
3340                                      int free_space, u32 right_nritems,
3341                                      u32 max_slot)
3342 {
3343         struct btrfs_fs_info *fs_info = left->fs_info;
3344         struct btrfs_disk_key disk_key;
3345         struct extent_buffer *right = path->nodes[0];
3346         int i;
3347         int push_space = 0;
3348         int push_items = 0;
3349         u32 old_left_nritems;
3350         u32 nr;
3351         int ret = 0;
3352         u32 this_item_size;
3353         u32 old_left_item_size;
3354         struct btrfs_map_token token;
3355 
3356         if (empty)
3357                 nr = min(right_nritems, max_slot);
3358         else
3359                 nr = min(right_nritems - 1, max_slot);
3360 
3361         for (i = 0; i < nr; i++) {
3362                 if (!empty && push_items > 0) {
3363                         if (path->slots[0] < i)
3364                                 break;
3365                         if (path->slots[0] == i) {
3366                                 int space = btrfs_leaf_free_space(right);
3367 
3368                                 if (space + push_space * 2 > free_space)
3369                                         break;
3370                         }
3371                 }
3372 
3373                 if (path->slots[0] == i)
3374                         push_space += data_size;
3375 
3376                 this_item_size = btrfs_item_size(right, i);
3377                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3378                     free_space)
3379                         break;
3380 
3381                 push_items++;
3382                 push_space += this_item_size + sizeof(struct btrfs_item);
3383         }
3384 
3385         if (push_items == 0) {
3386                 ret = 1;
3387                 goto out;
3388         }
3389         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3390 
3391         /* push data from right to left */
3392         copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3393 
3394         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3395                      btrfs_item_offset(right, push_items - 1);
3396 
3397         copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3398                        btrfs_item_offset(right, push_items - 1), push_space);
3399         old_left_nritems = btrfs_header_nritems(left);
3400         BUG_ON(old_left_nritems <= 0);
3401 
3402         btrfs_init_map_token(&token, left);
3403         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3404         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3405                 u32 ioff;
3406 
3407                 ioff = btrfs_token_item_offset(&token, i);
3408                 btrfs_set_token_item_offset(&token, i,
3409                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3410         }
3411         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3412 
3413         /* fixup right node */
3414         if (push_items > right_nritems)
3415                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3416                        right_nritems);
3417 
3418         if (push_items < right_nritems) {
3419                 push_space = btrfs_item_offset(right, push_items - 1) -
3420                                                   leaf_data_end(right);
3421                 memmove_leaf_data(right,
3422                                   BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3423                                   leaf_data_end(right), push_space);
3424 
3425                 memmove_leaf_items(right, 0, push_items,
3426                                    btrfs_header_nritems(right) - push_items);
3427         }
3428 
3429         btrfs_init_map_token(&token, right);
3430         right_nritems -= push_items;
3431         btrfs_set_header_nritems(right, right_nritems);
3432         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3433         for (i = 0; i < right_nritems; i++) {
3434                 push_space = push_space - btrfs_token_item_size(&token, i);
3435                 btrfs_set_token_item_offset(&token, i, push_space);
3436         }
3437 
3438         btrfs_mark_buffer_dirty(trans, left);
3439         if (right_nritems)
3440                 btrfs_mark_buffer_dirty(trans, right);
3441         else
3442                 btrfs_clear_buffer_dirty(trans, right);
3443 
3444         btrfs_item_key(right, &disk_key, 0);
3445         fixup_low_keys(trans, path, &disk_key, 1);
3446 
3447         /* then fixup the leaf pointer in the path */
3448         if (path->slots[0] < push_items) {
3449                 path->slots[0] += old_left_nritems;
3450                 btrfs_tree_unlock(path->nodes[0]);
3451                 free_extent_buffer(path->nodes[0]);
3452                 path->nodes[0] = left;
3453                 path->slots[1] -= 1;
3454         } else {
3455                 btrfs_tree_unlock(left);
3456                 free_extent_buffer(left);
3457                 path->slots[0] -= push_items;
3458         }
3459         BUG_ON(path->slots[0] < 0);
3460         return ret;
3461 out:
3462         btrfs_tree_unlock(left);
3463         free_extent_buffer(left);
3464         return ret;
3465 }
3466 
3467 /*
3468  * push some data in the path leaf to the left, trying to free up at
3469  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3470  *
3471  * max_slot can put a limit on how far into the leaf we'll push items.  The
3472  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3473  * items
3474  */
3475 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3476                           *root, struct btrfs_path *path, int min_data_size,
3477                           int data_size, int empty, u32 max_slot)
3478 {
3479         struct extent_buffer *right = path->nodes[0];
3480         struct extent_buffer *left;
3481         int slot;
3482         int free_space;
3483         u32 right_nritems;
3484         int ret = 0;
3485 
3486         slot = path->slots[1];
3487         if (slot == 0)
3488                 return 1;
3489         if (!path->nodes[1])
3490                 return 1;
3491 
3492         right_nritems = btrfs_header_nritems(right);
3493         if (right_nritems == 0)
3494                 return 1;
3495 
3496         btrfs_assert_tree_write_locked(path->nodes[1]);
3497 
3498         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3499         if (IS_ERR(left))
3500                 return PTR_ERR(left);
3501 
3502         btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3503 
3504         free_space = btrfs_leaf_free_space(left);
3505         if (free_space < data_size) {
3506                 ret = 1;
3507                 goto out;
3508         }
3509 
3510         ret = btrfs_cow_block(trans, root, left,
3511                               path->nodes[1], slot - 1, &left,
3512                               BTRFS_NESTING_LEFT_COW);
3513         if (ret) {
3514                 /* we hit -ENOSPC, but it isn't fatal here */
3515                 if (ret == -ENOSPC)
3516                         ret = 1;
3517                 goto out;
3518         }
3519 
3520         if (check_sibling_keys(left, right)) {
3521                 ret = -EUCLEAN;
3522                 btrfs_abort_transaction(trans, ret);
3523                 goto out;
3524         }
3525         return __push_leaf_left(trans, path, min_data_size, empty, left,
3526                                 free_space, right_nritems, max_slot);
3527 out:
3528         btrfs_tree_unlock(left);
3529         free_extent_buffer(left);
3530         return ret;
3531 }
3532 
3533 /*
3534  * split the path's leaf in two, making sure there is at least data_size
3535  * available for the resulting leaf level of the path.
