1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "messages.h" 4 #include "ctree.h" 5 #include "delalloc-space.h" 6 #include "block-rsv.h" 7 #include "btrfs_inode.h" 8 #include "space-info.h" 9 #include "qgroup.h" 10 #include "fs.h" 11 12 /* 13 * HOW DOES THIS WORK 14 * 15 * There are two stages to data reservations, one for data and one for metadata 16 * to handle the new extents and checksums generated by writing data. 17 * 18 * 19 * DATA RESERVATION 20 * The general flow of the data reservation is as follows 21 * 22 * -> Reserve 23 * We call into btrfs_reserve_data_bytes() for the user request bytes that 24 * they wish to write. We make this reservation and add it to 25 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree 26 * for the range and carry on if this is buffered, or follow up trying to 27 * make a real allocation if we are pre-allocating or doing O_DIRECT. 28 * 29 * -> Use 30 * At writepages()/prealloc/O_DIRECT time we will call into 31 * btrfs_reserve_extent() for some part or all of this range of bytes. We 32 * will make the allocation and subtract space_info->bytes_may_use by the 33 * original requested length and increase the space_info->bytes_reserved by 34 * the allocated length. This distinction is important because compression 35 * may allocate a smaller on disk extent than we previously reserved. 36 * 37 * -> Allocation 38 * finish_ordered_io() will insert the new file extent item for this range, 39 * and then add a delayed ref update for the extent tree. Once that delayed 40 * ref is written the extent size is subtracted from 41 * space_info->bytes_reserved and added to space_info->bytes_used. 42 * 43 * Error handling 44 * 45 * -> By the reservation maker 46 * This is the simplest case, we haven't completed our operation and we know 47 * how much we reserved, we can simply call 48 * btrfs_free_reserved_data_space*() and it will be removed from 49 * space_info->bytes_may_use. 50 * 51 * -> After the reservation has been made, but before cow_file_range() 52 * This is specifically for the delalloc case. You must clear 53 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will 54 * be subtracted from space_info->bytes_may_use. 55 * 56 * METADATA RESERVATION 57 * The general metadata reservation lifetimes are discussed elsewhere, this 58 * will just focus on how it is used for delalloc space. 59 * 60 * We keep track of two things on a per inode bases 61 * 62 * ->outstanding_extents 63 * This is the number of file extent items we'll need to handle all of the 64 * outstanding DELALLOC space we have in this inode. We limit the maximum 65 * size of an extent, so a large contiguous dirty area may require more than 66 * one outstanding_extent, which is why count_max_extents() is used to 67 * determine how many outstanding_extents get added. 68 * 69 * ->csum_bytes 70 * This is essentially how many dirty bytes we have for this inode, so we 71 * can calculate the number of checksum items we would have to add in order 72 * to checksum our outstanding data. 73 * 74 * We keep a per-inode block_rsv in order to make it easier to keep track of 75 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to 76 * calculate the current theoretical maximum reservation we would need for the 77 * metadata for this inode. We call this and then adjust our reservation as 78 * necessary, either by attempting to reserve more space, or freeing up excess 79 * space. 80 * 81 * OUTSTANDING_EXTENTS HANDLING 82 * 83 * ->outstanding_extents is used for keeping track of how many extents we will 84 * need to use for this inode, and it will fluctuate depending on where you are 85 * in the life cycle of the dirty data. Consider the following normal case for 86 * a completely clean inode, with a num_bytes < our maximum allowed extent size 87 * 88 * -> reserve 89 * ->outstanding_extents += 1 (current value is 1) 90 * 91 * -> set_delalloc 92 * ->outstanding_extents += 1 (current value is 2) 93 * 94 * -> btrfs_delalloc_release_extents() 95 * ->outstanding_extents -= 1 (current value is 1) 96 * 97 * We must call this once we are done, as we hold our reservation for the 98 * duration of our operation, and then assume set_delalloc will update the 99 * counter appropriately. 100 * 101 * -> add ordered extent 102 * ->outstanding_extents += 1 (current value is 2) 103 * 104 * -> btrfs_clear_delalloc_extent 105 * ->outstanding_extents -= 1 (current value is 1) 106 * 107 * -> finish_ordered_io/btrfs_remove_ordered_extent 108 * ->outstanding_extents -= 1 (current value is 0) 109 * 110 * Each stage is responsible for their own accounting of the extent, thus 111 * making error handling and cleanup easier. 