~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/defrag.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/sched.h>
  7 #include "ctree.h"
  8 #include "disk-io.h"
  9 #include "transaction.h"
 10 #include "locking.h"
 11 #include "accessors.h"
 12 #include "messages.h"
 13 #include "delalloc-space.h"
 14 #include "subpage.h"
 15 #include "defrag.h"
 16 #include "file-item.h"
 17 #include "super.h"
 18 
 19 static struct kmem_cache *btrfs_inode_defrag_cachep;
 20 
 21 /*
 22  * When auto defrag is enabled we queue up these defrag structs to remember
 23  * which inodes need defragging passes.
 24  */
 25 struct inode_defrag {
 26         struct rb_node rb_node;
 27         /* Inode number */
 28         u64 ino;
 29         /*
 30          * Transid where the defrag was added, we search for extents newer than
 31          * this.
 32          */
 33         u64 transid;
 34 
 35         /* Root objectid */
 36         u64 root;
 37 
 38         /*
 39          * The extent size threshold for autodefrag.
 40          *
 41          * This value is different for compressed/non-compressed extents, thus
 42          * needs to be passed from higher layer.
 43          * (aka, inode_should_defrag())
 44          */
 45         u32 extent_thresh;
 46 };
 47 
 48 static int __compare_inode_defrag(struct inode_defrag *defrag1,
 49                                   struct inode_defrag *defrag2)
 50 {
 51         if (defrag1->root > defrag2->root)
 52                 return 1;
 53         else if (defrag1->root < defrag2->root)
 54                 return -1;
 55         else if (defrag1->ino > defrag2->ino)
 56                 return 1;
 57         else if (defrag1->ino < defrag2->ino)
 58                 return -1;
 59         else
 60                 return 0;
 61 }
 62 
 63 /*
 64  * Pop a record for an inode into the defrag tree.  The lock must be held
 65  * already.
 66  *
 67  * If you're inserting a record for an older transid than an existing record,
 68  * the transid already in the tree is lowered.
 69  *
 70  * If an existing record is found the defrag item you pass in is freed.
 71  */
 72 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
 73                                     struct inode_defrag *defrag)
 74 {
 75         struct btrfs_fs_info *fs_info = inode->root->fs_info;
 76         struct inode_defrag *entry;
 77         struct rb_node **p;
 78         struct rb_node *parent = NULL;
 79         int ret;
 80 
 81         p = &fs_info->defrag_inodes.rb_node;
 82         while (*p) {
 83                 parent = *p;
 84                 entry = rb_entry(parent, struct inode_defrag, rb_node);
 85 
 86                 ret = __compare_inode_defrag(defrag, entry);
 87                 if (ret < 0)
 88                         p = &parent->rb_left;
 89                 else if (ret > 0)
 90                         p = &parent->rb_right;
 91                 else {
 92                         /*
 93                          * If we're reinserting an entry for an old defrag run,
 94                          * make sure to lower the transid of our existing
 95                          * record.
 96                          */
 97                         if (defrag->transid < entry->transid)
 98                                 entry->transid = defrag->transid;
 99                         entry->extent_thresh = min(defrag->extent_thresh,
100                                                    entry->extent_thresh);
101                         return -EEXIST;
102                 }
103         }
104         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
105         rb_link_node(&defrag->rb_node, parent, p);
106         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
107         return 0;
108 }
109 
110 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
111 {
112         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
113                 return 0;
114 
115         if (btrfs_fs_closing(fs_info))
116                 return 0;
117 
118         return 1;
119 }
120 
121 /*
122  * Insert a defrag record for this inode if auto defrag is enabled.
123  */
124 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
125                            struct btrfs_inode *inode, u32 extent_thresh)
126 {
127         struct btrfs_root *root = inode->root;
128         struct btrfs_fs_info *fs_info = root->fs_info;
129         struct inode_defrag *defrag;
130         u64 transid;
131         int ret;
132 
133         if (!__need_auto_defrag(fs_info))
134                 return 0;
135 
136         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
137                 return 0;
138 
139         if (trans)
140                 transid = trans->transid;
141         else
142                 transid = btrfs_get_root_last_trans(root);
143 
144         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
145         if (!defrag)
146                 return -ENOMEM;
147 
148         defrag->ino = btrfs_ino(inode);
149         defrag->transid = transid;
150         defrag->root = btrfs_root_id(root);
151         defrag->extent_thresh = extent_thresh;
152 
153         spin_lock(&fs_info->defrag_inodes_lock);
154         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
155                 /*
156                  * If we set IN_DEFRAG flag and evict the inode from memory,
157                  * and then re-read this inode, this new inode doesn't have
158                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
159                  */
160                 ret = __btrfs_add_inode_defrag(inode, defrag);
161                 if (ret)
162                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
163         } else {
164                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
165         }
166         spin_unlock(&fs_info->defrag_inodes_lock);
167         return 0;
168 }
169 
170 /*
171  * Pick the defragable inode that we want, if it doesn't exist, we will get the
172  * next one.
