1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int num_folios = num_extent_folios(eb); 186 int ret = 0; 187 188 if (sb_rdonly(fs_info->sb)) 189 return -EROFS; 190 191 for (int i = 0; i < num_folios; i++) { 192 struct folio *folio = eb->folios[i]; 193 u64 start = max_t(u64, eb->start, folio_pos(folio)); 194 u64 end = min_t(u64, eb->start + eb->len, 195 folio_pos(folio) + eb->folio_size); 196 u32 len = end - start; 197 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 199 start, folio, offset_in_folio(folio, start), 200 mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 const struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 230 if (!ret) 231 break; 232 233 num_copies = btrfs_num_copies(fs_info, 234 eb->start, eb->len); 235 if (num_copies == 1) 236 break; 237 238 if (!failed_mirror) { 239 failed = 1; 240 failed_mirror = eb->read_mirror; 241 } 242 243 mirror_num++; 244 if (mirror_num == failed_mirror) 245 mirror_num++; 246 247 if (mirror_num > num_copies) 248 break; 249 } 250 251 if (failed && !ret && failed_mirror) 252 btrfs_repair_eb_io_failure(eb, failed_mirror); 253 254 return ret; 255 } 256 257 /* 258 * Checksum a dirty tree block before IO. 259 */ 260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 261 { 262 struct extent_buffer *eb = bbio->private; 263 struct btrfs_fs_info *fs_info = eb->fs_info; 264 u64 found_start = btrfs_header_bytenr(eb); 265 u64 last_trans; 266 u8 result[BTRFS_CSUM_SIZE]; 267 int ret; 268 269 /* Btree blocks are always contiguous on disk. */ 270 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 271 return BLK_STS_IOERR; 272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 273 return BLK_STS_IOERR; 274 275 /* 276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 277 * checksum it but zero-out its content. This is done to preserve 278 * ordering of I/O without unnecessarily writing out data. 279 */ 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 281 memzero_extent_buffer(eb, 0, eb->len); 282 return BLK_STS_OK; 283 } 284 285 if (WARN_ON_ONCE(found_start != eb->start)) 286 return BLK_STS_IOERR; 287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0], 288 eb->start, eb->len))) 289 return BLK_STS_IOERR; 290 291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 292 offsetof(struct btrfs_header, fsid), 293 BTRFS_FSID_SIZE) == 0); 294 csum_tree_block(eb, result); 295 296 if (btrfs_header_level(eb)) 297 ret = btrfs_check_node(eb); 298 else 299 ret = btrfs_check_leaf(eb); 300 301 if (ret < 0) 302 goto error; 303 304 /* 305 * Also check the generation, the eb reached here must be newer than 306 * last committed. Or something seriously wrong happened. 307 */ 308 last_trans = btrfs_get_last_trans_committed(fs_info); 309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 310 ret = -EUCLEAN; 311 btrfs_err(fs_info, 312 "block=%llu bad generation, have %llu expect > %llu", 313 eb->start, btrfs_header_generation(eb), last_trans); 314 goto error; 315 } 316 write_extent_buffer(eb, result, 0, fs_info->csum_size); 317 return BLK_STS_OK; 318 319 error: 320 btrfs_print_tree(eb, 0); 321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 322 eb->start); 323 /* 324 * Be noisy if this is an extent buffer from a log tree. We don't abort 325 * a transaction in case there's a bad log tree extent buffer, we just 326 * fallback to a transaction commit. Still we want to know when there is 327 * a bad log tree extent buffer, as that may signal a bug somewhere. 328 */ 329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 331 return errno_to_blk_status(ret); 332 } 333 334 static bool check_tree_block_fsid(struct extent_buffer *eb) 335 { 336 struct btrfs_fs_info *fs_info = eb->fs_info; 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 338 u8 fsid[BTRFS_FSID_SIZE]; 339 340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 341 BTRFS_FSID_SIZE); 342 343 /* 344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 345 * This is then overwritten by metadata_uuid if it is present in the 346 * device_list_add(). The same true for a seed device as well. So use of 347 * fs_devices::metadata_uuid is appropriate here. 348 */ 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 350 return false; 351 352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 354 return false; 355 356 return true; 357 } 358 359 /* Do basic extent buffer checks at read time */ 360 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 361 const struct btrfs_tree_parent_check *check) 362 { 363 struct btrfs_fs_info *fs_info = eb->fs_info; 364 u64 found_start; 365 const u32 csum_size = fs_info->csum_size; 366 u8 found_level; 367 u8 result[BTRFS_CSUM_SIZE]; 368 const u8 *header_csum; 369 int ret = 0; 370 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 371 372 ASSERT(check); 373 374 found_start = btrfs_header_bytenr(eb); 375 if (found_start != eb->start) { 376 btrfs_err_rl(fs_info, 377 "bad tree block start, mirror %u want %llu have %llu", 378 eb->read_mirror, eb->start, found_start); 379 ret = -EIO; 380 goto out; 381 } 382 if (check_tree_block_fsid(eb)) { 383 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 384 eb->start, eb->read_mirror); 385 ret = -EIO; 386 goto out; 387 } 388 found_level = btrfs_header_level(eb); 389 if (found_level >= BTRFS_MAX_LEVEL) { 390 btrfs_err(fs_info, 391 "bad tree block level, mirror %u level %d on logical %llu", 392 eb->read_mirror, btrfs_header_level(eb), eb->start); 393 ret = -EIO; 394 goto out; 395 } 396 397 csum_tree_block(eb, result); 398 header_csum = folio_address(eb->folios[0]) + 399 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 400 401 if (memcmp(result, header_csum, csum_size) != 0) { 402 btrfs_warn_rl(fs_info, 403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", 404 eb->start, eb->read_mirror, 405 CSUM_FMT_VALUE(csum_size, header_csum), 406 CSUM_FMT_VALUE(csum_size, result), 407 btrfs_header_level(eb), 408 ignore_csum ? ", ignored" : ""); 409 if (!ignore_csum) { 410 ret = -EUCLEAN; 411 goto out; 412 } 413 } 414 415 if (found_level != check->level) { 416 btrfs_err(fs_info, 417 "level verify failed on logical %llu mirror %u wanted %u found %u", 418 eb->start, eb->read_mirror, check->level, found_level); 419 ret = -EIO; 420 goto out; 421 } 422 if (unlikely(check->transid && 423 btrfs_header_generation(eb) != check->transid)) { 424 btrfs_err_rl(eb->fs_info, 425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 426 eb->start, eb->read_mirror, check->transid, 427 btrfs_header_generation(eb)); 428 ret = -EIO; 429 goto out; 430 } 431 if (check->has_first_key) { 432 const struct btrfs_key *expect_key = &check->first_key; 433 struct btrfs_key found_key; 434 435 if (found_level) 436 btrfs_node_key_to_cpu(eb, &found_key, 0); 437 else 438 btrfs_item_key_to_cpu(eb, &found_key, 0); 439 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 440 btrfs_err(fs_info, 441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 442 eb->start, check->transid, 443 expect_key->objectid, 444 expect_key->type, expect_key->offset, 445 found_key.objectid, found_key.type, 446 found_key.offset); 447 ret = -EUCLEAN; 448 goto out; 449 } 450 } 451 if (check->owner_root) { 452 ret = btrfs_check_eb_owner(eb, check->owner_root); 453 if (ret < 0) 454 goto out; 455 } 456 457 /* 458 * If this is a leaf block and it is corrupt, set the corrupt bit so 459 * that we don't try and read the other copies of this block, just 460 * return -EIO. 461 */ 462 if (found_level == 0 && btrfs_check_leaf(eb)) { 463 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 464 ret = -EIO; 465 } 466 467 if (found_level > 0 && btrfs_check_node(eb)) 468 ret = -EIO; 469 470 if (ret) 471 btrfs_err(fs_info, 472 "read time tree block corruption detected on logical %llu mirror %u", 473 eb->start, eb->read_mirror); 474 out: 475 return ret; 476 } 477 478 #ifdef CONFIG_MIGRATION 479 static int btree_migrate_folio(struct address_space *mapping, 480 struct folio *dst, struct folio *src, enum migrate_mode mode) 481 { 482 /* 483 * we can't safely write a btree page from here, 484 * we haven't done the locking hook 485 */ 486 if (folio_test_dirty(src)) 487 return -EAGAIN; 488 /* 489 * Buffers may be managed in a filesystem specific way. 490 * We must have no buffers or drop them. 491 */ 492 if (folio_get_private(src) && 493 !filemap_release_folio(src, GFP_KERNEL)) 494 return -EAGAIN; 495 return migrate_folio(mapping, dst, src, mode); 496 } 497 #else 498 #define btree_migrate_folio NULL 499 #endif 500 501 static int btree_writepages(struct address_space *mapping, 502 struct writeback_control *wbc) 503 { 504 int ret; 505 506 if (wbc->sync_mode == WB_SYNC_NONE) { 507 struct btrfs_fs_info *fs_info; 508 509 if (wbc->for_kupdate) 510 return 0; 511 512 fs_info = inode_to_fs_info(mapping->host); 513 /* this is a bit racy, but that's ok */ 514 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 515 BTRFS_DIRTY_METADATA_THRESH, 516 fs_info->dirty_metadata_batch); 517 if (ret < 0) 518 return 0; 519 } 520 return btree_write_cache_pages(mapping, wbc); 521 } 522 523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 524 { 525 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 526 return false; 527 528 return try_release_extent_buffer(&folio->page); 529 } 530 531 static void btree_invalidate_folio(struct folio *folio, size_t offset, 532 size_t length) 533 { 534 struct extent_io_tree *tree; 535 536 tree = &folio_to_inode(folio)->io_tree; 537 extent_invalidate_folio(tree, folio, offset); 538 btree_release_folio(folio, GFP_NOFS); 539 if (folio_get_private(folio)) { 540 btrfs_warn(folio_to_fs_info(folio), 541 "folio private not zero on folio %llu", 542 (unsigned long long)folio_pos(folio)); 543 folio_detach_private(folio); 544 } 545 } 546 547 #ifdef DEBUG 548 static bool btree_dirty_folio(struct address_space *mapping, 549 struct folio *folio) 550 { 551 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 552 struct btrfs_subpage_info *spi = fs_info->subpage_info; 553 struct btrfs_subpage *subpage; 554 struct extent_buffer *eb; 555 int cur_bit = 0; 556 u64 page_start = folio_pos(folio); 557 558 if (fs_info->sectorsize == PAGE_SIZE) { 559 eb = folio_get_private(folio); 560 BUG_ON(!eb); 561 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 562 BUG_ON(!atomic_read(&eb->refs)); 563 btrfs_assert_tree_write_locked(eb); 564 return filemap_dirty_folio(mapping, folio); 565 } 566 567 ASSERT(spi); 568 subpage = folio_get_private(folio); 569 570 for (cur_bit = spi->dirty_offset; 571 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 572 cur_bit++) { 573 unsigned long flags; 574 u64 cur; 575 576 spin_lock_irqsave(&subpage->lock, flags); 577 if (!test_bit(cur_bit, subpage->bitmaps)) { 578 spin_unlock_irqrestore(&subpage->lock, flags); 579 continue; 580 } 581 spin_unlock_irqrestore(&subpage->lock, flags); 582 cur = page_start + cur_bit * fs_info->sectorsize; 583 584 eb = find_extent_buffer(fs_info, cur); 585 ASSERT(eb); 586 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 587 ASSERT(atomic_read(&eb->refs)); 588 btrfs_assert_tree_write_locked(eb); 589 free_extent_buffer(eb); 590 591 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 592 } 593 return filemap_dirty_folio(mapping, folio); 594 } 595 #else 596 #define btree_dirty_folio filemap_dirty_folio 597 #endif 598 599 static const struct address_space_operations btree_aops = { 600 .writepages = btree_writepages, 601 .release_folio = btree_release_folio, 602 .invalidate_folio = btree_invalidate_folio, 603 .migrate_folio = btree_migrate_folio, 604 .dirty_folio = btree_dirty_folio, 605 }; 606 607 struct extent_buffer *btrfs_find_create_tree_block( 608 struct btrfs_fs_info *fs_info, 609 u64 bytenr, u64 owner_root, 610 int level) 611 { 612 if (btrfs_is_testing(fs_info)) 613 return alloc_test_extent_buffer(fs_info, bytenr); 614 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 615 } 616 617 /* 618 * Read tree block at logical address @bytenr and do variant basic but critical 619 * verification. 620 * 621 * @check: expected tree parentness check, see comments of the 622 * structure for details. 623 */ 624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 625 struct btrfs_tree_parent_check *check) 626 { 627 struct extent_buffer *buf = NULL; 628 int ret; 629 630 ASSERT(check); 631 632 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 633 check->level); 634 if (IS_ERR(buf)) 635 return buf; 636 637 ret = btrfs_read_extent_buffer(buf, check); 638 if (ret) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(ret); 641 } 642 return buf; 643 644 } 645 646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 647 u64 objectid) 648 { 649 bool dummy = btrfs_is_testing(fs_info); 650 651 memset(&root->root_key, 0, sizeof(root->root_key)); 652 memset(&root->root_item, 0, sizeof(root->root_item)); 653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 654 root->fs_info = fs_info; 655 root->root_key.objectid = objectid; 656 root->node = NULL; 657 root->commit_root = NULL; 658 root->state = 0; 659 RB_CLEAR_NODE(&root->rb_node); 660 661 btrfs_set_root_last_trans(root, 0); 662 root->free_objectid = 0; 663 root->nr_delalloc_inodes = 0; 664 root->nr_ordered_extents = 0; 665 xa_init(&root->inodes); 666 xa_init(&root->delayed_nodes); 667 668 btrfs_init_root_block_rsv(root); 669 670 INIT_LIST_HEAD(&root->dirty_list); 671 INIT_LIST_HEAD(&root->root_list); 672 INIT_LIST_HEAD(&root->delalloc_inodes); 673 INIT_LIST_HEAD(&root->delalloc_root); 674 INIT_LIST_HEAD(&root->ordered_extents); 675 INIT_LIST_HEAD(&root->ordered_root); 676 INIT_LIST_HEAD(&root->reloc_dirty_list); 677 spin_lock_init(&root->delalloc_lock); 678 spin_lock_init(&root->ordered_extent_lock); 679 spin_lock_init(&root->accounting_lock); 680 spin_lock_init(&root->qgroup_meta_rsv_lock); 681 mutex_init(&root->objectid_mutex); 682 mutex_init(&root->log_mutex); 683 mutex_init(&root->ordered_extent_mutex); 684 mutex_init(&root->delalloc_mutex); 685 init_waitqueue_head(&root->qgroup_flush_wait); 686 init_waitqueue_head(&root->log_writer_wait); 687 init_waitqueue_head(&root->log_commit_wait[0]); 688 init_waitqueue_head(&root->log_commit_wait[1]); 689 INIT_LIST_HEAD(&root->log_ctxs[0]); 690 INIT_LIST_HEAD(&root->log_ctxs[1]); 691 atomic_set(&root->log_commit[0], 0); 692 atomic_set(&root->log_commit[1], 0); 693 atomic_set(&root->log_writers, 0); 694 atomic_set(&root->log_batch, 0); 695 refcount_set(&root->refs, 1); 696 atomic_set(&root->snapshot_force_cow, 0); 697 atomic_set(&root->nr_swapfiles, 0); 698 btrfs_set_root_log_transid(root, 0); 699 root->log_transid_committed = -1; 700 btrfs_set_root_last_log_commit(root, 0); 701 root->anon_dev = 0; 702 if (!dummy) { 703 extent_io_tree_init(fs_info, &root->dirty_log_pages, 704 IO_TREE_ROOT_DIRTY_LOG_PAGES); 705 extent_io_tree_init(fs_info, &root->log_csum_range, 706 IO_TREE_LOG_CSUM_RANGE); 707 } 708 709 spin_lock_init(&root->root_item_lock); 710 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 711 #ifdef CONFIG_BTRFS_DEBUG 712 INIT_LIST_HEAD(&root->leak_list); 713 spin_lock(&fs_info->fs_roots_radix_lock); 714 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 715 spin_unlock(&fs_info->fs_roots_radix_lock); 716 #endif 717 } 718 719 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 720 u64 objectid, gfp_t flags) 721 { 722 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 723 if (root) 724 __setup_root(root, fs_info, objectid); 725 return root; 726 } 727 728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 729 /* Should only be used by the testing infrastructure */ 730 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 731 { 732 struct btrfs_root *root; 733 734 if (!fs_info) 735 return ERR_PTR(-EINVAL); 736 737 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 738 if (!root) 739 return ERR_PTR(-ENOMEM); 740 741 /* We don't use the stripesize in selftest, set it as sectorsize */ 742 root->alloc_bytenr = 0; 743 744 return root; 745 } 746 #endif 747 748 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 749 { 750 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 751 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 752 753 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 754 } 755 756 static int global_root_key_cmp(const void *k, const struct rb_node *node) 757 { 758 const struct btrfs_key *key = k; 759 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 760 761 return btrfs_comp_cpu_keys(key, &root->root_key); 762 } 763 764 int btrfs_global_root_insert(struct btrfs_root *root) 765 { 766 struct btrfs_fs_info *fs_info = root->fs_info; 767 struct rb_node *tmp; 768 int ret = 0; 769 770 write_lock(&fs_info->global_root_lock); 771 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 772 write_unlock(&fs_info->global_root_lock); 773 774 if (tmp) { 775 ret = -EEXIST; 776 btrfs_warn(fs_info, "global root %llu %llu already exists", 777 btrfs_root_id(root), root->root_key.offset); 778 } 779 return ret; 780 } 781 782 void btrfs_global_root_delete(struct btrfs_root *root) 783 { 784 struct btrfs_fs_info *fs_info = root->fs_info; 785 786 write_lock(&fs_info->global_root_lock); 787 rb_erase(&root->rb_node, &fs_info->global_root_tree); 788 write_unlock(&fs_info->global_root_lock); 789 } 790 791 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 792 struct btrfs_key *key) 793 { 794 struct rb_node *node; 795 struct btrfs_root *root = NULL; 796 797 read_lock(&fs_info->global_root_lock); 798 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 799 if (node) 800 root = container_of(node, struct btrfs_root, rb_node); 801 read_unlock(&fs_info->global_root_lock); 802 803 return root; 804 } 805 806 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 807 { 808 struct btrfs_block_group *block_group; 809 u64 ret; 810 811 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 812 return 0; 813 814 if (bytenr) 815 block_group = btrfs_lookup_block_group(fs_info, bytenr); 816 else 817 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 818 ASSERT(block_group); 819 if (!block_group) 820 return 0; 821 ret = block_group->global_root_id; 822 btrfs_put_block_group(block_group); 823 824 return ret; 825 } 826 827 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 828 { 829 struct btrfs_key key = { 830 .objectid = BTRFS_CSUM_TREE_OBJECTID, 831 .type = BTRFS_ROOT_ITEM_KEY, 832 .offset = btrfs_global_root_id(fs_info, bytenr), 833 }; 834 835 return btrfs_global_root(fs_info, &key); 836 } 837 838 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 839 { 840 struct btrfs_key key = { 841 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 842 .type = BTRFS_ROOT_ITEM_KEY, 843 .offset = btrfs_global_root_id(fs_info, bytenr), 844 }; 845 846 return btrfs_global_root(fs_info, &key); 847 } 848 849 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 850 u64 objectid) 851 { 852 struct btrfs_fs_info *fs_info = trans->fs_info; 853 struct extent_buffer *leaf; 854 struct btrfs_root *tree_root = fs_info->tree_root; 855 struct btrfs_root *root; 856 struct btrfs_key key; 857 unsigned int nofs_flag; 858 int ret = 0; 859 860 /* 861 * We're holding a transaction handle, so use a NOFS memory allocation 862 * context to avoid deadlock if reclaim happens. 