3536  */
3537 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3538                                    struct btrfs_path *path,
3539                                    struct extent_buffer *l,
3540                                    struct extent_buffer *right,
3541                                    int slot, int mid, int nritems)
3542 {
3543         struct btrfs_fs_info *fs_info = trans->fs_info;
3544         int data_copy_size;
3545         int rt_data_off;
3546         int i;
3547         int ret;
3548         struct btrfs_disk_key disk_key;
3549         struct btrfs_map_token token;
3550 
3551         nritems = nritems - mid;
3552         btrfs_set_header_nritems(right, nritems);
3553         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3554 
3555         copy_leaf_items(right, l, 0, mid, nritems);
3556 
3557         copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3558                        leaf_data_end(l), data_copy_size);
3559 
3560         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3561 
3562         btrfs_init_map_token(&token, right);
3563         for (i = 0; i < nritems; i++) {
3564                 u32 ioff;
3565 
3566                 ioff = btrfs_token_item_offset(&token, i);
3567                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3568         }
3569 
3570         btrfs_set_header_nritems(l, mid);
3571         btrfs_item_key(right, &disk_key, 0);
3572         ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3573         if (ret < 0)
3574                 return ret;
3575 
3576         btrfs_mark_buffer_dirty(trans, right);
3577         btrfs_mark_buffer_dirty(trans, l);
3578         BUG_ON(path->slots[0] != slot);
3579 
3580         if (mid <= slot) {
3581                 btrfs_tree_unlock(path->nodes[0]);
3582                 free_extent_buffer(path->nodes[0]);
3583                 path->nodes[0] = right;
3584                 path->slots[0] -= mid;
3585                 path->slots[1] += 1;
3586         } else {
3587                 btrfs_tree_unlock(right);
3588                 free_extent_buffer(right);
3589         }
3590 
3591         BUG_ON(path->slots[0] < 0);
3592 
3593         return 0;
3594 }
3595 
3596 /*
3597  * double splits happen when we need to insert a big item in the middle
3598  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3599  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3600  *          A                 B                 C
3601  *
3602  * We avoid this by trying to push the items on either side of our target
3603  * into the adjacent leaves.  If all goes well we can avoid the double split
3604  * completely.
3605  */
3606 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3607                                           struct btrfs_root *root,
3608                                           struct btrfs_path *path,
3609                                           int data_size)
3610 {
3611         int ret;
3612         int progress = 0;
3613         int slot;
3614         u32 nritems;
3615         int space_needed = data_size;
3616 
3617         slot = path->slots[0];
3618         if (slot < btrfs_header_nritems(path->nodes[0]))
3619                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3620 
3621         /*
3622          * try to push all the items after our slot into the
3623          * right leaf
3624          */
3625         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3626         if (ret < 0)
3627                 return ret;
3628 
3629         if (ret == 0)
3630                 progress++;
3631 
3632         nritems = btrfs_header_nritems(path->nodes[0]);
3633         /*
3634          * our goal is to get our slot at the start or end of a leaf.  If
3635          * we've done so we're done
3636          */
3637         if (path->slots[0] == 0 || path->slots[0] == nritems)
3638                 return 0;
3639 
3640         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3641                 return 0;
3642 
3643         /* try to push all the items before our slot into the next leaf */
3644         slot = path->slots[0];
3645         space_needed = data_size;
3646         if (slot > 0)
3647                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3648         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3649         if (ret < 0)
3650                 return ret;
3651 
3652         if (ret == 0)
3653                 progress++;
3654 
3655         if (progress)
3656                 return 0;
3657         return 1;
3658 }
3659 
3660 /*
3661  * split the path's leaf in two, making sure there is at least data_size
3662  * available for the resulting leaf level of the path.
3663  *
3664  * returns 0 if all went well and < 0 on failure.
3665  */
3666 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3667                                struct btrfs_root *root,
3668                                const struct btrfs_key *ins_key,
3669                                struct btrfs_path *path, int data_size,
3670                                int extend)
3671 {
3672         struct btrfs_disk_key disk_key;
3673         struct extent_buffer *l;
3674         u32 nritems;
3675         int mid;
3676         int slot;
3677         struct extent_buffer *right;
3678         struct btrfs_fs_info *fs_info = root->fs_info;
3679         int ret = 0;
3680         int wret;
3681         int split;
3682         int num_doubles = 0;
3683         int tried_avoid_double = 0;
3684 
3685         l = path->nodes[0];
3686         slot = path->slots[0];
3687         if (extend && data_size + btrfs_item_size(l, slot) +
3688             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3689                 return -EOVERFLOW;
3690 
3691         /* first try to make some room by pushing left and right */
3692         if (data_size && path->nodes[1]) {
3693                 int space_needed = data_size;
3694 
3695                 if (slot < btrfs_header_nritems(l))
3696                         space_needed -= btrfs_leaf_free_space(l);
3697 
3698                 wret = push_leaf_right(trans, root, path, space_needed,
3699                                        space_needed, 0, 0);
3700                 if (wret < 0)
3701                         return wret;
3702                 if (wret) {
3703                         space_needed = data_size;
3704                         if (slot > 0)
3705                                 space_needed -= btrfs_leaf_free_space(l);
3706                         wret = push_leaf_left(trans, root, path, space_needed,
3707                                               space_needed, 0, (u32)-1);
3708                         if (wret < 0)
3709                                 return wret;
3710                 }
3711                 l = path->nodes[0];
3712 
3713                 /* did the pushes work? */
3714                 if (btrfs_leaf_free_space(l) >= data_size)
3715                         return 0;
3716         }
3717 
3718         if (!path->nodes[1]) {
3719                 ret = insert_new_root(trans, root, path, 1);
3720                 if (ret)
3721                         return ret;
3722         }
3723 again:
3724         split = 1;
3725         l = path->nodes[0];
3726         slot = path->slots[0];
3727         nritems = btrfs_header_nritems(l);
3728         mid = (nritems + 1) / 2;
3729 
3730         if (mid <= slot) {
3731                 if (nritems == 1 ||
3732                     leaf_space_used(l, mid, nritems - mid) + data_size >
3733                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3734                         if (slot >= nritems) {
3735                                 split = 0;
3736                         } else {
3737                                 mid = slot;
3738                                 if (mid != nritems &&
3739                                     leaf_space_used(l, mid, nritems - mid) +
3740                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3741                                         if (data_size && !tried_avoid_double)
3742                                                 goto push_for_double;
3743                                         split = 2;
3744                                 }
3745                         }
3746                 }
3747         } else {
3748                 if (leaf_space_used(l, 0, mid) + data_size >
3749                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3750                         if (!extend && data_size && slot == 0) {
3751                                 split = 0;
3752                         } else if ((extend || !data_size) && slot == 0) {
3753                                 mid = 1;
3754                         } else {
3755                                 mid = slot;
3756                                 if (mid != nritems &&
3757                                     leaf_space_used(l, mid, nritems - mid) +
3758                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3759                                         if (data_size && !tried_avoid_double)
3760                                                 goto push_for_double;
3761                                         split = 2;
3762                                 }
3763                         }
3764                 }
3765         }
3766 
3767         if (split == 0)
3768                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3769         else
3770                 btrfs_item_key(l, &disk_key, mid);
3771 
3772         /*
3773          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3774          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3775          * subclasses, which is 8 at the time of this patch, and we've maxed it
3776          * out.  In the future we could add a
3777          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3778          * use BTRFS_NESTING_NEW_ROOT.