173  */
174 static struct inode_defrag *btrfs_pick_defrag_inode(
175                         struct btrfs_fs_info *fs_info, u64 root, u64 ino)
176 {
177         struct inode_defrag *entry = NULL;
178         struct inode_defrag tmp;
179         struct rb_node *p;
180         struct rb_node *parent = NULL;
181         int ret;
182 
183         tmp.ino = ino;
184         tmp.root = root;
185 
186         spin_lock(&fs_info->defrag_inodes_lock);
187         p = fs_info->defrag_inodes.rb_node;
188         while (p) {
189                 parent = p;
190                 entry = rb_entry(parent, struct inode_defrag, rb_node);
191 
192                 ret = __compare_inode_defrag(&tmp, entry);
193                 if (ret < 0)
194                         p = parent->rb_left;
195                 else if (ret > 0)
196                         p = parent->rb_right;
197                 else
198                         goto out;
199         }
200 
201         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
202                 parent = rb_next(parent);
203                 if (parent)
204                         entry = rb_entry(parent, struct inode_defrag, rb_node);
205                 else
206                         entry = NULL;
207         }
208 out:
209         if (entry)
210                 rb_erase(parent, &fs_info->defrag_inodes);
211         spin_unlock(&fs_info->defrag_inodes_lock);
212         return entry;
213 }
214 
215 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
216 {
217         struct inode_defrag *defrag;
218         struct rb_node *node;
219 
220         spin_lock(&fs_info->defrag_inodes_lock);
221         node = rb_first(&fs_info->defrag_inodes);
222         while (node) {
223                 rb_erase(node, &fs_info->defrag_inodes);
224                 defrag = rb_entry(node, struct inode_defrag, rb_node);
225                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
226 
227                 cond_resched_lock(&fs_info->defrag_inodes_lock);
228 
229                 node = rb_first(&fs_info->defrag_inodes);
230         }
231         spin_unlock(&fs_info->defrag_inodes_lock);
232 }
233 
234 #define BTRFS_DEFRAG_BATCH      1024
235 
236 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
237                                     struct inode_defrag *defrag)
238 {
239         struct btrfs_root *inode_root;
240         struct inode *inode;
241         struct btrfs_ioctl_defrag_range_args range;
242         int ret = 0;
243         u64 cur = 0;
244 
245 again:
246         if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
247                 goto cleanup;
248         if (!__need_auto_defrag(fs_info))
249                 goto cleanup;
250 
251         /* Get the inode */
252         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
253         if (IS_ERR(inode_root)) {
254                 ret = PTR_ERR(inode_root);
255                 goto cleanup;
256         }
257 
258         inode = btrfs_iget(defrag->ino, inode_root);
259         btrfs_put_root(inode_root);
260         if (IS_ERR(inode)) {
261                 ret = PTR_ERR(inode);
262                 goto cleanup;
263         }
264 
265         if (cur >= i_size_read(inode)) {
266                 iput(inode);
267                 goto cleanup;
268         }
269 
270         /* Do a chunk of defrag */
271         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
272         memset(&range, 0, sizeof(range));
273         range.len = (u64)-1;
274         range.start = cur;
275         range.extent_thresh = defrag->extent_thresh;
276 
277         sb_start_write(fs_info->sb);
278         ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
279                                        BTRFS_DEFRAG_BATCH);
280         sb_end_write(fs_info->sb);
281         iput(inode);
282 
283         if (ret < 0)
284                 goto cleanup;
285 
286         cur = max(cur + fs_info->sectorsize, range.start);
287         goto again;
288 
289 cleanup:
290         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
291         return ret;
292 }
293 
294 /*
295  * Run through the list of inodes in the FS that need defragging.
296  */
297 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
298 {
299         struct inode_defrag *defrag;
300         u64 first_ino = 0;
301         u64 root_objectid = 0;
302 
303         atomic_inc(&fs_info->defrag_running);
304         while (1) {
305                 /* Pause the auto defragger. */
306                 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
307                         break;
308 
309                 if (!__need_auto_defrag(fs_info))
310                         break;
311 
312                 /* find an inode to defrag */
313                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
314                 if (!defrag) {
315                         if (root_objectid || first_ino) {
316                                 root_objectid = 0;
317                                 first_ino = 0;
318                                 continue;
319                         } else {
320                                 break;
321                         }
322                 }
323 
324                 first_ino = defrag->ino + 1;
325                 root_objectid = defrag->root;
326 
327                 __btrfs_run_defrag_inode(fs_info, defrag);
328         }
329         atomic_dec(&fs_info->defrag_running);
330 
331         /*
332          * During unmount, we use the transaction_wait queue to wait for the
333          * defragger to stop.
334          */
335         wake_up(&fs_info->transaction_wait);
336         return 0;
337 }
338 
339 /*
340  * Check if two blocks addresses are close, used by defrag.
341  */
342 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
343 {
344         if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
345                 return true;
346         if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
347                 return true;
348         return false;
349 }
350 
351 /*
352  * Go through all the leaves pointed to by a node and reallocate them so that
353  * disk order is close to key order.
354  */
355 static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
356                               struct btrfs_root *root,
357                               struct extent_buffer *parent,
358                               int start_slot, u64 *last_ret,
359                               struct btrfs_key *progress)
360 {
361         struct btrfs_fs_info *fs_info = root->fs_info;
362         const u32 blocksize = fs_info->nodesize;
363         const int end_slot = btrfs_header_nritems(parent) - 1;
364         u64 search_start = *last_ret;
365         u64 last_block = 0;
366         int ret = 0;
367         bool progress_passed = false;
368 
369         /*
370          * COWing must happen through a running transaction, which always
371          * matches the current fs generation (it's a transaction with a state
372          * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
373          * into error state to prevent the commit of any transaction.
374          */
375         if (unlikely(trans->transaction != fs_info->running_transaction ||
376                      trans->transid != fs_info->generation)) {
377                 btrfs_abort_transaction(trans, -EUCLEAN);
378                 btrfs_crit(fs_info,
379 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
380                            parent->start, btrfs_root_id(root), trans->transid,
381                            fs_info->running_transaction->transid,
382                            fs_info->generation);
383                 return -EUCLEAN;
384         }
385 
386         if (btrfs_header_nritems(parent) <= 1)
387                 return 0;
388 
389         for (int i = start_slot; i <= end_slot; i++) {
390                 struct extent_buffer *cur;
391                 struct btrfs_disk_key disk_key;
392                 u64 blocknr;
393                 u64 other;
394                 bool close = true;
395 
396                 btrfs_node_key(parent, &disk_key, i);
397                 if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
398                         continue;
399 
400                 progress_passed = true;
401                 blocknr = btrfs_node_blockptr(parent, i);
402                 if (last_block == 0)
403                         last_block = blocknr;
404 
405                 if (i > 0) {
406                         other = btrfs_node_blockptr(parent, i - 1);
407                         close = close_blocks(blocknr, other, blocksize);
408                 }
409                 if (!close && i < end_slot) {
410                         other = btrfs_node_blockptr(parent, i + 1);
411                         close = close_blocks(blocknr, other, blocksize);
412                 }
413                 if (close) {
414                         last_block = blocknr;
415                         continue;
416                 }
417 
418                 cur = btrfs_read_node_slot(parent, i);
419                 if (IS_ERR(cur))
420                         return PTR_ERR(cur);
421                 if (search_start == 0)
422                         search_start = last_block;
423 
424                 btrfs_tree_lock(cur);
425                 ret = btrfs_force_cow_block(trans, root, cur, parent, i,
426                                             &cur, search_start,
427                                             min(16 * blocksize,
428                                                 (end_slot - i) * blocksize),
429                                             BTRFS_NESTING_COW);
430                 if (ret) {
431                         btrfs_tree_unlock(cur);
432                         free_extent_buffer(cur);
433                         break;
434                 }
435                 search_start = cur->start;
436                 last_block = cur->start;
437                 *last_ret = search_start;
438                 btrfs_tree_unlock(cur);
439                 free_extent_buffer(cur);
440         }
441         return ret;
442 }
443 
444 /*
445  * Defrag all the leaves in a given btree.