863 */ 864 nofs_flag = memalloc_nofs_save(); 865 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 866 memalloc_nofs_restore(nofs_flag); 867 if (!root) 868 return ERR_PTR(-ENOMEM); 869 870 root->root_key.objectid = objectid; 871 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 872 root->root_key.offset = 0; 873 874 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 875 0, BTRFS_NESTING_NORMAL); 876 if (IS_ERR(leaf)) { 877 ret = PTR_ERR(leaf); 878 leaf = NULL; 879 goto fail; 880 } 881 882 root->node = leaf; 883 btrfs_mark_buffer_dirty(trans, leaf); 884 885 root->commit_root = btrfs_root_node(root); 886 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 887 888 btrfs_set_root_flags(&root->root_item, 0); 889 btrfs_set_root_limit(&root->root_item, 0); 890 btrfs_set_root_bytenr(&root->root_item, leaf->start); 891 btrfs_set_root_generation(&root->root_item, trans->transid); 892 btrfs_set_root_level(&root->root_item, 0); 893 btrfs_set_root_refs(&root->root_item, 1); 894 btrfs_set_root_used(&root->root_item, leaf->len); 895 btrfs_set_root_last_snapshot(&root->root_item, 0); 896 btrfs_set_root_dirid(&root->root_item, 0); 897 if (is_fstree(objectid)) 898 generate_random_guid(root->root_item.uuid); 899 else 900 export_guid(root->root_item.uuid, &guid_null); 901 btrfs_set_root_drop_level(&root->root_item, 0); 902 903 btrfs_tree_unlock(leaf); 904 905 key.objectid = objectid; 906 key.type = BTRFS_ROOT_ITEM_KEY; 907 key.offset = 0; 908 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 909 if (ret) 910 goto fail; 911 912 return root; 913 914 fail: 915 btrfs_put_root(root); 916 917 return ERR_PTR(ret); 918 } 919 920 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 921 struct btrfs_fs_info *fs_info) 922 { 923 struct btrfs_root *root; 924 925 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 926 if (!root) 927 return ERR_PTR(-ENOMEM); 928 929 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 930 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 931 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 932 933 return root; 934 } 935 936 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 937 struct btrfs_root *root) 938 { 939 struct extent_buffer *leaf; 940 941 /* 942 * DON'T set SHAREABLE bit for log trees. 943 * 944 * Log trees are not exposed to user space thus can't be snapshotted, 945 * and they go away before a real commit is actually done. 946 * 947 * They do store pointers to file data extents, and those reference 948 * counts still get updated (along with back refs to the log tree). 949 */ 950 951 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 952 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 953 if (IS_ERR(leaf)) 954 return PTR_ERR(leaf); 955 956 root->node = leaf; 957 958 btrfs_mark_buffer_dirty(trans, root->node); 959 btrfs_tree_unlock(root->node); 960 961 return 0; 962 } 963 964 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 965 struct btrfs_fs_info *fs_info) 966 { 967 struct btrfs_root *log_root; 968 969 log_root = alloc_log_tree(trans, fs_info); 970 if (IS_ERR(log_root)) 971 return PTR_ERR(log_root); 972 973 if (!btrfs_is_zoned(fs_info)) { 974 int ret = btrfs_alloc_log_tree_node(trans, log_root); 975 976 if (ret) { 977 btrfs_put_root(log_root); 978 return ret; 979 } 980 } 981 982 WARN_ON(fs_info->log_root_tree); 983 fs_info->log_root_tree = log_root; 984 return 0; 985 } 986 987 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 988 struct btrfs_root *root) 989 { 990 struct btrfs_fs_info *fs_info = root->fs_info; 991 struct btrfs_root *log_root; 992 struct btrfs_inode_item *inode_item; 993 int ret; 994 995 log_root = alloc_log_tree(trans, fs_info); 996 if (IS_ERR(log_root)) 997 return PTR_ERR(log_root); 998 999 ret = btrfs_alloc_log_tree_node(trans, log_root); 1000 if (ret) { 1001 btrfs_put_root(log_root); 1002 return ret; 1003 } 1004 1005 btrfs_set_root_last_trans(log_root, trans->transid); 1006 log_root->root_key.offset = btrfs_root_id(root); 1007 1008 inode_item = &log_root->root_item.inode; 1009 btrfs_set_stack_inode_generation(inode_item, 1); 1010 btrfs_set_stack_inode_size(inode_item, 3); 1011 btrfs_set_stack_inode_nlink(inode_item, 1); 1012 btrfs_set_stack_inode_nbytes(inode_item, 1013 fs_info->nodesize); 1014 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1015 1016 btrfs_set_root_node(&log_root->root_item, log_root->node); 1017 1018 WARN_ON(root->log_root); 1019 root->log_root = log_root; 1020 btrfs_set_root_log_transid(root, 0); 1021 root->log_transid_committed = -1; 1022 btrfs_set_root_last_log_commit(root, 0); 1023 return 0; 1024 } 1025 1026 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1027 struct btrfs_path *path, 1028 const struct btrfs_key *key) 1029 { 1030 struct btrfs_root *root; 1031 struct btrfs_tree_parent_check check = { 0 }; 1032 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1033 u64 generation; 1034 int ret; 1035 int level; 1036 1037 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1038 if (!root) 1039 return ERR_PTR(-ENOMEM); 1040 1041 ret = btrfs_find_root(tree_root, key, path, 1042 &root->root_item, &root->root_key); 1043 if (ret) { 1044 if (ret > 0) 1045 ret = -ENOENT; 1046 goto fail; 1047 } 1048 1049 generation = btrfs_root_generation(&root->root_item); 1050 level = btrfs_root_level(&root->root_item); 1051 check.level = level; 1052 check.transid = generation; 1053 check.owner_root = key->objectid; 1054 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1055 &check); 1056 if (IS_ERR(root->node)) { 1057 ret = PTR_ERR(root->node); 1058 root->node = NULL; 1059 goto fail; 1060 } 1061 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1062 ret = -EIO; 1063 goto fail; 1064 } 1065 1066 /* 1067 * For real fs, and not log/reloc trees, root owner must 1068 * match its root node owner 1069 */ 1070 if (!btrfs_is_testing(fs_info) && 1071 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1072 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1073 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1074 btrfs_crit(fs_info, 1075 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1076 btrfs_root_id(root), root->node->start, 1077 btrfs_header_owner(root->node), 1078 btrfs_root_id(root)); 1079 ret = -EUCLEAN; 1080 goto fail; 1081 } 1082 root->commit_root = btrfs_root_node(root); 1083 return root; 1084 fail: 1085 btrfs_put_root(root); 1086 return ERR_PTR(ret); 1087 } 1088 1089 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1090 const struct btrfs_key *key) 1091 { 1092 struct btrfs_root *root; 1093 struct btrfs_path *path; 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return ERR_PTR(-ENOMEM); 1098 root = read_tree_root_path(tree_root, path, key); 1099 btrfs_free_path(path); 1100 1101 return root; 1102 } 1103 1104 /* 1105 * Initialize subvolume root in-memory structure 1106 * 1107 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1108 */ 1109 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1110 { 1111 int ret; 1112 1113 btrfs_drew_lock_init(&root->snapshot_lock); 1114 1115 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1116 !btrfs_is_data_reloc_root(root) && 1117 is_fstree(btrfs_root_id(root))) { 1118 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1119 btrfs_check_and_init_root_item(&root->root_item); 1120 } 1121 1122 /* 1123 * Don't assign anonymous block device to roots that are not exposed to 1124 * userspace, the id pool is limited to 1M 1125 */ 1126 if (is_fstree(btrfs_root_id(root)) && 1127 btrfs_root_refs(&root->root_item) > 0) { 1128 if (!anon_dev) { 1129 ret = get_anon_bdev(&root->anon_dev); 1130 if (ret) 1131 goto fail; 1132 } else { 1133 root->anon_dev = anon_dev; 1134 } 1135 } 1136 1137 mutex_lock(&root->objectid_mutex); 1138 ret = btrfs_init_root_free_objectid(root); 1139 if (ret) { 1140 mutex_unlock(&root->objectid_mutex); 1141 goto fail; 1142 } 1143 1144 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1145 1146 mutex_unlock(&root->objectid_mutex); 1147 1148 return 0; 1149 fail: 1150 /* The caller is responsible to call btrfs_free_fs_root */ 1151 return ret; 1152 } 1153 1154 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1155 u64 root_id) 1156 { 1157 struct btrfs_root *root; 1158 1159 spin_lock(&fs_info->fs_roots_radix_lock); 1160 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1161 (unsigned long)root_id); 1162 root = btrfs_grab_root(root); 1163 spin_unlock(&fs_info->fs_roots_radix_lock); 1164 return root; 1165 } 1166 1167 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1168 u64 objectid) 1169 { 1170 struct btrfs_key key = { 1171 .objectid = objectid, 1172 .type = BTRFS_ROOT_ITEM_KEY, 1173 .offset = 0, 1174 }; 1175 1176 switch (objectid) { 1177 case BTRFS_ROOT_TREE_OBJECTID: 1178 return btrfs_grab_root(fs_info->tree_root); 1179 case BTRFS_EXTENT_TREE_OBJECTID: 1180 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1181 case BTRFS_CHUNK_TREE_OBJECTID: 1182 return btrfs_grab_root(fs_info->chunk_root); 1183 case BTRFS_DEV_TREE_OBJECTID: 1184 return btrfs_grab_root(fs_info->dev_root); 1185 case BTRFS_CSUM_TREE_OBJECTID: 1186 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1187 case BTRFS_QUOTA_TREE_OBJECTID: 1188 return btrfs_grab_root(fs_info->quota_root); 1189 case BTRFS_UUID_TREE_OBJECTID: 1190 return btrfs_grab_root(fs_info->uuid_root); 1191 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1192 return btrfs_grab_root(fs_info->block_group_root); 1193 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1194 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1195 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1196 return btrfs_grab_root(fs_info->stripe_root); 1197 default: 1198 return NULL; 1199 } 1200 } 1201 1202 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1203 struct btrfs_root *root) 1204 { 1205 int ret; 1206 1207 ret = radix_tree_preload(GFP_NOFS); 1208 if (ret) 1209 return ret; 1210 1211 spin_lock(&fs_info->fs_roots_radix_lock); 1212 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1213 (unsigned long)btrfs_root_id(root), 1214 root); 1215 if (ret == 0) { 1216 btrfs_grab_root(root); 1217 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1218 } 1219 spin_unlock(&fs_info->fs_roots_radix_lock); 1220 radix_tree_preload_end(); 1221 1222 return ret; 1223 } 1224 1225 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1226 { 1227 #ifdef CONFIG_BTRFS_DEBUG 1228 struct btrfs_root *root; 1229 1230 while (!list_empty(&fs_info->allocated_roots)) { 1231 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1232 1233 root = list_first_entry(&fs_info->allocated_roots, 1234 struct btrfs_root, leak_list); 1235 btrfs_err(fs_info, "leaked root %s refcount %d", 1236 btrfs_root_name(&root->root_key, buf), 1237 refcount_read(&root->refs)); 1238 WARN_ON_ONCE(1); 1239 while (refcount_read(&root->refs) > 1) 1240 btrfs_put_root(root); 1241 btrfs_put_root(root); 1242 } 1243 #endif 1244 } 1245 1246 static void free_global_roots(struct btrfs_fs_info *fs_info) 1247 { 1248 struct btrfs_root *root; 1249 struct rb_node *node; 1250 1251 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1252 root = rb_entry(node, struct btrfs_root, rb_node); 1253 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1254 btrfs_put_root(root); 1255 } 1256 } 1257 1258 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1259 { 1260 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1261 1262 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1263 percpu_counter_destroy(&fs_info->delalloc_bytes); 1264 percpu_counter_destroy(&fs_info->ordered_bytes); 1265 if (percpu_counter_initialized(em_counter)) 1266 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1267 percpu_counter_destroy(em_counter); 1268 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1269 btrfs_free_csum_hash(fs_info); 1270 btrfs_free_stripe_hash_table(fs_info); 1271 btrfs_free_ref_cache(fs_info); 1272 kfree(fs_info->balance_ctl); 1273 kfree(fs_info->delayed_root); 1274 free_global_roots(fs_info); 1275 btrfs_put_root(fs_info->tree_root); 1276 btrfs_put_root(fs_info->chunk_root); 1277 btrfs_put_root(fs_info->dev_root); 1278 btrfs_put_root(fs_info->quota_root); 1279 btrfs_put_root(fs_info->uuid_root); 1280 btrfs_put_root(fs_info->fs_root); 1281 btrfs_put_root(fs_info->data_reloc_root); 1282 btrfs_put_root(fs_info->block_group_root); 1283 btrfs_put_root(fs_info->stripe_root); 1284 btrfs_check_leaked_roots(fs_info); 1285 btrfs_extent_buffer_leak_debug_check(fs_info); 1286 kfree(fs_info->super_copy); 1287 kfree(fs_info->super_for_commit); 1288 kfree(fs_info->subpage_info); 1289 kvfree(fs_info); 1290 } 1291 1292 1293 /* 1294 * Get an in-memory reference of a root structure. 1295 * 1296 * For essential trees like root/extent tree, we grab it from fs_info directly. 1297 * For subvolume trees, we check the cached filesystem roots first. If not 1298 * found, then read it from disk and add it to cached fs roots. 1299 * 1300 * Caller should release the root by calling btrfs_put_root() after the usage. 1301 * 1302 * NOTE: Reloc and log trees can't be read by this function as they share the 1303 * same root objectid. 1304 * 1305 * @objectid: root id 1306 * @anon_dev: preallocated anonymous block device number for new roots, 1307 * pass NULL for a new allocation. 1308 * @check_ref: whether to check root item references, If true, return -ENOENT 1309 * for orphan roots 1310 */ 1311 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1312 u64 objectid, dev_t *anon_dev, 1313 bool check_ref) 1314 { 1315 struct btrfs_root *root; 1316 struct btrfs_path *path; 1317 struct btrfs_key key; 1318 int ret; 1319 1320 root = btrfs_get_global_root(fs_info, objectid); 1321 if (root) 1322 return root; 1323 1324 /* 1325 * If we're called for non-subvolume trees, and above function didn't 1326 * find one, do not try to read it from disk. 1327 * 1328 * This is namely for free-space-tree and quota tree, which can change 1329 * at runtime and should only be grabbed from fs_info. 1330 */ 1331 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1332 return ERR_PTR(-ENOENT); 1333 again: 1334 root = btrfs_lookup_fs_root(fs_info, objectid); 1335 if (root) { 1336 /* 1337 * Some other caller may have read out the newly inserted 1338 * subvolume already (for things like backref walk etc). Not 1339 * that common but still possible. In that case, we just need 1340 * to free the anon_dev. 1341 */ 1342 if (unlikely(anon_dev && *anon_dev)) { 1343 free_anon_bdev(*anon_dev); 1344 *anon_dev = 0; 1345 } 1346 1347 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1348 btrfs_put_root(root); 1349 return ERR_PTR(-ENOENT); 1350 } 1351 return root; 1352 } 1353 1354 key.objectid = objectid; 1355 key.type = BTRFS_ROOT_ITEM_KEY; 1356 key.offset = (u64)-1; 1357 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1358 if (IS_ERR(root)) 1359 return root; 1360 1361 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1362 ret = -ENOENT; 1363 goto fail; 1364 } 1365 1366 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1367 if (ret) 1368 goto fail; 1369 1370 path = btrfs_alloc_path(); 1371 if (!path) { 1372 ret = -ENOMEM; 1373 goto fail; 1374 } 1375 key.objectid = BTRFS_ORPHAN_OBJECTID; 1376 key.type = BTRFS_ORPHAN_ITEM_KEY; 1377 key.offset = objectid; 1378 1379 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1380 btrfs_free_path(path); 1381 if (ret < 0) 1382 goto fail; 1383 if (ret == 0) 1384 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1385 1386 ret = btrfs_insert_fs_root(fs_info, root); 1387 if (ret) { 1388 if (ret == -EEXIST) { 1389 btrfs_put_root(root); 1390 goto again; 1391 } 1392 goto fail; 1393 } 1394 return root; 1395 fail: 1396 /* 1397 * If our caller provided us an anonymous device, then it's his 1398 * responsibility to free it in case we fail. So we have to set our 1399 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1400 * and once again by our caller. 1401 */ 1402 if (anon_dev && *anon_dev) 1403 root->anon_dev = 0; 1404 btrfs_put_root(root); 1405 return ERR_PTR(ret); 1406 } 1407 1408 /* 1409 * Get in-memory reference of a root structure 1410 * 1411 * @objectid: tree objectid 1412 * @check_ref: if set, verify that the tree exists and the item has at least 1413 * one reference 1414 */ 1415 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1416 u64 objectid, bool check_ref) 1417 { 1418 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1419 } 1420 1421 /* 1422 * Get in-memory reference of a root structure, created as new, optionally pass 1423 * the anonymous block device id 1424 * 1425 * @objectid: tree objectid 1426 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1427 * parameter value if not NULL 1428 */ 1429 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1430 u64 objectid, dev_t *anon_dev) 1431 { 1432 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1433 } 1434 1435 /* 1436 * Return a root for the given objectid. 