~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/disk-io.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/fs.h>
  7 #include <linux/blkdev.h>
  8 #include <linux/radix-tree.h>
  9 #include <linux/writeback.h>
 10 #include <linux/workqueue.h>
 11 #include <linux/kthread.h>
 12 #include <linux/slab.h>
 13 #include <linux/migrate.h>
 14 #include <linux/ratelimit.h>
 15 #include <linux/uuid.h>
 16 #include <linux/semaphore.h>
 17 #include <linux/error-injection.h>
 18 #include <linux/crc32c.h>
 19 #include <linux/sched/mm.h>
 20 #include <asm/unaligned.h>
 21 #include <crypto/hash.h>
 22 #include "ctree.h"
 23 #include "disk-io.h"
 24 #include "transaction.h"
 25 #include "btrfs_inode.h"
 26 #include "bio.h"
 27 #include "print-tree.h"
 28 #include "locking.h"
 29 #include "tree-log.h"
 30 #include "free-space-cache.h"
 31 #include "free-space-tree.h"
 32 #include "dev-replace.h"
 33 #include "raid56.h"
 34 #include "sysfs.h"
 35 #include "qgroup.h"
 36 #include "compression.h"
 37 #include "tree-checker.h"
 38 #include "ref-verify.h"
 39 #include "block-group.h"
 40 #include "discard.h"
 41 #include "space-info.h"
 42 #include "zoned.h"
 43 #include "subpage.h"
 44 #include "fs.h"
 45 #include "accessors.h"
 46 #include "extent-tree.h"
 47 #include "root-tree.h"
 48 #include "defrag.h"
 49 #include "uuid-tree.h"
 50 #include "relocation.h"
 51 #include "scrub.h"
 52 #include "super.h"
 53 
 54 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
 55                                  BTRFS_HEADER_FLAG_RELOC |\
 56                                  BTRFS_SUPER_FLAG_ERROR |\
 57                                  BTRFS_SUPER_FLAG_SEEDING |\
 58                                  BTRFS_SUPER_FLAG_METADUMP |\
 59                                  BTRFS_SUPER_FLAG_METADUMP_V2)
 60 
 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
 63 
 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 65 {
 66         if (fs_info->csum_shash)
 67                 crypto_free_shash(fs_info->csum_shash);
 68 }
 69 
 70 /*
 71  * Compute the csum of a btree block and store the result to provided buffer.
 72  */
 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 74 {
 75         struct btrfs_fs_info *fs_info = buf->fs_info;
 76         int num_pages;
 77         u32 first_page_part;
 78         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 79         char *kaddr;
 80         int i;
 81 
 82         shash->tfm = fs_info->csum_shash;
 83         crypto_shash_init(shash);
 84 
 85         if (buf->addr) {
 86                 /* Pages are contiguous, handle them as a big one. */
 87                 kaddr = buf->addr;
 88                 first_page_part = fs_info->nodesize;
 89                 num_pages = 1;
 90         } else {
 91                 kaddr = folio_address(buf->folios[0]);
 92                 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
 93                 num_pages = num_extent_pages(buf);
 94         }
 95 
 96         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 97                             first_page_part - BTRFS_CSUM_SIZE);
 98 
 99         /*
100          * Multiple single-page folios case would reach here.
101          *
102          * nodesize <= PAGE_SIZE and large folio all handled by above
103          * crypto_shash_update() already.
104          */
105         for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106                 kaddr = folio_address(buf->folios[i]);
107                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
108         }
109         memset(result, 0, BTRFS_CSUM_SIZE);
110         crypto_shash_final(shash, result);
111 }
112 
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121         if (!extent_buffer_uptodate(eb))
122                 return 0;
123 
124         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125                 return 1;
126 
127         if (atomic)
128                 return -EAGAIN;
129 
130         if (!extent_buffer_uptodate(eb) ||
131             btrfs_header_generation(eb) != parent_transid) {
132                 btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134                         eb->start, eb->read_mirror,
135                         parent_transid, btrfs_header_generation(eb));
136                 clear_extent_buffer_uptodate(eb);
137                 return 0;
138         }
139         return 1;
140 }
141 
142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144         switch (csum_type) {
145         case BTRFS_CSUM_TYPE_CRC32:
146         case BTRFS_CSUM_TYPE_XXHASH:
147         case BTRFS_CSUM_TYPE_SHA256:
148         case BTRFS_CSUM_TYPE_BLAKE2:
149                 return true;
150         default:
151                 return false;
152         }
153 }
154 
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160                            const struct btrfs_super_block *disk_sb)
161 {
162         char result[BTRFS_CSUM_SIZE];
163         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164 
165         shash->tfm = fs_info->csum_shash;
166 
167         /*
168          * The super_block structure does not span the whole
169          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170          * filled with zeros and is included in the checksum.
171          */
172         crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174 
175         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176                 return 1;
177 
178         return 0;
179 }
180 
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182                                       int mirror_num)
183 {
184         struct btrfs_fs_info *fs_info = eb->fs_info;
185         int num_folios = num_extent_folios(eb);
186         int ret = 0;
187 
188         if (sb_rdonly(fs_info->sb))
189                 return -EROFS;
190 
191         for (int i = 0; i < num_folios; i++) {
192                 struct folio *folio = eb->folios[i];
193                 u64 start = max_t(u64, eb->start, folio_pos(folio));
194                 u64 end = min_t(u64, eb->start + eb->len,
195                                 folio_pos(folio) + eb->folio_size);
196                 u32 len = end - start;
197 
198                 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199                                               start, folio, offset_in_folio(folio, start),
200                                               mirror_num);
201                 if (ret)
202                         break;
203         }
204 
205         return ret;
206 }
207 
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:              expected tree parentness check, see the comments of the
213  *                      structure for details.
214  */
215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216                              const struct btrfs_tree_parent_check *check)
217 {
218         struct btrfs_fs_info *fs_info = eb->fs_info;
219         int failed = 0;
220         int ret;
221         int num_copies = 0;
222         int mirror_num = 0;
223         int failed_mirror = 0;
224 
225         ASSERT(check);
226 
227         while (1) {
228                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230                 if (!ret)
231                         break;
232 
233                 num_copies = btrfs_num_copies(fs_info,
234                                               eb->start, eb->len);
235                 if (num_copies == 1)
236                         break;
237 
238                 if (!failed_mirror) {
239                         failed = 1;
240                         failed_mirror = eb->read_mirror;
241                 }
242 
243                 mirror_num++;
244                 if (mirror_num == failed_mirror)
245                         mirror_num++;
246 
247                 if (mirror_num > num_copies)
248                         break;
249         }
250 
251         if (failed && !ret && failed_mirror)
252                 btrfs_repair_eb_io_failure(eb, failed_mirror);
253 
254         return ret;
255 }
256 
257 /*
258  * Checksum a dirty tree block before IO.
259  */
260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262         struct extent_buffer *eb = bbio->private;
263         struct btrfs_fs_info *fs_info = eb->fs_info;
264         u64 found_start = btrfs_header_bytenr(eb);
265         u64 last_trans;
266         u8 result[BTRFS_CSUM_SIZE];
267         int ret;
268 
269         /* Btree blocks are always contiguous on disk. */
270         if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271                 return BLK_STS_IOERR;
272         if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273                 return BLK_STS_IOERR;
274 
275         /*
276          * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277          * checksum it but zero-out its content. This is done to preserve
278          * ordering of I/O without unnecessarily writing out data.
279          */
280         if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281                 memzero_extent_buffer(eb, 0, eb->len);
282                 return BLK_STS_OK;
283         }
284 
285         if (WARN_ON_ONCE(found_start != eb->start))
286                 return BLK_STS_IOERR;
287         if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288                                                eb->start, eb->len)))
289                 return BLK_STS_IOERR;
290 
291         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292                                     offsetof(struct btrfs_header, fsid),
293                                     BTRFS_FSID_SIZE) == 0);
294         csum_tree_block(eb, result);
295 
296         if (btrfs_header_level(eb))
297                 ret = btrfs_check_node(eb);
298         else
299                 ret = btrfs_check_leaf(eb);
300 
301         if (ret < 0)
302                 goto error;
303 
304         /*
305          * Also check the generation, the eb reached here must be newer than
306          * last committed. Or something seriously wrong happened.
307          */
308         last_trans = btrfs_get_last_trans_committed(fs_info);
309         if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310                 ret = -EUCLEAN;
311                 btrfs_err(fs_info,
312                         "block=%llu bad generation, have %llu expect > %llu",
313                           eb->start, btrfs_header_generation(eb), last_trans);
314                 goto error;
315         }
316         write_extent_buffer(eb, result, 0, fs_info->csum_size);
317         return BLK_STS_OK;
318 
319 error:
320         btrfs_print_tree(eb, 0);
321         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322                   eb->start);
323         /*
324          * Be noisy if this is an extent buffer from a log tree. We don't abort
325          * a transaction in case there's a bad log tree extent buffer, we just
326          * fallback to a transaction commit. Still we want to know when there is
327          * a bad log tree extent buffer, as that may signal a bug somewhere.
328          */
329         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330                 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331         return errno_to_blk_status(ret);
332 }
333 
334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336         struct btrfs_fs_info *fs_info = eb->fs_info;
337         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338         u8 fsid[BTRFS_FSID_SIZE];
339 
340         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341                            BTRFS_FSID_SIZE);
342 
343         /*
344          * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345          * This is then overwritten by metadata_uuid if it is present in the
346          * device_list_add(). The same true for a seed device as well. So use of
347          * fs_devices::metadata_uuid is appropriate here.
348          */
349         if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350                 return false;
351 
352         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354                         return false;
355 
356         return true;
357 }
358 
359 /* Do basic extent buffer checks at read time */
360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361                                  const struct btrfs_tree_parent_check *check)
362 {
363         struct btrfs_fs_info *fs_info = eb->fs_info;
364         u64 found_start;
365         const u32 csum_size = fs_info->csum_size;
366         u8 found_level;
367         u8 result[BTRFS_CSUM_SIZE];
368         const u8 *header_csum;
369         int ret = 0;
370         const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
371 
372         ASSERT(check);
373 
374         found_start = btrfs_header_bytenr(eb);
375         if (found_start != eb->start) {
376                 btrfs_err_rl(fs_info,
377                         "bad tree block start, mirror %u want %llu have %llu",
378                              eb->read_mirror, eb->start, found_start);
379                 ret = -EIO;
380                 goto out;
381         }
382         if (check_tree_block_fsid(eb)) {
383                 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384                              eb->start, eb->read_mirror);
385                 ret = -EIO;
386                 goto out;
387         }
388         found_level = btrfs_header_level(eb);
389         if (found_level >= BTRFS_MAX_LEVEL) {
390                 btrfs_err(fs_info,
391                         "bad tree block level, mirror %u level %d on logical %llu",
392                         eb->read_mirror, btrfs_header_level(eb), eb->start);
393                 ret = -EIO;
394                 goto out;
395         }
396 
397         csum_tree_block(eb, result);
398         header_csum = folio_address(eb->folios[0]) +
399                 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400 
401         if (memcmp(result, header_csum, csum_size) != 0) {
402                 btrfs_warn_rl(fs_info,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
404                               eb->start, eb->read_mirror,
405                               CSUM_FMT_VALUE(csum_size, header_csum),
406                               CSUM_FMT_VALUE(csum_size, result),
407                               btrfs_header_level(eb),
408                               ignore_csum ? ", ignored" : "");
409                 if (!ignore_csum) {
410                         ret = -EUCLEAN;
411                         goto out;
412                 }
413         }
414 
415         if (found_level != check->level) {
416                 btrfs_err(fs_info,
417                 "level verify failed on logical %llu mirror %u wanted %u found %u",
418                           eb->start, eb->read_mirror, check->level, found_level);
419                 ret = -EIO;
420                 goto out;
421         }
422         if (unlikely(check->transid &&
423                      btrfs_header_generation(eb) != check->transid)) {
424                 btrfs_err_rl(eb->fs_info,
425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
426                                 eb->start, eb->read_mirror, check->transid,
427                                 btrfs_header_generation(eb));
428                 ret = -EIO;
429                 goto out;
430         }
431         if (check->has_first_key) {
432                 const struct btrfs_key *expect_key = &check->first_key;
433                 struct btrfs_key found_key;
434 
435                 if (found_level)
436                         btrfs_node_key_to_cpu(eb, &found_key, 0);
437                 else
438                         btrfs_item_key_to_cpu(eb, &found_key, 0);
439                 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
440                         btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442                                   eb->start, check->transid,
443                                   expect_key->objectid,
444                                   expect_key->type, expect_key->offset,
445                                   found_key.objectid, found_key.type,
446                                   found_key.offset);
447                         ret = -EUCLEAN;
448                         goto out;
449                 }
450         }
451         if (check->owner_root) {
452                 ret = btrfs_check_eb_owner(eb, check->owner_root);
453                 if (ret < 0)
454                         goto out;
455         }
456 
457         /*
458          * If this is a leaf block and it is corrupt, set the corrupt bit so
459          * that we don't try and read the other copies of this block, just
460          * return -EIO.