446  * Read all the leaves and try to get key order to
447  * better reflect disk order
448  */
449 
450 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
451                                struct btrfs_root *root)
452 {
453         struct btrfs_path *path = NULL;
454         struct btrfs_key key;
455         int ret = 0;
456         int wret;
457         int level;
458         int next_key_ret = 0;
459         u64 last_ret = 0;
460 
461         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
462                 goto out;
463 
464         path = btrfs_alloc_path();
465         if (!path) {
466                 ret = -ENOMEM;
467                 goto out;
468         }
469 
470         level = btrfs_header_level(root->node);
471 
472         if (level == 0)
473                 goto out;
474 
475         if (root->defrag_progress.objectid == 0) {
476                 struct extent_buffer *root_node;
477                 u32 nritems;
478 
479                 root_node = btrfs_lock_root_node(root);
480                 nritems = btrfs_header_nritems(root_node);
481                 root->defrag_max.objectid = 0;
482                 /* from above we know this is not a leaf */
483                 btrfs_node_key_to_cpu(root_node, &root->defrag_max,
484                                       nritems - 1);
485                 btrfs_tree_unlock(root_node);
486                 free_extent_buffer(root_node);
487                 memset(&key, 0, sizeof(key));
488         } else {
489                 memcpy(&key, &root->defrag_progress, sizeof(key));
490         }
491 
492         path->keep_locks = 1;
493 
494         ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
495         if (ret < 0)
496                 goto out;
497         if (ret > 0) {
498                 ret = 0;
499                 goto out;
500         }
501         btrfs_release_path(path);
502         /*
503          * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
504          * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
505          * a deadlock (attempting to write lock an already write locked leaf).
506          */
507         path->lowest_level = 1;
508         wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
509 
510         if (wret < 0) {
511                 ret = wret;
512                 goto out;
513         }
514         if (!path->nodes[1]) {
515                 ret = 0;
516                 goto out;
517         }
518         /*
519          * The node at level 1 must always be locked when our path has
520          * keep_locks set and lowest_level is 1, regardless of the value of
521          * path->slots[1].
522          */
523         ASSERT(path->locks[1] != 0);
524         ret = btrfs_realloc_node(trans, root,
525                                  path->nodes[1], 0,
526                                  &last_ret,
527                                  &root->defrag_progress);
528         if (ret) {
529                 WARN_ON(ret == -EAGAIN);
530                 goto out;
531         }
532         /*
533          * Now that we reallocated the node we can find the next key. Note that
534          * btrfs_find_next_key() can release our path and do another search
535          * without COWing, this is because even with path->keep_locks = 1,
536          * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
537          * node when path->slots[node_level - 1] does not point to the last
538          * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
539          * we search for the next key after reallocating our node.
540          */
541         path->slots[1] = btrfs_header_nritems(path->nodes[1]);
542         next_key_ret = btrfs_find_next_key(root, path, &key, 1,
543                                            BTRFS_OLDEST_GENERATION);
544         if (next_key_ret == 0) {
545                 memcpy(&root->defrag_progress, &key, sizeof(key));
546                 ret = -EAGAIN;
547         }
548 out:
549         btrfs_free_path(path);
550         if (ret == -EAGAIN) {
551                 if (root->defrag_max.objectid > root->defrag_progress.objectid)
552                         goto done;
553                 if (root->defrag_max.type > root->defrag_progress.type)
554                         goto done;
555                 if (root->defrag_max.offset > root->defrag_progress.offset)
556                         goto done;
557                 ret = 0;
558         }
559 done:
560         if (ret != -EAGAIN)
561                 memset(&root->defrag_progress, 0,
562                        sizeof(root->defrag_progress));
563 
564         return ret;
565 }
566 
567 /*
568  * Defrag a given btree.  Every leaf in the btree is read and defragmented.
569  */
570 int btrfs_defrag_root(struct btrfs_root *root)
571 {
572         struct btrfs_fs_info *fs_info = root->fs_info;
573         int ret;
574 
575         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
576                 return 0;
577 
578         while (1) {
579                 struct btrfs_trans_handle *trans;
580 
581                 trans = btrfs_start_transaction(root, 0);
582                 if (IS_ERR(trans)) {
583                         ret = PTR_ERR(trans);
584                         break;
585                 }
586 
587                 ret = btrfs_defrag_leaves(trans, root);
588 
589                 btrfs_end_transaction(trans);
590                 btrfs_btree_balance_dirty(fs_info);
591                 cond_resched();
592 
593                 if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
594                         break;
595 
596                 if (btrfs_defrag_cancelled(fs_info)) {
597                         btrfs_debug(fs_info, "defrag_root cancelled");
598                         ret = -EAGAIN;
599                         break;
600                 }
601         }
602         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
603         return ret;
604 }
605 
606 /*
607  * Defrag specific helper to get an extent map.