3779          */
3780         right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3781                                        &disk_key, 0, l->start, 0, 0,
3782                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3783                                        BTRFS_NESTING_SPLIT);
3784         if (IS_ERR(right))
3785                 return PTR_ERR(right);
3786 
3787         root_add_used_bytes(root);
3788 
3789         if (split == 0) {
3790                 if (mid <= slot) {
3791                         btrfs_set_header_nritems(right, 0);
3792                         ret = insert_ptr(trans, path, &disk_key,
3793                                          right->start, path->slots[1] + 1, 1);
3794                         if (ret < 0) {
3795                                 btrfs_tree_unlock(right);
3796                                 free_extent_buffer(right);
3797                                 return ret;
3798                         }
3799                         btrfs_tree_unlock(path->nodes[0]);
3800                         free_extent_buffer(path->nodes[0]);
3801                         path->nodes[0] = right;
3802                         path->slots[0] = 0;
3803                         path->slots[1] += 1;
3804                 } else {
3805                         btrfs_set_header_nritems(right, 0);
3806                         ret = insert_ptr(trans, path, &disk_key,
3807                                          right->start, path->slots[1], 1);
3808                         if (ret < 0) {
3809                                 btrfs_tree_unlock(right);
3810                                 free_extent_buffer(right);
3811                                 return ret;
3812                         }
3813                         btrfs_tree_unlock(path->nodes[0]);
3814                         free_extent_buffer(path->nodes[0]);
3815                         path->nodes[0] = right;
3816                         path->slots[0] = 0;
3817                         if (path->slots[1] == 0)
3818                                 fixup_low_keys(trans, path, &disk_key, 1);
3819                 }
3820                 /*
3821                  * We create a new leaf 'right' for the required ins_len and
3822                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3823                  * the content of ins_len to 'right'.
3824                  */
3825                 return ret;
3826         }
3827 
3828         ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3829         if (ret < 0) {
3830                 btrfs_tree_unlock(right);
3831                 free_extent_buffer(right);
3832                 return ret;
3833         }
3834 
3835         if (split == 2) {
3836                 BUG_ON(num_doubles != 0);
3837                 num_doubles++;
3838                 goto again;
3839         }
3840 
3841         return 0;
3842 
3843 push_for_double:
3844         push_for_double_split(trans, root, path, data_size);
3845         tried_avoid_double = 1;
3846         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3847                 return 0;
3848         goto again;
3849 }
3850 
3851 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3852                                          struct btrfs_root *root,
3853                                          struct btrfs_path *path, int ins_len)
3854 {
3855         struct btrfs_key key;
3856         struct extent_buffer *leaf;
3857         struct btrfs_file_extent_item *fi;
3858         u64 extent_len = 0;
3859         u32 item_size;
3860         int ret;
3861 
3862         leaf = path->nodes[0];
3863         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864 
3865         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3866                key.type != BTRFS_EXTENT_CSUM_KEY);
3867 
3868         if (btrfs_leaf_free_space(leaf) >= ins_len)
3869                 return 0;
3870 
3871         item_size = btrfs_item_size(leaf, path->slots[0]);
3872         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3873                 fi = btrfs_item_ptr(leaf, path->slots[0],
3874                                     struct btrfs_file_extent_item);
3875                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3876         }
3877         btrfs_release_path(path);
3878 
3879         path->keep_locks = 1;
3880         path->search_for_split = 1;
3881         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3882         path->search_for_split = 0;
3883         if (ret > 0)
3884                 ret = -EAGAIN;
3885         if (ret < 0)
3886                 goto err;
3887 
3888         ret = -EAGAIN;
3889         leaf = path->nodes[0];
3890         /* if our item isn't there, return now */
3891         if (item_size != btrfs_item_size(leaf, path->slots[0]))
3892                 goto err;
3893 
3894         /* the leaf has  changed, it now has room.  return now */
3895         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3896                 goto err;
3897 
3898         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3899                 fi = btrfs_item_ptr(leaf, path->slots[0],
3900                                     struct btrfs_file_extent_item);
3901                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3902                         goto err;
3903         }
3904 
3905         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3906         if (ret)
3907                 goto err;
3908 
3909         path->keep_locks = 0;
3910         btrfs_unlock_up_safe(path, 1);
3911         return 0;
3912 err:
3913         path->keep_locks = 0;
3914         return ret;
3915 }
3916 
3917 static noinline int split_item(struct btrfs_trans_handle *trans,
3918                                struct btrfs_path *path,
3919                                const struct btrfs_key *new_key,
3920                                unsigned long split_offset)
3921 {
3922         struct extent_buffer *leaf;
3923         int orig_slot, slot;
3924         char *buf;
3925         u32 nritems;
3926         u32 item_size;
3927         u32 orig_offset;
3928         struct btrfs_disk_key disk_key;
3929 
3930         leaf = path->nodes[0];
3931         /*
3932          * Shouldn't happen because the caller must have previously called
3933          * setup_leaf_for_split() to make room for the new item in the leaf.
3934          */
3935         if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3936                 return -ENOSPC;
3937 
3938         orig_slot = path->slots[0];
3939         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3940         item_size = btrfs_item_size(leaf, path->slots[0]);
3941 
3942         buf = kmalloc(item_size, GFP_NOFS);
3943         if (!buf)
3944                 return -ENOMEM;
3945 
3946         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3947                             path->slots[0]), item_size);
3948 
3949         slot = path->slots[0] + 1;
3950         nritems = btrfs_header_nritems(leaf);
3951         if (slot != nritems) {
3952                 /* shift the items */
3953                 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3954         }
3955 
3956         btrfs_cpu_key_to_disk(&disk_key, new_key);
3957         btrfs_set_item_key(leaf, &disk_key, slot);
3958 
3959         btrfs_set_item_offset(leaf, slot, orig_offset);
3960         btrfs_set_item_size(leaf, slot, item_size - split_offset);
3961 
3962         btrfs_set_item_offset(leaf, orig_slot,
3963                                  orig_offset + item_size - split_offset);
3964         btrfs_set_item_size(leaf, orig_slot, split_offset);
3965 
3966         btrfs_set_header_nritems(leaf, nritems + 1);
3967 
3968         /* write the data for the start of the original item */
3969         write_extent_buffer(leaf, buf,
3970                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3971                             split_offset);
3972 
3973         /* write the data for the new item */
3974         write_extent_buffer(leaf, buf + split_offset,
3975                             btrfs_item_ptr_offset(leaf, slot),
3976                             item_size - split_offset);
3977         btrfs_mark_buffer_dirty(trans, leaf);
3978 
3979         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3980         kfree(buf);
3981         return 0;
3982 }
3983 
3984 /*
3985  * This function splits a single item into two items,
3986  * giving 'new_key' to the new item and splitting the
3987  * old one at split_offset (from the start of the item).
3988  *
3989  * The path may be released by this operation.  After
3990  * the split, the path is pointing to the old item.  The
3991  * new item is going to be in the same node as the old one.
3992  *
3993  * Note, the item being split must be smaller enough to live alone on
3994  * a tree block with room for one extra struct btrfs_item
3995  *
3996  * This allows us to split the item in place, keeping a lock on the
3997  * leaf the entire time.
3998  */
3999 int btrfs_split_item(struct btrfs_trans_handle *trans,
4000                      struct btrfs_root *root,
4001                      struct btrfs_path *path,
4002                      const struct btrfs_key *new_key,
4003                      unsigned long split_offset)
4004 {
4005         int ret;
4006         ret = setup_leaf_for_split(trans, root, path,
4007                                    sizeof(struct btrfs_item));
4008         if (ret)
4009                 return ret;
4010 
4011         ret = split_item(trans, path, new_key, split_offset);
4012         return ret;
4013 }
4014 
4015 /*
4016  * make the item pointed to by the path smaller.  new_size indicates
4017  * how small to make it, and from_end tells us if we just chop bytes
4018  * off the end of the item or if we shift the item to chop bytes off
4019  * the front.