461          */
462         if (found_level == 0 && btrfs_check_leaf(eb)) {
463                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
464                 ret = -EIO;
465         }
466 
467         if (found_level > 0 && btrfs_check_node(eb))
468                 ret = -EIO;
469 
470         if (ret)
471                 btrfs_err(fs_info,
472                 "read time tree block corruption detected on logical %llu mirror %u",
473                           eb->start, eb->read_mirror);
474 out:
475         return ret;
476 }
477 
478 #ifdef CONFIG_MIGRATION
479 static int btree_migrate_folio(struct address_space *mapping,
480                 struct folio *dst, struct folio *src, enum migrate_mode mode)
481 {
482         /*
483          * we can't safely write a btree page from here,
484          * we haven't done the locking hook
485          */
486         if (folio_test_dirty(src))
487                 return -EAGAIN;
488         /*
489          * Buffers may be managed in a filesystem specific way.
490          * We must have no buffers or drop them.
491          */
492         if (folio_get_private(src) &&
493             !filemap_release_folio(src, GFP_KERNEL))
494                 return -EAGAIN;
495         return migrate_folio(mapping, dst, src, mode);
496 }
497 #else
498 #define btree_migrate_folio NULL
499 #endif
500 
501 static int btree_writepages(struct address_space *mapping,
502                             struct writeback_control *wbc)
503 {
504         int ret;
505 
506         if (wbc->sync_mode == WB_SYNC_NONE) {
507                 struct btrfs_fs_info *fs_info;
508 
509                 if (wbc->for_kupdate)
510                         return 0;
511 
512                 fs_info = inode_to_fs_info(mapping->host);
513                 /* this is a bit racy, but that's ok */
514                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
515                                              BTRFS_DIRTY_METADATA_THRESH,
516                                              fs_info->dirty_metadata_batch);
517                 if (ret < 0)
518                         return 0;
519         }
520         return btree_write_cache_pages(mapping, wbc);
521 }
522 
523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
524 {
525         if (folio_test_writeback(folio) || folio_test_dirty(folio))
526                 return false;
527 
528         return try_release_extent_buffer(&folio->page);
529 }
530 
531 static void btree_invalidate_folio(struct folio *folio, size_t offset,
532                                  size_t length)
533 {
534         struct extent_io_tree *tree;
535 
536         tree = &folio_to_inode(folio)->io_tree;
537         extent_invalidate_folio(tree, folio, offset);
538         btree_release_folio(folio, GFP_NOFS);
539         if (folio_get_private(folio)) {
540                 btrfs_warn(folio_to_fs_info(folio),
541                            "folio private not zero on folio %llu",
542                            (unsigned long long)folio_pos(folio));
543                 folio_detach_private(folio);
544         }
545 }
546 
547 #ifdef DEBUG
548 static bool btree_dirty_folio(struct address_space *mapping,
549                 struct folio *folio)
550 {
551         struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
552         struct btrfs_subpage_info *spi = fs_info->subpage_info;
553         struct btrfs_subpage *subpage;
554         struct extent_buffer *eb;
555         int cur_bit = 0;
556         u64 page_start = folio_pos(folio);
557 
558         if (fs_info->sectorsize == PAGE_SIZE) {
559                 eb = folio_get_private(folio);
560                 BUG_ON(!eb);
561                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
562                 BUG_ON(!atomic_read(&eb->refs));
563                 btrfs_assert_tree_write_locked(eb);
564                 return filemap_dirty_folio(mapping, folio);
565         }
566 
567         ASSERT(spi);
568         subpage = folio_get_private(folio);
569 
570         for (cur_bit = spi->dirty_offset;
571              cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
572              cur_bit++) {
573                 unsigned long flags;
574                 u64 cur;
575 
576                 spin_lock_irqsave(&subpage->lock, flags);
577                 if (!test_bit(cur_bit, subpage->bitmaps)) {
578                         spin_unlock_irqrestore(&subpage->lock, flags);
579                         continue;
580                 }
581                 spin_unlock_irqrestore(&subpage->lock, flags);
582                 cur = page_start + cur_bit * fs_info->sectorsize;
583 
584                 eb = find_extent_buffer(fs_info, cur);
585                 ASSERT(eb);
586                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
587                 ASSERT(atomic_read(&eb->refs));
588                 btrfs_assert_tree_write_locked(eb);
589                 free_extent_buffer(eb);
590 
591                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
592         }
593         return filemap_dirty_folio(mapping, folio);
594 }
595 #else
596 #define btree_dirty_folio filemap_dirty_folio
597 #endif
598 
599 static const struct address_space_operations btree_aops = {
600         .writepages     = btree_writepages,
601         .release_folio  = btree_release_folio,
602         .invalidate_folio = btree_invalidate_folio,
603         .migrate_folio  = btree_migrate_folio,
604         .dirty_folio    = btree_dirty_folio,
605 };
606 
607 struct extent_buffer *btrfs_find_create_tree_block(
608                                                 struct btrfs_fs_info *fs_info,
609                                                 u64 bytenr, u64 owner_root,
610                                                 int level)
611 {
612         if (btrfs_is_testing(fs_info))
613                 return alloc_test_extent_buffer(fs_info, bytenr);
614         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
615 }
616 
617 /*
618  * Read tree block at logical address @bytenr and do variant basic but critical
619  * verification.
620  *
621  * @check:              expected tree parentness check, see comments of the
622  *                      structure for details.
623  */
624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
625                                       struct btrfs_tree_parent_check *check)
626 {
627         struct extent_buffer *buf = NULL;
628         int ret;
629 
630         ASSERT(check);
631 
632         buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
633                                            check->level);
634         if (IS_ERR(buf))
635                 return buf;
636 
637         ret = btrfs_read_extent_buffer(buf, check);
638         if (ret) {
639                 free_extent_buffer_stale(buf);
640                 return ERR_PTR(ret);
641         }
642         return buf;
643 
644 }
645 
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647                          u64 objectid)
648 {
649         bool dummy = btrfs_is_testing(fs_info);
650 
651         memset(&root->root_key, 0, sizeof(root->root_key));
652         memset(&root->root_item, 0, sizeof(root->root_item));
653         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654         root->fs_info = fs_info;
655         root->root_key.objectid = objectid;
656         root->node = NULL;
657         root->commit_root = NULL;
658         root->state = 0;
659         RB_CLEAR_NODE(&root->rb_node);
660 
661         btrfs_set_root_last_trans(root, 0);
662         root->free_objectid = 0;
663         root->nr_delalloc_inodes = 0;
664         root->nr_ordered_extents = 0;
665         xa_init(&root->inodes);
666         xa_init(&root->delayed_nodes);
667 
668         btrfs_init_root_block_rsv(root);
669 
670         INIT_LIST_HEAD(&root->dirty_list);
671         INIT_LIST_HEAD(&root->root_list);
672         INIT_LIST_HEAD(&root->delalloc_inodes);
673         INIT_LIST_HEAD(&root->delalloc_root);
674         INIT_LIST_HEAD(&root->ordered_extents);
675         INIT_LIST_HEAD(&root->ordered_root);
676         INIT_LIST_HEAD(&root->reloc_dirty_list);
677         spin_lock_init(&root->delalloc_lock);
678         spin_lock_init(&root->ordered_extent_lock);
679         spin_lock_init(&root->accounting_lock);
680         spin_lock_init(&root->qgroup_meta_rsv_lock);
681         mutex_init(&root->objectid_mutex);
682         mutex_init(&root->log_mutex);
683         mutex_init(&root->ordered_extent_mutex);
684         mutex_init(&root->delalloc_mutex);
685         init_waitqueue_head(&root->qgroup_flush_wait);
686         init_waitqueue_head(&root->log_writer_wait);
687         init_waitqueue_head(&root->log_commit_wait[0]);
688         init_waitqueue_head(&root->log_commit_wait[1]);
689         INIT_LIST_HEAD(&root->log_ctxs[0]);
690         INIT_LIST_HEAD(&root->log_ctxs[1]);
691         atomic_set(&root->log_commit[0], 0);
692         atomic_set(&root->log_commit[1], 0);
693         atomic_set(&root->log_writers, 0);
694         atomic_set(&root->log_batch, 0);
695         refcount_set(&root->refs, 1);
696         atomic_set(&root->snapshot_force_cow, 0);
697         atomic_set(&root->nr_swapfiles, 0);
698         btrfs_set_root_log_transid(root, 0);
699         root->log_transid_committed = -1;
700         btrfs_set_root_last_log_commit(root, 0);
701         root->anon_dev = 0;
702         if (!dummy) {
703                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
704                                     IO_TREE_ROOT_DIRTY_LOG_PAGES);
705                 extent_io_tree_init(fs_info, &root->log_csum_range,
706                                     IO_TREE_LOG_CSUM_RANGE);
707         }
708 
709         spin_lock_init(&root->root_item_lock);
710         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
711 #ifdef CONFIG_BTRFS_DEBUG
712         INIT_LIST_HEAD(&root->leak_list);
713         spin_lock(&fs_info->fs_roots_radix_lock);
714         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
715         spin_unlock(&fs_info->fs_roots_radix_lock);
716 #endif
717 }
718 
719 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
720                                            u64 objectid, gfp_t flags)
721 {
722         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
723         if (root)
724                 __setup_root(root, fs_info, objectid);
725         return root;
726 }
727 
728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
729 /* Should only be used by the testing infrastructure */
730 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
731 {
732         struct btrfs_root *root;
733 
734         if (!fs_info)
735                 return ERR_PTR(-EINVAL);
736 
737         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
738         if (!root)
739                 return ERR_PTR(-ENOMEM);
740 
741         /* We don't use the stripesize in selftest, set it as sectorsize */
742         root->alloc_bytenr = 0;
743 
744         return root;
745 }
746 #endif
747 
748 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
749 {
750         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
751         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
752 
753         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
754 }
755 
756 static int global_root_key_cmp(const void *k, const struct rb_node *node)
757 {
758         const struct btrfs_key *key = k;
759         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
760 
761         return btrfs_comp_cpu_keys(key, &root->root_key);
762 }
763 
764 int btrfs_global_root_insert(struct btrfs_root *root)
765 {
766         struct btrfs_fs_info *fs_info = root->fs_info;
767         struct rb_node *tmp;
768         int ret = 0;
769 
770         write_lock(&fs_info->global_root_lock);
771         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
772         write_unlock(&fs_info->global_root_lock);
773 
774         if (tmp) {
775                 ret = -EEXIST;
776                 btrfs_warn(fs_info, "global root %llu %llu already exists",
777                            btrfs_root_id(root), root->root_key.offset);
778         }
779         return ret;
780 }
781 
782 void btrfs_global_root_delete(struct btrfs_root *root)
783 {
784         struct btrfs_fs_info *fs_info = root->fs_info;
785 
786         write_lock(&fs_info->global_root_lock);
787         rb_erase(&root->rb_node, &fs_info->global_root_tree);
788         write_unlock(&fs_info->global_root_lock);
789 }
790 
791 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
792                                      struct btrfs_key *key)
793 {
794         struct rb_node *node;
795         struct btrfs_root *root = NULL;
796 
797         read_lock(&fs_info->global_root_lock);
798         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
799         if (node)
800                 root = container_of(node, struct btrfs_root, rb_node);
801         read_unlock(&fs_info->global_root_lock);
802 
803         return root;
804 }
805 
806 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
807 {
808         struct btrfs_block_group *block_group;
809         u64 ret;
810 
811         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
812                 return 0;
813 
814         if (bytenr)
815                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
816         else
817                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
818         ASSERT(block_group);
819         if (!block_group)
820                 return 0;
821         ret = block_group->global_root_id;
822         btrfs_put_block_group(block_group);
823 
824         return ret;
825 }
826 
827 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
828 {
829         struct btrfs_key key = {
830                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
831                 .type = BTRFS_ROOT_ITEM_KEY,
832                 .offset = btrfs_global_root_id(fs_info, bytenr),
833         };
834 
835         return btrfs_global_root(fs_info, &key);
836 }
837 
838 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
839 {
840         struct btrfs_key key = {
841                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
842                 .type = BTRFS_ROOT_ITEM_KEY,
843                 .offset = btrfs_global_root_id(fs_info, bytenr),
844         };
845 
846         return btrfs_global_root(fs_info, &key);
847 }
848 
849 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
850                                      u64 objectid)
851 {
852         struct btrfs_fs_info *fs_info = trans->fs_info;
853         struct extent_buffer *leaf;
854         struct btrfs_root *tree_root = fs_info->tree_root;
855         struct btrfs_root *root;
856         struct btrfs_key key;
857         unsigned int nofs_flag;
858         int ret = 0;
859 
860         /*
861          * We're holding a transaction handle, so use a NOFS memory allocation
862          * context to avoid deadlock if reclaim happens.