608  *
609  * Differences between this and btrfs_get_extent() are:
610  *
611  * - No extent_map will be added to inode->extent_tree
612  *   To reduce memory usage in the long run.
613  *
614  * - Extra optimization to skip file extents older than @newer_than
615  *   By using btrfs_search_forward() we can skip entire file ranges that
616  *   have extents created in past transactions, because btrfs_search_forward()
617  *   will not visit leaves and nodes with a generation smaller than given
618  *   minimal generation threshold (@newer_than).
619  *
620  * Return valid em if we find a file extent matching the requirement.
621  * Return NULL if we can not find a file extent matching the requirement.
622  *
623  * Return ERR_PTR() for error.
624  */
625 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
626                                             u64 start, u64 newer_than)
627 {
628         struct btrfs_root *root = inode->root;
629         struct btrfs_file_extent_item *fi;
630         struct btrfs_path path = { 0 };
631         struct extent_map *em;
632         struct btrfs_key key;
633         u64 ino = btrfs_ino(inode);
634         int ret;
635 
636         em = alloc_extent_map();
637         if (!em) {
638                 ret = -ENOMEM;
639                 goto err;
640         }
641 
642         key.objectid = ino;
643         key.type = BTRFS_EXTENT_DATA_KEY;
644         key.offset = start;
645 
646         if (newer_than) {
647                 ret = btrfs_search_forward(root, &key, &path, newer_than);
648                 if (ret < 0)
649                         goto err;
650                 /* Can't find anything newer */
651                 if (ret > 0)
652                         goto not_found;
653         } else {
654                 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
655                 if (ret < 0)
656                         goto err;
657         }
658         if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
659                 /*
660                  * If btrfs_search_slot() makes path to point beyond nritems,
661                  * we should not have an empty leaf, as this inode must at
662                  * least have its INODE_ITEM.
663                  */
664                 ASSERT(btrfs_header_nritems(path.nodes[0]));
665                 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
666         }
667         btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
668         /* Perfect match, no need to go one slot back */
669         if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
670             key.offset == start)
671                 goto iterate;
672 
673         /* We didn't find a perfect match, needs to go one slot back */
674         if (path.slots[0] > 0) {
675                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
676                 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
677                         path.slots[0]--;
678         }
679 
680 iterate:
681         /* Iterate through the path to find a file extent covering @start */
682         while (true) {
683                 u64 extent_end;
684 
685                 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
686                         goto next;
687 
688                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
689 
690                 /*
691                  * We may go one slot back to INODE_REF/XATTR item, then
692                  * need to go forward until we reach an EXTENT_DATA.
693                  * But we should still has the correct ino as key.objectid.
694                  */
695                 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
696                         goto next;
697 
698                 /* It's beyond our target range, definitely not extent found */
699                 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
700                         goto not_found;
701 
702                 /*
703                  *      |       |<- File extent ->|
704                  *      \- start
705                  *
706                  * This means there is a hole between start and key.offset.
707                  */
708                 if (key.offset > start) {
709                         em->start = start;
710                         em->disk_bytenr = EXTENT_MAP_HOLE;
711                         em->disk_num_bytes = 0;
712                         em->ram_bytes = 0;
713                         em->offset = 0;
714                         em->len = key.offset - start;
715                         break;
716                 }
717 
718                 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
719                                     struct btrfs_file_extent_item);
720                 extent_end = btrfs_file_extent_end(&path);
721 
722                 /*
723                  *      |<- file extent ->|     |
724                  *                              \- start
725                  *
726                  * We haven't reached start, search next slot.
727                  */
728                 if (extent_end <= start)
729                         goto next;
730 
731                 /* Now this extent covers @start, convert it to em */
732                 btrfs_extent_item_to_extent_map(inode, &path, fi, em);
733                 break;
734 next:
735                 ret = btrfs_next_item(root, &path);
736                 if (ret < 0)
737                         goto err;
738                 if (ret > 0)
739                         goto not_found;
740         }
741         btrfs_release_path(&path);
742         return em;
743 
744 not_found:
745         btrfs_release_path(&path);
746         free_extent_map(em);
747         return NULL;
748 
749 err:
750         btrfs_release_path(&path);
751         free_extent_map(em);
752         return ERR_PTR(ret);
753 }
754 
755 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
756                                                u64 newer_than, bool locked)
757 {
758         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
759         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
760         struct extent_map *em;
761         const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
762 
763         /*
764          * Hopefully we have this extent in the tree already, try without the
765          * full extent lock.
766          */
767         read_lock(&em_tree->lock);
768         em = lookup_extent_mapping(em_tree, start, sectorsize);
769         read_unlock(&em_tree->lock);
770 
771         /*
772          * We can get a merged extent, in that case, we need to re-search
773          * tree to get the original em for defrag.
774          *
775          * If @newer_than is 0 or em::generation < newer_than, we can trust
776          * this em, as either we don't care about the generation, or the
777          * merged extent map will be rejected anyway.
778          */
779         if (em && (em->flags & EXTENT_FLAG_MERGED) &&
780             newer_than && em->generation >= newer_than) {
781                 free_extent_map(em);
782                 em = NULL;
783         }
784 
785         if (!em) {
786                 struct extent_state *cached = NULL;
787                 u64 end = start + sectorsize - 1;
788 
789                 /* Get the big lock and read metadata off disk. */
790                 if (!locked)
791                         lock_extent(io_tree, start, end, &cached);
792                 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
793                 if (!locked)
794                         unlock_extent(io_tree, start, end, &cached);
795 
796                 if (IS_ERR(em))
797                         return NULL;
798         }
799 
800         return em;
801 }
802 
803 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
804                                    const struct extent_map *em)
805 {
806         if (extent_map_is_compressed(em))
807                 return BTRFS_MAX_COMPRESSED;
808         return fs_info->max_extent_size;
809 }
810 
811 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
812                                      u32 extent_thresh, u64 newer_than, bool locked)
813 {
814         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
815         struct extent_map *next;
816         bool ret = false;
817 
818         /* This is the last extent */
819         if (em->start + em->len >= i_size_read(inode))
820                 return false;
821 
822         /*
823          * Here we need to pass @newer_then when checking the next extent, or
824          * we will hit a case we mark current extent for defrag, but the next
825          * one will not be a target.