1437 * 1438 * @fs_info: the fs_info 1439 * @objectid: the objectid we need to lookup 1440 * 1441 * This is exclusively used for backref walking, and exists specifically because 1442 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1443 * creation time, which means we may have to read the tree_root in order to look 1444 * up a fs root that is not in memory. If the root is not in memory we will 1445 * read the tree root commit root and look up the fs root from there. This is a 1446 * temporary root, it will not be inserted into the radix tree as it doesn't 1447 * have the most uptodate information, it'll simply be discarded once the 1448 * backref code is finished using the root. 1449 */ 1450 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1451 struct btrfs_path *path, 1452 u64 objectid) 1453 { 1454 struct btrfs_root *root; 1455 struct btrfs_key key; 1456 1457 ASSERT(path->search_commit_root && path->skip_locking); 1458 1459 /* 1460 * This can return -ENOENT if we ask for a root that doesn't exist, but 1461 * since this is called via the backref walking code we won't be looking 1462 * up a root that doesn't exist, unless there's corruption. So if root 1463 * != NULL just return it. 1464 */ 1465 root = btrfs_get_global_root(fs_info, objectid); 1466 if (root) 1467 return root; 1468 1469 root = btrfs_lookup_fs_root(fs_info, objectid); 1470 if (root) 1471 return root; 1472 1473 key.objectid = objectid; 1474 key.type = BTRFS_ROOT_ITEM_KEY; 1475 key.offset = (u64)-1; 1476 root = read_tree_root_path(fs_info->tree_root, path, &key); 1477 btrfs_release_path(path); 1478 1479 return root; 1480 } 1481 1482 static int cleaner_kthread(void *arg) 1483 { 1484 struct btrfs_fs_info *fs_info = arg; 1485 int again; 1486 1487 while (1) { 1488 again = 0; 1489 1490 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1491 1492 /* Make the cleaner go to sleep early. */ 1493 if (btrfs_need_cleaner_sleep(fs_info)) 1494 goto sleep; 1495 1496 /* 1497 * Do not do anything if we might cause open_ctree() to block 1498 * before we have finished mounting the filesystem. 1499 */ 1500 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1501 goto sleep; 1502 1503 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1504 goto sleep; 1505 1506 /* 1507 * Avoid the problem that we change the status of the fs 1508 * during the above check and trylock. 1509 */ 1510 if (btrfs_need_cleaner_sleep(fs_info)) { 1511 mutex_unlock(&fs_info->cleaner_mutex); 1512 goto sleep; 1513 } 1514 1515 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1516 btrfs_sysfs_feature_update(fs_info); 1517 1518 btrfs_run_delayed_iputs(fs_info); 1519 1520 again = btrfs_clean_one_deleted_snapshot(fs_info); 1521 mutex_unlock(&fs_info->cleaner_mutex); 1522 1523 /* 1524 * The defragger has dealt with the R/O remount and umount, 1525 * needn't do anything special here. 1526 */ 1527 btrfs_run_defrag_inodes(fs_info); 1528 1529 /* 1530 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1531 * with relocation (btrfs_relocate_chunk) and relocation 1532 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1533 * after acquiring fs_info->reclaim_bgs_lock. So we 1534 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1535 * unused block groups. 1536 */ 1537 btrfs_delete_unused_bgs(fs_info); 1538 1539 /* 1540 * Reclaim block groups in the reclaim_bgs list after we deleted 1541 * all unused block_groups. This possibly gives us some more free 1542 * space. 1543 */ 1544 btrfs_reclaim_bgs(fs_info); 1545 sleep: 1546 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1547 if (kthread_should_park()) 1548 kthread_parkme(); 1549 if (kthread_should_stop()) 1550 return 0; 1551 if (!again) { 1552 set_current_state(TASK_INTERRUPTIBLE); 1553 schedule(); 1554 __set_current_state(TASK_RUNNING); 1555 } 1556 } 1557 } 1558 1559 static int transaction_kthread(void *arg) 1560 { 1561 struct btrfs_root *root = arg; 1562 struct btrfs_fs_info *fs_info = root->fs_info; 1563 struct btrfs_trans_handle *trans; 1564 struct btrfs_transaction *cur; 1565 u64 transid; 1566 time64_t delta; 1567 unsigned long delay; 1568 bool cannot_commit; 1569 1570 do { 1571 cannot_commit = false; 1572 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1573 mutex_lock(&fs_info->transaction_kthread_mutex); 1574 1575 spin_lock(&fs_info->trans_lock); 1576 cur = fs_info->running_transaction; 1577 if (!cur) { 1578 spin_unlock(&fs_info->trans_lock); 1579 goto sleep; 1580 } 1581 1582 delta = ktime_get_seconds() - cur->start_time; 1583 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1584 cur->state < TRANS_STATE_COMMIT_PREP && 1585 delta < fs_info->commit_interval) { 1586 spin_unlock(&fs_info->trans_lock); 1587 delay -= msecs_to_jiffies((delta - 1) * 1000); 1588 delay = min(delay, 1589 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1590 goto sleep; 1591 } 1592 transid = cur->transid; 1593 spin_unlock(&fs_info->trans_lock); 1594 1595 /* If the file system is aborted, this will always fail. */ 1596 trans = btrfs_attach_transaction(root); 1597 if (IS_ERR(trans)) { 1598 if (PTR_ERR(trans) != -ENOENT) 1599 cannot_commit = true; 1600 goto sleep; 1601 } 1602 if (transid == trans->transid) { 1603 btrfs_commit_transaction(trans); 1604 } else { 1605 btrfs_end_transaction(trans); 1606 } 1607 sleep: 1608 wake_up_process(fs_info->cleaner_kthread); 1609 mutex_unlock(&fs_info->transaction_kthread_mutex); 1610 1611 if (BTRFS_FS_ERROR(fs_info)) 1612 btrfs_cleanup_transaction(fs_info); 1613 if (!kthread_should_stop() && 1614 (!btrfs_transaction_blocked(fs_info) || 1615 cannot_commit)) 1616 schedule_timeout_interruptible(delay); 1617 } while (!kthread_should_stop()); 1618 return 0; 1619 } 1620 1621 /* 1622 * This will find the highest generation in the array of root backups. The 1623 * index of the highest array is returned, or -EINVAL if we can't find 1624 * anything. 1625 * 1626 * We check to make sure the array is valid by comparing the 1627 * generation of the latest root in the array with the generation 1628 * in the super block. If they don't match we pitch it. 1629 */ 1630 static int find_newest_super_backup(struct btrfs_fs_info *info) 1631 { 1632 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1633 u64 cur; 1634 struct btrfs_root_backup *root_backup; 1635 int i; 1636 1637 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1638 root_backup = info->super_copy->super_roots + i; 1639 cur = btrfs_backup_tree_root_gen(root_backup); 1640 if (cur == newest_gen) 1641 return i; 1642 } 1643 1644 return -EINVAL; 1645 } 1646 1647 /* 1648 * copy all the root pointers into the super backup array. 1649 * this will bump the backup pointer by one when it is 1650 * done 1651 */ 1652 static void backup_super_roots(struct btrfs_fs_info *info) 1653 { 1654 const int next_backup = info->backup_root_index; 1655 struct btrfs_root_backup *root_backup; 1656 1657 root_backup = info->super_for_commit->super_roots + next_backup; 1658 1659 /* 1660 * make sure all of our padding and empty slots get zero filled 1661 * regardless of which ones we use today 1662 */ 1663 memset(root_backup, 0, sizeof(*root_backup)); 1664 1665 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1666 1667 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1668 btrfs_set_backup_tree_root_gen(root_backup, 1669 btrfs_header_generation(info->tree_root->node)); 1670 1671 btrfs_set_backup_tree_root_level(root_backup, 1672 btrfs_header_level(info->tree_root->node)); 1673 1674 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1675 btrfs_set_backup_chunk_root_gen(root_backup, 1676 btrfs_header_generation(info->chunk_root->node)); 1677 btrfs_set_backup_chunk_root_level(root_backup, 1678 btrfs_header_level(info->chunk_root->node)); 1679 1680 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1681 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1682 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1683 1684 btrfs_set_backup_extent_root(root_backup, 1685 extent_root->node->start); 1686 btrfs_set_backup_extent_root_gen(root_backup, 1687 btrfs_header_generation(extent_root->node)); 1688 btrfs_set_backup_extent_root_level(root_backup, 1689 btrfs_header_level(extent_root->node)); 1690 1691 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1692 btrfs_set_backup_csum_root_gen(root_backup, 1693 btrfs_header_generation(csum_root->node)); 1694 btrfs_set_backup_csum_root_level(root_backup, 1695 btrfs_header_level(csum_root->node)); 1696 } 1697 1698 /* 1699 * we might commit during log recovery, which happens before we set 1700 * the fs_root. Make sure it is valid before we fill it in. 1701 */ 1702 if (info->fs_root && info->fs_root->node) { 1703 btrfs_set_backup_fs_root(root_backup, 1704 info->fs_root->node->start); 1705 btrfs_set_backup_fs_root_gen(root_backup, 1706 btrfs_header_generation(info->fs_root->node)); 1707 btrfs_set_backup_fs_root_level(root_backup, 1708 btrfs_header_level(info->fs_root->node)); 1709 } 1710 1711 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1712 btrfs_set_backup_dev_root_gen(root_backup, 1713 btrfs_header_generation(info->dev_root->node)); 1714 btrfs_set_backup_dev_root_level(root_backup, 1715 btrfs_header_level(info->dev_root->node)); 1716 1717 btrfs_set_backup_total_bytes(root_backup, 1718 btrfs_super_total_bytes(info->super_copy)); 1719 btrfs_set_backup_bytes_used(root_backup, 1720 btrfs_super_bytes_used(info->super_copy)); 1721 btrfs_set_backup_num_devices(root_backup, 1722 btrfs_super_num_devices(info->super_copy)); 1723 1724 /* 1725 * if we don't copy this out to the super_copy, it won't get remembered 1726 * for the next commit 1727 */ 1728 memcpy(&info->super_copy->super_roots, 1729 &info->super_for_commit->super_roots, 1730 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1731 } 1732 1733 /* 1734 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1735 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1736 * 1737 * @fs_info: filesystem whose backup roots need to be read 1738 * @priority: priority of backup root required 1739 * 1740 * Returns backup root index on success and -EINVAL otherwise. 1741 */ 1742 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1743 { 1744 int backup_index = find_newest_super_backup(fs_info); 1745 struct btrfs_super_block *super = fs_info->super_copy; 1746 struct btrfs_root_backup *root_backup; 1747 1748 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1749 if (priority == 0) 1750 return backup_index; 1751 1752 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1753 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1754 } else { 1755 return -EINVAL; 1756 } 1757 1758 root_backup = super->super_roots + backup_index; 1759 1760 btrfs_set_super_generation(super, 1761 btrfs_backup_tree_root_gen(root_backup)); 1762 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1763 btrfs_set_super_root_level(super, 1764 btrfs_backup_tree_root_level(root_backup)); 1765 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1766 1767 /* 1768 * Fixme: the total bytes and num_devices need to match or we should 1769 * need a fsck 1770 */ 1771 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1772 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1773 1774 return backup_index; 1775 } 1776 1777 /* helper to cleanup workers */ 1778 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1779 { 1780 btrfs_destroy_workqueue(fs_info->fixup_workers); 1781 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1782 btrfs_destroy_workqueue(fs_info->workers); 1783 if (fs_info->endio_workers) 1784 destroy_workqueue(fs_info->endio_workers); 1785 if (fs_info->rmw_workers) 1786 destroy_workqueue(fs_info->rmw_workers); 1787 if (fs_info->compressed_write_workers) 1788 destroy_workqueue(fs_info->compressed_write_workers); 1789 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1790 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1791 btrfs_destroy_workqueue(fs_info->delayed_workers); 1792 btrfs_destroy_workqueue(fs_info->caching_workers); 1793 btrfs_destroy_workqueue(fs_info->flush_workers); 1794 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1795 if (fs_info->discard_ctl.discard_workers) 1796 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1797 /* 1798 * Now that all other work queues are destroyed, we can safely destroy 1799 * the queues used for metadata I/O, since tasks from those other work 1800 * queues can do metadata I/O operations. 1801 */ 1802 if (fs_info->endio_meta_workers) 1803 destroy_workqueue(fs_info->endio_meta_workers); 1804 } 1805 1806 static void free_root_extent_buffers(struct btrfs_root *root) 1807 { 1808 if (root) { 1809 free_extent_buffer(root->node); 1810 free_extent_buffer(root->commit_root); 1811 root->node = NULL; 1812 root->commit_root = NULL; 1813 } 1814 } 1815 1816 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1817 { 1818 struct btrfs_root *root, *tmp; 1819 1820 rbtree_postorder_for_each_entry_safe(root, tmp, 1821 &fs_info->global_root_tree, 1822 rb_node) 1823 free_root_extent_buffers(root); 1824 } 1825 1826 /* helper to cleanup tree roots */ 1827 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1828 { 1829 free_root_extent_buffers(info->tree_root); 1830 1831 free_global_root_pointers(info); 1832 free_root_extent_buffers(info->dev_root); 1833 free_root_extent_buffers(info->quota_root); 1834 free_root_extent_buffers(info->uuid_root); 1835 free_root_extent_buffers(info->fs_root); 1836 free_root_extent_buffers(info->data_reloc_root); 1837 free_root_extent_buffers(info->block_group_root); 1838 free_root_extent_buffers(info->stripe_root); 1839 if (free_chunk_root) 1840 free_root_extent_buffers(info->chunk_root); 1841 } 1842 1843 void btrfs_put_root(struct btrfs_root *root) 1844 { 1845 if (!root) 1846 return; 1847 1848 if (refcount_dec_and_test(&root->refs)) { 1849 if (WARN_ON(!xa_empty(&root->inodes))) 1850 xa_destroy(&root->inodes); 1851 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1852 if (root->anon_dev) 1853 free_anon_bdev(root->anon_dev); 1854 free_root_extent_buffers(root); 1855 #ifdef CONFIG_BTRFS_DEBUG 1856 spin_lock(&root->fs_info->fs_roots_radix_lock); 1857 list_del_init(&root->leak_list); 1858 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1859 #endif 1860 kfree(root); 1861 } 1862 } 1863 1864 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1865 { 1866 int ret; 1867 struct btrfs_root *gang[8]; 1868 int i; 1869 1870 while (!list_empty(&fs_info->dead_roots)) { 1871 gang[0] = list_entry(fs_info->dead_roots.next, 1872 struct btrfs_root, root_list); 1873 list_del(&gang[0]->root_list); 1874 1875 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1876 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1877 btrfs_put_root(gang[0]); 1878 } 1879 1880 while (1) { 1881 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1882 (void **)gang, 0, 1883 ARRAY_SIZE(gang)); 1884 if (!ret) 1885 break; 1886 for (i = 0; i < ret; i++) 1887 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1888 } 1889 } 1890 1891 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1892 { 1893 mutex_init(&fs_info->scrub_lock); 1894 atomic_set(&fs_info->scrubs_running, 0); 1895 atomic_set(&fs_info->scrub_pause_req, 0); 1896 atomic_set(&fs_info->scrubs_paused, 0); 1897 atomic_set(&fs_info->scrub_cancel_req, 0); 1898 init_waitqueue_head(&fs_info->scrub_pause_wait); 1899 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1900 } 1901 1902 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1903 { 1904 spin_lock_init(&fs_info->balance_lock); 1905 mutex_init(&fs_info->balance_mutex); 1906 atomic_set(&fs_info->balance_pause_req, 0); 1907 atomic_set(&fs_info->balance_cancel_req, 0); 1908 fs_info->balance_ctl = NULL; 1909 init_waitqueue_head(&fs_info->balance_wait_q); 1910 atomic_set(&fs_info->reloc_cancel_req, 0); 1911 } 1912 1913 static int btrfs_init_btree_inode(struct super_block *sb) 1914 { 1915 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1916 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1917 fs_info->tree_root); 1918 struct inode *inode; 1919 1920 inode = new_inode(sb); 1921 if (!inode) 1922 return -ENOMEM; 1923 1924 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1925 set_nlink(inode, 1); 1926 /* 1927 * we set the i_size on the btree inode to the max possible int. 1928 * the real end of the address space is determined by all of 1929 * the devices in the system 1930 */ 1931 inode->i_size = OFFSET_MAX; 1932 inode->i_mapping->a_ops = &btree_aops; 1933 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1934 1935 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1936 IO_TREE_BTREE_INODE_IO); 1937 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1938 1939 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1940 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1941 __insert_inode_hash(inode, hash); 1942 fs_info->btree_inode = inode; 1943 1944 return 0; 1945 } 1946 1947 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1948 { 1949 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1950 init_rwsem(&fs_info->dev_replace.rwsem); 1951 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1952 } 1953 1954 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1955 { 1956 spin_lock_init(&fs_info->qgroup_lock); 1957 mutex_init(&fs_info->qgroup_ioctl_lock); 1958 fs_info->qgroup_tree = RB_ROOT; 1959 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1960 fs_info->qgroup_seq = 1; 1961 fs_info->qgroup_ulist = NULL; 1962 fs_info->qgroup_rescan_running = false; 1963 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1964 mutex_init(&fs_info->qgroup_rescan_lock); 1965 } 1966 1967 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1968 { 1969 u32 max_active = fs_info->thread_pool_size; 1970 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1971 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1972 1973 fs_info->workers = 1974 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1975 1976 fs_info->delalloc_workers = 1977 btrfs_alloc_workqueue(fs_info, "delalloc", 1978 flags, max_active, 2); 1979 1980 fs_info->flush_workers = 1981 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1982 flags, max_active, 0); 1983 1984 fs_info->caching_workers = 1985 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1986 1987 fs_info->fixup_workers = 1988 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1989 1990 fs_info->endio_workers = 1991 alloc_workqueue("btrfs-endio", flags, max_active); 1992 fs_info->endio_meta_workers = 1993 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1994 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1995 fs_info->endio_write_workers = 1996 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1997 max_active, 2); 1998 fs_info->compressed_write_workers = 1999 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2000 fs_info->endio_freespace_worker = 2001 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2002 max_active, 0); 2003 fs_info->delayed_workers = 2004 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2005 max_active, 0); 2006 fs_info->qgroup_rescan_workers = 2007 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 2008 ordered_flags); 2009 fs_info->discard_ctl.discard_workers = 2010 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 2011 2012 if (!