863          */
864         nofs_flag = memalloc_nofs_save();
865         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
866         memalloc_nofs_restore(nofs_flag);
867         if (!root)
868                 return ERR_PTR(-ENOMEM);
869 
870         root->root_key.objectid = objectid;
871         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
872         root->root_key.offset = 0;
873 
874         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
875                                       0, BTRFS_NESTING_NORMAL);
876         if (IS_ERR(leaf)) {
877                 ret = PTR_ERR(leaf);
878                 leaf = NULL;
879                 goto fail;
880         }
881 
882         root->node = leaf;
883         btrfs_mark_buffer_dirty(trans, leaf);
884 
885         root->commit_root = btrfs_root_node(root);
886         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
887 
888         btrfs_set_root_flags(&root->root_item, 0);
889         btrfs_set_root_limit(&root->root_item, 0);
890         btrfs_set_root_bytenr(&root->root_item, leaf->start);
891         btrfs_set_root_generation(&root->root_item, trans->transid);
892         btrfs_set_root_level(&root->root_item, 0);
893         btrfs_set_root_refs(&root->root_item, 1);
894         btrfs_set_root_used(&root->root_item, leaf->len);
895         btrfs_set_root_last_snapshot(&root->root_item, 0);
896         btrfs_set_root_dirid(&root->root_item, 0);
897         if (is_fstree(objectid))
898                 generate_random_guid(root->root_item.uuid);
899         else
900                 export_guid(root->root_item.uuid, &guid_null);
901         btrfs_set_root_drop_level(&root->root_item, 0);
902 
903         btrfs_tree_unlock(leaf);
904 
905         key.objectid = objectid;
906         key.type = BTRFS_ROOT_ITEM_KEY;
907         key.offset = 0;
908         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
909         if (ret)
910                 goto fail;
911 
912         return root;
913 
914 fail:
915         btrfs_put_root(root);
916 
917         return ERR_PTR(ret);
918 }
919 
920 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
921                                          struct btrfs_fs_info *fs_info)
922 {
923         struct btrfs_root *root;
924 
925         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
926         if (!root)
927                 return ERR_PTR(-ENOMEM);
928 
929         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
930         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
931         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
932 
933         return root;
934 }
935 
936 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
937                               struct btrfs_root *root)
938 {
939         struct extent_buffer *leaf;
940 
941         /*
942          * DON'T set SHAREABLE bit for log trees.
943          *
944          * Log trees are not exposed to user space thus can't be snapshotted,
945          * and they go away before a real commit is actually done.
946          *
947          * They do store pointers to file data extents, and those reference
948          * counts still get updated (along with back refs to the log tree).
949          */
950 
951         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
952                         NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
953         if (IS_ERR(leaf))
954                 return PTR_ERR(leaf);
955 
956         root->node = leaf;
957 
958         btrfs_mark_buffer_dirty(trans, root->node);
959         btrfs_tree_unlock(root->node);
960 
961         return 0;
962 }
963 
964 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
965                              struct btrfs_fs_info *fs_info)
966 {
967         struct btrfs_root *log_root;
968 
969         log_root = alloc_log_tree(trans, fs_info);
970         if (IS_ERR(log_root))
971                 return PTR_ERR(log_root);
972 
973         if (!btrfs_is_zoned(fs_info)) {
974                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
975 
976                 if (ret) {
977                         btrfs_put_root(log_root);
978                         return ret;
979                 }
980         }
981 
982         WARN_ON(fs_info->log_root_tree);
983         fs_info->log_root_tree = log_root;
984         return 0;
985 }
986 
987 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
988                        struct btrfs_root *root)
989 {
990         struct btrfs_fs_info *fs_info = root->fs_info;
991         struct btrfs_root *log_root;
992         struct btrfs_inode_item *inode_item;
993         int ret;
994 
995         log_root = alloc_log_tree(trans, fs_info);
996         if (IS_ERR(log_root))
997                 return PTR_ERR(log_root);
998 
999         ret = btrfs_alloc_log_tree_node(trans, log_root);
1000         if (ret) {
1001                 btrfs_put_root(log_root);
1002                 return ret;
1003         }
1004 
1005         btrfs_set_root_last_trans(log_root, trans->transid);
1006         log_root->root_key.offset = btrfs_root_id(root);
1007 
1008         inode_item = &log_root->root_item.inode;
1009         btrfs_set_stack_inode_generation(inode_item, 1);
1010         btrfs_set_stack_inode_size(inode_item, 3);
1011         btrfs_set_stack_inode_nlink(inode_item, 1);
1012         btrfs_set_stack_inode_nbytes(inode_item,
1013                                      fs_info->nodesize);
1014         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1015 
1016         btrfs_set_root_node(&log_root->root_item, log_root->node);
1017 
1018         WARN_ON(root->log_root);
1019         root->log_root = log_root;
1020         btrfs_set_root_log_transid(root, 0);
1021         root->log_transid_committed = -1;
1022         btrfs_set_root_last_log_commit(root, 0);
1023         return 0;
1024 }
1025 
1026 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1027                                               struct btrfs_path *path,
1028                                               const struct btrfs_key *key)
1029 {
1030         struct btrfs_root *root;
1031         struct btrfs_tree_parent_check check = { 0 };
1032         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1033         u64 generation;
1034         int ret;
1035         int level;
1036 
1037         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1038         if (!root)
1039                 return ERR_PTR(-ENOMEM);
1040 
1041         ret = btrfs_find_root(tree_root, key, path,
1042                               &root->root_item, &root->root_key);
1043         if (ret) {
1044                 if (ret > 0)
1045                         ret = -ENOENT;
1046                 goto fail;
1047         }
1048 
1049         generation = btrfs_root_generation(&root->root_item);
1050         level = btrfs_root_level(&root->root_item);
1051         check.level = level;
1052         check.transid = generation;
1053         check.owner_root = key->objectid;
1054         root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1055                                      &check);
1056         if (IS_ERR(root->node)) {
1057                 ret = PTR_ERR(root->node);
1058                 root->node = NULL;
1059                 goto fail;
1060         }
1061         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1062                 ret = -EIO;
1063                 goto fail;
1064         }
1065 
1066         /*
1067          * For real fs, and not log/reloc trees, root owner must
1068          * match its root node owner
1069          */
1070         if (!btrfs_is_testing(fs_info) &&
1071             btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1072             btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1073             btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1074                 btrfs_crit(fs_info,
1075 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1076                            btrfs_root_id(root), root->node->start,
1077                            btrfs_header_owner(root->node),
1078                            btrfs_root_id(root));
1079                 ret = -EUCLEAN;
1080                 goto fail;
1081         }
1082         root->commit_root = btrfs_root_node(root);
1083         return root;
1084 fail:
1085         btrfs_put_root(root);
1086         return ERR_PTR(ret);
1087 }
1088 
1089 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1090                                         const struct btrfs_key *key)
1091 {
1092         struct btrfs_root *root;
1093         struct btrfs_path *path;
1094 
1095         path = btrfs_alloc_path();
1096         if (!path)
1097                 return ERR_PTR(-ENOMEM);
1098         root = read_tree_root_path(tree_root, path, key);
1099         btrfs_free_path(path);
1100 
1101         return root;
1102 }
1103 
1104 /*
1105  * Initialize subvolume root in-memory structure
1106  *
1107  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1108  */
1109 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1110 {
1111         int ret;
1112 
1113         btrfs_drew_lock_init(&root->snapshot_lock);
1114 
1115         if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1116             !btrfs_is_data_reloc_root(root) &&
1117             is_fstree(btrfs_root_id(root))) {
1118                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1119                 btrfs_check_and_init_root_item(&root->root_item);
1120         }
1121 
1122         /*
1123          * Don't assign anonymous block device to roots that are not exposed to
1124          * userspace, the id pool is limited to 1M
1125          */
1126         if (is_fstree(btrfs_root_id(root)) &&
1127             btrfs_root_refs(&root->root_item) > 0) {
1128                 if (!anon_dev) {
1129                         ret = get_anon_bdev(&root->anon_dev);
1130                         if (ret)
1131                                 goto fail;
1132                 } else {
1133                         root->anon_dev = anon_dev;
1134                 }
1135         }
1136 
1137         mutex_lock(&root->objectid_mutex);
1138         ret = btrfs_init_root_free_objectid(root);
1139         if (ret) {
1140                 mutex_unlock(&root->objectid_mutex);
1141                 goto fail;
1142         }
1143 
1144         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1145 
1146         mutex_unlock(&root->objectid_mutex);
1147 
1148         return 0;
1149 fail:
1150         /* The caller is responsible to call btrfs_free_fs_root */
1151         return ret;
1152 }
1153 
1154 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1155                                                u64 root_id)
1156 {
1157         struct btrfs_root *root;
1158 
1159         spin_lock(&fs_info->fs_roots_radix_lock);
1160         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1161                                  (unsigned long)root_id);
1162         root = btrfs_grab_root(root);
1163         spin_unlock(&fs_info->fs_roots_radix_lock);
1164         return root;
1165 }
1166 
1167 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1168                                                 u64 objectid)
1169 {
1170         struct btrfs_key key = {
1171                 .objectid = objectid,
1172                 .type = BTRFS_ROOT_ITEM_KEY,
1173                 .offset = 0,
1174         };
1175 
1176         switch (objectid) {
1177         case BTRFS_ROOT_TREE_OBJECTID:
1178                 return btrfs_grab_root(fs_info->tree_root);
1179         case BTRFS_EXTENT_TREE_OBJECTID:
1180                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1181         case BTRFS_CHUNK_TREE_OBJECTID:
1182                 return btrfs_grab_root(fs_info->chunk_root);
1183         case BTRFS_DEV_TREE_OBJECTID:
1184                 return btrfs_grab_root(fs_info->dev_root);
1185         case BTRFS_CSUM_TREE_OBJECTID:
1186                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1187         case BTRFS_QUOTA_TREE_OBJECTID:
1188                 return btrfs_grab_root(fs_info->quota_root);
1189         case BTRFS_UUID_TREE_OBJECTID:
1190                 return btrfs_grab_root(fs_info->uuid_root);
1191         case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1192                 return btrfs_grab_root(fs_info->block_group_root);
1193         case BTRFS_FREE_SPACE_TREE_OBJECTID:
1194                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1195         case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1196                 return btrfs_grab_root(fs_info->stripe_root);
1197         default:
1198                 return NULL;
1199         }
1200 }
1201 
1202 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1203                          struct btrfs_root *root)
1204 {
1205         int ret;
1206 
1207         ret = radix_tree_preload(GFP_NOFS);
1208         if (ret)
1209                 return ret;
1210 
1211         spin_lock(&fs_info->fs_roots_radix_lock);
1212         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1213                                 (unsigned long)btrfs_root_id(root),
1214                                 root);
1215         if (ret == 0) {
1216                 btrfs_grab_root(root);
1217                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1218         }
1219         spin_unlock(&fs_info->fs_roots_radix_lock);
1220         radix_tree_preload_end();
1221 
1222         return ret;
1223 }
1224 
1225 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1226 {
1227 #ifdef CONFIG_BTRFS_DEBUG
1228         struct btrfs_root *root;
1229 
1230         while (!list_empty(&fs_info->allocated_roots)) {
1231                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1232 
1233                 root = list_first_entry(&fs_info->allocated_roots,
1234                                         struct btrfs_root, leak_list);
1235                 btrfs_err(fs_info, "leaked root %s refcount %d",
1236                           btrfs_root_name(&root->root_key, buf),
1237                           refcount_read(&root->refs));
1238                 WARN_ON_ONCE(1);
1239                 while (refcount_read(&root->refs) > 1)
1240                         btrfs_put_root(root);
1241                 btrfs_put_root(root);
1242         }
1243 #endif
1244 }
1245 
1246 static void free_global_roots(struct btrfs_fs_info *fs_info)
1247 {
1248         struct btrfs_root *root;
1249         struct rb_node *node;
1250 
1251         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1252                 root = rb_entry(node, struct btrfs_root, rb_node);
1253                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1254                 btrfs_put_root(root);
1255         }
1256 }
1257 
1258 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1259 {
1260         struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1261 
1262         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1263         percpu_counter_destroy(&fs_info->delalloc_bytes);
1264         percpu_counter_destroy(&fs_info->ordered_bytes);
1265         if (percpu_counter_initialized(em_counter))
1266                 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1267         percpu_counter_destroy(em_counter);
1268         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1269         btrfs_free_csum_hash(fs_info);
1270         btrfs_free_stripe_hash_table(fs_info);
1271         btrfs_free_ref_cache(fs_info);
1272         kfree(fs_info->balance_ctl);
1273         kfree(fs_info->delayed_root);
1274         free_global_roots(fs_info);
1275         btrfs_put_root(fs_info->tree_root);
1276         btrfs_put_root(fs_info->chunk_root);
1277         btrfs_put_root(fs_info->dev_root);
1278         btrfs_put_root(fs_info->quota_root);
1279         btrfs_put_root(fs_info->uuid_root);
1280         btrfs_put_root(fs_info->fs_root);
1281         btrfs_put_root(fs_info->data_reloc_root);
1282         btrfs_put_root(fs_info->block_group_root);
1283         btrfs_put_root(fs_info->stripe_root);
1284         btrfs_check_leaked_roots(fs_info);
1285         btrfs_extent_buffer_leak_debug_check(fs_info);
1286         kfree(fs_info->super_copy);
1287         kfree(fs_info->super_for_commit);
1288         kfree(fs_info->subpage_info);
1289         kvfree(fs_info);
1290 }
1291 
1292 
1293 /*
1294  * Get an in-memory reference of a root structure.
1295  *
1296  * For essential trees like root/extent tree, we grab it from fs_info directly.
1297  * For subvolume trees, we check the cached filesystem roots first. If not
1298  * found, then read it from disk and add it to cached fs roots.
1299  *
1300  * Caller should release the root by calling btrfs_put_root() after the usage.
1301  *
1302  * NOTE: Reloc and log trees can't be read by this function as they share the
1303  *       same root objectid.
1304  *
1305  * @objectid:   root id
1306  * @anon_dev:   preallocated anonymous block device number for new roots,
1307  *              pass NULL for a new allocation.