826          * This will just cause extra IO without really reducing the fragments.
827          */
828         next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
829         /* No more em or hole */
830         if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE)
831                 goto out;
832         if (next->flags & EXTENT_FLAG_PREALLOC)
833                 goto out;
834         /*
835          * If the next extent is at its max capacity, defragging current extent
836          * makes no sense, as the total number of extents won't change.
837          */
838         if (next->len >= get_extent_max_capacity(fs_info, em))
839                 goto out;
840         /* Skip older extent */
841         if (next->generation < newer_than)
842                 goto out;
843         /* Also check extent size */
844         if (next->len >= extent_thresh)
845                 goto out;
846 
847         ret = true;
848 out:
849         free_extent_map(next);
850         return ret;
851 }
852 
853 /*
854  * Prepare one page to be defragged.
855  *
856  * This will ensure:
857  *
858  * - Returned page is locked and has been set up properly.
859  * - No ordered extent exists in the page.
860  * - The page is uptodate.
861  *
862  * NOTE: Caller should also wait for page writeback after the cluster is
863  * prepared, here we don't do writeback wait for each page.
864  */
865 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
866 {
867         struct address_space *mapping = inode->vfs_inode.i_mapping;
868         gfp_t mask = btrfs_alloc_write_mask(mapping);
869         u64 page_start = (u64)index << PAGE_SHIFT;
870         u64 page_end = page_start + PAGE_SIZE - 1;
871         struct extent_state *cached_state = NULL;
872         struct folio *folio;
873         int ret;
874 
875 again:
876         folio = __filemap_get_folio(mapping, index,
877                                     FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
878         if (IS_ERR(folio))
879                 return folio;
880 
881         /*
882          * Since we can defragment files opened read-only, we can encounter
883          * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
884          * can't do I/O using huge pages yet, so return an error for now.
885          * Filesystem transparent huge pages are typically only used for
886          * executables that explicitly enable them, so this isn't very
887          * restrictive.
888          */
889         if (folio_test_large(folio)) {
890                 folio_unlock(folio);
891                 folio_put(folio);
892                 return ERR_PTR(-ETXTBSY);
893         }
894 
895         ret = set_folio_extent_mapped(folio);
896         if (ret < 0) {
897                 folio_unlock(folio);
898                 folio_put(folio);
899                 return ERR_PTR(ret);
900         }
901 
902         /* Wait for any existing ordered extent in the range */
903         while (1) {
904                 struct btrfs_ordered_extent *ordered;
905 
906                 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
907                 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
908                 unlock_extent(&inode->io_tree, page_start, page_end,
909                               &cached_state);
910                 if (!ordered)
911                         break;
912 
913                 folio_unlock(folio);
914                 btrfs_start_ordered_extent(ordered);
915                 btrfs_put_ordered_extent(ordered);
916                 folio_lock(folio);
917                 /*
918                  * We unlocked the folio above, so we need check if it was
919                  * released or not.
920                  */
921                 if (folio->mapping != mapping || !folio->private) {
922                         folio_unlock(folio);
923                         folio_put(folio);
924                         goto again;
925                 }
926         }
927 
928         /*
929          * Now the page range has no ordered extent any more.  Read the page to
930          * make it uptodate.
931          */
932         if (!folio_test_uptodate(folio)) {
933                 btrfs_read_folio(NULL, folio);
934                 folio_lock(folio);
935                 if (folio->mapping != mapping || !folio->private) {
936                         folio_unlock(folio);
937                         folio_put(folio);
938                         goto again;
939                 }
940                 if (!folio_test_uptodate(folio)) {
941                         folio_unlock(folio);
942                         folio_put(folio);
943                         return ERR_PTR(-EIO);
944                 }
945         }
946         return folio;
947 }
948 
949 struct defrag_target_range {
950         struct list_head list;
951         u64 start;
952         u64 len;
953 };
954 
955 /*
956  * Collect all valid target extents.
957  *
958  * @start:         file offset to lookup
959  * @len:           length to lookup
960  * @extent_thresh: file extent size threshold, any extent size >= this value
961  *                 will be ignored
962  * @newer_than:    only defrag extents newer than this value
963  * @do_compress:   whether the defrag is doing compression
964  *                 if true, @extent_thresh will be ignored and all regular
965  *                 file extents meeting @newer_than will be targets.
966  * @locked:        if the range has already held extent lock
967  * @target_list:   list of targets file extents
968  */
969 static int defrag_collect_targets(struct btrfs_inode *inode,
970                                   u64 start, u64 len, u32 extent_thresh,
971                                   u64 newer_than, bool do_compress,
972                                   bool locked, struct list_head *target_list,
973                                   u64 *last_scanned_ret)
974 {
975         struct btrfs_fs_info *fs_info = inode->root->fs_info;
976         bool last_is_target = false;
977         u64 cur = start;
978         int ret = 0;
979 
980         while (cur < start + len) {
981                 struct extent_map *em;
982                 struct defrag_target_range *new;
983                 bool next_mergeable = true;
984                 u64 range_len;
985 
986                 last_is_target = false;
987                 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
988                 if (!em)
989                         break;
990 
991                 /*
992                  * If the file extent is an inlined one, we may still want to
993                  * defrag it (fallthrough) if it will cause a regular extent.
994                  * This is for users who want to convert inline extents to
995                  * regular ones through max_inline= mount option.
996                  */
997                 if (em->disk_bytenr == EXTENT_MAP_INLINE &&
998                     em->len <= inode->root->fs_info->max_inline)
999                         goto next;
1000 
1001                 /* Skip holes and preallocated extents. */
1002                 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
1003                     (em->flags & EXTENT_FLAG_PREALLOC))
1004                         goto next;
1005 
1006                 /* Skip older extent */
1007                 if (em->generation < newer_than)
1008                         goto next;
1009 
1010                 /* This em is under writeback, no need to defrag */
1011                 if (em->generation == (u64)-1)
1012                         goto next;
1013 
1014                 /*
1015                  * Our start offset might be in the middle of an existing extent
1016                  * map, so take that into account.