(fs_info->workers && 2013 fs_info->delalloc_workers && fs_info->flush_workers && 2014 fs_info->endio_workers && fs_info->endio_meta_workers && 2015 fs_info->compressed_write_workers && 2016 fs_info->endio_write_workers && 2017 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2018 fs_info->caching_workers && fs_info->fixup_workers && 2019 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2020 fs_info->discard_ctl.discard_workers)) { 2021 return -ENOMEM; 2022 } 2023 2024 return 0; 2025 } 2026 2027 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2028 { 2029 struct crypto_shash *csum_shash; 2030 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2031 2032 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2033 2034 if (IS_ERR(csum_shash)) { 2035 btrfs_err(fs_info, "error allocating %s hash for checksum", 2036 csum_driver); 2037 return PTR_ERR(csum_shash); 2038 } 2039 2040 fs_info->csum_shash = csum_shash; 2041 2042 /* 2043 * Check if the checksum implementation is a fast accelerated one. 2044 * As-is this is a bit of a hack and should be replaced once the csum 2045 * implementations provide that information themselves. 2046 */ 2047 switch (csum_type) { 2048 case BTRFS_CSUM_TYPE_CRC32: 2049 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2050 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2051 break; 2052 case BTRFS_CSUM_TYPE_XXHASH: 2053 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2054 break; 2055 default: 2056 break; 2057 } 2058 2059 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2060 btrfs_super_csum_name(csum_type), 2061 crypto_shash_driver_name(csum_shash)); 2062 return 0; 2063 } 2064 2065 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2066 struct btrfs_fs_devices *fs_devices) 2067 { 2068 int ret; 2069 struct btrfs_tree_parent_check check = { 0 }; 2070 struct btrfs_root *log_tree_root; 2071 struct btrfs_super_block *disk_super = fs_info->super_copy; 2072 u64 bytenr = btrfs_super_log_root(disk_super); 2073 int level = btrfs_super_log_root_level(disk_super); 2074 2075 if (fs_devices->rw_devices == 0) { 2076 btrfs_warn(fs_info, "log replay required on RO media"); 2077 return -EIO; 2078 } 2079 2080 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2081 GFP_KERNEL); 2082 if (!log_tree_root) 2083 return -ENOMEM; 2084 2085 check.level = level; 2086 check.transid = fs_info->generation + 1; 2087 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2088 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2089 if (IS_ERR(log_tree_root->node)) { 2090 btrfs_warn(fs_info, "failed to read log tree"); 2091 ret = PTR_ERR(log_tree_root->node); 2092 log_tree_root->node = NULL; 2093 btrfs_put_root(log_tree_root); 2094 return ret; 2095 } 2096 if (!extent_buffer_uptodate(log_tree_root->node)) { 2097 btrfs_err(fs_info, "failed to read log tree"); 2098 btrfs_put_root(log_tree_root); 2099 return -EIO; 2100 } 2101 2102 /* returns with log_tree_root freed on success */ 2103 ret = btrfs_recover_log_trees(log_tree_root); 2104 if (ret) { 2105 btrfs_handle_fs_error(fs_info, ret, 2106 "Failed to recover log tree"); 2107 btrfs_put_root(log_tree_root); 2108 return ret; 2109 } 2110 2111 if (sb_rdonly(fs_info->sb)) { 2112 ret = btrfs_commit_super(fs_info); 2113 if (ret) 2114 return ret; 2115 } 2116 2117 return 0; 2118 } 2119 2120 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2121 struct btrfs_path *path, u64 objectid, 2122 const char *name) 2123 { 2124 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2125 struct btrfs_root *root; 2126 u64 max_global_id = 0; 2127 int ret; 2128 struct btrfs_key key = { 2129 .objectid = objectid, 2130 .type = BTRFS_ROOT_ITEM_KEY, 2131 .offset = 0, 2132 }; 2133 bool found = false; 2134 2135 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2136 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2137 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2138 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2139 return 0; 2140 } 2141 2142 while (1) { 2143 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2144 if (ret < 0) 2145 break; 2146 2147 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2148 ret = btrfs_next_leaf(tree_root, path); 2149 if (ret) { 2150 if (ret > 0) 2151 ret = 0; 2152 break; 2153 } 2154 } 2155 ret = 0; 2156 2157 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2158 if (key.objectid != objectid) 2159 break; 2160 btrfs_release_path(path); 2161 2162 /* 2163 * Just worry about this for extent tree, it'll be the same for 2164 * everybody. 2165 */ 2166 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2167 max_global_id = max(max_global_id, key.offset); 2168 2169 found = true; 2170 root = read_tree_root_path(tree_root, path, &key); 2171 if (IS_ERR(root)) { 2172 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2173 ret = PTR_ERR(root); 2174 break; 2175 } 2176 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2177 ret = btrfs_global_root_insert(root); 2178 if (ret) { 2179 btrfs_put_root(root); 2180 break; 2181 } 2182 key.offset++; 2183 } 2184 btrfs_release_path(path); 2185 2186 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2187 fs_info->nr_global_roots = max_global_id + 1; 2188 2189 if (!found || ret) { 2190 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2191 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2192 2193 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2194 ret = ret ? ret : -ENOENT; 2195 else 2196 ret = 0; 2197 btrfs_err(fs_info, "failed to load root %s", name); 2198 } 2199 return ret; 2200 } 2201 2202 static int load_global_roots(struct btrfs_root *tree_root) 2203 { 2204 struct btrfs_path *path; 2205 int ret = 0; 2206 2207 path = btrfs_alloc_path(); 2208 if (!path) 2209 return -ENOMEM; 2210 2211 ret = load_global_roots_objectid(tree_root, path, 2212 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2213 if (ret) 2214 goto out; 2215 ret = load_global_roots_objectid(tree_root, path, 2216 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2217 if (ret) 2218 goto out; 2219 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2220 goto out; 2221 ret = load_global_roots_objectid(tree_root, path, 2222 BTRFS_FREE_SPACE_TREE_OBJECTID, 2223 "free space"); 2224 out: 2225 btrfs_free_path(path); 2226 return ret; 2227 } 2228 2229 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2230 { 2231 struct btrfs_root *tree_root = fs_info->tree_root; 2232 struct btrfs_root *root; 2233 struct btrfs_key location; 2234 int ret; 2235 2236 ASSERT(fs_info->tree_root); 2237 2238 ret = load_global_roots(tree_root); 2239 if (ret) 2240 return ret; 2241 2242 location.type = BTRFS_ROOT_ITEM_KEY; 2243 location.offset = 0; 2244 2245 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2246 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2247 root = btrfs_read_tree_root(tree_root, &location); 2248 if (IS_ERR(root)) { 2249 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2250 ret = PTR_ERR(root); 2251 goto out; 2252 } 2253 } else { 2254 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2255 fs_info->block_group_root = root; 2256 } 2257 } 2258 2259 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2260 root = btrfs_read_tree_root(tree_root, &location); 2261 if (IS_ERR(root)) { 2262 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2263 ret = PTR_ERR(root); 2264 goto out; 2265 } 2266 } else { 2267 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2268 fs_info->dev_root = root; 2269 } 2270 /* Initialize fs_info for all devices in any case */ 2271 ret = btrfs_init_devices_late(fs_info); 2272 if (ret) 2273 goto out; 2274 2275 /* 2276 * This tree can share blocks with some other fs tree during relocation 2277 * and we need a proper setup by btrfs_get_fs_root 2278 */ 2279 root = btrfs_get_fs_root(tree_root->fs_info, 2280 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2281 if (IS_ERR(root)) { 2282 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2283 ret = PTR_ERR(root); 2284 goto out; 2285 } 2286 } else { 2287 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2288 fs_info->data_reloc_root = root; 2289 } 2290 2291 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2292 root = btrfs_read_tree_root(tree_root, &location); 2293 if (!IS_ERR(root)) { 2294 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2295 fs_info->quota_root = root; 2296 } 2297 2298 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2299 root = btrfs_read_tree_root(tree_root, &location); 2300 if (IS_ERR(root)) { 2301 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2302 ret = PTR_ERR(root); 2303 if (ret != -ENOENT) 2304 goto out; 2305 } 2306 } else { 2307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2308 fs_info->uuid_root = root; 2309 } 2310 2311 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2312 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2313 root = btrfs_read_tree_root(tree_root, &location); 2314 if (IS_ERR(root)) { 2315 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2316 ret = PTR_ERR(root); 2317 goto out; 2318 } 2319 } else { 2320 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2321 fs_info->stripe_root = root; 2322 } 2323 } 2324 2325 return 0; 2326 out: 2327 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2328 location.objectid, ret); 2329 return ret; 2330 } 2331 2332 /* 2333 * Real super block validation 2334 * NOTE: super csum type and incompat features will not be checked here. 2335 * 2336 * @sb: super block to check 2337 * @mirror_num: the super block number to check its bytenr: 2338 * 0 the primary (1st) sb 2339 * 1, 2 2nd and 3rd backup copy 2340 * -1 skip bytenr check 2341 */ 2342 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2343 const struct btrfs_super_block *sb, int mirror_num) 2344 { 2345 u64 nodesize = btrfs_super_nodesize(sb); 2346 u64 sectorsize = btrfs_super_sectorsize(sb); 2347 int ret = 0; 2348 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2349 2350 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2351 btrfs_err(fs_info, "no valid FS found"); 2352 ret = -EINVAL; 2353 } 2354 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2355 if (!ignore_flags) { 2356 btrfs_err(fs_info, 2357 "unrecognized or unsupported super flag 0x%llx", 2358 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2359 ret = -EINVAL; 2360 } else { 2361 btrfs_info(fs_info, 2362 "unrecognized or unsupported super flags: 0x%llx, ignored", 2363 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2364 } 2365 } 2366 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2367 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2368 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2369 ret = -EINVAL; 2370 } 2371 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2372 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2373 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2374 ret = -EINVAL; 2375 } 2376 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2377 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2378 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2379 ret = -EINVAL; 2380 } 2381 2382 /* 2383 * Check sectorsize and nodesize first, other check will need it. 2384 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2385 */ 2386 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2387 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2388 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2389 ret = -EINVAL; 2390 } 2391 2392 /* 2393 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2394 * 2395 * We can support 16K sectorsize with 64K page size without problem, 2396 * but such sectorsize/pagesize combination doesn't make much sense. 2397 * 4K will be our future standard, PAGE_SIZE is supported from the very 2398 * beginning. 2399 */ 2400 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2401 btrfs_err(fs_info, 2402 "sectorsize %llu not yet supported for page size %lu", 2403 sectorsize, PAGE_SIZE); 2404 ret = -EINVAL; 2405 } 2406 2407 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2408 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2409 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2410 ret = -EINVAL; 2411 } 2412 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2413 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2414 le32_to_cpu(sb->__unused_leafsize), nodesize); 2415 ret = -EINVAL; 2416 } 2417 2418 /* Root alignment check */ 2419 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2420 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2421 btrfs_super_root(sb)); 2422 ret = -EINVAL; 2423 } 2424 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2425 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2426 btrfs_super_chunk_root(sb)); 2427 ret = -EINVAL; 2428 } 2429 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2430 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2431 btrfs_super_log_root(sb)); 2432 ret = -EINVAL; 2433 } 2434 2435 if (!fs_info->fs_devices->temp_fsid && 2436 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2437 btrfs_err(fs_info, 2438 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2439 sb->fsid, fs_info->fs_devices->fsid); 2440 ret = -EINVAL; 2441 } 2442 2443 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2444 BTRFS_FSID_SIZE) != 0) { 2445 btrfs_err(fs_info, 2446 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2447 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2448 ret = -EINVAL; 2449 } 2450 2451 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2452 BTRFS_FSID_SIZE) != 0) { 2453 btrfs_err(fs_info, 2454 "dev_item UUID does not match metadata fsid: %pU != %pU", 2455 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2456 ret = -EINVAL; 2457 } 2458 2459 /* 2460 * Artificial requirement for block-group-tree to force newer features 2461 * (free-space-tree, no-holes) so the test matrix is smaller. 2462 */ 2463 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2464 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2465 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2466 btrfs_err(fs_info, 2467 "block-group-tree feature requires free-space-tree and no-holes"); 2468 ret = -EINVAL; 2469 } 2470 2471 /* 2472 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2473 * done later 2474 */ 2475 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2476 btrfs_err(fs_info, "bytes_used is too small %llu", 2477 btrfs_super_bytes_used(sb)); 2478 ret = -EINVAL; 2479 } 2480 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2481 btrfs_err(fs_info, "invalid stripesize %u", 2482 btrfs_super_stripesize(sb)); 2483 ret = -EINVAL; 2484 } 2485 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2486 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2487 btrfs_super_num_devices(sb)); 2488 if (btrfs_super_num_devices(sb) == 0) { 2489 btrfs_err(fs_info, "number of devices is 0"); 2490 ret = -EINVAL; 2491 } 2492 2493 if (mirror_num >= 0 && 2494 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2495 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2496 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2497 ret = -EINVAL; 2498 } 2499 2500 /* 2501 * Obvious sys_chunk_array corruptions, it must hold at least one key 2502 * and one chunk 2503 */ 2504 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2505 btrfs_err(fs_info, "system chunk array too big %u > %u", 2506 btrfs_super_sys_array_size(sb), 2507 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2508 ret = -EINVAL; 2509 } 2510 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2511 + sizeof(struct btrfs_chunk)) { 2512 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2513 btrfs_super_sys_array_size(sb), 2514 sizeof(struct btrfs_disk_key) 2515 + sizeof(struct btrfs_chunk)); 2516 ret = -EINVAL; 2517 } 2518 2519 /* 2520 * The generation is a global counter, we'll trust it more than the others 2521 * but it's still possible that it's the one that's wrong. 2522 */ 2523 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2524 btrfs_warn(fs_info, 2525 "suspicious: generation < chunk_root_generation: %llu < %llu", 2526 btrfs_super_generation(sb), 2527 btrfs_super_chunk_root_generation(sb)); 2528 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2529 && btrfs_super_cache_generation(sb) != (u64)-1) 2530 btrfs_warn(fs_info, 2531 "suspicious: generation < cache_generation: %llu < %llu", 2532 btrfs_super_generation(sb), 2533 btrfs_super_cache_generation(sb)); 2534 2535 return ret; 2536 } 2537 2538 /* 2539 * Validation of super block at mount time. 2540 * Some checks already done early at mount time, like csum type and incompat 2541 * flags will be skipped. 