1308  * @check_ref:  whether to check root item references, If true, return -ENOENT
1309  *              for orphan roots
1310  */
1311 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1312                                              u64 objectid, dev_t *anon_dev,
1313                                              bool check_ref)
1314 {
1315         struct btrfs_root *root;
1316         struct btrfs_path *path;
1317         struct btrfs_key key;
1318         int ret;
1319 
1320         root = btrfs_get_global_root(fs_info, objectid);
1321         if (root)
1322                 return root;
1323 
1324         /*
1325          * If we're called for non-subvolume trees, and above function didn't
1326          * find one, do not try to read it from disk.
1327          *
1328          * This is namely for free-space-tree and quota tree, which can change
1329          * at runtime and should only be grabbed from fs_info.
1330          */
1331         if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1332                 return ERR_PTR(-ENOENT);
1333 again:
1334         root = btrfs_lookup_fs_root(fs_info, objectid);
1335         if (root) {
1336                 /*
1337                  * Some other caller may have read out the newly inserted
1338                  * subvolume already (for things like backref walk etc).  Not
1339                  * that common but still possible.  In that case, we just need
1340                  * to free the anon_dev.
1341                  */
1342                 if (unlikely(anon_dev && *anon_dev)) {
1343                         free_anon_bdev(*anon_dev);
1344                         *anon_dev = 0;
1345                 }
1346 
1347                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1348                         btrfs_put_root(root);
1349                         return ERR_PTR(-ENOENT);
1350                 }
1351                 return root;
1352         }
1353 
1354         key.objectid = objectid;
1355         key.type = BTRFS_ROOT_ITEM_KEY;
1356         key.offset = (u64)-1;
1357         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1358         if (IS_ERR(root))
1359                 return root;
1360 
1361         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1362                 ret = -ENOENT;
1363                 goto fail;
1364         }
1365 
1366         ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1367         if (ret)
1368                 goto fail;
1369 
1370         path = btrfs_alloc_path();
1371         if (!path) {
1372                 ret = -ENOMEM;
1373                 goto fail;
1374         }
1375         key.objectid = BTRFS_ORPHAN_OBJECTID;
1376         key.type = BTRFS_ORPHAN_ITEM_KEY;
1377         key.offset = objectid;
1378 
1379         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1380         btrfs_free_path(path);
1381         if (ret < 0)
1382                 goto fail;
1383         if (ret == 0)
1384                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1385 
1386         ret = btrfs_insert_fs_root(fs_info, root);
1387         if (ret) {
1388                 if (ret == -EEXIST) {
1389                         btrfs_put_root(root);
1390                         goto again;
1391                 }
1392                 goto fail;
1393         }
1394         return root;
1395 fail:
1396         /*
1397          * If our caller provided us an anonymous device, then it's his
1398          * responsibility to free it in case we fail. So we have to set our
1399          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1400          * and once again by our caller.
1401          */
1402         if (anon_dev && *anon_dev)
1403                 root->anon_dev = 0;
1404         btrfs_put_root(root);
1405         return ERR_PTR(ret);
1406 }
1407 
1408 /*
1409  * Get in-memory reference of a root structure
1410  *
1411  * @objectid:   tree objectid
1412  * @check_ref:  if set, verify that the tree exists and the item has at least
1413  *              one reference
1414  */
1415 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1416                                      u64 objectid, bool check_ref)
1417 {
1418         return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1419 }
1420 
1421 /*
1422  * Get in-memory reference of a root structure, created as new, optionally pass
1423  * the anonymous block device id
1424  *
1425  * @objectid:   tree objectid
1426  * @anon_dev:   if NULL, allocate a new anonymous block device or use the
1427  *              parameter value if not NULL
1428  */
1429 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1430                                          u64 objectid, dev_t *anon_dev)
1431 {
1432         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1433 }
1434 
1435 /*
1436  * Return a root for the given objectid.
1437  *
1438  * @fs_info:    the fs_info
1439  * @objectid:   the objectid we need to lookup
1440  *
1441  * This is exclusively used for backref walking, and exists specifically because
1442  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1443  * creation time, which means we may have to read the tree_root in order to look
1444  * up a fs root that is not in memory.  If the root is not in memory we will
1445  * read the tree root commit root and look up the fs root from there.  This is a
1446  * temporary root, it will not be inserted into the radix tree as it doesn't
1447  * have the most uptodate information, it'll simply be discarded once the
1448  * backref code is finished using the root.
1449  */
1450 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1451                                                  struct btrfs_path *path,
1452                                                  u64 objectid)
1453 {
1454         struct btrfs_root *root;
1455         struct btrfs_key key;
1456 
1457         ASSERT(path->search_commit_root && path->skip_locking);
1458 
1459         /*
1460          * This can return -ENOENT if we ask for a root that doesn't exist, but
1461          * since this is called via the backref walking code we won't be looking
1462          * up a root that doesn't exist, unless there's corruption.  So if root
1463          * != NULL just return it.
1464          */
1465         root = btrfs_get_global_root(fs_info, objectid);
1466         if (root)
1467                 return root;
1468 
1469         root = btrfs_lookup_fs_root(fs_info, objectid);
1470         if (root)
1471                 return root;
1472 
1473         key.objectid = objectid;
1474         key.type = BTRFS_ROOT_ITEM_KEY;
1475         key.offset = (u64)-1;
1476         root = read_tree_root_path(fs_info->tree_root, path, &key);
1477         btrfs_release_path(path);
1478 
1479         return root;
1480 }
1481 
1482 static int cleaner_kthread(void *arg)
1483 {
1484         struct btrfs_fs_info *fs_info = arg;
1485         int again;
1486 
1487         while (1) {
1488                 again = 0;
1489 
1490                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1491 
1492                 /* Make the cleaner go to sleep early. */
1493                 if (btrfs_need_cleaner_sleep(fs_info))
1494                         goto sleep;
1495 
1496                 /*
1497                  * Do not do anything if we might cause open_ctree() to block
1498                  * before we have finished mounting the filesystem.
1499                  */
1500                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1501                         goto sleep;
1502 
1503                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1504                         goto sleep;
1505 
1506                 /*
1507                  * Avoid the problem that we change the status of the fs
1508                  * during the above check and trylock.
1509                  */
1510                 if (btrfs_need_cleaner_sleep(fs_info)) {
1511                         mutex_unlock(&fs_info->cleaner_mutex);
1512                         goto sleep;
1513                 }
1514 
1515                 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1516                         btrfs_sysfs_feature_update(fs_info);
1517 
1518                 btrfs_run_delayed_iputs(fs_info);
1519 
1520                 again = btrfs_clean_one_deleted_snapshot(fs_info);
1521                 mutex_unlock(&fs_info->cleaner_mutex);
1522 
1523                 /*
1524                  * The defragger has dealt with the R/O remount and umount,
1525                  * needn't do anything special here.
1526                  */
1527                 btrfs_run_defrag_inodes(fs_info);
1528 
1529                 /*
1530                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
1531                  * with relocation (btrfs_relocate_chunk) and relocation
1532                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1533                  * after acquiring fs_info->reclaim_bgs_lock. So we
1534                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1535                  * unused block groups.
1536                  */
1537                 btrfs_delete_unused_bgs(fs_info);
1538 
1539                 /*
1540                  * Reclaim block groups in the reclaim_bgs list after we deleted
1541                  * all unused block_groups. This possibly gives us some more free
1542                  * space.
1543                  */
1544                 btrfs_reclaim_bgs(fs_info);
1545 sleep:
1546                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1547                 if (kthread_should_park())
1548                         kthread_parkme();
1549                 if (kthread_should_stop())
1550                         return 0;
1551                 if (!again) {
1552                         set_current_state(TASK_INTERRUPTIBLE);
1553                         schedule();
1554                         __set_current_state(TASK_RUNNING);
1555                 }
1556         }
1557 }
1558 
1559 static int transaction_kthread(void *arg)
1560 {
1561         struct btrfs_root *root = arg;
1562         struct btrfs_fs_info *fs_info = root->fs_info;
1563         struct btrfs_trans_handle *trans;
1564         struct btrfs_transaction *cur;
1565         u64 transid;
1566         time64_t delta;
1567         unsigned long delay;
1568         bool cannot_commit;
1569 
1570         do {
1571                 cannot_commit = false;
1572                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1573                 mutex_lock(&fs_info->transaction_kthread_mutex);
1574 
1575                 spin_lock(&fs_info->trans_lock);
1576                 cur = fs_info->running_transaction;
1577                 if (!cur) {
1578                         spin_unlock(&fs_info->trans_lock);
1579                         goto sleep;
1580                 }
1581 
1582                 delta = ktime_get_seconds() - cur->start_time;
1583                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1584                     cur->state < TRANS_STATE_COMMIT_PREP &&
1585                     delta < fs_info->commit_interval) {
1586                         spin_unlock(&fs_info->trans_lock);
1587                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1588                         delay = min(delay,
1589                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1590                         goto sleep;
1591                 }
1592                 transid = cur->transid;
1593                 spin_unlock(&fs_info->trans_lock);
1594 
1595                 /* If the file system is aborted, this will always fail. */
1596                 trans = btrfs_attach_transaction(root);
1597                 if (IS_ERR(trans)) {
1598                         if (PTR_ERR(trans) != -ENOENT)
1599                                 cannot_commit = true;
1600                         goto sleep;
1601                 }
1602                 if (transid == trans->transid) {
1603                         btrfs_commit_transaction(trans);
1604                 } else {
1605                         btrfs_end_transaction(trans);
1606                 }
1607 sleep:
1608                 wake_up_process(fs_info->cleaner_kthread);
1609                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1610 
1611                 if (BTRFS_FS_ERROR(fs_info))
1612                         btrfs_cleanup_transaction(fs_info);
1613                 if (!kthread_should_stop() &&
1614                                 (!btrfs_transaction_blocked(fs_info) ||
1615                                  cannot_commit))
1616                         schedule_timeout_interruptible(delay);
1617         } while (!kthread_should_stop());
1618         return 0;
1619 }
1620 
1621 /*
1622  * This will find the highest generation in the array of root backups.  The
1623  * index of the highest array is returned, or -EINVAL if we can't find
1624  * anything.
1625  *
1626  * We check to make sure the array is valid by comparing the
1627  * generation of the latest  root in the array with the generation
1628  * in the super block.  If they don't match we pitch it.
1629  */
1630 static int find_newest_super_backup(struct btrfs_fs_info *info)
1631 {
1632         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1633         u64 cur;
1634         struct btrfs_root_backup *root_backup;
1635         int i;
1636 
1637         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1638                 root_backup = info->super_copy->super_roots + i;
1639                 cur = btrfs_backup_tree_root_gen(root_backup);
1640                 if (cur == newest_gen)
1641                         return i;
1642         }
1643 
1644         return -EINVAL;
1645 }
1646 
1647 /*
1648  * copy all the root pointers into the super backup array.
1649  * this will bump the backup pointer by one when it is
1650  * done
1651  */
1652 static void backup_super_roots(struct btrfs_fs_info *info)
1653 {
1654         const int next_backup = info->backup_root_index;
1655         struct btrfs_root_backup *root_backup;
1656 
1657         root_backup = info->super_for_commit->super_roots + next_backup;
1658 
1659         /*
1660          * make sure all of our padding and empty slots get zero filled
1661          * regardless of which ones we use today
1662          */
1663         memset(root_backup, 0, sizeof(*root_backup));
1664 
1665         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666 
1667         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1668         btrfs_set_backup_tree_root_gen(root_backup,
1669                                btrfs_header_generation(info->tree_root->node));
1670 
1671         btrfs_set_backup_tree_root_level(root_backup,
1672                                btrfs_header_level(info->tree_root->node));
1673 
1674         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1675         btrfs_set_backup_chunk_root_gen(root_backup,
1676                                btrfs_header_generation(info->chunk_root->node));
1677         btrfs_set_backup_chunk_root_level(root_backup,
1678                                btrfs_header_level(info->chunk_root->node));
1679 
1680         if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1681                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1682                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1683 
1684                 btrfs_set_backup_extent_root(root_backup,
1685                                              extent_root->node->start);
1686                 btrfs_set_backup_extent_root_gen(root_backup,
1687                                 btrfs_header_generation(extent_root->node));
1688                 btrfs_set_backup_extent_root_level(root_backup,
1689                                         btrfs_header_level(extent_root->node));
1690 
1691                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1692                 btrfs_set_backup_csum_root_gen(root_backup,
1693                                                btrfs_header_generation(csum_root->node));
1694                 btrfs_set_backup_csum_root_level(root_backup,
1695                                                  btrfs_header_level(csum_root->node));
1696         }
1697 
1698         /*
1699          * we might commit during log recovery, which happens before we set
1700          * the fs_root.  Make sure it is valid before we fill it in.
1701          */
1702         if (info->fs_root && info->fs_root->node) {
1703                 btrfs_set_backup_fs_root(root_backup,
1704                                          info->fs_root->node->start);
1705                 btrfs_set_backup_fs_root_gen(root_backup,
1706                                btrfs_header_generation(info->fs_root->node));
1707                 btrfs_set_backup_fs_root_level(root_backup,
1708                                btrfs_header_level(info->fs_root->node));
1709         }
1710 
1711         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1712         btrfs_set_backup_dev_root_gen(root_backup,
1713                                btrfs_header_generation(info->dev_root->node));
1714         btrfs_set_backup_dev_root_level(root_backup,
1715                                        btrfs_header_level(info->dev_root->node));
1716 
1717         btrfs_set_backup_total_bytes(root_backup,
1718                              btrfs_super_total_bytes(info->super_copy));
1719         btrfs_set_backup_bytes_used(root_backup,
1720                              btrfs_super_bytes_used(info->super_copy));
1721         btrfs_set_backup_num_devices(root_backup,
1722                              btrfs_super_num_devices(info->super_copy));
1723 
1724         /*
1725          * if we don't copy this out to the super_copy, it won't get remembered
1726          * for the next commit
1727          */
1728         memcpy(&info->super_copy->super_roots,
1729                &info->super_for_commit->super_roots,
1730                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1731 }
1732 
1733 /*
1734  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1735  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1736  *
1737  * @fs_info:  filesystem whose backup roots need to be read
1738  * @priority: priority of backup root required
1739  *
1740  * Returns backup root index on success and -EINVAL otherwise.