4020  */
4021 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4022                          struct btrfs_path *path, u32 new_size, int from_end)
4023 {
4024         int slot;
4025         struct extent_buffer *leaf;
4026         u32 nritems;
4027         unsigned int data_end;
4028         unsigned int old_data_start;
4029         unsigned int old_size;
4030         unsigned int size_diff;
4031         int i;
4032         struct btrfs_map_token token;
4033 
4034         leaf = path->nodes[0];
4035         slot = path->slots[0];
4036 
4037         old_size = btrfs_item_size(leaf, slot);
4038         if (old_size == new_size)
4039                 return;
4040 
4041         nritems = btrfs_header_nritems(leaf);
4042         data_end = leaf_data_end(leaf);
4043 
4044         old_data_start = btrfs_item_offset(leaf, slot);
4045 
4046         size_diff = old_size - new_size;
4047 
4048         BUG_ON(slot < 0);
4049         BUG_ON(slot >= nritems);
4050 
4051         /*
4052          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4053          */
4054         /* first correct the data pointers */
4055         btrfs_init_map_token(&token, leaf);
4056         for (i = slot; i < nritems; i++) {
4057                 u32 ioff;
4058 
4059                 ioff = btrfs_token_item_offset(&token, i);
4060                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4061         }
4062 
4063         /* shift the data */
4064         if (from_end) {
4065                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4066                                   old_data_start + new_size - data_end);
4067         } else {
4068                 struct btrfs_disk_key disk_key;
4069                 u64 offset;
4070 
4071                 btrfs_item_key(leaf, &disk_key, slot);
4072 
4073                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4074                         unsigned long ptr;
4075                         struct btrfs_file_extent_item *fi;
4076 
4077                         fi = btrfs_item_ptr(leaf, slot,
4078                                             struct btrfs_file_extent_item);
4079                         fi = (struct btrfs_file_extent_item *)(
4080                              (unsigned long)fi - size_diff);
4081 
4082                         if (btrfs_file_extent_type(leaf, fi) ==
4083                             BTRFS_FILE_EXTENT_INLINE) {
4084                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4085                                 memmove_extent_buffer(leaf, ptr,
4086                                       (unsigned long)fi,
4087                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4088                         }
4089                 }
4090 
4091                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4092                                   old_data_start - data_end);
4093 
4094                 offset = btrfs_disk_key_offset(&disk_key);
4095                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4096                 btrfs_set_item_key(leaf, &disk_key, slot);
4097                 if (slot == 0)
4098                         fixup_low_keys(trans, path, &disk_key, 1);
4099         }
4100 
4101         btrfs_set_item_size(leaf, slot, new_size);
4102         btrfs_mark_buffer_dirty(trans, leaf);
4103 
4104         if (btrfs_leaf_free_space(leaf) < 0) {
4105                 btrfs_print_leaf(leaf);
4106                 BUG();
4107         }
4108 }
4109 
4110 /*
4111  * make the item pointed to by the path bigger, data_size is the added size.
4112  */
4113 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4114                        struct btrfs_path *path, u32 data_size)
4115 {
4116         int slot;
4117         struct extent_buffer *leaf;
4118         u32 nritems;
4119         unsigned int data_end;
4120         unsigned int old_data;
4121         unsigned int old_size;
4122         int i;
4123         struct btrfs_map_token token;
4124 
4125         leaf = path->nodes[0];
4126 
4127         nritems = btrfs_header_nritems(leaf);
4128         data_end = leaf_data_end(leaf);
4129 
4130         if (btrfs_leaf_free_space(leaf) < data_size) {
4131                 btrfs_print_leaf(leaf);
4132                 BUG();
4133         }
4134         slot = path->slots[0];
4135         old_data = btrfs_item_data_end(leaf, slot);
4136 
4137         BUG_ON(slot < 0);
4138         if (slot >= nritems) {
4139                 btrfs_print_leaf(leaf);
4140                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4141                            slot, nritems);
4142                 BUG();
4143         }
4144 
4145         /*
4146          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4147          */
4148         /* first correct the data pointers */
4149         btrfs_init_map_token(&token, leaf);
4150         for (i = slot; i < nritems; i++) {
4151                 u32 ioff;
4152 
4153                 ioff = btrfs_token_item_offset(&token, i);
4154                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4155         }
4156 
4157         /* shift the data */
4158         memmove_leaf_data(leaf, data_end - data_size, data_end,
4159                           old_data - data_end);
4160 
4161         data_end = old_data;
4162         old_size = btrfs_item_size(leaf, slot);
4163         btrfs_set_item_size(leaf, slot, old_size + data_size);
4164         btrfs_mark_buffer_dirty(trans, leaf);
4165 
4166         if (btrfs_leaf_free_space(leaf) < 0) {
4167                 btrfs_print_leaf(leaf);
4168                 BUG();
4169         }
4170 }
4171 
4172 /*
4173  * Make space in the node before inserting one or more items.
4174  *
4175  * @trans:      transaction handle
4176  * @root:       root we are inserting items to
4177  * @path:       points to the leaf/slot where we are going to insert new items
4178  * @batch:      information about the batch of items to insert
4179  *
4180  * Main purpose is to save stack depth by doing the bulk of the work in a
4181  * function that doesn't call btrfs_search_slot
4182  */
4183 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4184                                    struct btrfs_root *root, struct btrfs_path *path,
4185                                    const struct btrfs_item_batch *batch)
4186 {
4187         struct btrfs_fs_info *fs_info = root->fs_info;
4188         int i;
4189         u32 nritems;
4190         unsigned int data_end;
4191         struct btrfs_disk_key disk_key;
4192         struct extent_buffer *leaf;
4193         int slot;
4194         struct btrfs_map_token token;
4195         u32 total_size;
4196 
4197         /*
4198          * Before anything else, update keys in the parent and other ancestors
4199          * if needed, then release the write locks on them, so that other tasks
4200          * can use them while we modify the leaf.