112 */ 113 114 int btrfs_alloc_data_chunk_ondemand(const struct btrfs_inode *inode, u64 bytes) 115 { 116 struct btrfs_root *root = inode->root; 117 struct btrfs_fs_info *fs_info = root->fs_info; 118 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 119 120 /* Make sure bytes are sectorsize aligned */ 121 bytes = ALIGN(bytes, fs_info->sectorsize); 122 123 if (btrfs_is_free_space_inode(inode)) 124 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 125 126 return btrfs_reserve_data_bytes(fs_info, bytes, flush); 127 } 128 129 int btrfs_check_data_free_space(struct btrfs_inode *inode, 130 struct extent_changeset **reserved, u64 start, 131 u64 len, bool noflush) 132 { 133 struct btrfs_fs_info *fs_info = inode->root->fs_info; 134 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 135 int ret; 136 137 /* align the range */ 138 len = round_up(start + len, fs_info->sectorsize) - 139 round_down(start, fs_info->sectorsize); 140 start = round_down(start, fs_info->sectorsize); 141 142 if (noflush) 143 flush = BTRFS_RESERVE_NO_FLUSH; 144 else if (btrfs_is_free_space_inode(inode)) 145 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 146 147 ret = btrfs_reserve_data_bytes(fs_info, len, flush); 148 if (ret < 0) 149 return ret; 150 151 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 152 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 153 if (ret < 0) { 154 btrfs_free_reserved_data_space_noquota(fs_info, len); 155 extent_changeset_free(*reserved); 156 *reserved = NULL; 157 } else { 158 ret = 0; 159 } 160 return ret; 161 } 162 163 /* 164 * Called if we need to clear a data reservation for this inode 165 * Normally in a error case. 166 * 167 * This one will *NOT* use accurate qgroup reserved space API, just for case 168 * which we can't sleep and is sure it won't affect qgroup reserved space. 169 * Like clear_bit_hook(). 170 */ 171 void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info, 172 u64 len) 173 { 174 struct btrfs_space_info *data_sinfo; 175 176 ASSERT(IS_ALIGNED(len, fs_info->sectorsize)); 177 178 data_sinfo = fs_info->data_sinfo; 179 btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len); 180 } 181 182 /* 183 * Called if we need to clear a data reservation for this inode 184 * Normally in a error case. 185 * 186 * This one will handle the per-inode data rsv map for accurate reserved 187 * space framework. 188 */ 189 void btrfs_free_reserved_data_space(struct btrfs_inode *inode, 190 struct extent_changeset *reserved, u64 start, u64 len) 191 { 192 struct btrfs_fs_info *fs_info = inode->root->fs_info; 193 194 /* Make sure the range is aligned to sectorsize */ 195 len = round_up(start + len, fs_info->sectorsize) - 196 round_down(start, fs_info->sectorsize); 197 start = round_down(start, fs_info->sectorsize); 198 199 btrfs_free_reserved_data_space_noquota(fs_info, len); 200 btrfs_qgroup_free_data(inode, reserved, start, len, NULL); 201 } 202 203 /* 204 * Release any excessive reservations for an inode. 205 * 206 * @inode: the inode we need to release from 207 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup 208 * meta reservation needs to know if we are freeing qgroup 209 * reservation or just converting it into per-trans. Normally 210 * @qgroup_free is true for error handling, and false for normal 211 * release. 212 * 213 * This is the same as btrfs_block_rsv_release, except that it handles the 214 * tracepoint for the reservation. 215 */ 216 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 217 { 218 struct btrfs_fs_info *fs_info = inode->root->fs_info; 219 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 220 u64 released = 0; 221 u64 qgroup_to_release = 0; 222 223 /* 224 * Since we statically set the block_rsv->size we just want to say we 225 * are releasing 0 bytes, and then we'll just get the reservation over 226 * the size free'd. 227 */ 228 released = btrfs_block_rsv_release(fs_info, block_rsv, 0, 229 &qgroup_to_release); 230 if (released > 0) 231 trace_btrfs_space_reservation(fs_info, "delalloc", 232 btrfs_ino(inode), released, 0); 233 if (qgroup_free) 234 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 235 else 236 btrfs_qgroup_convert_reserved_meta(inode->root, 237 qgroup_to_release); 238 } 239 240 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 241 struct btrfs_inode *inode) 242 { 243 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 244 u64 reserve_size = 0; 245 u64 qgroup_rsv_size = 0; 246 unsigned outstanding_extents; 247 248 lockdep_assert_held(&inode->lock); 249 outstanding_extents = inode->outstanding_extents; 250 251 /* 252 * Insert size for the number of outstanding extents, 1 normal size for 253 * updating the inode. 