1741  */
1742 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1743 {
1744         int backup_index = find_newest_super_backup(fs_info);
1745         struct btrfs_super_block *super = fs_info->super_copy;
1746         struct btrfs_root_backup *root_backup;
1747 
1748         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1749                 if (priority == 0)
1750                         return backup_index;
1751 
1752                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1753                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1754         } else {
1755                 return -EINVAL;
1756         }
1757 
1758         root_backup = super->super_roots + backup_index;
1759 
1760         btrfs_set_super_generation(super,
1761                                    btrfs_backup_tree_root_gen(root_backup));
1762         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1763         btrfs_set_super_root_level(super,
1764                                    btrfs_backup_tree_root_level(root_backup));
1765         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1766 
1767         /*
1768          * Fixme: the total bytes and num_devices need to match or we should
1769          * need a fsck
1770          */
1771         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1772         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1773 
1774         return backup_index;
1775 }
1776 
1777 /* helper to cleanup workers */
1778 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1779 {
1780         btrfs_destroy_workqueue(fs_info->fixup_workers);
1781         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1782         btrfs_destroy_workqueue(fs_info->workers);
1783         if (fs_info->endio_workers)
1784                 destroy_workqueue(fs_info->endio_workers);
1785         if (fs_info->rmw_workers)
1786                 destroy_workqueue(fs_info->rmw_workers);
1787         if (fs_info->compressed_write_workers)
1788                 destroy_workqueue(fs_info->compressed_write_workers);
1789         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1790         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1791         btrfs_destroy_workqueue(fs_info->delayed_workers);
1792         btrfs_destroy_workqueue(fs_info->caching_workers);
1793         btrfs_destroy_workqueue(fs_info->flush_workers);
1794         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1795         if (fs_info->discard_ctl.discard_workers)
1796                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1797         /*
1798          * Now that all other work queues are destroyed, we can safely destroy
1799          * the queues used for metadata I/O, since tasks from those other work
1800          * queues can do metadata I/O operations.
1801          */
1802         if (fs_info->endio_meta_workers)
1803                 destroy_workqueue(fs_info->endio_meta_workers);
1804 }
1805 
1806 static void free_root_extent_buffers(struct btrfs_root *root)
1807 {
1808         if (root) {
1809                 free_extent_buffer(root->node);
1810                 free_extent_buffer(root->commit_root);
1811                 root->node = NULL;
1812                 root->commit_root = NULL;
1813         }
1814 }
1815 
1816 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1817 {
1818         struct btrfs_root *root, *tmp;
1819 
1820         rbtree_postorder_for_each_entry_safe(root, tmp,
1821                                              &fs_info->global_root_tree,
1822                                              rb_node)
1823                 free_root_extent_buffers(root);
1824 }
1825 
1826 /* helper to cleanup tree roots */
1827 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1828 {
1829         free_root_extent_buffers(info->tree_root);
1830 
1831         free_global_root_pointers(info);
1832         free_root_extent_buffers(info->dev_root);
1833         free_root_extent_buffers(info->quota_root);
1834         free_root_extent_buffers(info->uuid_root);
1835         free_root_extent_buffers(info->fs_root);
1836         free_root_extent_buffers(info->data_reloc_root);
1837         free_root_extent_buffers(info->block_group_root);
1838         free_root_extent_buffers(info->stripe_root);
1839         if (free_chunk_root)
1840                 free_root_extent_buffers(info->chunk_root);
1841 }
1842 
1843 void btrfs_put_root(struct btrfs_root *root)
1844 {
1845         if (!root)
1846                 return;
1847 
1848         if (refcount_dec_and_test(&root->refs)) {
1849                 if (WARN_ON(!xa_empty(&root->inodes)))
1850                         xa_destroy(&root->inodes);
1851                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1852                 if (root->anon_dev)
1853                         free_anon_bdev(root->anon_dev);
1854                 free_root_extent_buffers(root);
1855 #ifdef CONFIG_BTRFS_DEBUG
1856                 spin_lock(&root->fs_info->fs_roots_radix_lock);
1857                 list_del_init(&root->leak_list);
1858                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1859 #endif
1860                 kfree(root);
1861         }
1862 }
1863 
1864 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1865 {
1866         int ret;
1867         struct btrfs_root *gang[8];
1868         int i;
1869 
1870         while (!list_empty(&fs_info->dead_roots)) {
1871                 gang[0] = list_entry(fs_info->dead_roots.next,
1872                                      struct btrfs_root, root_list);
1873                 list_del(&gang[0]->root_list);
1874 
1875                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1876                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1877                 btrfs_put_root(gang[0]);
1878         }
1879 
1880         while (1) {
1881                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1882                                              (void **)gang, 0,
1883                                              ARRAY_SIZE(gang));
1884                 if (!ret)
1885                         break;
1886                 for (i = 0; i < ret; i++)
1887                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1888         }
1889 }
1890 
1891 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1892 {
1893         mutex_init(&fs_info->scrub_lock);
1894         atomic_set(&fs_info->scrubs_running, 0);
1895         atomic_set(&fs_info->scrub_pause_req, 0);
1896         atomic_set(&fs_info->scrubs_paused, 0);
1897         atomic_set(&fs_info->scrub_cancel_req, 0);
1898         init_waitqueue_head(&fs_info->scrub_pause_wait);
1899         refcount_set(&fs_info->scrub_workers_refcnt, 0);
1900 }
1901 
1902 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1903 {
1904         spin_lock_init(&fs_info->balance_lock);
1905         mutex_init(&fs_info->balance_mutex);
1906         atomic_set(&fs_info->balance_pause_req, 0);
1907         atomic_set(&fs_info->balance_cancel_req, 0);
1908         fs_info->balance_ctl = NULL;
1909         init_waitqueue_head(&fs_info->balance_wait_q);
1910         atomic_set(&fs_info->reloc_cancel_req, 0);
1911 }
1912 
1913 static int btrfs_init_btree_inode(struct super_block *sb)
1914 {
1915         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1916         unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1917                                               fs_info->tree_root);
1918         struct inode *inode;
1919 
1920         inode = new_inode(sb);
1921         if (!inode)
1922                 return -ENOMEM;
1923 
1924         btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1925         set_nlink(inode, 1);
1926         /*
1927          * we set the i_size on the btree inode to the max possible int.
1928          * the real end of the address space is determined by all of
1929          * the devices in the system
1930          */
1931         inode->i_size = OFFSET_MAX;
1932         inode->i_mapping->a_ops = &btree_aops;
1933         mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1934 
1935         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1936                             IO_TREE_BTREE_INODE_IO);
1937         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1938 
1939         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1940         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1941         __insert_inode_hash(inode, hash);
1942         fs_info->btree_inode = inode;
1943 
1944         return 0;
1945 }
1946 
1947 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1948 {
1949         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1950         init_rwsem(&fs_info->dev_replace.rwsem);
1951         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1952 }
1953 
1954 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1955 {
1956         spin_lock_init(&fs_info->qgroup_lock);
1957         mutex_init(&fs_info->qgroup_ioctl_lock);
1958         fs_info->qgroup_tree = RB_ROOT;
1959         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1960         fs_info->qgroup_seq = 1;
1961         fs_info->qgroup_ulist = NULL;
1962         fs_info->qgroup_rescan_running = false;
1963         fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1964         mutex_init(&fs_info->qgroup_rescan_lock);
1965 }
1966 
1967 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1968 {
1969         u32 max_active = fs_info->thread_pool_size;
1970         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1971         unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1972 
1973         fs_info->workers =
1974                 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1975 
1976         fs_info->delalloc_workers =
1977                 btrfs_alloc_workqueue(fs_info, "delalloc",
1978                                       flags, max_active, 2);
1979 
1980         fs_info->flush_workers =
1981                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1982                                       flags, max_active, 0);
1983 
1984         fs_info->caching_workers =
1985                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1986 
1987         fs_info->fixup_workers =
1988                 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1989 
1990         fs_info->endio_workers =
1991                 alloc_workqueue("btrfs-endio", flags, max_active);
1992         fs_info->endio_meta_workers =
1993                 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1994         fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1995         fs_info->endio_write_workers =
1996                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1997                                       max_active, 2);
1998         fs_info->compressed_write_workers =
1999                 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2000         fs_info->endio_freespace_worker =
2001                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2002                                       max_active, 0);
2003         fs_info->delayed_workers =
2004                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2005                                       max_active, 0);
2006         fs_info->qgroup_rescan_workers =
2007                 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2008                                               ordered_flags);
2009         fs_info->discard_ctl.discard_workers =
2010                 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2011 
2012         if (!(fs_info->workers &&
2013               fs_info->delalloc_workers && fs_info->flush_workers &&
2014               fs_info->endio_workers && fs_info->endio_meta_workers &&
2015               fs_info->compressed_write_workers &&
2016               fs_info->endio_write_workers &&
2017               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2018               fs_info->caching_workers && fs_info->fixup_workers &&
2019               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2020               fs_info->discard_ctl.discard_workers)) {
2021                 return -ENOMEM;
2022         }
2023 
2024         return 0;
2025 }
2026 
2027 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2028 {
2029         struct crypto_shash *csum_shash;
2030         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2031 
2032         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2033 
2034         if (IS_ERR(csum_shash)) {
2035                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2036                           csum_driver);
2037                 return PTR_ERR(csum_shash);
2038         }
2039 
2040         fs_info->csum_shash = csum_shash;
2041 
2042         /*
2043          * Check if the checksum implementation is a fast accelerated one.
2044          * As-is this is a bit of a hack and should be replaced once the csum
2045          * implementations provide that information themselves.
2046          */
2047         switch (csum_type) {
2048         case BTRFS_CSUM_TYPE_CRC32:
2049                 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2050                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2051                 break;
2052         case BTRFS_CSUM_TYPE_XXHASH:
2053                 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2054                 break;
2055         default:
2056                 break;
2057         }
2058 
2059         btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2060                         btrfs_super_csum_name(csum_type),
2061                         crypto_shash_driver_name(csum_shash));
2062         return 0;
2063 }
2064 
2065 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2066                             struct btrfs_fs_devices *fs_devices)
2067 {
2068         int ret;
2069         struct btrfs_tree_parent_check check = { 0 };
2070         struct btrfs_root *log_tree_root;
2071         struct btrfs_super_block *disk_super = fs_info->super_copy;
2072         u64 bytenr = btrfs_super_log_root(disk_super);
2073         int level = btrfs_super_log_root_level(disk_super);
2074 
2075         if (fs_devices->rw_devices == 0) {
2076                 btrfs_warn(fs_info, "log replay required on RO media");
2077                 return -EIO;
2078         }
2079 
2080         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2081                                          GFP_KERNEL);
2082         if (!log_tree_root)
2083                 return -ENOMEM;
2084 
2085         check.level = level;
2086         check.transid = fs_info->generation + 1;
2087         check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2088         log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2089         if (IS_ERR(log_tree_root->node)) {
2090                 btrfs_warn(fs_info, "failed to read log tree");
2091                 ret = PTR_ERR(log_tree_root->node);
2092                 log_tree_root->node = NULL;
2093                 btrfs_put_root(log_tree_root);
2094                 return ret;
2095         }
2096         if (!extent_buffer_uptodate(log_tree_root->node)) {
2097                 btrfs_err(fs_info, "failed to read log tree");
2098                 btrfs_put_root(log_tree_root);
2099                 return -EIO;
2100         }
2101 
2102         /* returns with log_tree_root freed on success */
2103         ret = btrfs_recover_log_trees(log_tree_root);
2104         if (ret) {
2105                 btrfs_handle_fs_error(fs_info, ret,
2106                                       "Failed to recover log tree");
2107                 btrfs_put_root(log_tree_root);
2108                 return ret;
2109         }
2110 
2111         if (sb_rdonly(fs_info->sb)) {
2112                 ret = btrfs_commit_super(fs_info);
2113                 if (ret)
2114                         return ret;
2115         }
2116 
2117         return 0;
2118 }
2119 
2120 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2121                                       struct btrfs_path *path, u64 objectid,
2122                                       const char *name)
2123 {
2124         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2125         struct btrfs_root *root;
2126         u64 max_global_id = 0;
2127         int ret;
2128         struct btrfs_key key = {
2129                 .objectid = objectid,
2130                 .type = BTRFS_ROOT_ITEM_KEY,
2131                 .offset = 0,
2132         };
2133         bool found = false;
2134 
2135         /* If we have IGNOREDATACSUMS skip loading these roots. */
2136         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2137             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2138                 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2139                 return 0;
2140         }
2141 
2142         while (1) {
2143                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2144                 if (ret < 0)
2145                         break;
2146 
2147                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2148                         ret = btrfs_next_leaf(tree_root, path);
2149                         if (ret) {
2150                                 if (ret > 0)
2151                                         ret = 0;
2152                                 break;
2153                         }
2154                 }
2155                 ret = 0;
2156 
2157                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2158                 if (key.objectid != objectid)
2159                         break;
2160                 btrfs_release_path(path);
2161 
2162                 /*
2163                  * Just worry about this for extent tree, it'll be the same for
2164                  * everybody.