4201          */
4202         if (path->slots[0] == 0) {
4203                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4204                 fixup_low_keys(trans, path, &disk_key, 1);
4205         }
4206         btrfs_unlock_up_safe(path, 1);
4207 
4208         leaf = path->nodes[0];
4209         slot = path->slots[0];
4210 
4211         nritems = btrfs_header_nritems(leaf);
4212         data_end = leaf_data_end(leaf);
4213         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4214 
4215         if (btrfs_leaf_free_space(leaf) < total_size) {
4216                 btrfs_print_leaf(leaf);
4217                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4218                            total_size, btrfs_leaf_free_space(leaf));
4219                 BUG();
4220         }
4221 
4222         btrfs_init_map_token(&token, leaf);
4223         if (slot != nritems) {
4224                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4225 
4226                 if (old_data < data_end) {
4227                         btrfs_print_leaf(leaf);
4228                         btrfs_crit(fs_info,
4229                 "item at slot %d with data offset %u beyond data end of leaf %u",
4230                                    slot, old_data, data_end);
4231                         BUG();
4232                 }
4233                 /*
4234                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4235                  */
4236                 /* first correct the data pointers */
4237                 for (i = slot; i < nritems; i++) {
4238                         u32 ioff;
4239 
4240                         ioff = btrfs_token_item_offset(&token, i);
4241                         btrfs_set_token_item_offset(&token, i,
4242                                                        ioff - batch->total_data_size);
4243                 }
4244                 /* shift the items */
4245                 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4246 
4247                 /* shift the data */
4248                 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4249                                   data_end, old_data - data_end);
4250                 data_end = old_data;
4251         }
4252 
4253         /* setup the item for the new data */
4254         for (i = 0; i < batch->nr; i++) {
4255                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4256                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4257                 data_end -= batch->data_sizes[i];
4258                 btrfs_set_token_item_offset(&token, slot + i, data_end);
4259                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4260         }
4261 
4262         btrfs_set_header_nritems(leaf, nritems + batch->nr);
4263         btrfs_mark_buffer_dirty(trans, leaf);
4264 
4265         if (btrfs_leaf_free_space(leaf) < 0) {
4266                 btrfs_print_leaf(leaf);
4267                 BUG();
4268         }
4269 }
4270 
4271 /*
4272  * Insert a new item into a leaf.
4273  *
4274  * @trans:     Transaction handle.
4275  * @root:      The root of the btree.
4276  * @path:      A path pointing to the target leaf and slot.
4277  * @key:       The key of the new item.
4278  * @data_size: The size of the data associated with the new key.
4279  */
4280 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4281                                  struct btrfs_root *root,
4282                                  struct btrfs_path *path,
4283                                  const struct btrfs_key *key,
4284                                  u32 data_size)
4285 {
4286         struct btrfs_item_batch batch;
4287 
4288         batch.keys = key;
4289         batch.data_sizes = &data_size;
4290         batch.total_data_size = data_size;
4291         batch.nr = 1;
4292 
4293         setup_items_for_insert(trans, root, path, &batch);
4294 }
4295 
4296 /*
4297  * Given a key and some data, insert items into the tree.
4298  * This does all the path init required, making room in the tree if needed.
4299  *
4300  * Returns: 0        on success
4301  *          -EEXIST  if the first key already exists
4302  *          < 0      on other errors
4303  */
4304 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4305                             struct btrfs_root *root,
4306                             struct btrfs_path *path,
4307                             const struct btrfs_item_batch *batch)
4308 {
4309         int ret = 0;
4310         int slot;
4311         u32 total_size;
4312 
4313         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4314         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4315         if (ret == 0)
4316                 return -EEXIST;
4317         if (ret < 0)
4318                 return ret;
4319 
4320         slot = path->slots[0];
4321         BUG_ON(slot < 0);
4322 
4323         setup_items_for_insert(trans, root, path, batch);
4324         return 0;
4325 }
4326 
4327 /*
4328  * Given a key and some data, insert an item into the tree.
4329  * This does all the path init required, making room in the tree if needed.
4330  */
4331 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4332                       const struct btrfs_key *cpu_key, void *data,
4333                       u32 data_size)
4334 {
4335         int ret = 0;
4336         struct btrfs_path *path;
4337         struct extent_buffer *leaf;
4338         unsigned long ptr;
4339 
4340         path = btrfs_alloc_path();
4341         if (!path)
4342                 return -ENOMEM;
4343         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4344         if (!ret) {
4345                 leaf = path->nodes[0];
4346                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4347                 write_extent_buffer(leaf, data, ptr, data_size);
4348                 btrfs_mark_buffer_dirty(trans, leaf);
4349         }
4350         btrfs_free_path(path);
4351         return ret;
4352 }
4353 
4354 /*
4355  * This function duplicates an item, giving 'new_key' to the new item.
4356  * It guarantees both items live in the same tree leaf and the new item is
4357  * contiguous with the original item.
4358  *
4359  * This allows us to split a file extent in place, keeping a lock on the leaf
4360  * the entire time.
4361  */
4362 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4363                          struct btrfs_root *root,
4364                          struct btrfs_path *path,
4365                          const struct btrfs_key *new_key)
4366 {
4367         struct extent_buffer *leaf;
4368         int ret;
4369         u32 item_size;
4370 
4371         leaf = path->nodes[0];
4372         item_size = btrfs_item_size(leaf, path->slots[0]);
4373         ret = setup_leaf_for_split(trans, root, path,
4374                                    item_size + sizeof(struct btrfs_item));
4375         if (ret)
4376                 return ret;
4377 
4378         path->slots[0]++;
4379         btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4380         leaf = path->nodes[0];
4381         memcpy_extent_buffer(leaf,
4382                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4383                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4384                              item_size);
4385         return 0;
4386 }
4387 
4388 /*
4389  * delete the pointer from a given node.
4390  *
4391  * the tree should have been previously balanced so the deletion does not
4392  * empty a node.
4393  *
4394  * This is exported for use inside btrfs-progs, don't un-export it.
4395  */
4396 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4397                   struct btrfs_path *path, int level, int slot)
4398 {
4399         struct extent_buffer *parent = path->nodes[level];
4400         u32 nritems;
4401         int ret;
4402 
4403         nritems = btrfs_header_nritems(parent);
4404         if (slot != nritems - 1) {
4405                 if (level) {
4406                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4407                                         slot + 1, nritems - slot - 1);
4408                         if (ret < 0) {
4409                                 btrfs_abort_transaction(trans, ret);
4410                                 return ret;
4411                         }
4412                 }
4413                 memmove_extent_buffer(parent,
4414                               btrfs_node_key_ptr_offset(parent, slot),
4415                               btrfs_node_key_ptr_offset(parent, slot + 1),
4416                               sizeof(struct btrfs_key_ptr) *
4417                               (nritems - slot - 1));
4418         } else if (level) {
4419                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4420                                                     BTRFS_MOD_LOG_KEY_REMOVE);
4421                 if (ret < 0) {
4422                         btrfs_abort_transaction(trans, ret);
4423                         return ret;
4424                 }
4425         }
4426 
4427         nritems--;
4428         btrfs_set_header_nritems(parent, nritems);
4429         if (nritems == 0 && parent == root->node) {
4430                 BUG_ON(btrfs_header_level(root->node) != 1);
4431                 /* just turn the root into a leaf and break */
4432                 btrfs_set_header_level(root->node, 0);
4433         } else if (slot == 0) {
4434                 struct btrfs_disk_key disk_key;
4435 
4436                 btrfs_node_key(parent, &disk_key, 0);
4437                 fixup_low_keys(trans, path, &disk_key, level + 1);
4438         }
4439         btrfs_mark_buffer_dirty(trans, parent);
4440         return 0;
4441 }
4442 
4443 /*
4444  * a helper function to delete the leaf pointed to by path->slots[1] and
4445  * path->nodes[1].
4446  *
4447  * This deletes the pointer in path->nodes[1] and frees the leaf
4448  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4449  *
4450  * The path must have already been setup for deleting the leaf, including
4451  * all the proper balancing.  path->nodes[1] must be locked.