254 */ 255 if (outstanding_extents) { 256 reserve_size = btrfs_calc_insert_metadata_size(fs_info, 257 outstanding_extents); 258 reserve_size += btrfs_calc_metadata_size(fs_info, 1); 259 } 260 if (!(inode->flags & BTRFS_INODE_NODATASUM)) { 261 u64 csum_leaves; 262 263 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes); 264 reserve_size += btrfs_calc_insert_metadata_size(fs_info, csum_leaves); 265 } 266 /* 267 * For qgroup rsv, the calculation is very simple: 268 * account one nodesize for each outstanding extent 269 * 270 * This is overestimating in most cases. 271 */ 272 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; 273 274 spin_lock(&block_rsv->lock); 275 block_rsv->size = reserve_size; 276 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 277 spin_unlock(&block_rsv->lock); 278 } 279 280 static void calc_inode_reservations(struct btrfs_inode *inode, 281 u64 num_bytes, u64 disk_num_bytes, 282 u64 *meta_reserve, u64 *qgroup_reserve) 283 { 284 struct btrfs_fs_info *fs_info = inode->root->fs_info; 285 u64 nr_extents = count_max_extents(fs_info, num_bytes); 286 u64 csum_leaves; 287 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1); 288 289 if (inode->flags & BTRFS_INODE_NODATASUM) 290 csum_leaves = 0; 291 else 292 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes); 293 294 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info, 295 nr_extents + csum_leaves); 296 297 /* 298 * finish_ordered_io has to update the inode, so add the space required 299 * for an inode update. 300 */ 301 *meta_reserve += inode_update; 302 *qgroup_reserve = nr_extents * fs_info->nodesize; 303 } 304 305 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 306 u64 disk_num_bytes, bool noflush) 307 { 308 struct btrfs_root *root = inode->root; 309 struct btrfs_fs_info *fs_info = root->fs_info; 310 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 311 u64 meta_reserve, qgroup_reserve; 312 unsigned nr_extents; 313 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 314 int ret = 0; 315 316 /* 317 * If we are a free space inode we need to not flush since we will be in 318 * the middle of a transaction commit. We also don't need the delalloc 319 * mutex since we won't race with anybody. We need this mostly to make 320 * lockdep shut its filthy mouth. 321 * 322 * If we have a transaction open (can happen if we call truncate_block 323 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 324 */ 325 if (noflush || btrfs_is_free_space_inode(inode)) { 326 flush = BTRFS_RESERVE_NO_FLUSH; 327 } else { 328 if (current->journal_info) 329 flush = BTRFS_RESERVE_FLUSH_LIMIT; 330 } 331 332 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 333 disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize); 334 335 /* 336 * We always want to do it this way, every other way is wrong and ends 337 * in tears. Pre-reserving the amount we are going to add will always 338 * be the right way, because otherwise if we have enough parallelism we 339 * could end up with thousands of inodes all holding little bits of 340 * reservations they were able to make previously and the only way to 341 * reclaim that space is to ENOSPC out the operations and clear 342 * everything out and try again, which is bad. This way we just 343 * over-reserve slightly, and clean up the mess when we are done. 344 */ 345 calc_inode_reservations(inode, num_bytes, disk_num_bytes, 346 &meta_reserve, &qgroup_reserve); 347 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true, 348 noflush); 349 if (ret) 350 return ret; 351 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, 352 meta_reserve, flush); 353 if (ret) { 354 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); 355 return ret; 356 } 357 358 /* 359 * Now we need to update our outstanding extents and csum bytes _first_ 360 * and then add the reservation to the block_rsv. This keeps us from 361 * racing with an ordered completion or some such that would think it 362 * needs to free the reservation we just made. 363 */ 364 nr_extents = count_max_extents(fs_info, num_bytes); 365 spin_lock(&inode->lock); 366 btrfs_mod_outstanding_extents(inode, nr_extents); 367 if (!