2165                  */
2166                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2167                         max_global_id = max(max_global_id, key.offset);
2168 
2169                 found = true;
2170                 root = read_tree_root_path(tree_root, path, &key);
2171                 if (IS_ERR(root)) {
2172                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2173                                 ret = PTR_ERR(root);
2174                         break;
2175                 }
2176                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2177                 ret = btrfs_global_root_insert(root);
2178                 if (ret) {
2179                         btrfs_put_root(root);
2180                         break;
2181                 }
2182                 key.offset++;
2183         }
2184         btrfs_release_path(path);
2185 
2186         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2187                 fs_info->nr_global_roots = max_global_id + 1;
2188 
2189         if (!found || ret) {
2190                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2191                         set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2192 
2193                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2194                         ret = ret ? ret : -ENOENT;
2195                 else
2196                         ret = 0;
2197                 btrfs_err(fs_info, "failed to load root %s", name);
2198         }
2199         return ret;
2200 }
2201 
2202 static int load_global_roots(struct btrfs_root *tree_root)
2203 {
2204         struct btrfs_path *path;
2205         int ret = 0;
2206 
2207         path = btrfs_alloc_path();
2208         if (!path)
2209                 return -ENOMEM;
2210 
2211         ret = load_global_roots_objectid(tree_root, path,
2212                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2213         if (ret)
2214                 goto out;
2215         ret = load_global_roots_objectid(tree_root, path,
2216                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2217         if (ret)
2218                 goto out;
2219         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2220                 goto out;
2221         ret = load_global_roots_objectid(tree_root, path,
2222                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2223                                          "free space");
2224 out:
2225         btrfs_free_path(path);
2226         return ret;
2227 }
2228 
2229 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2230 {
2231         struct btrfs_root *tree_root = fs_info->tree_root;
2232         struct btrfs_root *root;
2233         struct btrfs_key location;
2234         int ret;
2235 
2236         ASSERT(fs_info->tree_root);
2237 
2238         ret = load_global_roots(tree_root);
2239         if (ret)
2240                 return ret;
2241 
2242         location.type = BTRFS_ROOT_ITEM_KEY;
2243         location.offset = 0;
2244 
2245         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2246                 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2247                 root = btrfs_read_tree_root(tree_root, &location);
2248                 if (IS_ERR(root)) {
2249                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2250                                 ret = PTR_ERR(root);
2251                                 goto out;
2252                         }
2253                 } else {
2254                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2255                         fs_info->block_group_root = root;
2256                 }
2257         }
2258 
2259         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2260         root = btrfs_read_tree_root(tree_root, &location);
2261         if (IS_ERR(root)) {
2262                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2263                         ret = PTR_ERR(root);
2264                         goto out;
2265                 }
2266         } else {
2267                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2268                 fs_info->dev_root = root;
2269         }
2270         /* Initialize fs_info for all devices in any case */
2271         ret = btrfs_init_devices_late(fs_info);
2272         if (ret)
2273                 goto out;
2274 
2275         /*
2276          * This tree can share blocks with some other fs tree during relocation
2277          * and we need a proper setup by btrfs_get_fs_root
2278          */
2279         root = btrfs_get_fs_root(tree_root->fs_info,
2280                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2281         if (IS_ERR(root)) {
2282                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2283                         ret = PTR_ERR(root);
2284                         goto out;
2285                 }
2286         } else {
2287                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288                 fs_info->data_reloc_root = root;
2289         }
2290 
2291         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2292         root = btrfs_read_tree_root(tree_root, &location);
2293         if (!IS_ERR(root)) {
2294                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295                 fs_info->quota_root = root;
2296         }
2297 
2298         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2299         root = btrfs_read_tree_root(tree_root, &location);
2300         if (IS_ERR(root)) {
2301                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2302                         ret = PTR_ERR(root);
2303                         if (ret != -ENOENT)
2304                                 goto out;
2305                 }
2306         } else {
2307                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2308                 fs_info->uuid_root = root;
2309         }
2310 
2311         if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2312                 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2313                 root = btrfs_read_tree_root(tree_root, &location);
2314                 if (IS_ERR(root)) {
2315                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2316                                 ret = PTR_ERR(root);
2317                                 goto out;
2318                         }
2319                 } else {
2320                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2321                         fs_info->stripe_root = root;
2322                 }
2323         }
2324 
2325         return 0;
2326 out:
2327         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2328                    location.objectid, ret);
2329         return ret;
2330 }
2331 
2332 /*
2333  * Real super block validation
2334  * NOTE: super csum type and incompat features will not be checked here.
2335  *
2336  * @sb:         super block to check
2337  * @mirror_num: the super block number to check its bytenr:
2338  *              0       the primary (1st) sb
2339  *              1, 2    2nd and 3rd backup copy
2340  *             -1       skip bytenr check
2341  */
2342 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2343                          const struct btrfs_super_block *sb, int mirror_num)
2344 {
2345         u64 nodesize = btrfs_super_nodesize(sb);
2346         u64 sectorsize = btrfs_super_sectorsize(sb);
2347         int ret = 0;
2348         const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2349 
2350         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2351                 btrfs_err(fs_info, "no valid FS found");
2352                 ret = -EINVAL;
2353         }
2354         if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2355                 if (!ignore_flags) {
2356                         btrfs_err(fs_info,
2357                         "unrecognized or unsupported super flag 0x%llx",
2358                                   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2359                         ret = -EINVAL;
2360                 } else {
2361                         btrfs_info(fs_info,
2362                         "unrecognized or unsupported super flags: 0x%llx, ignored",
2363                                    btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2364                 }
2365         }
2366         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2367                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2368                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2369                 ret = -EINVAL;
2370         }
2371         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2372                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2373                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2374                 ret = -EINVAL;
2375         }
2376         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2377                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2378                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2379                 ret = -EINVAL;
2380         }
2381 
2382         /*
2383          * Check sectorsize and nodesize first, other check will need it.
2384          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2385          */
2386         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2387             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2388                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2389                 ret = -EINVAL;
2390         }
2391 
2392         /*
2393          * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2394          *
2395          * We can support 16K sectorsize with 64K page size without problem,
2396          * but such sectorsize/pagesize combination doesn't make much sense.
2397          * 4K will be our future standard, PAGE_SIZE is supported from the very
2398          * beginning.
2399          */
2400         if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2401                 btrfs_err(fs_info,
2402                         "sectorsize %llu not yet supported for page size %lu",
2403                         sectorsize, PAGE_SIZE);
2404                 ret = -EINVAL;
2405         }
2406 
2407         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2408             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2409                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2410                 ret = -EINVAL;
2411         }
2412         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2413                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2414                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2415                 ret = -EINVAL;
2416         }
2417 
2418         /* Root alignment check */
2419         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2420                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2421                            btrfs_super_root(sb));
2422                 ret = -EINVAL;
2423         }
2424         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2425                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2426                            btrfs_super_chunk_root(sb));
2427                 ret = -EINVAL;
2428         }
2429         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2430                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2431                            btrfs_super_log_root(sb));
2432                 ret = -EINVAL;
2433         }
2434 
2435         if (!fs_info->fs_devices->temp_fsid &&
2436             memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2437                 btrfs_err(fs_info,
2438                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2439                           sb->fsid, fs_info->fs_devices->fsid);
2440                 ret = -EINVAL;
2441         }
2442 
2443         if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2444                    BTRFS_FSID_SIZE) != 0) {
2445                 btrfs_err(fs_info,
2446 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2447                           btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2448                 ret = -EINVAL;
2449         }
2450 
2451         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2452                    BTRFS_FSID_SIZE) != 0) {
2453                 btrfs_err(fs_info,
2454                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2455                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2456                 ret = -EINVAL;
2457         }
2458 
2459         /*
2460          * Artificial requirement for block-group-tree to force newer features
2461          * (free-space-tree, no-holes) so the test matrix is smaller.
2462          */
2463         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2464             (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2465              !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2466                 btrfs_err(fs_info,
2467                 "block-group-tree feature requires free-space-tree and no-holes");
2468                 ret = -EINVAL;
2469         }
2470 
2471         /*
2472          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2473          * done later
2474          */
2475         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2476                 btrfs_err(fs_info, "bytes_used is too small %llu",
2477                           btrfs_super_bytes_used(sb));
2478                 ret = -EINVAL;
2479         }
2480         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2481                 btrfs_err(fs_info, "invalid stripesize %u",
2482                           btrfs_super_stripesize(sb));
2483                 ret = -EINVAL;
2484         }
2485         if (btrfs_super_num_devices(sb) > (1UL << 31))
2486                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2487                            btrfs_super_num_devices(sb));
2488         if (btrfs_super_num_devices(sb) == 0) {
2489                 btrfs_err(fs_info, "number of devices is 0");
2490                 ret = -EINVAL;
2491         }
2492 
2493         if (mirror_num >= 0 &&
2494             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2495                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2496                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2497                 ret = -EINVAL;
2498         }
2499 
2500         /*
2501          * Obvious sys_chunk_array corruptions, it must hold at least one key
2502          * and one chunk
2503          */
2504         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2505                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2506                           btrfs_super_sys_array_size(sb),
2507                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2508                 ret = -EINVAL;
2509         }
2510         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2511                         + sizeof(struct btrfs_chunk)) {
2512                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2513                           btrfs_super_sys_array_size(sb),
2514                           sizeof(struct btrfs_disk_key)
2515                           + sizeof(struct btrfs_chunk));
2516                 ret = -EINVAL;
2517         }
2518 
2519         /*
2520          * The generation is a global counter, we'll trust it more than the others
2521          * but it's still possible that it's the one that's wrong.
2522          */
2523         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2524                 btrfs_warn(fs_info,
2525                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2526                         btrfs_super_generation(sb),
2527                         btrfs_super_chunk_root_generation(sb));
2528         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2529             && btrfs_super_cache_generation(sb) != (u64)-1)
2530                 btrfs_warn(fs_info,
2531                         "suspicious: generation < cache_generation: %llu < %llu",
2532                         btrfs_super_generation(sb),
2533                         btrfs_super_cache_generation(sb));
2534 
2535         return ret;
2536 }
2537 
2538 /*
2539  * Validation of super block at mount time.
2540  * Some checks already done early at mount time, like csum type and incompat
2541  * flags will be skipped.
2542  */
2543 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2544 {
2545         return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2546 }
2547 
2548 /*
2549  * Validation of super block at write time.
2550  * Some checks like bytenr check will be skipped as their values will be
2551  * overwritten soon.
2552  * Extra checks like csum type and incompat flags will be done here.