4452  */
4453 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4454                                    struct btrfs_root *root,
4455                                    struct btrfs_path *path,
4456                                    struct extent_buffer *leaf)
4457 {
4458         int ret;
4459 
4460         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4461         ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4462         if (ret < 0)
4463                 return ret;
4464 
4465         /*
4466          * btrfs_free_extent is expensive, we want to make sure we
4467          * aren't holding any locks when we call it
4468          */
4469         btrfs_unlock_up_safe(path, 0);
4470 
4471         root_sub_used_bytes(root);
4472 
4473         atomic_inc(&leaf->refs);
4474         ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4475         free_extent_buffer_stale(leaf);
4476         if (ret < 0)
4477                 btrfs_abort_transaction(trans, ret);
4478 
4479         return ret;
4480 }
4481 /*
4482  * delete the item at the leaf level in path.  If that empties
4483  * the leaf, remove it from the tree
4484  */
4485 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4486                     struct btrfs_path *path, int slot, int nr)
4487 {
4488         struct btrfs_fs_info *fs_info = root->fs_info;
4489         struct extent_buffer *leaf;
4490         int ret = 0;
4491         int wret;
4492         u32 nritems;
4493 
4494         leaf = path->nodes[0];
4495         nritems = btrfs_header_nritems(leaf);
4496 
4497         if (slot + nr != nritems) {
4498                 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4499                 const int data_end = leaf_data_end(leaf);
4500                 struct btrfs_map_token token;
4501                 u32 dsize = 0;
4502                 int i;
4503 
4504                 for (i = 0; i < nr; i++)
4505                         dsize += btrfs_item_size(leaf, slot + i);
4506 
4507                 memmove_leaf_data(leaf, data_end + dsize, data_end,
4508                                   last_off - data_end);
4509 
4510                 btrfs_init_map_token(&token, leaf);
4511                 for (i = slot + nr; i < nritems; i++) {
4512                         u32 ioff;
4513 
4514                         ioff = btrfs_token_item_offset(&token, i);
4515                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4516                 }
4517 
4518                 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4519         }
4520         btrfs_set_header_nritems(leaf, nritems - nr);
4521         nritems -= nr;
4522 
4523         /* delete the leaf if we've emptied it */
4524         if (nritems == 0) {
4525                 if (leaf == root->node) {
4526                         btrfs_set_header_level(leaf, 0);
4527                 } else {
4528                         btrfs_clear_buffer_dirty(trans, leaf);
4529                         ret = btrfs_del_leaf(trans, root, path, leaf);
4530                         if (ret < 0)
4531                                 return ret;
4532                 }
4533         } else {
4534                 int used = leaf_space_used(leaf, 0, nritems);
4535                 if (slot == 0) {
4536                         struct btrfs_disk_key disk_key;
4537 
4538                         btrfs_item_key(leaf, &disk_key, 0);
4539                         fixup_low_keys(trans, path, &disk_key, 1);
4540                 }
4541 
4542                 /*
4543                  * Try to delete the leaf if it is mostly empty. We do this by
4544                  * trying to move all its items into its left and right neighbours.
4545                  * If we can't move all the items, then we don't delete it - it's
4546                  * not ideal, but future insertions might fill the leaf with more
4547                  * items, or items from other leaves might be moved later into our
4548                  * leaf due to deletions on those leaves.
4549                  */
4550                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4551                         u32 min_push_space;
4552 
4553                         /* push_leaf_left fixes the path.
4554                          * make sure the path still points to our leaf
4555                          * for possible call to btrfs_del_ptr below
4556                          */
4557                         slot = path->slots[1];
4558                         atomic_inc(&leaf->refs);
4559                         /*
4560                          * We want to be able to at least push one item to the
4561                          * left neighbour leaf, and that's the first item.
4562                          */
4563                         min_push_space = sizeof(struct btrfs_item) +
4564                                 btrfs_item_size(leaf, 0);
4565                         wret = push_leaf_left(trans, root, path, 0,
4566                                               min_push_space, 1, (u32)-1);
4567                         if (wret < 0 && wret != -ENOSPC)
4568                                 ret = wret;
4569 
4570                         if (path->nodes[0] == leaf &&
4571                             btrfs_header_nritems(leaf)) {
4572                                 /*
4573                                  * If we were not able to push all items from our
4574                                  * leaf to its left neighbour, then attempt to
4575                                  * either push all the remaining items to the
4576                                  * right neighbour or none. There's no advantage
4577                                  * in pushing only some items, instead of all, as
4578                                  * it's pointless to end up with a leaf having
4579                                  * too few items while the neighbours can be full
4580                                  * or nearly full.
4581                                  */
4582                                 nritems = btrfs_header_nritems(leaf);
4583                                 min_push_space = leaf_space_used(leaf, 0, nritems);
4584                                 wret = push_leaf_right(trans, root, path, 0,
4585                                                        min_push_space, 1, 0);
4586                                 if (wret < 0 && wret != -ENOSPC)
4587                                         ret = wret;
4588                         }
4589 
4590                         if (btrfs_header_nritems(leaf) == 0) {
4591                                 path->slots[1] = slot;
4592                                 ret = btrfs_del_leaf(trans, root, path, leaf);
4593                                 if (ret < 0)
4594                                         return ret;
4595                                 free_extent_buffer(leaf);
4596                                 ret = 0;
4597                         } else {
4598                                 /* if we're still in the path, make sure
4599                                  * we're dirty.  Otherwise, one of the
4600                                  * push_leaf functions must have already
4601                                  * dirtied this buffer
4602                                  */
4603                                 if (path->nodes[0] == leaf)
4604                                         btrfs_mark_buffer_dirty(trans, leaf);
4605                                 free_extent_buffer(leaf);
4606                         }
4607                 } else {
4608                         btrfs_mark_buffer_dirty(trans, leaf);
4609                 }
4610         }
4611         return ret;
4612 }
4613 
4614 /*
4615  * A helper function to walk down the tree starting at min_key, and looking
4616  * for nodes or leaves that are have a minimum transaction id.
4617  * This is used by the btree defrag code, and tree logging
4618  *
4619  * This does not cow, but it does stuff the starting key it finds back
4620  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4621  * key and get a writable path.
4622  *
4623  * This honors path->lowest_level to prevent descent past a given level
4624  * of the tree.
4625  *
4626  * min_trans indicates the oldest transaction that you are interested
4627  * in walking through.  Any nodes or leaves older than min_trans are
4628  * skipped over (without reading them).
4629  *
4630  * returns zero if something useful was found, < 0 on error and 1 if there
4631  * was nothing in the tree that matched the search criteria.