1017                  */
1018                 range_len = em->len - (cur - em->start);
1019                 /*
1020                  * If this range of the extent map is already flagged for delalloc,
1021                  * skip it, because:
1022                  *
1023                  * 1) We could deadlock later, when trying to reserve space for
1024                  *    delalloc, because in case we can't immediately reserve space
1025                  *    the flusher can start delalloc and wait for the respective
1026                  *    ordered extents to complete. The deadlock would happen
1027                  *    because we do the space reservation while holding the range
1028                  *    locked, and starting writeback, or finishing an ordered
1029                  *    extent, requires locking the range;
1030                  *
1031                  * 2) If there's delalloc there, it means there's dirty pages for
1032                  *    which writeback has not started yet (we clean the delalloc
1033                  *    flag when starting writeback and after creating an ordered
1034                  *    extent). If we mark pages in an adjacent range for defrag,
1035                  *    then we will have a larger contiguous range for delalloc,
1036                  *    very likely resulting in a larger extent after writeback is
1037                  *    triggered (except in a case of free space fragmentation).
1038                  */
1039                 if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1040                                           EXTENT_DELALLOC))
1041                         goto next;
1042 
1043                 /*
1044                  * For do_compress case, we want to compress all valid file
1045                  * extents, thus no @extent_thresh or mergeable check.
1046                  */
1047                 if (do_compress)
1048                         goto add;
1049 
1050                 /* Skip too large extent */
1051                 if (em->len >= extent_thresh)
1052                         goto next;
1053 
1054                 /*
1055                  * Skip extents already at its max capacity, this is mostly for
1056                  * compressed extents, which max cap is only 128K.
1057                  */
1058                 if (em->len >= get_extent_max_capacity(fs_info, em))
1059                         goto next;
1060 
1061                 /*
1062                  * Normally there are no more extents after an inline one, thus
1063                  * @next_mergeable will normally be false and not defragged.
1064                  * So if an inline extent passed all above checks, just add it
1065                  * for defrag, and be converted to regular extents.
1066                  */
1067                 if (em->disk_bytenr == EXTENT_MAP_INLINE)
1068                         goto add;
1069 
1070                 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1071                                                 extent_thresh, newer_than, locked);
1072                 if (!next_mergeable) {
1073                         struct defrag_target_range *last;
1074 
1075                         /* Empty target list, no way to merge with last entry */
1076                         if (list_empty(target_list))
1077                                 goto next;
1078                         last = list_entry(target_list->prev,
1079                                           struct defrag_target_range, list);
1080                         /* Not mergeable with last entry */
1081                         if (last->start + last->len != cur)
1082                                 goto next;
1083 
1084                         /* Mergeable, fall through to add it to @target_list. */
1085                 }
1086 
1087 add:
1088                 last_is_target = true;
1089                 range_len = min(extent_map_end(em), start + len) - cur;
1090                 /*
1091                  * This one is a good target, check if it can be merged into
1092                  * last range of the target list.
1093                  */
1094                 if (!list_empty(target_list)) {
1095                         struct defrag_target_range *last;
1096 
1097                         last = list_entry(target_list->prev,
1098                                           struct defrag_target_range, list);
1099                         ASSERT(last->start + last->len <= cur);
1100                         if (last->start + last->len == cur) {
1101                                 /* Mergeable, enlarge the last entry */
1102                                 last->len += range_len;
1103                                 goto next;
1104                         }
1105                         /* Fall through to allocate a new entry */
1106                 }
1107 
1108                 /* Allocate new defrag_target_range */
1109                 new = kmalloc(sizeof(*new), GFP_NOFS);
1110                 if (!new) {
1111                         free_extent_map(em);
1112                         ret = -ENOMEM;
1113                         break;
1114                 }
1115                 new->start = cur;
1116                 new->len = range_len;
1117                 list_add_tail(&new->list, target_list);
1118 
1119 next:
1120                 cur = extent_map_end(em);
1121                 free_extent_map(em);
1122         }
1123         if (ret < 0) {
1124                 struct defrag_target_range *entry;
1125                 struct defrag_target_range *tmp;
1126 
1127                 list_for_each_entry_safe(entry, tmp, target_list, list) {
1128                         list_del_init(&entry->list);
1129                         kfree(entry);
1130                 }
1131         }
1132         if (!ret && last_scanned_ret) {
1133                 /*
1134                  * If the last extent is not a target, the caller can skip to
1135                  * the end of that extent.
1136                  * Otherwise, we can only go the end of the specified range.
1137                  */
1138                 if (!last_is_target)
1139                         *last_scanned_ret = max(cur, *last_scanned_ret);
1140                 else
1141                         *last_scanned_ret = max(start + len, *last_scanned_ret);
1142         }
1143         return ret;
1144 }
1145 
1146 #define CLUSTER_SIZE    (SZ_256K)
1147 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1148 
1149 /*
1150  * Defrag one contiguous target range.
1151  *
1152  * @inode:      target inode
1153  * @target:     target range to defrag
1154  * @pages:      locked pages covering the defrag range
1155  * @nr_pages:   number of locked pages
1156  *
1157  * Caller should ensure:
1158  *
1159  * - Pages are prepared
1160  *   Pages should be locked, no ordered extent in the pages range,
1161  *   no writeback.