2542 */ 2543 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2544 { 2545 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2546 } 2547 2548 /* 2549 * Validation of super block at write time. 2550 * Some checks like bytenr check will be skipped as their values will be 2551 * overwritten soon. 2552 * Extra checks like csum type and incompat flags will be done here. 2553 */ 2554 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2555 struct btrfs_super_block *sb) 2556 { 2557 int ret; 2558 2559 ret = btrfs_validate_super(fs_info, sb, -1); 2560 if (ret < 0) 2561 goto out; 2562 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2563 ret = -EUCLEAN; 2564 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2565 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2566 goto out; 2567 } 2568 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2569 ret = -EUCLEAN; 2570 btrfs_err(fs_info, 2571 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2572 btrfs_super_incompat_flags(sb), 2573 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2574 goto out; 2575 } 2576 out: 2577 if (ret < 0) 2578 btrfs_err(fs_info, 2579 "super block corruption detected before writing it to disk"); 2580 return ret; 2581 } 2582 2583 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2584 { 2585 struct btrfs_tree_parent_check check = { 2586 .level = level, 2587 .transid = gen, 2588 .owner_root = btrfs_root_id(root) 2589 }; 2590 int ret = 0; 2591 2592 root->node = read_tree_block(root->fs_info, bytenr, &check); 2593 if (IS_ERR(root->node)) { 2594 ret = PTR_ERR(root->node); 2595 root->node = NULL; 2596 return ret; 2597 } 2598 if (!extent_buffer_uptodate(root->node)) { 2599 free_extent_buffer(root->node); 2600 root->node = NULL; 2601 return -EIO; 2602 } 2603 2604 btrfs_set_root_node(&root->root_item, root->node); 2605 root->commit_root = btrfs_root_node(root); 2606 btrfs_set_root_refs(&root->root_item, 1); 2607 return ret; 2608 } 2609 2610 static int load_important_roots(struct btrfs_fs_info *fs_info) 2611 { 2612 struct btrfs_super_block *sb = fs_info->super_copy; 2613 u64 gen, bytenr; 2614 int level, ret; 2615 2616 bytenr = btrfs_super_root(sb); 2617 gen = btrfs_super_generation(sb); 2618 level = btrfs_super_root_level(sb); 2619 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2620 if (ret) { 2621 btrfs_warn(fs_info, "couldn't read tree root"); 2622 return ret; 2623 } 2624 return 0; 2625 } 2626 2627 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2628 { 2629 int backup_index = find_newest_super_backup(fs_info); 2630 struct btrfs_super_block *sb = fs_info->super_copy; 2631 struct btrfs_root *tree_root = fs_info->tree_root; 2632 bool handle_error = false; 2633 int ret = 0; 2634 int i; 2635 2636 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2637 if (handle_error) { 2638 if (!IS_ERR(tree_root->node)) 2639 free_extent_buffer(tree_root->node); 2640 tree_root->node = NULL; 2641 2642 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2643 break; 2644 2645 free_root_pointers(fs_info, 0); 2646 2647 /* 2648 * Don't use the log in recovery mode, it won't be 2649 * valid 2650 */ 2651 btrfs_set_super_log_root(sb, 0); 2652 2653 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2654 ret = read_backup_root(fs_info, i); 2655 backup_index = ret; 2656 if (ret < 0) 2657 return ret; 2658 } 2659 2660 ret = load_important_roots(fs_info); 2661 if (ret) { 2662 handle_error = true; 2663 continue; 2664 } 2665 2666 /* 2667 * No need to hold btrfs_root::objectid_mutex since the fs 2668 * hasn't been fully initialised and we are the only user 2669 */ 2670 ret = btrfs_init_root_free_objectid(tree_root); 2671 if (ret < 0) { 2672 handle_error = true; 2673 continue; 2674 } 2675 2676 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2677 2678 ret = btrfs_read_roots(fs_info); 2679 if (ret < 0) { 2680 handle_error = true; 2681 continue; 2682 } 2683 2684 /* All successful */ 2685 fs_info->generation = btrfs_header_generation(tree_root->node); 2686 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2687 fs_info->last_reloc_trans = 0; 2688 2689 /* Always begin writing backup roots after the one being used */ 2690 if (backup_index < 0) { 2691 fs_info->backup_root_index = 0; 2692 } else { 2693 fs_info->backup_root_index = backup_index + 1; 2694 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2695 } 2696 break; 2697 } 2698 2699 return ret; 2700 } 2701 2702 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2703 { 2704 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2705 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2706 INIT_LIST_HEAD(&fs_info->trans_list); 2707 INIT_LIST_HEAD(&fs_info->dead_roots); 2708 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2709 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2710 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2711 spin_lock_init(&fs_info->delalloc_root_lock); 2712 spin_lock_init(&fs_info->trans_lock); 2713 spin_lock_init(&fs_info->fs_roots_radix_lock); 2714 spin_lock_init(&fs_info->delayed_iput_lock); 2715 spin_lock_init(&fs_info->defrag_inodes_lock); 2716 spin_lock_init(&fs_info->super_lock); 2717 spin_lock_init(&fs_info->buffer_lock); 2718 spin_lock_init(&fs_info->unused_bgs_lock); 2719 spin_lock_init(&fs_info->treelog_bg_lock); 2720 spin_lock_init(&fs_info->zone_active_bgs_lock); 2721 spin_lock_init(&fs_info->relocation_bg_lock); 2722 rwlock_init(&fs_info->tree_mod_log_lock); 2723 rwlock_init(&fs_info->global_root_lock); 2724 mutex_init(&fs_info->unused_bg_unpin_mutex); 2725 mutex_init(&fs_info->reclaim_bgs_lock); 2726 mutex_init(&fs_info->reloc_mutex); 2727 mutex_init(&fs_info->delalloc_root_mutex); 2728 mutex_init(&fs_info->zoned_meta_io_lock); 2729 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2730 seqlock_init(&fs_info->profiles_lock); 2731 2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2733 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2734 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2735 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2736 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2737 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2738 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2739 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2740 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2741 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2742 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2743 BTRFS_LOCKDEP_TRANS_COMPLETED); 2744 2745 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2746 INIT_LIST_HEAD(&fs_info->space_info); 2747 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2748 INIT_LIST_HEAD(&fs_info->unused_bgs); 2749 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2750 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2751 #ifdef CONFIG_BTRFS_DEBUG 2752 INIT_LIST_HEAD(&fs_info->allocated_roots); 2753 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2754 spin_lock_init(&fs_info->eb_leak_lock); 2755 #endif 2756 fs_info->mapping_tree = RB_ROOT_CACHED; 2757 rwlock_init(&fs_info->mapping_tree_lock); 2758 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2759 BTRFS_BLOCK_RSV_GLOBAL); 2760 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2761 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2762 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2763 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2764 BTRFS_BLOCK_RSV_DELOPS); 2765 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2766 BTRFS_BLOCK_RSV_DELREFS); 2767 2768 atomic_set(&fs_info->async_delalloc_pages, 0); 2769 atomic_set(&fs_info->defrag_running, 0); 2770 atomic_set(&fs_info->nr_delayed_iputs, 0); 2771 atomic64_set(&fs_info->tree_mod_seq, 0); 2772 fs_info->global_root_tree = RB_ROOT; 2773 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2774 fs_info->metadata_ratio = 0; 2775 fs_info->defrag_inodes = RB_ROOT; 2776 atomic64_set(&fs_info->free_chunk_space, 0); 2777 fs_info->tree_mod_log = RB_ROOT; 2778 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2779 btrfs_init_ref_verify(fs_info); 2780 2781 fs_info->thread_pool_size = min_t(unsigned long, 2782 num_online_cpus() + 2, 8); 2783 2784 INIT_LIST_HEAD(&fs_info->ordered_roots); 2785 spin_lock_init(&fs_info->ordered_root_lock); 2786 2787 btrfs_init_scrub(fs_info); 2788 btrfs_init_balance(fs_info); 2789 btrfs_init_async_reclaim_work(fs_info); 2790 2791 rwlock_init(&fs_info->block_group_cache_lock); 2792 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2793 2794 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2795 IO_TREE_FS_EXCLUDED_EXTENTS); 2796 2797 mutex_init(&fs_info->ordered_operations_mutex); 2798 mutex_init(&fs_info->tree_log_mutex); 2799 mutex_init(&fs_info->chunk_mutex); 2800 mutex_init(&fs_info->transaction_kthread_mutex); 2801 mutex_init(&fs_info->cleaner_mutex); 2802 mutex_init(&fs_info->ro_block_group_mutex); 2803 init_rwsem(&fs_info->commit_root_sem); 2804 init_rwsem(&fs_info->cleanup_work_sem); 2805 init_rwsem(&fs_info->subvol_sem); 2806 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2807 2808 btrfs_init_dev_replace_locks(fs_info); 2809 btrfs_init_qgroup(fs_info); 2810 btrfs_discard_init(fs_info); 2811 2812 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2813 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2814 2815 init_waitqueue_head(&fs_info->transaction_throttle); 2816 init_waitqueue_head(&fs_info->transaction_wait); 2817 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2818 init_waitqueue_head(&fs_info->async_submit_wait); 2819 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2820 2821 /* Usable values until the real ones are cached from the superblock */ 2822 fs_info->nodesize = 4096; 2823 fs_info->sectorsize = 4096; 2824 fs_info->sectorsize_bits = ilog2(4096); 2825 fs_info->stripesize = 4096; 2826 2827 /* Default compress algorithm when user does -o compress */ 2828 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2829 2830 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2831 2832 spin_lock_init(&fs_info->swapfile_pins_lock); 2833 fs_info->swapfile_pins = RB_ROOT; 2834 2835 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2836 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2837 } 2838 2839 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2840 { 2841 int ret; 2842 2843 fs_info->sb = sb; 2844 /* Temporary fixed values for block size until we read the superblock. */ 2845 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2846 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2847 2848 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2849 if (ret) 2850 return ret; 2851 2852 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2853 if (ret) 2854 return ret; 2855 2856 spin_lock_init(&fs_info->extent_map_shrinker_lock); 2857 2858 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2859 if (ret) 2860 return ret; 2861 2862 fs_info->dirty_metadata_batch = PAGE_SIZE * 2863 (1 + ilog2(nr_cpu_ids)); 2864 2865 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2866 if (ret) 2867 return ret; 2868 2869 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2870 GFP_KERNEL); 2871 if (ret) 2872 return ret; 2873 2874 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2875 GFP_KERNEL); 2876 if (!fs_info->delayed_root) 2877 return -ENOMEM; 2878 btrfs_init_delayed_root(fs_info->delayed_root); 2879 2880 if (sb_rdonly(sb)) 2881 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2882 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2883 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2884 2885 return btrfs_alloc_stripe_hash_table(fs_info); 2886 } 2887 2888 static int btrfs_uuid_rescan_kthread(void *data) 2889 { 2890 struct btrfs_fs_info *fs_info = data; 2891 int ret; 2892 2893 /* 2894 * 1st step is to iterate through the existing UUID tree and 2895 * to delete all entries that contain outdated data. 2896 * 2nd step is to add all missing entries to the UUID tree. 2897 */ 2898 ret = btrfs_uuid_tree_iterate(fs_info); 2899 if (ret < 0) { 2900 if (ret != -EINTR) 2901 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2902 ret); 2903 up(&fs_info->uuid_tree_rescan_sem); 2904 return ret; 2905 } 2906 return btrfs_uuid_scan_kthread(data); 2907 } 2908 2909 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2910 { 2911 struct task_struct *task; 2912 2913 down(&fs_info->uuid_tree_rescan_sem); 2914 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2915 if (IS_ERR(task)) { 2916 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2917 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2918 up(&fs_info->uuid_tree_rescan_sem); 2919 return PTR_ERR(task); 2920 } 2921 2922 return 0; 2923 } 2924 2925 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2926 { 2927 u64 root_objectid = 0; 2928 struct btrfs_root *gang[8]; 2929 int ret = 0; 2930 2931 while (1) { 2932 unsigned int found; 2933 2934 spin_lock(&fs_info->fs_roots_radix_lock); 2935 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2936 (void **)gang, root_objectid, 2937 ARRAY_SIZE(gang)); 2938 if (!found) { 2939 spin_unlock(&fs_info->fs_roots_radix_lock); 2940 break; 2941 } 2942 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 2943 2944 for (int i = 0; i < found; i++) { 2945 /* Avoid to grab roots in dead_roots. */ 2946 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2947 gang[i] = NULL; 2948 continue; 2949 } 2950 /* Grab all the search result for later use. */ 2951 gang[i] = btrfs_grab_root(gang[i]); 2952 } 2953 spin_unlock(&fs_info->fs_roots_radix_lock); 2954 2955 for (int i = 0; i < found; i++) { 2956 if (!gang[i]) 2957 continue; 2958 root_objectid = btrfs_root_id(gang[i]); 2959 /* 2960 * Continue to release the remaining roots after the first 2961 * error without cleanup and preserve the first error 2962 * for the return. 2963 */ 2964 if (!ret) 2965 ret = btrfs_orphan_cleanup(gang[i]); 2966 btrfs_put_root(gang[i]); 2967 } 2968 if (ret) 2969 break; 2970 2971 root_objectid++; 2972 } 2973 return ret; 2974 } 2975 2976 /* 2977 * Mounting logic specific to read-write file systems. Shared by open_ctree 2978 * and btrfs_remount when remounting from read-only to read-write. 2979 */ 2980 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2981 { 2982 int ret; 2983 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2984 bool rebuild_free_space_tree = false; 2985 2986 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2987 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2988 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2989 btrfs_warn(fs_info, 2990 "'clear_cache' option is ignored with extent tree v2"); 2991 else 2992 rebuild_free_space_tree = true; 2993 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2994 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2995 btrfs_warn(fs_info, "free space tree is invalid"); 2996 rebuild_free_space_tree = true; 2997 } 2998 2999 if (rebuild_free_space_tree) { 3000 btrfs_info(fs_info, "rebuilding free space tree"); 3001 ret = btrfs_rebuild_free_space_tree(fs_info); 3002 if (ret) { 3003 btrfs_warn(fs_info, 3004 "failed to rebuild free space tree: %d", ret); 3005 goto out; 3006 } 3007 } 3008 3009 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3010 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3011 btrfs_info(fs_info, "disabling free space tree"); 3012 ret = btrfs_delete_free_space_tree(fs_info); 3013 if (ret) { 3014 btrfs_warn(fs_info, 3015 "failed to disable free space tree: %d", ret); 3016 goto out; 3017 } 3018 } 3019 3020 /* 3021 * btrfs_find_orphan_roots() is responsible for finding all the dead 3022 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3023 * them into the fs_info->fs_roots_radix tree. This must be done before 3024 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3025 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3026 * item before the root's tree is deleted - this means that if we unmount 3027 * or crash before the deletion completes, on the next mount we will not 3028 * delete what remains of the tree because the orphan item does not 3029 * exists anymore, which is what tells us we have a pending deletion. 3030 */ 3031 ret = btrfs_find_orphan_roots(fs_info); 3032 if (ret) 3033 goto out; 3034 3035 ret = btrfs_cleanup_fs_roots(fs_info); 3036 if (ret) 3037 goto out; 3038 3039 down_read(&fs_info->cleanup_work_sem); 3040 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3041 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3042 up_read(&fs_info->cleanup_work_sem); 3043 goto out; 3044 } 3045 up_read(&fs_info->cleanup_work_sem); 3046 3047 mutex_lock(&fs_info->cleaner_mutex); 3048 ret = btrfs_recover_relocation(fs_info); 3049 mutex_unlock(&fs_info->cleaner_mutex); 3050 if (ret < 0) { 3051 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3052 goto out; 3053 } 3054 3055 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3056 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3057 btrfs_info(fs_info, "creating free space tree"); 3058 ret = btrfs_create_free_space_tree(fs_info); 3059 if (ret) { 3060 btrfs_warn(fs_info, 3061 "failed to create free space tree: %d", ret); 3062 goto out; 3063 } 3064 } 3065 3066 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3067 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3068 if (ret) 3069 goto out; 3070 } 3071 3072 ret = btrfs_resume_balance_async(fs_info); 3073 if (ret) 3074 goto out; 3075 3076 ret = btrfs_resume_dev_replace_async(fs_info); 3077 if (ret) { 3078 btrfs_warn(fs_info, "failed to resume dev_replace"); 3079 goto out; 3080 } 3081 3082 btrfs_qgroup_rescan_resume(fs_info); 3083 3084 if (!fs_info->uuid_root) { 3085 btrfs_info(fs_info, "creating UUID tree"); 3086 ret = btrfs_create_uuid_tree(fs_info); 3087 if (ret) { 3088 btrfs_warn(fs_info, 3089 "failed to create the UUID tree %d", ret); 3090 goto out; 3091 } 3092 } 3093 3094 out: 3095 return ret; 3096 } 3097 3098 /* 3099 * Do various sanity and dependency checks of different features. 3100 * 3101 * @is_rw_mount: If the mount is read-write. 3102 * 3103 * This is the place for less strict checks (like for subpage or artificial 3104 * feature dependencies). 3105 * 3106 * For strict checks or possible corruption detection, see 3107 * btrfs_validate_super(). 3108 * 3109 * This should be called after btrfs_parse_options(), as some mount options 3110 * (space cache related) can modify on-disk format like free space tree and 3111 * screw up certain feature dependencies. 3112 */ 3113 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3114 { 3115 struct btrfs_super_block *disk_super = fs_info->super_copy; 3116 u64 incompat = btrfs_super_incompat_flags(disk_super); 3117 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3118 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3119 3120 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3121 btrfs_err(fs_info, 3122 "cannot mount because of unknown incompat features (0x%llx)", 3123 incompat); 3124 return -EINVAL; 3125 } 3126 3127 /* Runtime limitation for mixed block groups. */ 3128 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3129 (fs_info->sectorsize != fs_info->nodesize)) { 3130 btrfs_err(fs_info, 3131 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3132 fs_info->nodesize, fs_info->sectorsize); 3133 return -EINVAL; 3134 } 3135 3136 /* Mixed backref is an always-enabled feature. */ 3137 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3138 3139 /* Set compression related flags just in case. */ 3140 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3141 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3142 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3143 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3144 3145 /* 3146 * An ancient flag, which should really be marked deprecated. 3147 * Such runtime limitation doesn't really need a incompat flag. 3148 */ 3149 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3150 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3151 3152 if (compat_ro_unsupp && is_rw_mount) { 3153 btrfs_err(fs_info, 3154 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3155 compat_ro); 3156 return -EINVAL; 3157 } 3158 3159 /* 3160 * We have unsupported RO compat features, although RO mounted, we 3161 * should not cause any metadata writes, including log replay. 3162 * Or we could screw up whatever the new feature requires. 