4632  */
4633 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4634                          struct btrfs_path *path,
4635                          u64 min_trans)
4636 {
4637         struct extent_buffer *cur;
4638         struct btrfs_key found_key;
4639         int slot;
4640         int sret;
4641         u32 nritems;
4642         int level;
4643         int ret = 1;
4644         int keep_locks = path->keep_locks;
4645 
4646         ASSERT(!path->nowait);
4647         path->keep_locks = 1;
4648 again:
4649         cur = btrfs_read_lock_root_node(root);
4650         level = btrfs_header_level(cur);
4651         WARN_ON(path->nodes[level]);
4652         path->nodes[level] = cur;
4653         path->locks[level] = BTRFS_READ_LOCK;
4654 
4655         if (btrfs_header_generation(cur) < min_trans) {
4656                 ret = 1;
4657                 goto out;
4658         }
4659         while (1) {
4660                 nritems = btrfs_header_nritems(cur);
4661                 level = btrfs_header_level(cur);
4662                 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4663                 if (sret < 0) {
4664                         ret = sret;
4665                         goto out;
4666                 }
4667 
4668                 /* at the lowest level, we're done, setup the path and exit */
4669                 if (level == path->lowest_level) {
4670                         if (slot >= nritems)
4671                                 goto find_next_key;
4672                         ret = 0;
4673                         path->slots[level] = slot;
4674                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4675                         goto out;
4676                 }
4677                 if (sret && slot > 0)
4678                         slot--;
4679                 /*
4680                  * check this node pointer against the min_trans parameters.
4681                  * If it is too old, skip to the next one.
4682                  */
4683                 while (slot < nritems) {
4684                         u64 gen;
4685 
4686                         gen = btrfs_node_ptr_generation(cur, slot);
4687                         if (gen < min_trans) {
4688                                 slot++;
4689                                 continue;
4690                         }
4691                         break;
4692                 }
4693 find_next_key:
4694                 /*
4695                  * we didn't find a candidate key in this node, walk forward
4696                  * and find another one
4697                  */
4698                 if (slot >= nritems) {
4699                         path->slots[level] = slot;
4700                         sret = btrfs_find_next_key(root, path, min_key, level,
4701                                                   min_trans);
4702                         if (sret == 0) {
4703                                 btrfs_release_path(path);
4704                                 goto again;
4705                         } else {
4706                                 goto out;
4707                         }
4708                 }
4709                 /* save our key for returning back */
4710                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4711                 path->slots[level] = slot;
4712                 if (level == path->lowest_level) {
4713                         ret = 0;
4714                         goto out;
4715                 }
4716                 cur = btrfs_read_node_slot(cur, slot);
4717                 if (IS_ERR(cur)) {
4718                         ret = PTR_ERR(cur);
4719                         goto out;
4720                 }
4721 
4722                 btrfs_tree_read_lock(cur);
4723 
4724                 path->locks[level - 1] = BTRFS_READ_LOCK;
4725                 path->nodes[level - 1] = cur;
4726                 unlock_up(path, level, 1, 0, NULL);
4727         }
4728 out:
4729         path->keep_locks = keep_locks;
4730         if (ret == 0) {
4731                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4732                 memcpy(min_key, &found_key, sizeof(found_key));
4733         }
4734         return ret;
4735 }
4736 
4737 /*
4738  * this is similar to btrfs_next_leaf, but does not try to preserve
4739  * and fixup the path.  It looks for and returns the next key in the
4740  * tree based on the current path and the min_trans parameters.
4741  *
4742  * 0 is returned if another key is found, < 0 if there are any errors
4743  * and 1 is returned if there are no higher keys in the tree
4744  *
4745  * path->keep_locks should be set to 1 on the search made before
4746  * calling this function.
4747  */
4748 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4749                         struct btrfs_key *key, int level, u64 min_trans)
4750 {
4751         int slot;
4752         struct extent_buffer *c;
4753 
4754         WARN_ON(!path->keep_locks && !path->skip_locking);
4755         while (level < BTRFS_MAX_LEVEL) {
4756                 if (!path->nodes[level])
4757                         return 1;
4758 
4759                 slot = path->slots[level] + 1;
4760                 c = path->nodes[level];
4761 next:
4762                 if (slot >= btrfs_header_nritems(c)) {
4763                         int ret;
4764                         int orig_lowest;
4765                         struct btrfs_key cur_key;
4766                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4767                             !path->nodes[level + 1])
4768                                 return 1;
4769 
4770                         if (path->locks[level + 1] || path->skip_locking) {
4771                                 level++;
4772                                 continue;
4773                         }
4774 
4775                         slot = btrfs_header_nritems(c) - 1;
4776                         if (level == 0)
4777                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4778                         else
4779                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4780 
4781                         orig_lowest = path->lowest_level;
4782                         btrfs_release_path(path);
4783                         path->lowest_level = level;
4784                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4785                                                 0, 0);
4786                         path->lowest_level = orig_lowest;
4787                         if (ret < 0)
4788                                 return ret;
4789 
4790                         c = path->nodes[level];
4791                         slot = path->slots[level];
4792                         if (ret == 0)
4793                                 slot++;
4794                         goto next;
4795                 }
4796 
4797                 if (level == 0)
4798                         btrfs_item_key_to_cpu(c, key, slot);
4799                 else {
4800                         u64 gen = btrfs_node_ptr_generation(c, slot);
4801 
4802                         if (gen < min_trans) {
4803                                 slot++;
4804                                 goto next;
4805                         }
4806                         btrfs_node_key_to_cpu(c, key, slot);
4807                 }
4808                 return 0;
4809         }
4810         return 1;
4811 }
4812 
4813 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4814                         u64 time_seq)
4815 {
4816         int slot;
4817         int level;
4818         struct extent_buffer *c;
4819         struct extent_buffer *next;
4820         struct btrfs_fs_info *fs_info = root->fs_info;
4821         struct btrfs_key key;
4822         bool need_commit_sem = false;
4823         u32 nritems;
4824         int ret;
4825         int i;
4826 
4827         /*
4828          * The nowait semantics are used only for write paths, where we don't
4829          * use the tree mod log and sequence numbers.
4830          */
4831         if (time_seq)
4832                 ASSERT(!path->nowait);
4833 
4834         nritems = btrfs_header_nritems(path->nodes[0]);
4835         if (nritems == 0)
4836                 return 1;
4837 
4838         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4839 again:
4840         level = 1;
4841         next = NULL;
4842         btrfs_release_path(path);
4843 
4844         path->keep_locks = 1;
4845 
4846         if (time_seq) {
4847                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4848         } else {
4849                 if (path->need_commit_sem) {
4850                         path->need_commit_sem = 0;
4851                         need_commit_sem = true;
4852                         if (path->nowait) {
4853                                 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4854                                         ret = -EAGAIN;
4855                                         goto done;
4856                                 }
4857                         } else {
4858                                 down_read(&fs_info->commit_root_sem);
4859                         }
4860                 }
4861                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4862         }
4863         path->keep_locks = 0;
4864 
4865         if (ret < 0)
4866                 goto done;
4867 
4868         nritems = btrfs_header_nritems(path->nodes[0]);
4869         /*
4870          * by releasing the path above we dropped all our locks.  A balance
4871          * could have added more items next to the key that used to be
4872          * at the very end of the block.  So, check again here and
4873          * advance the path if there are now more items available.
4874          */
4875         if (nritems > 0 && path->slots[0] < nritems - 1) {
4876                 if (ret == 0)
4877                         path->slots[0]++;
4878                 ret = 0;
4879                 goto done;
4880         }
4881         /*
4882          * So the above check misses one case:
4883          * - after releasing the path above, someone has removed the item that
4884          *   used to be at the very end of the block, and balance between leafs
4885          *   gets another one with bigger key.offset to replace it.