2553  */
2554 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2555                                       struct btrfs_super_block *sb)
2556 {
2557         int ret;
2558 
2559         ret = btrfs_validate_super(fs_info, sb, -1);
2560         if (ret < 0)
2561                 goto out;
2562         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2563                 ret = -EUCLEAN;
2564                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2565                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2566                 goto out;
2567         }
2568         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2569                 ret = -EUCLEAN;
2570                 btrfs_err(fs_info,
2571                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2572                           btrfs_super_incompat_flags(sb),
2573                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2574                 goto out;
2575         }
2576 out:
2577         if (ret < 0)
2578                 btrfs_err(fs_info,
2579                 "super block corruption detected before writing it to disk");
2580         return ret;
2581 }
2582 
2583 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2584 {
2585         struct btrfs_tree_parent_check check = {
2586                 .level = level,
2587                 .transid = gen,
2588                 .owner_root = btrfs_root_id(root)
2589         };
2590         int ret = 0;
2591 
2592         root->node = read_tree_block(root->fs_info, bytenr, &check);
2593         if (IS_ERR(root->node)) {
2594                 ret = PTR_ERR(root->node);
2595                 root->node = NULL;
2596                 return ret;
2597         }
2598         if (!extent_buffer_uptodate(root->node)) {
2599                 free_extent_buffer(root->node);
2600                 root->node = NULL;
2601                 return -EIO;
2602         }
2603 
2604         btrfs_set_root_node(&root->root_item, root->node);
2605         root->commit_root = btrfs_root_node(root);
2606         btrfs_set_root_refs(&root->root_item, 1);
2607         return ret;
2608 }
2609 
2610 static int load_important_roots(struct btrfs_fs_info *fs_info)
2611 {
2612         struct btrfs_super_block *sb = fs_info->super_copy;
2613         u64 gen, bytenr;
2614         int level, ret;
2615 
2616         bytenr = btrfs_super_root(sb);
2617         gen = btrfs_super_generation(sb);
2618         level = btrfs_super_root_level(sb);
2619         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2620         if (ret) {
2621                 btrfs_warn(fs_info, "couldn't read tree root");
2622                 return ret;
2623         }
2624         return 0;
2625 }
2626 
2627 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2628 {
2629         int backup_index = find_newest_super_backup(fs_info);
2630         struct btrfs_super_block *sb = fs_info->super_copy;
2631         struct btrfs_root *tree_root = fs_info->tree_root;
2632         bool handle_error = false;
2633         int ret = 0;
2634         int i;
2635 
2636         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2637                 if (handle_error) {
2638                         if (!IS_ERR(tree_root->node))
2639                                 free_extent_buffer(tree_root->node);
2640                         tree_root->node = NULL;
2641 
2642                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2643                                 break;
2644 
2645                         free_root_pointers(fs_info, 0);
2646 
2647                         /*
2648                          * Don't use the log in recovery mode, it won't be
2649                          * valid
2650                          */
2651                         btrfs_set_super_log_root(sb, 0);
2652 
2653                         btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2654                         ret = read_backup_root(fs_info, i);
2655                         backup_index = ret;
2656                         if (ret < 0)
2657                                 return ret;
2658                 }
2659 
2660                 ret = load_important_roots(fs_info);
2661                 if (ret) {
2662                         handle_error = true;
2663                         continue;
2664                 }
2665 
2666                 /*
2667                  * No need to hold btrfs_root::objectid_mutex since the fs
2668                  * hasn't been fully initialised and we are the only user
2669                  */
2670                 ret = btrfs_init_root_free_objectid(tree_root);
2671                 if (ret < 0) {
2672                         handle_error = true;
2673                         continue;
2674                 }
2675 
2676                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2677 
2678                 ret = btrfs_read_roots(fs_info);
2679                 if (ret < 0) {
2680                         handle_error = true;
2681                         continue;
2682                 }
2683 
2684                 /* All successful */
2685                 fs_info->generation = btrfs_header_generation(tree_root->node);
2686                 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2687                 fs_info->last_reloc_trans = 0;
2688 
2689                 /* Always begin writing backup roots after the one being used */
2690                 if (backup_index < 0) {
2691                         fs_info->backup_root_index = 0;
2692                 } else {
2693                         fs_info->backup_root_index = backup_index + 1;
2694                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2695                 }
2696                 break;
2697         }
2698 
2699         return ret;
2700 }
2701 
2702 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2703 {
2704         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2705         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2706         INIT_LIST_HEAD(&fs_info->trans_list);
2707         INIT_LIST_HEAD(&fs_info->dead_roots);
2708         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2709         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2710         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2711         spin_lock_init(&fs_info->delalloc_root_lock);
2712         spin_lock_init(&fs_info->trans_lock);
2713         spin_lock_init(&fs_info->fs_roots_radix_lock);
2714         spin_lock_init(&fs_info->delayed_iput_lock);
2715         spin_lock_init(&fs_info->defrag_inodes_lock);
2716         spin_lock_init(&fs_info->super_lock);
2717         spin_lock_init(&fs_info->buffer_lock);
2718         spin_lock_init(&fs_info->unused_bgs_lock);
2719         spin_lock_init(&fs_info->treelog_bg_lock);
2720         spin_lock_init(&fs_info->zone_active_bgs_lock);
2721         spin_lock_init(&fs_info->relocation_bg_lock);
2722         rwlock_init(&fs_info->tree_mod_log_lock);
2723         rwlock_init(&fs_info->global_root_lock);
2724         mutex_init(&fs_info->unused_bg_unpin_mutex);
2725         mutex_init(&fs_info->reclaim_bgs_lock);
2726         mutex_init(&fs_info->reloc_mutex);
2727         mutex_init(&fs_info->delalloc_root_mutex);
2728         mutex_init(&fs_info->zoned_meta_io_lock);
2729         mutex_init(&fs_info->zoned_data_reloc_io_lock);
2730         seqlock_init(&fs_info->profiles_lock);
2731 
2732         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2733         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2734         btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2735         btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2736         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2737                                      BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2738         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2739                                      BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2740         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2741                                      BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2742         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2743                                      BTRFS_LOCKDEP_TRANS_COMPLETED);
2744 
2745         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2746         INIT_LIST_HEAD(&fs_info->space_info);
2747         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2748         INIT_LIST_HEAD(&fs_info->unused_bgs);
2749         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2750         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2751 #ifdef CONFIG_BTRFS_DEBUG
2752         INIT_LIST_HEAD(&fs_info->allocated_roots);
2753         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2754         spin_lock_init(&fs_info->eb_leak_lock);
2755 #endif
2756         fs_info->mapping_tree = RB_ROOT_CACHED;
2757         rwlock_init(&fs_info->mapping_tree_lock);
2758         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2759                              BTRFS_BLOCK_RSV_GLOBAL);
2760         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2761         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2762         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2763         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2764                              BTRFS_BLOCK_RSV_DELOPS);
2765         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2766                              BTRFS_BLOCK_RSV_DELREFS);
2767 
2768         atomic_set(&fs_info->async_delalloc_pages, 0);
2769         atomic_set(&fs_info->defrag_running, 0);
2770         atomic_set(&fs_info->nr_delayed_iputs, 0);
2771         atomic64_set(&fs_info->tree_mod_seq, 0);
2772         fs_info->global_root_tree = RB_ROOT;
2773         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2774         fs_info->metadata_ratio = 0;
2775         fs_info->defrag_inodes = RB_ROOT;
2776         atomic64_set(&fs_info->free_chunk_space, 0);
2777         fs_info->tree_mod_log = RB_ROOT;
2778         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2779         btrfs_init_ref_verify(fs_info);
2780 
2781         fs_info->thread_pool_size = min_t(unsigned long,
2782                                           num_online_cpus() + 2, 8);
2783 
2784         INIT_LIST_HEAD(&fs_info->ordered_roots);
2785         spin_lock_init(&fs_info->ordered_root_lock);
2786 
2787         btrfs_init_scrub(fs_info);
2788         btrfs_init_balance(fs_info);
2789         btrfs_init_async_reclaim_work(fs_info);
2790 
2791         rwlock_init(&fs_info->block_group_cache_lock);
2792         fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2793 
2794         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2795                             IO_TREE_FS_EXCLUDED_EXTENTS);
2796 
2797         mutex_init(&fs_info->ordered_operations_mutex);
2798         mutex_init(&fs_info->tree_log_mutex);
2799         mutex_init(&fs_info->chunk_mutex);
2800         mutex_init(&fs_info->transaction_kthread_mutex);
2801         mutex_init(&fs_info->cleaner_mutex);
2802         mutex_init(&fs_info->ro_block_group_mutex);
2803         init_rwsem(&fs_info->commit_root_sem);
2804         init_rwsem(&fs_info->cleanup_work_sem);
2805         init_rwsem(&fs_info->subvol_sem);
2806         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2807 
2808         btrfs_init_dev_replace_locks(fs_info);
2809         btrfs_init_qgroup(fs_info);
2810         btrfs_discard_init(fs_info);
2811 
2812         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2813         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2814 
2815         init_waitqueue_head(&fs_info->transaction_throttle);
2816         init_waitqueue_head(&fs_info->transaction_wait);
2817         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2818         init_waitqueue_head(&fs_info->async_submit_wait);
2819         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2820 
2821         /* Usable values until the real ones are cached from the superblock */
2822         fs_info->nodesize = 4096;
2823         fs_info->sectorsize = 4096;
2824         fs_info->sectorsize_bits = ilog2(4096);
2825         fs_info->stripesize = 4096;
2826 
2827         /* Default compress algorithm when user does -o compress */
2828         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2829 
2830         fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2831 
2832         spin_lock_init(&fs_info->swapfile_pins_lock);
2833         fs_info->swapfile_pins = RB_ROOT;
2834 
2835         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2836         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2837 }
2838 
2839 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2840 {
2841         int ret;
2842 
2843         fs_info->sb = sb;
2844         /* Temporary fixed values for block size until we read the superblock. */
2845         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2846         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2847 
2848         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2849         if (ret)
2850                 return ret;
2851 
2852         ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2853         if (ret)
2854                 return ret;
2855 
2856         spin_lock_init(&fs_info->extent_map_shrinker_lock);
2857 
2858         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2859         if (ret)
2860                 return ret;
2861 
2862         fs_info->dirty_metadata_batch = PAGE_SIZE *
2863                                         (1 + ilog2(nr_cpu_ids));
2864 
2865         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2866         if (ret)
2867                 return ret;
2868 
2869         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2870                         GFP_KERNEL);
2871         if (ret)
2872                 return ret;
2873 
2874         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2875                                         GFP_KERNEL);
2876         if (!fs_info->delayed_root)
2877                 return -ENOMEM;
2878         btrfs_init_delayed_root(fs_info->delayed_root);
2879 
2880         if (sb_rdonly(sb))
2881                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2882         if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2883                 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2884 
2885         return btrfs_alloc_stripe_hash_table(fs_info);
2886 }
2887 
2888 static int btrfs_uuid_rescan_kthread(void *data)
2889 {
2890         struct btrfs_fs_info *fs_info = data;
2891         int ret;
2892 
2893         /*
2894          * 1st step is to iterate through the existing UUID tree and
2895          * to delete all entries that contain outdated data.
2896          * 2nd step is to add all missing entries to the UUID tree.
2897          */
2898         ret = btrfs_uuid_tree_iterate(fs_info);
2899         if (ret < 0) {
2900                 if (ret != -EINTR)
2901                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2902                                    ret);
2903                 up(&fs_info->uuid_tree_rescan_sem);
2904                 return ret;
2905         }
2906         return btrfs_uuid_scan_kthread(data);
2907 }
2908 
2909 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2910 {
2911         struct task_struct *task;
2912 
2913         down(&fs_info->uuid_tree_rescan_sem);
2914         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2915         if (IS_ERR(task)) {
2916                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2917                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2918                 up(&fs_info->uuid_tree_rescan_sem);
2919                 return PTR_ERR(task);
2920         }
2921 
2922         return 0;
2923 }
2924 
2925 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2926 {
2927         u64 root_objectid = 0;
2928         struct btrfs_root *gang[8];
2929         int ret = 0;
2930 
2931         while (1) {
2932                 unsigned int found;
2933 
2934                 spin_lock(&fs_info->fs_roots_radix_lock);
2935                 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2936                                              (void **)gang, root_objectid,
2937                                              ARRAY_SIZE(gang));
2938                 if (!found) {
2939                         spin_unlock(&fs_info->fs_roots_radix_lock);
2940                         break;
2941                 }
2942                 root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2943 
2944                 for (int i = 0; i < found; i++) {
2945                         /* Avoid to grab roots in dead_roots. */
2946                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2947                                 gang[i] = NULL;
2948                                 continue;
2949                         }
2950                         /* Grab all the search result for later use. */
2951                         gang[i] = btrfs_grab_root(gang[i]);
2952                 }
2953                 spin_unlock(&fs_info->fs_roots_radix_lock);
2954 
2955                 for (int i = 0; i < found; i++) {
2956                         if (!gang[i])
2957                                 continue;
2958                         root_objectid = btrfs_root_id(gang[i]);
2959                         /*
2960                          * Continue to release the remaining roots after the first
2961                          * error without cleanup and preserve the first error
2962                          * for the return.
2963                          */
2964                         if (!ret)
2965                                 ret = btrfs_orphan_cleanup(gang[i]);
2966                         btrfs_put_root(gang[i]);
2967                 }
2968                 if (ret)
2969                         break;
2970 
2971                 root_objectid++;
2972         }
2973         return ret;
2974 }
2975 
2976 /*
2977  * Mounting logic specific to read-write file systems. Shared by open_ctree
2978  * and btrfs_remount when remounting from read-only to read-write.
2979  */
2980 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2981 {
2982         int ret;
2983         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2984         bool rebuild_free_space_tree = false;
2985 
2986         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2987             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2988                 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2989                         btrfs_warn(fs_info,
2990                                    "'clear_cache' option is ignored with extent tree v2");
2991                 else
2992                         rebuild_free_space_tree = true;
2993         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2994                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2995                 btrfs_warn(fs_info, "free space tree is invalid");
2996                 rebuild_free_space_tree = true;
2997         }
2998 
2999         if (rebuild_free_space_tree) {
3000                 btrfs_info(fs_info, "rebuilding free space tree");
3001                 ret = btrfs_rebuild_free_space_tree(fs_info);
3002                 if (ret) {
3003                         btrfs_warn(fs_info,
3004                                    "failed to rebuild free space tree: %d", ret);
3005                         goto out;
3006                 }
3007         }
3008 
3009         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3010             !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3011                 btrfs_info(fs_info, "disabling free space tree");
3012                 ret = btrfs_delete_free_space_tree(fs_info);
3013                 if (ret) {
3014                         btrfs_warn(fs_info,
3015                                    "failed to disable free space tree: %d", ret);
3016                         goto out;
3017                 }
3018         }
3019 
3020         /*
3021          * btrfs_find_orphan_roots() is responsible for finding all the dead
3022          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3023          * them into the fs_info->fs_roots_radix tree. This must be done before
3024          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3025          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3026          * item before the root's tree is deleted - this means that if we unmount
3027          * or crash before the deletion completes, on the next mount we will not
3028          * delete what remains of the tree because the orphan item does not
3029          * exists anymore, which is what tells us we have a pending deletion.