3163 */ 3164 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3165 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3166 btrfs_err(fs_info, 3167 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3168 compat_ro); 3169 return -EINVAL; 3170 } 3171 3172 /* 3173 * Artificial limitations for block group tree, to force 3174 * block-group-tree to rely on no-holes and free-space-tree. 3175 */ 3176 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3177 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3178 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3179 btrfs_err(fs_info, 3180 "block-group-tree feature requires no-holes and free-space-tree features"); 3181 return -EINVAL; 3182 } 3183 3184 /* 3185 * Subpage runtime limitation on v1 cache. 3186 * 3187 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3188 * we're already defaulting to v2 cache, no need to bother v1 as it's 3189 * going to be deprecated anyway. 3190 */ 3191 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3192 btrfs_warn(fs_info, 3193 "v1 space cache is not supported for page size %lu with sectorsize %u", 3194 PAGE_SIZE, fs_info->sectorsize); 3195 return -EINVAL; 3196 } 3197 3198 /* This can be called by remount, we need to protect the super block. */ 3199 spin_lock(&fs_info->super_lock); 3200 btrfs_set_super_incompat_flags(disk_super, incompat); 3201 spin_unlock(&fs_info->super_lock); 3202 3203 return 0; 3204 } 3205 3206 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3207 const char *options) 3208 { 3209 u32 sectorsize; 3210 u32 nodesize; 3211 u32 stripesize; 3212 u64 generation; 3213 u16 csum_type; 3214 struct btrfs_super_block *disk_super; 3215 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3216 struct btrfs_root *tree_root; 3217 struct btrfs_root *chunk_root; 3218 int ret; 3219 int level; 3220 3221 ret = init_mount_fs_info(fs_info, sb); 3222 if (ret) 3223 goto fail; 3224 3225 /* These need to be init'ed before we start creating inodes and such. */ 3226 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3227 GFP_KERNEL); 3228 fs_info->tree_root = tree_root; 3229 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3230 GFP_KERNEL); 3231 fs_info->chunk_root = chunk_root; 3232 if (!tree_root || !chunk_root) { 3233 ret = -ENOMEM; 3234 goto fail; 3235 } 3236 3237 ret = btrfs_init_btree_inode(sb); 3238 if (ret) 3239 goto fail; 3240 3241 invalidate_bdev(fs_devices->latest_dev->bdev); 3242 3243 /* 3244 * Read super block and check the signature bytes only 3245 */ 3246 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3247 if (IS_ERR(disk_super)) { 3248 ret = PTR_ERR(disk_super); 3249 goto fail_alloc; 3250 } 3251 3252 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3253 /* 3254 * Verify the type first, if that or the checksum value are 3255 * corrupted, we'll find out 3256 */ 3257 csum_type = btrfs_super_csum_type(disk_super); 3258 if (!btrfs_supported_super_csum(csum_type)) { 3259 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3260 csum_type); 3261 ret = -EINVAL; 3262 btrfs_release_disk_super(disk_super); 3263 goto fail_alloc; 3264 } 3265 3266 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3267 3268 ret = btrfs_init_csum_hash(fs_info, csum_type); 3269 if (ret) { 3270 btrfs_release_disk_super(disk_super); 3271 goto fail_alloc; 3272 } 3273 3274 /* 3275 * We want to check superblock checksum, the type is stored inside. 3276 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3277 */ 3278 if (btrfs_check_super_csum(fs_info, disk_super)) { 3279 btrfs_err(fs_info, "superblock checksum mismatch"); 3280 ret = -EINVAL; 3281 btrfs_release_disk_super(disk_super); 3282 goto fail_alloc; 3283 } 3284 3285 /* 3286 * super_copy is zeroed at allocation time and we never touch the 3287 * following bytes up to INFO_SIZE, the checksum is calculated from 3288 * the whole block of INFO_SIZE 3289 */ 3290 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3291 btrfs_release_disk_super(disk_super); 3292 3293 disk_super = fs_info->super_copy; 3294 3295 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3296 sizeof(*fs_info->super_for_commit)); 3297 3298 ret = btrfs_validate_mount_super(fs_info); 3299 if (ret) { 3300 btrfs_err(fs_info, "superblock contains fatal errors"); 3301 ret = -EINVAL; 3302 goto fail_alloc; 3303 } 3304 3305 if (!btrfs_super_root(disk_super)) { 3306 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3307 ret = -EINVAL; 3308 goto fail_alloc; 3309 } 3310 3311 /* check FS state, whether FS is broken. */ 3312 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3313 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3314 3315 /* Set up fs_info before parsing mount options */ 3316 nodesize = btrfs_super_nodesize(disk_super); 3317 sectorsize = btrfs_super_sectorsize(disk_super); 3318 stripesize = sectorsize; 3319 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3320 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3321 3322 fs_info->nodesize = nodesize; 3323 fs_info->sectorsize = sectorsize; 3324 fs_info->sectorsize_bits = ilog2(sectorsize); 3325 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3326 fs_info->stripesize = stripesize; 3327 3328 /* 3329 * Handle the space caching options appropriately now that we have the 3330 * super block loaded and validated. 3331 */ 3332 btrfs_set_free_space_cache_settings(fs_info); 3333 3334 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3335 ret = -EINVAL; 3336 goto fail_alloc; 3337 } 3338 3339 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3340 if (ret < 0) 3341 goto fail_alloc; 3342 3343 /* 3344 * At this point our mount options are validated, if we set ->max_inline 3345 * to something non-standard make sure we truncate it to sectorsize. 3346 */ 3347 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3348 3349 if (sectorsize < PAGE_SIZE) { 3350 struct btrfs_subpage_info *subpage_info; 3351 3352 btrfs_warn(fs_info, 3353 "read-write for sector size %u with page size %lu is experimental", 3354 sectorsize, PAGE_SIZE); 3355 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3356 if (!subpage_info) { 3357 ret = -ENOMEM; 3358 goto fail_alloc; 3359 } 3360 btrfs_init_subpage_info(subpage_info, sectorsize); 3361 fs_info->subpage_info = subpage_info; 3362 } 3363 3364 ret = btrfs_init_workqueues(fs_info); 3365 if (ret) 3366 goto fail_sb_buffer; 3367 3368 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3369 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3370 3371 /* Update the values for the current filesystem. */ 3372 sb->s_blocksize = sectorsize; 3373 sb->s_blocksize_bits = blksize_bits(sectorsize); 3374 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3375 3376 mutex_lock(&fs_info->chunk_mutex); 3377 ret = btrfs_read_sys_array(fs_info); 3378 mutex_unlock(&fs_info->chunk_mutex); 3379 if (ret) { 3380 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3381 goto fail_sb_buffer; 3382 } 3383 3384 generation = btrfs_super_chunk_root_generation(disk_super); 3385 level = btrfs_super_chunk_root_level(disk_super); 3386 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3387 generation, level); 3388 if (ret) { 3389 btrfs_err(fs_info, "failed to read chunk root"); 3390 goto fail_tree_roots; 3391 } 3392 3393 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3394 offsetof(struct btrfs_header, chunk_tree_uuid), 3395 BTRFS_UUID_SIZE); 3396 3397 ret = btrfs_read_chunk_tree(fs_info); 3398 if (ret) { 3399 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3400 goto fail_tree_roots; 3401 } 3402 3403 /* 3404 * At this point we know all the devices that make this filesystem, 3405 * including the seed devices but we don't know yet if the replace 3406 * target is required. So free devices that are not part of this 3407 * filesystem but skip the replace target device which is checked 3408 * below in btrfs_init_dev_replace(). 3409 */ 3410 btrfs_free_extra_devids(fs_devices); 3411 if (!fs_devices->latest_dev->bdev) { 3412 btrfs_err(fs_info, "failed to read devices"); 3413 ret = -EIO; 3414 goto fail_tree_roots; 3415 } 3416 3417 ret = init_tree_roots(fs_info); 3418 if (ret) 3419 goto fail_tree_roots; 3420 3421 /* 3422 * Get zone type information of zoned block devices. This will also 3423 * handle emulation of a zoned filesystem if a regular device has the 3424 * zoned incompat feature flag set. 3425 */ 3426 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3427 if (ret) { 3428 btrfs_err(fs_info, 3429 "zoned: failed to read device zone info: %d", ret); 3430 goto fail_block_groups; 3431 } 3432 3433 /* 3434 * If we have a uuid root and we're not being told to rescan we need to 3435 * check the generation here so we can set the 3436 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3437 * transaction during a balance or the log replay without updating the 3438 * uuid generation, and then if we crash we would rescan the uuid tree, 3439 * even though it was perfectly fine. 3440 */ 3441 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3442 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3443 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3444 3445 ret = btrfs_verify_dev_extents(fs_info); 3446 if (ret) { 3447 btrfs_err(fs_info, 3448 "failed to verify dev extents against chunks: %d", 3449 ret); 3450 goto fail_block_groups; 3451 } 3452 ret = btrfs_recover_balance(fs_info); 3453 if (ret) { 3454 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3455 goto fail_block_groups; 3456 } 3457 3458 ret = btrfs_init_dev_stats(fs_info); 3459 if (ret) { 3460 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3461 goto fail_block_groups; 3462 } 3463 3464 ret = btrfs_init_dev_replace(fs_info); 3465 if (ret) { 3466 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3467 goto fail_block_groups; 3468 } 3469 3470 ret = btrfs_check_zoned_mode(fs_info); 3471 if (ret) { 3472 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3473 ret); 3474 goto fail_block_groups; 3475 } 3476 3477 ret = btrfs_sysfs_add_fsid(fs_devices); 3478 if (ret) { 3479 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3480 ret); 3481 goto fail_block_groups; 3482 } 3483 3484 ret = btrfs_sysfs_add_mounted(fs_info); 3485 if (ret) { 3486 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3487 goto fail_fsdev_sysfs; 3488 } 3489 3490 ret = btrfs_init_space_info(fs_info); 3491 if (ret) { 3492 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3493 goto fail_sysfs; 3494 } 3495 3496 ret = btrfs_read_block_groups(fs_info); 3497 if (ret) { 3498 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3499 goto fail_sysfs; 3500 } 3501 3502 btrfs_free_zone_cache(fs_info); 3503 3504 btrfs_check_active_zone_reservation(fs_info); 3505 3506 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3507 !btrfs_check_rw_degradable(fs_info, NULL)) { 3508 btrfs_warn(fs_info, 3509 "writable mount is not allowed due to too many missing devices"); 3510 ret = -EINVAL; 3511 goto fail_sysfs; 3512 } 3513 3514 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3515 "btrfs-cleaner"); 3516 if (IS_ERR(fs_info->cleaner_kthread)) { 3517 ret = PTR_ERR(fs_info->cleaner_kthread); 3518 goto fail_sysfs; 3519 } 3520 3521 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3522 tree_root, 3523 "btrfs-transaction"); 3524 if (IS_ERR(fs_info->transaction_kthread)) { 3525 ret = PTR_ERR(fs_info->transaction_kthread); 3526 goto fail_cleaner; 3527 } 3528 3529 ret = btrfs_read_qgroup_config(fs_info); 3530 if (ret) 3531 goto fail_trans_kthread; 3532 3533 if (btrfs_build_ref_tree(fs_info)) 3534 btrfs_err(fs_info, "couldn't build ref tree"); 3535 3536 /* do not make disk changes in broken FS or nologreplay is given */ 3537 if (btrfs_super_log_root(disk_super) != 0 && 3538 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3539 btrfs_info(fs_info, "start tree-log replay"); 3540 ret = btrfs_replay_log(fs_info, fs_devices); 3541 if (ret) 3542 goto fail_qgroup; 3543 } 3544 3545 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3546 if (IS_ERR(fs_info->fs_root)) { 3547 ret = PTR_ERR(fs_info->fs_root); 3548 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3549 fs_info->fs_root = NULL; 3550 goto fail_qgroup; 3551 } 3552 3553 if (sb_rdonly(sb)) 3554 return 0; 3555 3556 ret = btrfs_start_pre_rw_mount(fs_info); 3557 if (ret) { 3558 close_ctree(fs_info); 3559 return ret; 3560 } 3561 btrfs_discard_resume(fs_info); 3562 3563 if (fs_info->uuid_root && 3564 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3565 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3566 btrfs_info(fs_info, "checking UUID tree"); 3567 ret = btrfs_check_uuid_tree(fs_info); 3568 if (ret) { 3569 btrfs_warn(fs_info, 3570 "failed to check the UUID tree: %d", ret); 3571 close_ctree(fs_info); 3572 return ret; 3573 } 3574 } 3575 3576 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3577 3578 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3579 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3580 wake_up_process(fs_info->cleaner_kthread); 3581 3582 return 0; 3583 3584 fail_qgroup: 3585 btrfs_free_qgroup_config(fs_info); 3586 fail_trans_kthread: 3587 kthread_stop(fs_info->transaction_kthread); 3588 btrfs_cleanup_transaction(fs_info); 3589 btrfs_free_fs_roots(fs_info); 3590 fail_cleaner: 3591 kthread_stop(fs_info->cleaner_kthread); 3592 3593 /* 3594 * make sure we're done with the btree inode before we stop our 3595 * kthreads 3596 */ 3597 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3598 3599 fail_sysfs: 3600 btrfs_sysfs_remove_mounted(fs_info); 3601 3602 fail_fsdev_sysfs: 3603 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3604 3605 fail_block_groups: 3606 btrfs_put_block_group_cache(fs_info); 3607 3608 fail_tree_roots: 3609 if (fs_info->data_reloc_root) 3610 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3611 free_root_pointers(fs_info, true); 3612 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3613 3614 fail_sb_buffer: 3615 btrfs_stop_all_workers(fs_info); 3616 btrfs_free_block_groups(fs_info); 3617 fail_alloc: 3618 btrfs_mapping_tree_free(fs_info); 3619 3620 iput(fs_info->btree_inode); 3621 fail: 3622 btrfs_close_devices(fs_info->fs_devices); 3623 ASSERT(ret < 0); 3624 return ret; 3625 } 3626 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3627 3628 static void btrfs_end_super_write(struct bio *bio) 3629 { 3630 struct btrfs_device *device = bio->bi_private; 3631 struct folio_iter fi; 3632 3633 bio_for_each_folio_all(fi, bio) { 3634 if (bio->bi_status) { 3635 btrfs_warn_rl_in_rcu(device->fs_info, 3636 "lost super block write due to IO error on %s (%d)", 3637 btrfs_dev_name(device), 3638 blk_status_to_errno(bio->bi_status)); 3639 btrfs_dev_stat_inc_and_print(device, 3640 BTRFS_DEV_STAT_WRITE_ERRS); 3641 /* Ensure failure if the primary sb fails. */ 3642 if (bio->bi_opf & REQ_FUA) 3643 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3644 &device->sb_write_errors); 3645 else 3646 atomic_inc(&device->sb_write_errors); 3647 } 3648 folio_unlock(fi.folio); 3649 folio_put(fi.folio); 3650 } 3651 3652 bio_put(bio); 3653 } 3654 3655 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3656 int copy_num, bool drop_cache) 3657 { 3658 struct btrfs_super_block *super; 3659 struct page *page; 3660 u64 bytenr, bytenr_orig; 3661 struct address_space *mapping = bdev->bd_mapping; 3662 int ret; 3663 3664 bytenr_orig = btrfs_sb_offset(copy_num); 3665 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3666 if (ret == -ENOENT) 3667 return ERR_PTR(-EINVAL); 3668 else if (ret) 3669 return ERR_PTR(ret); 3670 3671 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3672 return ERR_PTR(-EINVAL); 3673 3674 if (drop_cache) { 3675 /* This should only be called with the primary sb. */ 3676 ASSERT(copy_num == 0); 3677 3678 /* 3679 * Drop the page of the primary superblock, so later read will 3680 * always read from the device. 3681 */ 3682 invalidate_inode_pages2_range(mapping, 3683 bytenr >> PAGE_SHIFT, 3684 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3685 } 3686 3687 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3688 if (IS_ERR(page)) 3689 return ERR_CAST(page); 3690 3691 super = page_address(page); 3692 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3693 btrfs_release_disk_super(super); 3694 return ERR_PTR(-ENODATA); 3695 } 3696 3697 if (btrfs_super_bytenr(super) != bytenr_orig) { 3698 btrfs_release_disk_super(super); 3699 return ERR_PTR(-EINVAL); 3700 } 3701 3702 return super; 3703 } 3704 3705 3706 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3707 { 3708 struct btrfs_super_block *super, *latest = NULL; 3709 int i; 3710 u64 transid = 0; 3711 3712 /* we would like to check all the supers, but that would make 3713 * a btrfs mount succeed after a mkfs from a different FS. 3714 * So, we need to add a special mount option to scan for 3715 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3716 */ 3717 for (i = 0; i < 1; i++) { 3718 super = btrfs_read_dev_one_super(bdev, i, false); 3719 if (IS_ERR(super)) 3720 continue; 3721 3722 if (!latest || btrfs_super_generation(super) > transid) { 3723 if (latest) 3724 btrfs_release_disk_super(super); 3725 3726 latest = super; 3727 transid = btrfs_super_generation(super); 3728 } 3729 } 3730 3731 return super; 3732 } 3733 3734 /* 3735 * Write superblock @sb to the @device. Do not wait for completion, all the 3736 * folios we use for writing are locked. 3737 * 3738 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3739 * the expected device size at commit time. Note that max_mirrors must be 3740 * same for write and wait phases. 3741 * 3742 * Return number of errors when folio is not found or submission fails. 3743 */ 3744 static int write_dev_supers(struct btrfs_device *device, 3745 struct btrfs_super_block *sb, int max_mirrors) 3746 { 3747 struct btrfs_fs_info *fs_info = device->fs_info; 3748 struct address_space *mapping = device->bdev->bd_mapping; 3749 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3750 int i; 3751 int ret; 3752 u64 bytenr, bytenr_orig; 3753 3754 atomic_set(&device->sb_write_errors, 0); 3755 3756 if (max_mirrors == 0) 3757 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3758 3759 shash->tfm = fs_info->csum_shash; 3760 3761 for (i = 0; i < max_mirrors; i++) { 3762 struct folio *folio; 3763 struct bio *bio; 3764 struct btrfs_super_block *disk_super; 3765 size_t offset; 3766 3767 bytenr_orig = btrfs_sb_offset(i); 3768 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3769 if (ret == -ENOENT) { 3770 continue; 3771 } else if (ret < 0) { 3772 btrfs_err(device->fs_info, 3773 "couldn't get super block location for mirror %d", 3774 i); 3775 atomic_inc(&device->sb_write_errors); 3776 continue; 3777 } 3778 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3779 device->commit_total_bytes) 3780 break; 3781 3782 btrfs_set_super_bytenr(sb, bytenr_orig); 3783 3784 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3785 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3786 sb->csum); 3787 3788 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3789 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3790 GFP_NOFS); 3791 if (IS_ERR(folio)) { 3792 btrfs_err(device->fs_info, 3793 "couldn't get super block page for bytenr %llu", 3794 bytenr); 3795 atomic_inc(&device->sb_write_errors); 3796 continue; 3797 } 3798 ASSERT(folio_order(folio) == 0); 3799 3800 offset = offset_in_folio(folio, bytenr); 3801 disk_super = folio_address(folio) + offset; 3802 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3803 3804 /* 3805 * Directly use bios here instead of relying on the page cache 3806 * to do I/O, so we don't lose the ability to do integrity 3807 * checking. 