4886          *
4887          * This one should be returned as well, or we can get leaf corruption
4888          * later(esp. in __btrfs_drop_extents()).
4889          *
4890          * And a bit more explanation about this check,
4891          * with ret > 0, the key isn't found, the path points to the slot
4892          * where it should be inserted, so the path->slots[0] item must be the
4893          * bigger one.
4894          */
4895         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4896                 ret = 0;
4897                 goto done;
4898         }
4899 
4900         while (level < BTRFS_MAX_LEVEL) {
4901                 if (!path->nodes[level]) {
4902                         ret = 1;
4903                         goto done;
4904                 }
4905 
4906                 slot = path->slots[level] + 1;
4907                 c = path->nodes[level];
4908                 if (slot >= btrfs_header_nritems(c)) {
4909                         level++;
4910                         if (level == BTRFS_MAX_LEVEL) {
4911                                 ret = 1;
4912                                 goto done;
4913                         }
4914                         continue;
4915                 }
4916 
4917 
4918                 /*
4919                  * Our current level is where we're going to start from, and to
4920                  * make sure lockdep doesn't complain we need to drop our locks
4921                  * and nodes from 0 to our current level.
4922                  */
4923                 for (i = 0; i < level; i++) {
4924                         if (path->locks[level]) {
4925                                 btrfs_tree_read_unlock(path->nodes[i]);
4926                                 path->locks[i] = 0;
4927                         }
4928                         free_extent_buffer(path->nodes[i]);
4929                         path->nodes[i] = NULL;
4930                 }
4931 
4932                 next = c;
4933                 ret = read_block_for_search(root, path, &next, level,
4934                                             slot, &key);
4935                 if (ret == -EAGAIN && !path->nowait)
4936                         goto again;
4937 
4938                 if (ret < 0) {
4939                         btrfs_release_path(path);
4940                         goto done;
4941                 }
4942 
4943                 if (!path->skip_locking) {
4944                         ret = btrfs_try_tree_read_lock(next);
4945                         if (!ret && path->nowait) {
4946                                 ret = -EAGAIN;
4947                                 goto done;
4948                         }
4949                         if (!ret && time_seq) {
4950                                 /*
4951                                  * If we don't get the lock, we may be racing
4952                                  * with push_leaf_left, holding that lock while
4953                                  * itself waiting for the leaf we've currently
4954                                  * locked. To solve this situation, we give up
4955                                  * on our lock and cycle.
4956                                  */
4957                                 free_extent_buffer(next);
4958                                 btrfs_release_path(path);
4959                                 cond_resched();
4960                                 goto again;
4961                         }
4962                         if (!ret)
4963                                 btrfs_tree_read_lock(next);
4964                 }
4965                 break;
4966         }
4967         path->slots[level] = slot;
4968         while (1) {
4969                 level--;
4970                 path->nodes[level] = next;
4971                 path->slots[level] = 0;
4972                 if (!path->skip_locking)
4973                         path->locks[level] = BTRFS_READ_LOCK;
4974                 if (!level)
4975                         break;
4976 
4977                 ret = read_block_for_search(root, path, &next, level,
4978                                             0, &key);
4979                 if (ret == -EAGAIN && !path->nowait)
4980                         goto again;
4981 
4982                 if (ret < 0) {
4983                         btrfs_release_path(path);
4984                         goto done;
4985                 }
4986 
4987                 if (!path->skip_locking) {
4988                         if (path->nowait) {
4989                                 if (!btrfs_try_tree_read_lock(next)) {
4990                                         ret = -EAGAIN;
4991                                         goto done;
4992                                 }
4993                         } else {
4994                                 btrfs_tree_read_lock(next);
4995                         }
4996                 }
4997         }
4998         ret = 0;
4999 done:
5000         unlock_up(path, 0, 1, 0, NULL);
5001         if (need_commit_sem) {
5002                 int ret2;
5003 
5004                 path->need_commit_sem = 1;
5005                 ret2 = finish_need_commit_sem_search(path);
5006                 up_read(&fs_info->commit_root_sem);
5007                 if (ret2)
5008                         ret = ret2;
5009         }
5010 
5011         return ret;
5012 }
5013 
5014 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5015 {
5016         path->slots[0]++;
5017         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5018                 return btrfs_next_old_leaf(root, path, time_seq);
5019         return 0;
5020 }
5021 
5022 /*
5023  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5024  * searching until it gets past min_objectid or finds an item of 'type'
5025  *
5026  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5027  */
5028 int btrfs_previous_item(struct btrfs_root *root,
5029                         struct btrfs_path *path, u64 min_objectid,
5030                         int type)
5031 {
5032         struct btrfs_key found_key;
5033         struct extent_buffer *leaf;
5034         u32 nritems;
5035         int ret;
5036 
5037         while (1) {
5038                 if (path->slots[0] == 0) {
5039                         ret = btrfs_prev_leaf(root, path);
5040                         if (ret != 0)
5041                                 return ret;
5042                 } else {
5043                         path->slots[0]--;
5044                 }
5045                 leaf = path->nodes[0];
5046                 nritems = btrfs_header_nritems(leaf);
5047                 if (nritems == 0)
5048                         return 1;
5049                 if (path->slots[0] == nritems)
5050                         path->slots[0]--;
5051 
5052                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5053                 if (found_key.objectid < min_objectid)
5054                         break;
5055                 if (found_key.type == type)
5056                         return 0;
5057                 if (found_key.objectid == min_objectid &&
5058                     found_key.type < type)
5059                         break;
5060         }
5061         return 1;
5062 }
5063 
5064 /*
5065  * search in extent tree to find a previous Metadata/Data extent item with
5066  * min objecitd.
5067  *
5068  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5069  */
5070 int btrfs_previous_extent_item(struct btrfs_root *root,
5071                         struct btrfs_path *path, u64 min_objectid)
5072 {
5073         struct btrfs_key found_key;
5074         struct extent_buffer *leaf;
5075         u32 nritems;
5076         int ret;
5077 
5078         while (1) {
5079                 if (path->slots[0] == 0) {
5080                         ret = btrfs_prev_leaf(root, path);
5081                         if (ret != 0)
5082                                 return ret;
5083                 } else {
5084                         path->slots[0]--;
5085                 }
5086                 leaf = path->nodes[0];
5087                 nritems = btrfs_header_nritems(leaf);
5088                 if (nritems == 0)
5089                         return 1;
5090                 if (path->slots[0] == nritems)
5091                         path->slots[0]--;
5092 
5093                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5094                 if (found_key.objectid < min_objectid)
5095                         break;
5096                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5097                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5098                         return 0;
5099                 if (found_key.objectid == min_objectid &&
5100                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5101                         break;
5102         }
5103         return 1;
5104 }
5105 
5106 int __init btrfs_ctree_init(void)
5107 {
5108         btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5109         if (!btrfs_path_cachep)
5110                 return -ENOMEM;
5111         return 0;
5112 }
5113 
5114 void __cold btrfs_ctree_exit(void)
5115 {
5116         kmem_cache_destroy(btrfs_path_cachep);
5117 }
5118 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php