1162  *
1163  * - Extent bits are locked
1164  */
1165 static int defrag_one_locked_target(struct btrfs_inode *inode,
1166                                     struct defrag_target_range *target,
1167                                     struct folio **folios, int nr_pages,
1168                                     struct extent_state **cached_state)
1169 {
1170         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1171         struct extent_changeset *data_reserved = NULL;
1172         const u64 start = target->start;
1173         const u64 len = target->len;
1174         unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1175         unsigned long start_index = start >> PAGE_SHIFT;
1176         unsigned long first_index = folios[0]->index;
1177         int ret = 0;
1178         int i;
1179 
1180         ASSERT(last_index - first_index + 1 <= nr_pages);
1181 
1182         ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1183         if (ret < 0)
1184                 return ret;
1185         clear_extent_bit(&inode->io_tree, start, start + len - 1,
1186                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1187                          EXTENT_DEFRAG, cached_state);
1188         set_extent_bit(&inode->io_tree, start, start + len - 1,
1189                        EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1190 
1191         /* Update the page status */
1192         for (i = start_index - first_index; i <= last_index - first_index; i++) {
1193                 folio_clear_checked(folios[i]);
1194                 btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len);
1195         }
1196         btrfs_delalloc_release_extents(inode, len);
1197         extent_changeset_free(data_reserved);
1198 
1199         return ret;
1200 }
1201 
1202 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1203                             u32 extent_thresh, u64 newer_than, bool do_compress,
1204                             u64 *last_scanned_ret)
1205 {
1206         struct extent_state *cached_state = NULL;
1207         struct defrag_target_range *entry;
1208         struct defrag_target_range *tmp;
1209         LIST_HEAD(target_list);
1210         struct folio **folios;
1211         const u32 sectorsize = inode->root->fs_info->sectorsize;
1212         u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1213         u64 start_index = start >> PAGE_SHIFT;
1214         unsigned int nr_pages = last_index - start_index + 1;
1215         int ret = 0;
1216         int i;
1217 
1218         ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1219         ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1220 
1221         folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
1222         if (!folios)
1223                 return -ENOMEM;
1224 
1225         /* Prepare all pages */
1226         for (i = 0; i < nr_pages; i++) {
1227                 folios[i] = defrag_prepare_one_folio(inode, start_index + i);
1228                 if (IS_ERR(folios[i])) {
1229                         ret = PTR_ERR(folios[i]);
1230                         nr_pages = i;
1231                         goto free_folios;
1232                 }
1233         }
1234         for (i = 0; i < nr_pages; i++)
1235                 folio_wait_writeback(folios[i]);
1236 
1237         /* Lock the pages range */
1238         lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1239                     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1240                     &cached_state);
1241         /*
1242          * Now we have a consistent view about the extent map, re-check
1243          * which range really needs to be defragged.
1244          *
1245          * And this time we have extent locked already, pass @locked = true
1246          * so that we won't relock the extent range and cause deadlock.
1247          */
1248         ret = defrag_collect_targets(inode, start, len, extent_thresh,
1249                                      newer_than, do_compress, true,
1250                                      &target_list, last_scanned_ret);
1251         if (ret < 0)
1252                 goto unlock_extent;
1253 
1254         list_for_each_entry(entry, &target_list, list) {
1255                 ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
1256                                                &cached_state);
1257                 if (ret < 0)
1258                         break;
1259         }
1260 
1261         list_for_each_entry_safe(entry, tmp, &target_list, list) {
1262                 list_del_init(&entry->list);
1263                 kfree(entry);
1264         }
1265 unlock_extent:
1266         unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1267                       (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1268                       &cached_state);
1269 free_folios:
1270         for (i = 0; i < nr_pages; i++) {
1271                 folio_unlock(folios[i]);
1272                 folio_put(folios[i]);
1273         }
1274         kfree(folios);
1275         return ret;
1276 }
1277 
1278 static int defrag_one_cluster(struct btrfs_inode *inode,
1279                               struct file_ra_state *ra,
1280                               u64 start, u32 len, u32 extent_thresh,
1281                               u64 newer_than, bool do_compress,
1282                               unsigned long *sectors_defragged,
1283                               unsigned long max_sectors,
1284                               u64 *last_scanned_ret)
1285 {
1286         const u32 sectorsize = inode->root->fs_info->sectorsize;
1287         struct defrag_target_range *entry;
1288         struct defrag_target_range *tmp;
1289         LIST_HEAD(target_list);
1290         int ret;
1291 
1292         ret = defrag_collect_targets(inode, start, len, extent_thresh,
1293                                      newer_than, do_compress, false,
1294                                      &target_list, NULL);
1295         if (ret < 0)
1296                 goto out;
1297 
1298         list_for_each_entry(entry, &target_list, list) {
1299                 u32 range_len = entry->len;
1300 
1301                 /* Reached or beyond the limit */
1302                 if (max_sectors && *sectors_defragged >= max_sectors) {
1303                         ret = 1;
1304                         break;
1305                 }
1306 
1307                 if (max_sectors)
1308                         range_len = min_t(u32, range_len,
1309                                 (max_sectors - *sectors_defragged) * sectorsize);
1310 
1311                 /*
1312                  * If defrag_one_range() has updated last_scanned_ret,
1313                  * our range may already be invalid (e.g. hole punched).
1314                  * Skip if our range is before last_scanned_ret, as there is
1315                  * no need to defrag the range anymore.
1316                  */
1317                 if (entry->start + range_len <= *last_scanned_ret)
1318                         continue;
1319 
1320                 if (ra)
1321                         page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1322                                 ra, NULL, entry->start >> PAGE_SHIFT,
1323                                 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1324                                 (entry->start >> PAGE_SHIFT) + 1);
1325                 /*
1326                  * Here we may not defrag any range if holes are punched before
1327                  * we locked the pages.
1328                  * But that's fine, it only affects the @sectors_defragged
1329                  * accounting.
1330                  */
1331                 ret = defrag_one_range(inode, entry->start, range_len,
1332                                        extent_thresh, newer_than, do_compress,
1333                                        last_scanned_ret);
1334                 if (ret < 0)
1335                         break;
1336                 *sectors_defragged += range_len >>
1337                                       inode->root->fs_info->sectorsize_bits;
1338         }
1339 out:
1340         list_for_each_entry_safe(entry, tmp, &target_list, list) {
1341                 list_del_init(&entry->list);
1342                 kfree(entry);
1343         }
1344         if (ret >= 0)
1345                 *last_scanned_ret = max(*last_scanned_ret, start + len);
1346         return ret;
1347 }
1348 
1349 /*
1350  * Entry point to file defragmentation.