(inode->flags & BTRFS_INODE_NODATASUM)) 368 inode->csum_bytes += disk_num_bytes; 369 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 370 spin_unlock(&inode->lock); 371 372 /* Now we can safely add our space to our block rsv */ 373 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false); 374 trace_btrfs_space_reservation(root->fs_info, "delalloc", 375 btrfs_ino(inode), meta_reserve, 1); 376 377 spin_lock(&block_rsv->lock); 378 block_rsv->qgroup_rsv_reserved += qgroup_reserve; 379 spin_unlock(&block_rsv->lock); 380 381 return 0; 382 } 383 384 /* 385 * Release a metadata reservation for an inode. 386 * 387 * @inode: the inode to release the reservation for. 388 * @num_bytes: the number of bytes we are releasing. 389 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 390 * 391 * This will release the metadata reservation for an inode. This can be called 392 * once we complete IO for a given set of bytes to release their metadata 393 * reservations, or on error for the same reason. 394 */ 395 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 396 bool qgroup_free) 397 { 398 struct btrfs_fs_info *fs_info = inode->root->fs_info; 399 400 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 401 spin_lock(&inode->lock); 402 if (!(inode->flags & BTRFS_INODE_NODATASUM)) 403 inode->csum_bytes -= num_bytes; 404 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 405 spin_unlock(&inode->lock); 406 407 if (btrfs_is_testing(fs_info)) 408 return; 409 410 btrfs_inode_rsv_release(inode, qgroup_free); 411 } 412 413 /* 414 * Release our outstanding_extents for an inode. 415 * 416 * @inode: the inode to balance the reservation for. 417 * @num_bytes: the number of bytes we originally reserved with 418 * 419 * When we reserve space we increase outstanding_extents for the extents we may 420 * add. Once we've set the range as delalloc or created our ordered extents we 421 * have outstanding_extents to track the real usage, so we use this to free our 422 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 423 * with btrfs_delalloc_reserve_metadata. 424 */ 425 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 426 { 427 struct btrfs_fs_info *fs_info = inode->root->fs_info; 428 unsigned num_extents; 429 430 spin_lock(&inode->lock); 431 num_extents = count_max_extents(fs_info, num_bytes); 432 btrfs_mod_outstanding_extents(inode, -num_extents); 433 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 434 spin_unlock(&inode->lock); 435 436 if (btrfs_is_testing(fs_info)) 437 return; 438 439 btrfs_inode_rsv_release(inode, true); 440 } 441 442 /* 443 * Reserve data and metadata space for delalloc 444 * 445 * @inode: inode we're writing to 446 * @start: start range we are writing to 447 * @len: how long the range we are writing to 448 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 449 * current reservation. 450 * 451 * This will do the following things 452 * 453 * - reserve space in data space info for num bytes and reserve precious 454 * corresponding qgroup space 455 * (Done in check_data_free_space) 456 * 457 * - reserve space for metadata space, based on the number of outstanding 458 * extents and how much csums will be needed also reserve metadata space in a 459 * per root over-reserve method. 460 * - add to the inodes->delalloc_bytes 461 * - add it to the fs_info's delalloc inodes list. 462 * (Above 3 all done in delalloc_reserve_metadata) 463 * 464 * Return 0 for success 465 * Return <0 for error(-ENOSPC or -EDQUOT) 466 */ 467 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode, 468 struct extent_changeset **reserved, u64 start, u64 len) 469 { 470 int ret; 471 472 ret = btrfs_check_data_free_space(inode, reserved, start, len, false); 473 if (ret < 0) 474 return ret; 475 ret = btrfs_delalloc_reserve_metadata(inode, len, len, false); 476 if (ret < 0) { 477 btrfs_free_reserved_data_space(inode, *reserved, start, len); 478 extent_changeset_free(*reserved); 479 *reserved = NULL; 480 } 481 return ret; 482 } 483 484 /* 485 * Release data and metadata space for delalloc 486 * 487 * @inode: inode we're releasing space for 488 * @reserved: list of changed/reserved ranges 489 * @start: start position of the space already reserved 490 * @len: length of the space already reserved 491 * @qgroup_free: should qgroup reserved-space also be freed 492 * 493 * Release the metadata space that was not used and will decrement 494 * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if 495 * there are no delalloc bytes left. Also it will handle the qgroup reserved 496 * space. 497 */ 498 void btrfs_delalloc_release_space(struct btrfs_inode *inode, 499 struct extent_changeset *reserved, 500 u64 start, u64 len, bool qgroup_free) 501 { 502 btrfs_delalloc_release_metadata(inode, len, qgroup_free); 503 btrfs_free_reserved_data_space(inode, reserved, start, len); 504 } 505
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.