3808 */ 3809 bio = bio_alloc(device->bdev, 1, 3810 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3811 GFP_NOFS); 3812 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3813 bio->bi_private = device; 3814 bio->bi_end_io = btrfs_end_super_write; 3815 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3816 3817 /* 3818 * We FUA only the first super block. The others we allow to 3819 * go down lazy and there's a short window where the on-disk 3820 * copies might still contain the older version. 3821 */ 3822 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3823 bio->bi_opf |= REQ_FUA; 3824 submit_bio(bio); 3825 3826 if (btrfs_advance_sb_log(device, i)) 3827 atomic_inc(&device->sb_write_errors); 3828 } 3829 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3830 } 3831 3832 /* 3833 * Wait for write completion of superblocks done by write_dev_supers, 3834 * @max_mirrors same for write and wait phases. 3835 * 3836 * Return -1 if primary super block write failed or when there were no super block 3837 * copies written. Otherwise 0. 3838 */ 3839 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3840 { 3841 int i; 3842 int errors = 0; 3843 bool primary_failed = false; 3844 int ret; 3845 u64 bytenr; 3846 3847 if (max_mirrors == 0) 3848 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3849 3850 for (i = 0; i < max_mirrors; i++) { 3851 struct folio *folio; 3852 3853 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3854 if (ret == -ENOENT) { 3855 break; 3856 } else if (ret < 0) { 3857 errors++; 3858 if (i == 0) 3859 primary_failed = true; 3860 continue; 3861 } 3862 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3863 device->commit_total_bytes) 3864 break; 3865 3866 folio = filemap_get_folio(device->bdev->bd_mapping, 3867 bytenr >> PAGE_SHIFT); 3868 /* If the folio has been removed, then we know it completed. */ 3869 if (IS_ERR(folio)) 3870 continue; 3871 ASSERT(folio_order(folio) == 0); 3872 3873 /* Folio will be unlocked once the write completes. */ 3874 folio_wait_locked(folio); 3875 folio_put(folio); 3876 } 3877 3878 errors += atomic_read(&device->sb_write_errors); 3879 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3880 primary_failed = true; 3881 if (primary_failed) { 3882 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3883 device->devid); 3884 return -1; 3885 } 3886 3887 return errors < i ? 0 : -1; 3888 } 3889 3890 /* 3891 * endio for the write_dev_flush, this will wake anyone waiting 3892 * for the barrier when it is done 3893 */ 3894 static void btrfs_end_empty_barrier(struct bio *bio) 3895 { 3896 bio_uninit(bio); 3897 complete(bio->bi_private); 3898 } 3899 3900 /* 3901 * Submit a flush request to the device if it supports it. Error handling is 3902 * done in the waiting counterpart. 3903 */ 3904 static void write_dev_flush(struct btrfs_device *device) 3905 { 3906 struct bio *bio = &device->flush_bio; 3907 3908 device->last_flush_error = BLK_STS_OK; 3909 3910 bio_init(bio, device->bdev, NULL, 0, 3911 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3912 bio->bi_end_io = btrfs_end_empty_barrier; 3913 init_completion(&device->flush_wait); 3914 bio->bi_private = &device->flush_wait; 3915 submit_bio(bio); 3916 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3917 } 3918 3919 /* 3920 * If the flush bio has been submitted by write_dev_flush, wait for it. 3921 * Return true for any error, and false otherwise. 3922 */ 3923 static bool wait_dev_flush(struct btrfs_device *device) 3924 { 3925 struct bio *bio = &device->flush_bio; 3926 3927 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3928 return false; 3929 3930 wait_for_completion_io(&device->flush_wait); 3931 3932 if (bio->bi_status) { 3933 device->last_flush_error = bio->bi_status; 3934 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3935 return true; 3936 } 3937 3938 return false; 3939 } 3940 3941 /* 3942 * send an empty flush down to each device in parallel, 3943 * then wait for them 3944 */ 3945 static int barrier_all_devices(struct btrfs_fs_info *info) 3946 { 3947 struct list_head *head; 3948 struct btrfs_device *dev; 3949 int errors_wait = 0; 3950 3951 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3952 /* send down all the barriers */ 3953 head = &info->fs_devices->devices; 3954 list_for_each_entry(dev, head, dev_list) { 3955 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3956 continue; 3957 if (!dev->bdev) 3958 continue; 3959 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3960 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3961 continue; 3962 3963 write_dev_flush(dev); 3964 } 3965 3966 /* wait for all the barriers */ 3967 list_for_each_entry(dev, head, dev_list) { 3968 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3969 continue; 3970 if (!dev->bdev) { 3971 errors_wait++; 3972 continue; 3973 } 3974 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3975 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3976 continue; 3977 3978 if (wait_dev_flush(dev)) 3979 errors_wait++; 3980 } 3981 3982 /* 3983 * Checks last_flush_error of disks in order to determine the device 3984 * state. 3985 */ 3986 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3987 return -EIO; 3988 3989 return 0; 3990 } 3991 3992 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3993 { 3994 int raid_type; 3995 int min_tolerated = INT_MAX; 3996 3997 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3998 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3999 min_tolerated = min_t(int, min_tolerated, 4000 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4001 tolerated_failures); 4002 4003 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4004 if (raid_type == BTRFS_RAID_SINGLE) 4005 continue; 4006 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4007 continue; 4008 min_tolerated = min_t(int, min_tolerated, 4009 btrfs_raid_array[raid_type]. 4010 tolerated_failures); 4011 } 4012 4013 if (min_tolerated == INT_MAX) { 4014 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4015 min_tolerated = 0; 4016 } 4017 4018 return min_tolerated; 4019 } 4020 4021 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4022 { 4023 struct list_head *head; 4024 struct btrfs_device *dev; 4025 struct btrfs_super_block *sb; 4026 struct btrfs_dev_item *dev_item; 4027 int ret; 4028 int do_barriers; 4029 int max_errors; 4030 int total_errors = 0; 4031 u64 flags; 4032 4033 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4034 4035 /* 4036 * max_mirrors == 0 indicates we're from commit_transaction, 4037 * not from fsync where the tree roots in fs_info have not 4038 * been consistent on disk. 4039 */ 4040 if (max_mirrors == 0) 4041 backup_super_roots(fs_info); 4042 4043 sb = fs_info->super_for_commit; 4044 dev_item = &sb->dev_item; 4045 4046 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4047 head = &fs_info->fs_devices->devices; 4048 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4049 4050 if (do_barriers) { 4051 ret = barrier_all_devices(fs_info); 4052 if (ret) { 4053 mutex_unlock( 4054 &fs_info->fs_devices->device_list_mutex); 4055 btrfs_handle_fs_error(fs_info, ret, 4056 "errors while submitting device barriers."); 4057 return ret; 4058 } 4059 } 4060 4061 list_for_each_entry(dev, head, dev_list) { 4062 if (!dev->bdev) { 4063 total_errors++; 4064 continue; 4065 } 4066 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4067 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4068 continue; 4069 4070 btrfs_set_stack_device_generation(dev_item, 0); 4071 btrfs_set_stack_device_type(dev_item, dev->type); 4072 btrfs_set_stack_device_id(dev_item, dev->devid); 4073 btrfs_set_stack_device_total_bytes(dev_item, 4074 dev->commit_total_bytes); 4075 btrfs_set_stack_device_bytes_used(dev_item, 4076 dev->commit_bytes_used); 4077 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4078 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4079 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4080 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4081 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4082 BTRFS_FSID_SIZE); 4083 4084 flags = btrfs_super_flags(sb); 4085 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4086 4087 ret = btrfs_validate_write_super(fs_info, sb); 4088 if (ret < 0) { 4089 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4090 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4091 "unexpected superblock corruption detected"); 4092 return -EUCLEAN; 4093 } 4094 4095 ret = write_dev_supers(dev, sb, max_mirrors); 4096 if (ret) 4097 total_errors++; 4098 } 4099 if (total_errors > max_errors) { 4100 btrfs_err(fs_info, "%d errors while writing supers", 4101 total_errors); 4102 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4103 4104 /* FUA is masked off if unsupported and can't be the reason */ 4105 btrfs_handle_fs_error(fs_info, -EIO, 4106 "%d errors while writing supers", 4107 total_errors); 4108 return -EIO; 4109 } 4110 4111 total_errors = 0; 4112 list_for_each_entry(dev, head, dev_list) { 4113 if (!dev->bdev) 4114 continue; 4115 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4116 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4117 continue; 4118 4119 ret = wait_dev_supers(dev, max_mirrors); 4120 if (ret) 4121 total_errors++; 4122 } 4123 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4124 if (total_errors > max_errors) { 4125 btrfs_handle_fs_error(fs_info, -EIO, 4126 "%d errors while writing supers", 4127 total_errors); 4128 return -EIO; 4129 } 4130 return 0; 4131 } 4132 4133 /* Drop a fs root from the radix tree and free it. */ 4134 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4135 struct btrfs_root *root) 4136 { 4137 bool drop_ref = false; 4138 4139 spin_lock(&fs_info->fs_roots_radix_lock); 4140 radix_tree_delete(&fs_info->fs_roots_radix, 4141 (unsigned long)btrfs_root_id(root)); 4142 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4143 drop_ref = true; 4144 spin_unlock(&fs_info->fs_roots_radix_lock); 4145 4146 if (BTRFS_FS_ERROR(fs_info)) { 4147 ASSERT(root->log_root == NULL); 4148 if (root->reloc_root) { 4149 btrfs_put_root(root->reloc_root); 4150 root->reloc_root = NULL; 4151 } 4152 } 4153 4154 if (drop_ref) 4155 btrfs_put_root(root); 4156 } 4157 4158 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4159 { 4160 mutex_lock(&fs_info->cleaner_mutex); 4161 btrfs_run_delayed_iputs(fs_info); 4162 mutex_unlock(&fs_info->cleaner_mutex); 4163 wake_up_process(fs_info->cleaner_kthread); 4164 4165 /* wait until ongoing cleanup work done */ 4166 down_write(&fs_info->cleanup_work_sem); 4167 up_write(&fs_info->cleanup_work_sem); 4168 4169 return btrfs_commit_current_transaction(fs_info->tree_root); 4170 } 4171 4172 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4173 { 4174 struct btrfs_transaction *trans; 4175 struct btrfs_transaction *tmp; 4176 bool found = false; 4177 4178 /* 4179 * This function is only called at the very end of close_ctree(), 4180 * thus no other running transaction, no need to take trans_lock. 4181 */ 4182 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4183 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4184 struct extent_state *cached = NULL; 4185 u64 dirty_bytes = 0; 4186 u64 cur = 0; 4187 u64 found_start; 4188 u64 found_end; 4189 4190 found = true; 4191 while (find_first_extent_bit(&trans->dirty_pages, cur, 4192 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4193 dirty_bytes += found_end + 1 - found_start; 4194 cur = found_end + 1; 4195 } 4196 btrfs_warn(fs_info, 4197 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4198 trans->transid, dirty_bytes); 4199 btrfs_cleanup_one_transaction(trans, fs_info); 4200 4201 if (trans == fs_info->running_transaction) 4202 fs_info->running_transaction = NULL; 4203 list_del_init(&trans->list); 4204 4205 btrfs_put_transaction(trans); 4206 trace_btrfs_transaction_commit(fs_info); 4207 } 4208 ASSERT(!found); 4209 } 4210 4211 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4212 { 4213 int ret; 4214 4215 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4216 4217 /* 4218 * If we had UNFINISHED_DROPS we could still be processing them, so 4219 * clear that bit and wake up relocation so it can stop. 4220 * We must do this before stopping the block group reclaim task, because 4221 * at btrfs_relocate_block_group() we wait for this bit, and after the 4222 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4223 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4224 * return 1. 4225 */ 4226 btrfs_wake_unfinished_drop(fs_info); 4227 4228 /* 4229 * We may have the reclaim task running and relocating a data block group, 4230 * in which case it may create delayed iputs. So stop it before we park 4231 * the cleaner kthread otherwise we can get new delayed iputs after 4232 * parking the cleaner, and that can make the async reclaim task to hang 4233 * if it's waiting for delayed iputs to complete, since the cleaner is 4234 * parked and can not run delayed iputs - this will make us hang when 4235 * trying to stop the async reclaim task. 4236 */ 4237 cancel_work_sync(&fs_info->reclaim_bgs_work); 4238 /* 4239 * We don't want the cleaner to start new transactions, add more delayed 4240 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4241 * because that frees the task_struct, and the transaction kthread might 4242 * still try to wake up the cleaner. 4243 */ 4244 kthread_park(fs_info->cleaner_kthread); 4245 4246 /* wait for the qgroup rescan worker to stop */ 4247 btrfs_qgroup_wait_for_completion(fs_info, false); 4248 4249 /* wait for the uuid_scan task to finish */ 4250 down(&fs_info->uuid_tree_rescan_sem); 4251 /* avoid complains from lockdep et al., set sem back to initial state */ 4252 up(&fs_info->uuid_tree_rescan_sem); 4253 4254 /* pause restriper - we want to resume on mount */ 4255 btrfs_pause_balance(fs_info); 4256 4257 btrfs_dev_replace_suspend_for_unmount(fs_info); 4258 4259 btrfs_scrub_cancel(fs_info); 4260 4261 /* wait for any defraggers to finish */ 4262 wait_event(fs_info->transaction_wait, 4263 (atomic_read(&fs_info->defrag_running) == 0)); 4264 4265 /* clear out the rbtree of defraggable inodes */ 4266 btrfs_cleanup_defrag_inodes(fs_info); 4267 4268 /* 4269 * Wait for any fixup workers to complete. 4270 * If we don't wait for them here and they are still running by the time 4271 * we call kthread_stop() against the cleaner kthread further below, we 4272 * get an use-after-free on the cleaner because the fixup worker adds an 4273 * inode to the list of delayed iputs and then attempts to wakeup the 4274 * cleaner kthread, which was already stopped and destroyed. We parked 4275 * already the cleaner, but below we run all pending delayed iputs. 4276 */ 4277 btrfs_flush_workqueue(fs_info->fixup_workers); 4278 4279 /* 4280 * After we parked the cleaner kthread, ordered extents may have 4281 * completed and created new delayed iputs. If one of the async reclaim 4282 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4283 * can hang forever trying to stop it, because if a delayed iput is 4284 * added after it ran btrfs_run_delayed_iputs() and before it called 4285 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4286 * no one else to run iputs. 4287 * 4288 * So wait for all ongoing ordered extents to complete and then run 4289 * delayed iputs. This works because once we reach this point no one 4290 * can either create new ordered extents nor create delayed iputs 4291 * through some other means. 4292 * 4293 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4294 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4295 * but the delayed iput for the respective inode is made only when doing 4296 * the final btrfs_put_ordered_extent() (which must happen at 4297 * btrfs_finish_ordered_io() when we are unmounting). 4298 */ 4299 btrfs_flush_workqueue(fs_info->endio_write_workers); 4300 /* Ordered extents for free space inodes. */ 4301 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4302 btrfs_run_delayed_iputs(fs_info); 4303 4304 cancel_work_sync(&fs_info->async_reclaim_work); 4305 cancel_work_sync(&fs_info->async_data_reclaim_work); 4306 cancel_work_sync(&fs_info->preempt_reclaim_work); 4307 4308 /* Cancel or finish ongoing discard work */ 4309 btrfs_discard_cleanup(fs_info); 4310 4311 if (!sb_rdonly(fs_info->sb)) { 4312 /* 4313 * The cleaner kthread is stopped, so do one final pass over 4314 * unused block groups. 4315 */ 4316 btrfs_delete_unused_bgs(fs_info); 4317 4318 /* 4319 * There might be existing delayed inode workers still running 4320 * and holding an empty delayed inode item. We must wait for 4321 * them to complete first because they can create a transaction. 4322 * This happens when someone calls btrfs_balance_delayed_items() 4323 * and then a transaction commit runs the same delayed nodes 4324 * before any delayed worker has done something with the nodes. 4325 * We must wait for any worker here and not at transaction 4326 * commit time since that could cause a deadlock. 4327 * This is a very rare case. 4328 */ 4329 btrfs_flush_workqueue(fs_info->delayed_workers); 4330 4331 ret = btrfs_commit_super(fs_info); 4332 if (ret) 4333 btrfs_err(fs_info, "commit super ret %d", ret); 4334 } 4335 4336 if (BTRFS_FS_ERROR(fs_info)) 4337 btrfs_error_commit_super(fs_info); 4338 4339 kthread_stop(fs_info->transaction_kthread); 4340 kthread_stop(fs_info->cleaner_kthread); 4341 4342 ASSERT(list_empty(&fs_info->delayed_iputs)); 4343 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4344 4345 if (btrfs_check_quota_leak(fs_info)) { 4346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4347 btrfs_err(fs_info, "qgroup reserved space leaked"); 4348 } 4349 4350 btrfs_free_qgroup_config(fs_info); 4351 ASSERT(list_empty(&fs_info->delalloc_roots)); 4352 4353 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4354 btrfs_info(fs_info, "at unmount delalloc count %lld", 4355 percpu_counter_sum(&fs_info->delalloc_bytes)); 4356 } 4357 4358 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4359 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4360 percpu_counter_sum(&fs_info->ordered_bytes)); 4361 4362 btrfs_sysfs_remove_mounted(fs_info); 4363 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4364 4365 btrfs_put_block_group_cache(fs_info); 4366 4367 /* 4368 * we must make sure there is not any read request to 4369 * submit after we stopping all workers. 