1351  *
1352  * @inode:         inode to be defragged
1353  * @ra:            readahead state (can be NUL)
1354  * @range:         defrag options including range and flags
1355  * @newer_than:    minimum transid to defrag
1356  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1357  *                 will be defragged.
1358  *
1359  * Return <0 for error.
1360  * Return >=0 for the number of sectors defragged, and range->start will be updated
1361  * to indicate the file offset where next defrag should be started at.
1362  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1363  *  defragging all the range).
1364  */
1365 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1366                       struct btrfs_ioctl_defrag_range_args *range,
1367                       u64 newer_than, unsigned long max_to_defrag)
1368 {
1369         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1370         unsigned long sectors_defragged = 0;
1371         u64 isize = i_size_read(inode);
1372         u64 cur;
1373         u64 last_byte;
1374         bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1375         bool ra_allocated = false;
1376         int compress_type = BTRFS_COMPRESS_ZLIB;
1377         int ret = 0;
1378         u32 extent_thresh = range->extent_thresh;
1379         pgoff_t start_index;
1380 
1381         if (isize == 0)
1382                 return 0;
1383 
1384         if (range->start >= isize)
1385                 return -EINVAL;
1386 
1387         if (do_compress) {
1388                 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1389                         return -EINVAL;
1390                 if (range->compress_type)
1391                         compress_type = range->compress_type;
1392         }
1393 
1394         if (extent_thresh == 0)
1395                 extent_thresh = SZ_256K;
1396 
1397         if (range->start + range->len > range->start) {
1398                 /* Got a specific range */
1399                 last_byte = min(isize, range->start + range->len);
1400         } else {
1401                 /* Defrag until file end */
1402                 last_byte = isize;
1403         }
1404 
1405         /* Align the range */
1406         cur = round_down(range->start, fs_info->sectorsize);
1407         last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1408 
1409         /*
1410          * If we were not given a ra, allocate a readahead context. As
1411          * readahead is just an optimization, defrag will work without it so
1412          * we don't error out.
1413          */
1414         if (!ra) {
1415                 ra_allocated = true;
1416                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1417                 if (ra)
1418                         file_ra_state_init(ra, inode->i_mapping);
1419         }
1420 
1421         /*
1422          * Make writeback start from the beginning of the range, so that the
1423          * defrag range can be written sequentially.
1424          */
1425         start_index = cur >> PAGE_SHIFT;
1426         if (start_index < inode->i_mapping->writeback_index)
1427                 inode->i_mapping->writeback_index = start_index;
1428 
1429         while (cur < last_byte) {
1430                 const unsigned long prev_sectors_defragged = sectors_defragged;
1431                 u64 last_scanned = cur;
1432                 u64 cluster_end;
1433 
1434                 if (btrfs_defrag_cancelled(fs_info)) {
1435                         ret = -EAGAIN;
1436                         break;
1437                 }
1438 
1439                 /* We want the cluster end at page boundary when possible */
1440                 cluster_end = (((cur >> PAGE_SHIFT) +
1441                                (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1442                 cluster_end = min(cluster_end, last_byte);
1443 
1444                 btrfs_inode_lock(BTRFS_I(inode), 0);
1445                 if (IS_SWAPFILE(inode)) {
1446                         ret = -ETXTBSY;
1447                         btrfs_inode_unlock(BTRFS_I(inode), 0);
1448                         break;
1449                 }
1450                 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1451                         btrfs_inode_unlock(BTRFS_I(inode), 0);
1452                         break;
1453                 }
1454                 if (do_compress)
1455                         BTRFS_I(inode)->defrag_compress = compress_type;
1456                 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1457                                 cluster_end + 1 - cur, extent_thresh,
1458                                 newer_than, do_compress, &sectors_defragged,
1459                                 max_to_defrag, &last_scanned);
1460 
1461                 if (sectors_defragged > prev_sectors_defragged)
1462                         balance_dirty_pages_ratelimited(inode->i_mapping);
1463 
1464                 btrfs_inode_unlock(BTRFS_I(inode), 0);
1465                 if (ret < 0)
1466                         break;
1467                 cur = max(cluster_end + 1, last_scanned);
1468                 if (ret > 0) {
1469                         ret = 0;
1470                         break;
1471                 }
1472                 cond_resched();
1473         }
1474 
1475         if (ra_allocated)
1476                 kfree(ra);
1477         /*
1478          * Update range.start for autodefrag, this will indicate where to start
1479          * in next run.
1480          */
1481         range->start = cur;
1482         if (sectors_defragged) {
1483                 /*
1484                  * We have defragged some sectors, for compression case they
1485                  * need to be written back immediately.
1486                  */
1487                 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1488                         filemap_flush(inode->i_mapping);
1489                         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1490                                      &BTRFS_I(inode)->runtime_flags))
1491                                 filemap_flush(inode->i_mapping);
1492                 }
1493                 if (range->compress_type == BTRFS_COMPRESS_LZO)
1494                         btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1495                 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1496                         btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1497                 ret = sectors_defragged;
1498         }
1499         if (do_compress) {
1500                 btrfs_inode_lock(BTRFS_I(inode), 0);
1501                 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1502                 btrfs_inode_unlock(BTRFS_I(inode), 0);
1503         }
1504         return ret;
1505 }
1506 
1507 void __cold btrfs_auto_defrag_exit(void)
1508 {
1509         kmem_cache_destroy(btrfs_inode_defrag_cachep);
1510 }
1511 
1512 int __init btrfs_auto_defrag_init(void)
1513 {
1514         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1515                                         sizeof(struct inode_defrag), 0, 0, NULL);
1516         if (!btrfs_inode_defrag_cachep)
1517                 return -ENOMEM;
1518 
1519         return 0;
1520 }
1521 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php