4370 */ 4371 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4372 btrfs_stop_all_workers(fs_info); 4373 4374 /* We shouldn't have any transaction open at this point */ 4375 warn_about_uncommitted_trans(fs_info); 4376 4377 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4378 free_root_pointers(fs_info, true); 4379 btrfs_free_fs_roots(fs_info); 4380 4381 /* 4382 * We must free the block groups after dropping the fs_roots as we could 4383 * have had an IO error and have left over tree log blocks that aren't 4384 * cleaned up until the fs roots are freed. This makes the block group 4385 * accounting appear to be wrong because there's pending reserved bytes, 4386 * so make sure we do the block group cleanup afterwards. 4387 */ 4388 btrfs_free_block_groups(fs_info); 4389 4390 iput(fs_info->btree_inode); 4391 4392 btrfs_mapping_tree_free(fs_info); 4393 btrfs_close_devices(fs_info->fs_devices); 4394 } 4395 4396 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4397 struct extent_buffer *buf) 4398 { 4399 struct btrfs_fs_info *fs_info = buf->fs_info; 4400 u64 transid = btrfs_header_generation(buf); 4401 4402 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4403 /* 4404 * This is a fast path so only do this check if we have sanity tests 4405 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4406 * outside of the sanity tests. 4407 */ 4408 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4409 return; 4410 #endif 4411 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4412 ASSERT(trans->transid == fs_info->generation); 4413 btrfs_assert_tree_write_locked(buf); 4414 if (unlikely(transid != fs_info->generation)) { 4415 btrfs_abort_transaction(trans, -EUCLEAN); 4416 btrfs_crit(fs_info, 4417 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4418 buf->start, transid, fs_info->generation); 4419 } 4420 set_extent_buffer_dirty(buf); 4421 } 4422 4423 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4424 int flush_delayed) 4425 { 4426 /* 4427 * looks as though older kernels can get into trouble with 4428 * this code, they end up stuck in balance_dirty_pages forever 4429 */ 4430 int ret; 4431 4432 if (current->flags & PF_MEMALLOC) 4433 return; 4434 4435 if (flush_delayed) 4436 btrfs_balance_delayed_items(fs_info); 4437 4438 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4439 BTRFS_DIRTY_METADATA_THRESH, 4440 fs_info->dirty_metadata_batch); 4441 if (ret > 0) { 4442 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4443 } 4444 } 4445 4446 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4447 { 4448 __btrfs_btree_balance_dirty(fs_info, 1); 4449 } 4450 4451 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4452 { 4453 __btrfs_btree_balance_dirty(fs_info, 0); 4454 } 4455 4456 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4457 { 4458 /* cleanup FS via transaction */ 4459 btrfs_cleanup_transaction(fs_info); 4460 4461 mutex_lock(&fs_info->cleaner_mutex); 4462 btrfs_run_delayed_iputs(fs_info); 4463 mutex_unlock(&fs_info->cleaner_mutex); 4464 4465 down_write(&fs_info->cleanup_work_sem); 4466 up_write(&fs_info->cleanup_work_sem); 4467 } 4468 4469 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4470 { 4471 struct btrfs_root *gang[8]; 4472 u64 root_objectid = 0; 4473 int ret; 4474 4475 spin_lock(&fs_info->fs_roots_radix_lock); 4476 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4477 (void **)gang, root_objectid, 4478 ARRAY_SIZE(gang))) != 0) { 4479 int i; 4480 4481 for (i = 0; i < ret; i++) 4482 gang[i] = btrfs_grab_root(gang[i]); 4483 spin_unlock(&fs_info->fs_roots_radix_lock); 4484 4485 for (i = 0; i < ret; i++) { 4486 if (!gang[i]) 4487 continue; 4488 root_objectid = btrfs_root_id(gang[i]); 4489 btrfs_free_log(NULL, gang[i]); 4490 btrfs_put_root(gang[i]); 4491 } 4492 root_objectid++; 4493 spin_lock(&fs_info->fs_roots_radix_lock); 4494 } 4495 spin_unlock(&fs_info->fs_roots_radix_lock); 4496 btrfs_free_log_root_tree(NULL, fs_info); 4497 } 4498 4499 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4500 { 4501 struct btrfs_ordered_extent *ordered; 4502 4503 spin_lock(&root->ordered_extent_lock); 4504 /* 4505 * This will just short circuit the ordered completion stuff which will 4506 * make sure the ordered extent gets properly cleaned up. 4507 */ 4508 list_for_each_entry(ordered, &root->ordered_extents, 4509 root_extent_list) 4510 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4511 spin_unlock(&root->ordered_extent_lock); 4512 } 4513 4514 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4515 { 4516 struct btrfs_root *root; 4517 LIST_HEAD(splice); 4518 4519 spin_lock(&fs_info->ordered_root_lock); 4520 list_splice_init(&fs_info->ordered_roots, &splice); 4521 while (!list_empty(&splice)) { 4522 root = list_first_entry(&splice, struct btrfs_root, 4523 ordered_root); 4524 list_move_tail(&root->ordered_root, 4525 &fs_info->ordered_roots); 4526 4527 spin_unlock(&fs_info->ordered_root_lock); 4528 btrfs_destroy_ordered_extents(root); 4529 4530 cond_resched(); 4531 spin_lock(&fs_info->ordered_root_lock); 4532 } 4533 spin_unlock(&fs_info->ordered_root_lock); 4534 4535 /* 4536 * We need this here because if we've been flipped read-only we won't 4537 * get sync() from the umount, so we need to make sure any ordered 4538 * extents that haven't had their dirty pages IO start writeout yet 4539 * actually get run and error out properly. 4540 */ 4541 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4542 } 4543 4544 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4545 struct btrfs_fs_info *fs_info) 4546 { 4547 struct rb_node *node; 4548 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs; 4549 struct btrfs_delayed_ref_node *ref; 4550 4551 spin_lock(&delayed_refs->lock); 4552 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4553 struct btrfs_delayed_ref_head *head; 4554 struct rb_node *n; 4555 bool pin_bytes = false; 4556 4557 head = rb_entry(node, struct btrfs_delayed_ref_head, 4558 href_node); 4559 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4560 continue; 4561 4562 spin_lock(&head->lock); 4563 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4564 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4565 ref_node); 4566 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4567 RB_CLEAR_NODE(&ref->ref_node); 4568 if (!list_empty(&ref->add_list)) 4569 list_del(&ref->add_list); 4570 atomic_dec(&delayed_refs->num_entries); 4571 btrfs_put_delayed_ref(ref); 4572 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 4573 } 4574 if (head->must_insert_reserved) 4575 pin_bytes = true; 4576 btrfs_free_delayed_extent_op(head->extent_op); 4577 btrfs_delete_ref_head(delayed_refs, head); 4578 spin_unlock(&head->lock); 4579 spin_unlock(&delayed_refs->lock); 4580 mutex_unlock(&head->mutex); 4581 4582 if (pin_bytes) { 4583 struct btrfs_block_group *cache; 4584 4585 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4586 BUG_ON(!cache); 4587 4588 spin_lock(&cache->space_info->lock); 4589 spin_lock(&cache->lock); 4590 cache->pinned += head->num_bytes; 4591 btrfs_space_info_update_bytes_pinned(fs_info, 4592 cache->space_info, head->num_bytes); 4593 cache->reserved -= head->num_bytes; 4594 cache->space_info->bytes_reserved -= head->num_bytes; 4595 spin_unlock(&cache->lock); 4596 spin_unlock(&cache->space_info->lock); 4597 4598 btrfs_put_block_group(cache); 4599 4600 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4601 head->bytenr + head->num_bytes - 1); 4602 } 4603 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4604 btrfs_put_delayed_ref_head(head); 4605 cond_resched(); 4606 spin_lock(&delayed_refs->lock); 4607 } 4608 btrfs_qgroup_destroy_extent_records(trans); 4609 4610 spin_unlock(&delayed_refs->lock); 4611 } 4612 4613 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4614 { 4615 struct btrfs_inode *btrfs_inode; 4616 LIST_HEAD(splice); 4617 4618 spin_lock(&root->delalloc_lock); 4619 list_splice_init(&root->delalloc_inodes, &splice); 4620 4621 while (!list_empty(&splice)) { 4622 struct inode *inode = NULL; 4623 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4624 delalloc_inodes); 4625 btrfs_del_delalloc_inode(btrfs_inode); 4626 spin_unlock(&root->delalloc_lock); 4627 4628 /* 4629 * Make sure we get a live inode and that it'll not disappear 4630 * meanwhile. 4631 */ 4632 inode = igrab(&btrfs_inode->vfs_inode); 4633 if (inode) { 4634 unsigned int nofs_flag; 4635 4636 nofs_flag = memalloc_nofs_save(); 4637 invalidate_inode_pages2(inode->i_mapping); 4638 memalloc_nofs_restore(nofs_flag); 4639 iput(inode); 4640 } 4641 spin_lock(&root->delalloc_lock); 4642 } 4643 spin_unlock(&root->delalloc_lock); 4644 } 4645 4646 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4647 { 4648 struct btrfs_root *root; 4649 LIST_HEAD(splice); 4650 4651 spin_lock(&fs_info->delalloc_root_lock); 4652 list_splice_init(&fs_info->delalloc_roots, &splice); 4653 while (!list_empty(&splice)) { 4654 root = list_first_entry(&splice, struct btrfs_root, 4655 delalloc_root); 4656 root = btrfs_grab_root(root); 4657 BUG_ON(!root); 4658 spin_unlock(&fs_info->delalloc_root_lock); 4659 4660 btrfs_destroy_delalloc_inodes(root); 4661 btrfs_put_root(root); 4662 4663 spin_lock(&fs_info->delalloc_root_lock); 4664 } 4665 spin_unlock(&fs_info->delalloc_root_lock); 4666 } 4667 4668 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4669 struct extent_io_tree *dirty_pages, 4670 int mark) 4671 { 4672 struct extent_buffer *eb; 4673 u64 start = 0; 4674 u64 end; 4675 4676 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4677 mark, NULL)) { 4678 clear_extent_bits(dirty_pages, start, end, mark); 4679 while (start <= end) { 4680 eb = find_extent_buffer(fs_info, start); 4681 start += fs_info->nodesize; 4682 if (!eb) 4683 continue; 4684 4685 btrfs_tree_lock(eb); 4686 wait_on_extent_buffer_writeback(eb); 4687 btrfs_clear_buffer_dirty(NULL, eb); 4688 btrfs_tree_unlock(eb); 4689 4690 free_extent_buffer_stale(eb); 4691 } 4692 } 4693 } 4694 4695 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4696 struct extent_io_tree *unpin) 4697 { 4698 u64 start; 4699 u64 end; 4700 4701 while (1) { 4702 struct extent_state *cached_state = NULL; 4703 4704 /* 4705 * The btrfs_finish_extent_commit() may get the same range as 4706 * ours between find_first_extent_bit and clear_extent_dirty. 4707 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4708 * the same extent range. 4709 */ 4710 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4711 if (!find_first_extent_bit(unpin, 0, &start, &end, 4712 EXTENT_DIRTY, &cached_state)) { 4713 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4714 break; 4715 } 4716 4717 clear_extent_dirty(unpin, start, end, &cached_state); 4718 free_extent_state(cached_state); 4719 btrfs_error_unpin_extent_range(fs_info, start, end); 4720 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4721 cond_resched(); 4722 } 4723 } 4724 4725 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4726 { 4727 struct inode *inode; 4728 4729 inode = cache->io_ctl.inode; 4730 if (inode) { 4731 unsigned int nofs_flag; 4732 4733 nofs_flag = memalloc_nofs_save(); 4734 invalidate_inode_pages2(inode->i_mapping); 4735 memalloc_nofs_restore(nofs_flag); 4736 4737 BTRFS_I(inode)->generation = 0; 4738 cache->io_ctl.inode = NULL; 4739 iput(inode); 4740 } 4741 ASSERT(cache->io_ctl.pages == NULL); 4742 btrfs_put_block_group(cache); 4743 } 4744 4745 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4746 struct btrfs_fs_info *fs_info) 4747 { 4748 struct btrfs_block_group *cache; 4749 4750 spin_lock(&cur_trans->dirty_bgs_lock); 4751 while (!list_empty(&cur_trans->dirty_bgs)) { 4752 cache = list_first_entry(&cur_trans->dirty_bgs, 4753 struct btrfs_block_group, 4754 dirty_list); 4755 4756 if (!list_empty(&cache->io_list)) { 4757 spin_unlock(&cur_trans->dirty_bgs_lock); 4758 list_del_init(&cache->io_list); 4759 btrfs_cleanup_bg_io(cache); 4760 spin_lock(&cur_trans->dirty_bgs_lock); 4761 } 4762 4763 list_del_init(&cache->dirty_list); 4764 spin_lock(&cache->lock); 4765 cache->disk_cache_state = BTRFS_DC_ERROR; 4766 spin_unlock(&cache->lock); 4767 4768 spin_unlock(&cur_trans->dirty_bgs_lock); 4769 btrfs_put_block_group(cache); 4770 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4771 spin_lock(&cur_trans->dirty_bgs_lock); 4772 } 4773 spin_unlock(&cur_trans->dirty_bgs_lock); 4774 4775 /* 4776 * Refer to the definition of io_bgs member for details why it's safe 4777 * to use it without any locking 4778 */ 4779 while (!list_empty(&cur_trans->io_bgs)) { 4780 cache = list_first_entry(&cur_trans->io_bgs, 4781 struct btrfs_block_group, 4782 io_list); 4783 4784 list_del_init(&cache->io_list); 4785 spin_lock(&cache->lock); 4786 cache->disk_cache_state = BTRFS_DC_ERROR; 4787 spin_unlock(&cache->lock); 4788 btrfs_cleanup_bg_io(cache); 4789 } 4790 } 4791 4792 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4793 { 4794 struct btrfs_root *gang[8]; 4795 int i; 4796 int ret; 4797 4798 spin_lock(&fs_info->fs_roots_radix_lock); 4799 while (1) { 4800 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4801 (void **)gang, 0, 4802 ARRAY_SIZE(gang), 4803 BTRFS_ROOT_TRANS_TAG); 4804 if (ret == 0) 4805 break; 4806 for (i = 0; i < ret; i++) { 4807 struct btrfs_root *root = gang[i]; 4808 4809 btrfs_qgroup_free_meta_all_pertrans(root); 4810 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4811 (unsigned long)btrfs_root_id(root), 4812 BTRFS_ROOT_TRANS_TAG); 4813 } 4814 } 4815 spin_unlock(&fs_info->fs_roots_radix_lock); 4816 } 4817 4818 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4819 struct btrfs_fs_info *fs_info) 4820 { 4821 struct btrfs_device *dev, *tmp; 4822 4823 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4824 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4825 ASSERT(list_empty(&cur_trans->io_bgs)); 4826 4827 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4828 post_commit_list) { 4829 list_del_init(&dev->post_commit_list); 4830 } 4831 4832 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4833 4834 cur_trans->state = TRANS_STATE_COMMIT_START; 4835 wake_up(&fs_info->transaction_blocked_wait); 4836 4837 cur_trans->state = TRANS_STATE_UNBLOCKED; 4838 wake_up(&fs_info->transaction_wait); 4839 4840 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4841 EXTENT_DIRTY); 4842 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4843 4844 cur_trans->state =TRANS_STATE_COMPLETED; 4845 wake_up(&cur_trans->commit_wait); 4846 } 4847 4848 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4849 { 4850 struct btrfs_transaction *t; 4851 4852 mutex_lock(&fs_info->transaction_kthread_mutex); 4853 4854 spin_lock(&fs_info->trans_lock); 4855 while (!list_empty(&fs_info->trans_list)) { 4856 t = list_first_entry(&fs_info->trans_list, 4857 struct btrfs_transaction, list); 4858 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4859 refcount_inc(&t->use_count); 4860 spin_unlock(&fs_info->trans_lock); 4861 btrfs_wait_for_commit(fs_info, t->transid); 4862 btrfs_put_transaction(t); 4863 spin_lock(&fs_info->trans_lock); 4864 continue; 4865 } 4866 if (t == fs_info->running_transaction) { 4867 t->state = TRANS_STATE_COMMIT_DOING; 4868 spin_unlock(&fs_info->trans_lock); 4869 /* 4870 * We wait for 0 num_writers since we don't hold a trans 4871 * handle open currently for this transaction. 4872 */ 4873 wait_event(t->writer_wait, 4874 atomic_read(&t->num_writers) == 0); 4875 } else { 4876 spin_unlock(&fs_info->trans_lock); 4877 } 4878 btrfs_cleanup_one_transaction(t, fs_info); 4879 4880 spin_lock(&fs_info->trans_lock); 4881 if (t == fs_info->running_transaction) 4882 fs_info->running_transaction = NULL; 4883 list_del_init(&t->list); 4884 spin_unlock(&fs_info->trans_lock); 4885 4886 btrfs_put_transaction(t); 4887 trace_btrfs_transaction_commit(fs_info); 4888 spin_lock(&fs_info->trans_lock); 4889 } 4890 spin_unlock(&fs_info->trans_lock); 4891 btrfs_destroy_all_ordered_extents(fs_info); 4892 btrfs_destroy_delayed_inodes(fs_info); 4893 btrfs_assert_delayed_root_empty(fs_info); 4894 btrfs_destroy_all_delalloc_inodes(fs_info); 4895 btrfs_drop_all_logs(fs_info); 4896 btrfs_free_all_qgroup_pertrans(fs_info); 4897 mutex_unlock(&fs_info->transaction_kthread_mutex); 4898 4899 return 0; 4900 } 4901 4902 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4903 { 4904 struct btrfs_path *path; 4905 int ret; 4906 struct extent_buffer *l; 4907 struct btrfs_key search_key; 4908 struct btrfs_key found_key; 4909 int slot; 4910 4911 path = btrfs_alloc_path(); 4912 if (!path) 4913 return -ENOMEM; 4914 4915 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4916 search_key.type = -1; 4917 search_key.offset = (u64)-1; 4918 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4919 if (ret < 0) 4920 goto error; 4921 if (ret == 0) { 4922 /* 4923 * Key with offset -1 found, there would have to exist a root 4924 * with such id, but this is out of valid range. 4925 */ 4926 ret = -EUCLEAN; 4927 goto error; 4928 } 4929 if (path->slots[0] > 0) { 4930 slot = path->slots[0] - 1; 4931 l = path->nodes[0]; 4932 btrfs_item_key_to_cpu(l, &found_key, slot); 4933 root->free_objectid = max_t(u64, found_key.objectid + 1, 4934 BTRFS_FIRST_FREE_OBJECTID); 4935 } else { 4936 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4937 } 4938 ret = 0; 4939 error: 4940 btrfs_free_path(path); 4941 return ret; 4942 } 4943 4944 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4945 { 4946 int ret; 4947 mutex_lock(&root->objectid_mutex); 4948 4949 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4950 btrfs_warn(root->fs_info, 4951 "the objectid of root %llu reaches its highest value", 4952 btrfs_root_id(root)); 4953 ret = -ENOSPC; 4954 goto out; 4955 } 4956 4957 *objectid = root->free_objectid++; 4958 ret = 0; 4959 out: 4960 mutex_unlock(&root->objectid_mutex); 4961 return ret; 4962 } 4963
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.