3030          */
3031         ret = btrfs_find_orphan_roots(fs_info);
3032         if (ret)
3033                 goto out;
3034 
3035         ret = btrfs_cleanup_fs_roots(fs_info);
3036         if (ret)
3037                 goto out;
3038 
3039         down_read(&fs_info->cleanup_work_sem);
3040         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3041             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3042                 up_read(&fs_info->cleanup_work_sem);
3043                 goto out;
3044         }
3045         up_read(&fs_info->cleanup_work_sem);
3046 
3047         mutex_lock(&fs_info->cleaner_mutex);
3048         ret = btrfs_recover_relocation(fs_info);
3049         mutex_unlock(&fs_info->cleaner_mutex);
3050         if (ret < 0) {
3051                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3052                 goto out;
3053         }
3054 
3055         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3056             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3057                 btrfs_info(fs_info, "creating free space tree");
3058                 ret = btrfs_create_free_space_tree(fs_info);
3059                 if (ret) {
3060                         btrfs_warn(fs_info,
3061                                 "failed to create free space tree: %d", ret);
3062                         goto out;
3063                 }
3064         }
3065 
3066         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3067                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3068                 if (ret)
3069                         goto out;
3070         }
3071 
3072         ret = btrfs_resume_balance_async(fs_info);
3073         if (ret)
3074                 goto out;
3075 
3076         ret = btrfs_resume_dev_replace_async(fs_info);
3077         if (ret) {
3078                 btrfs_warn(fs_info, "failed to resume dev_replace");
3079                 goto out;
3080         }
3081 
3082         btrfs_qgroup_rescan_resume(fs_info);
3083 
3084         if (!fs_info->uuid_root) {
3085                 btrfs_info(fs_info, "creating UUID tree");
3086                 ret = btrfs_create_uuid_tree(fs_info);
3087                 if (ret) {
3088                         btrfs_warn(fs_info,
3089                                    "failed to create the UUID tree %d", ret);
3090                         goto out;
3091                 }
3092         }
3093 
3094 out:
3095         return ret;
3096 }
3097 
3098 /*
3099  * Do various sanity and dependency checks of different features.
3100  *
3101  * @is_rw_mount:        If the mount is read-write.
3102  *
3103  * This is the place for less strict checks (like for subpage or artificial
3104  * feature dependencies).
3105  *
3106  * For strict checks or possible corruption detection, see
3107  * btrfs_validate_super().
3108  *
3109  * This should be called after btrfs_parse_options(), as some mount options
3110  * (space cache related) can modify on-disk format like free space tree and
3111  * screw up certain feature dependencies.
3112  */
3113 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3114 {
3115         struct btrfs_super_block *disk_super = fs_info->super_copy;
3116         u64 incompat = btrfs_super_incompat_flags(disk_super);
3117         const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3118         const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3119 
3120         if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3121                 btrfs_err(fs_info,
3122                 "cannot mount because of unknown incompat features (0x%llx)",
3123                     incompat);
3124                 return -EINVAL;
3125         }
3126 
3127         /* Runtime limitation for mixed block groups. */
3128         if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3129             (fs_info->sectorsize != fs_info->nodesize)) {
3130                 btrfs_err(fs_info,
3131 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3132                         fs_info->nodesize, fs_info->sectorsize);
3133                 return -EINVAL;
3134         }
3135 
3136         /* Mixed backref is an always-enabled feature. */
3137         incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3138 
3139         /* Set compression related flags just in case. */
3140         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3141                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3142         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3143                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3144 
3145         /*
3146          * An ancient flag, which should really be marked deprecated.
3147          * Such runtime limitation doesn't really need a incompat flag.
3148          */
3149         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3150                 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3151 
3152         if (compat_ro_unsupp && is_rw_mount) {
3153                 btrfs_err(fs_info,
3154         "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3155                        compat_ro);
3156                 return -EINVAL;
3157         }
3158 
3159         /*
3160          * We have unsupported RO compat features, although RO mounted, we
3161          * should not cause any metadata writes, including log replay.
3162          * Or we could screw up whatever the new feature requires.
3163          */
3164         if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3165             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3166                 btrfs_err(fs_info,
3167 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3168                           compat_ro);
3169                 return -EINVAL;
3170         }
3171 
3172         /*
3173          * Artificial limitations for block group tree, to force
3174          * block-group-tree to rely on no-holes and free-space-tree.
3175          */
3176         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3177             (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3178              !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3179                 btrfs_err(fs_info,
3180 "block-group-tree feature requires no-holes and free-space-tree features");
3181                 return -EINVAL;
3182         }
3183 
3184         /*
3185          * Subpage runtime limitation on v1 cache.
3186          *
3187          * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3188          * we're already defaulting to v2 cache, no need to bother v1 as it's
3189          * going to be deprecated anyway.
3190          */
3191         if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3192                 btrfs_warn(fs_info,
3193         "v1 space cache is not supported for page size %lu with sectorsize %u",
3194                            PAGE_SIZE, fs_info->sectorsize);
3195                 return -EINVAL;
3196         }
3197 
3198         /* This can be called by remount, we need to protect the super block. */
3199         spin_lock(&fs_info->super_lock);
3200         btrfs_set_super_incompat_flags(disk_super, incompat);
3201         spin_unlock(&fs_info->super_lock);
3202 
3203         return 0;
3204 }
3205 
3206 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3207                       const char *options)
3208 {
3209         u32 sectorsize;
3210         u32 nodesize;
3211         u32 stripesize;
3212         u64 generation;
3213         u16 csum_type;
3214         struct btrfs_super_block *disk_super;
3215         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3216         struct btrfs_root *tree_root;
3217         struct btrfs_root *chunk_root;
3218         int ret;
3219         int level;
3220 
3221         ret = init_mount_fs_info(fs_info, sb);
3222         if (ret)
3223                 goto fail;
3224 
3225         /* These need to be init'ed before we start creating inodes and such. */
3226         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3227                                      GFP_KERNEL);
3228         fs_info->tree_root = tree_root;
3229         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3230                                       GFP_KERNEL);
3231         fs_info->chunk_root = chunk_root;
3232         if (!tree_root || !chunk_root) {
3233                 ret = -ENOMEM;
3234                 goto fail;
3235         }
3236 
3237         ret = btrfs_init_btree_inode(sb);
3238         if (ret)
3239                 goto fail;
3240 
3241         invalidate_bdev(fs_devices->latest_dev->bdev);
3242 
3243         /*
3244          * Read super block and check the signature bytes only
3245          */
3246         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3247         if (IS_ERR(disk_super)) {
3248                 ret = PTR_ERR(disk_super);
3249                 goto fail_alloc;
3250         }
3251 
3252         btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3253         /*
3254          * Verify the type first, if that or the checksum value are
3255          * corrupted, we'll find out
3256          */
3257         csum_type = btrfs_super_csum_type(disk_super);
3258         if (!btrfs_supported_super_csum(csum_type)) {
3259                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3260                           csum_type);
3261                 ret = -EINVAL;
3262                 btrfs_release_disk_super(disk_super);
3263                 goto fail_alloc;
3264         }
3265 
3266         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3267 
3268         ret = btrfs_init_csum_hash(fs_info, csum_type);
3269         if (ret) {
3270                 btrfs_release_disk_super(disk_super);
3271                 goto fail_alloc;
3272         }
3273 
3274         /*
3275          * We want to check superblock checksum, the type is stored inside.
3276          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3277          */
3278         if (btrfs_check_super_csum(fs_info, disk_super)) {
3279                 btrfs_err(fs_info, "superblock checksum mismatch");
3280                 ret = -EINVAL;
3281                 btrfs_release_disk_super(disk_super);
3282                 goto fail_alloc;
3283         }
3284 
3285         /*
3286          * super_copy is zeroed at allocation time and we never touch the
3287          * following bytes up to INFO_SIZE, the checksum is calculated from
3288          * the whole block of INFO_SIZE
3289          */
3290         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3291         btrfs_release_disk_super(disk_super);
3292 
3293         disk_super = fs_info->super_copy;
3294 
3295         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3296                sizeof(*fs_info->super_for_commit));
3297 
3298         ret = btrfs_validate_mount_super(fs_info);
3299         if (ret) {
3300                 btrfs_err(fs_info, "superblock contains fatal errors");
3301                 ret = -EINVAL;
3302                 goto fail_alloc;
3303         }
3304 
3305         if (!btrfs_super_root(disk_super)) {
3306                 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3307                 ret = -EINVAL;
3308                 goto fail_alloc;
3309         }
3310 
3311         /* check FS state, whether FS is broken. */
3312         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3313                 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3314 
3315         /* Set up fs_info before parsing mount options */
3316         nodesize = btrfs_super_nodesize(disk_super);
3317         sectorsize = btrfs_super_sectorsize(disk_super);
3318         stripesize = sectorsize;
3319         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3320         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3321 
3322         fs_info->nodesize = nodesize;
3323         fs_info->sectorsize = sectorsize;
3324         fs_info->sectorsize_bits = ilog2(sectorsize);
3325         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3326         fs_info->stripesize = stripesize;
3327 
3328         /*
3329          * Handle the space caching options appropriately now that we have the
3330          * super block loaded and validated.
3331          */
3332         btrfs_set_free_space_cache_settings(fs_info);
3333 
3334         if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3335                 ret = -EINVAL;
3336                 goto fail_alloc;
3337         }
3338 
3339         ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3340         if (ret < 0)
3341                 goto fail_alloc;
3342 
3343         /*
3344          * At this point our mount options are validated, if we set ->max_inline
3345          * to something non-standard make sure we truncate it to sectorsize.
3346          */
3347         fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3348 
3349         if (sectorsize < PAGE_SIZE) {
3350                 struct btrfs_subpage_info *subpage_info;
3351 
3352                 btrfs_warn(fs_info,
3353                 "read-write for sector size %u with page size %lu is experimental",
3354                            sectorsize, PAGE_SIZE);
3355                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3356                 if (!subpage_info) {
3357                         ret = -ENOMEM;
3358                         goto fail_alloc;
3359                 }
3360                 btrfs_init_subpage_info(subpage_info, sectorsize);
3361                 fs_info->subpage_info = subpage_info;
3362         }
3363 
3364         ret = btrfs_init_workqueues(fs_info);
3365         if (ret)
3366                 goto fail_sb_buffer;
3367 
3368         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3369         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3370 
3371         /* Update the values for the current filesystem. */
3372         sb->s_blocksize = sectorsize;
3373         sb->s_blocksize_bits = blksize_bits(sectorsize);
3374         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3375 
3376         mutex_lock(&fs_info->chunk_mutex);
3377         ret = btrfs_read_sys_array(fs_info);
3378         mutex_unlock(&fs_info->chunk_mutex);
3379         if (ret) {
3380                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3381                 goto fail_sb_buffer;
3382         }
3383 
3384         generation = btrfs_super_chunk_root_generation(disk_super);
3385         level = btrfs_super_chunk_root_level(disk_super);
3386         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3387                               generation, level);
3388         if (ret) {
3389                 btrfs_err(fs_info, "failed to read chunk root");
3390                 goto fail_tree_roots;
3391         }
3392 
3393         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3394                            offsetof(struct btrfs_header, chunk_tree_uuid),
3395                            BTRFS_UUID_SIZE);
3396 
3397         ret = btrfs_read_chunk_tree(fs_info);
3398         if (ret) {
3399                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3400                 goto fail_tree_roots;
3401         }
3402 
3403         /*
3404          * At this point we know all the devices that make this filesystem,
3405          * including the seed devices but we don't know yet if the replace
3406          * target is required. So free devices that are not part of this
3407          * filesystem but skip the replace target device which is checked
3408          * below in btrfs_init_dev_replace().
3409          */
3410         btrfs_free_extra_devids(fs_devices);
3411         if (!fs_devices->latest_dev->bdev) {
3412                 btrfs_err(fs_info, "failed to read devices");
3413                 ret = -EIO;
3414                 goto fail_tree_roots;
3415         }
3416 
3417         ret = init_tree_roots(fs_info);
3418         if (ret)
3419                 goto fail_tree_roots;
3420 
3421         /*
3422          * Get zone type information of zoned block devices. This will also
3423          * handle emulation of a zoned filesystem if a regular device has the
3424          * zoned incompat feature flag set.
3425          */
3426         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3427         if (ret) {
3428                 btrfs_err(fs_info,
3429                           "zoned: failed to read device zone info: %d", ret);
3430                 goto fail_block_groups;
3431         }
3432 
3433         /*
3434          * If we have a uuid root and we're not being told to rescan we need to
3435          * check the generation here so we can set the
3436          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3437          * transaction during a balance or the log replay without updating the
3438          * uuid generation, and then if we crash we would rescan the uuid tree,
3439          * even though it was perfectly fine.
3440          */
3441         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3442             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3443                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3444 
3445         ret = btrfs_verify_dev_extents(fs_info);
3446         if (ret) {
3447                 btrfs_err(fs_info,
3448                           "failed to verify dev extents against chunks: %d",
3449                           ret);
3450                 goto fail_block_groups;
3451         }
3452         ret = btrfs_recover_balance(fs_info);
3453         if (ret) {
3454                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3455                 goto fail_block_groups;
3456         }
3457 
3458         ret = btrfs_init_dev_stats(fs_info);
3459         if (ret) {
3460                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3461                 goto fail_block_groups;
3462         }
3463 
3464         ret = btrfs_init_dev_replace(fs_info);
3465         if (ret) {
3466                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3467                 goto fail_block_groups;
3468         }
3469 
3470         ret = btrfs_check_zoned_mode(fs_info);
3471         if (ret) {
3472                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3473                           ret);
3474                 goto fail_block_groups;
3475         }
3476 
3477         ret = btrfs_sysfs_add_fsid(fs_devices);
3478         if (ret) {
3479                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3480                                 ret);
3481                 goto fail_block_groups;
3482         }
3483 
3484         ret = btrfs_sysfs_add_mounted(fs_info);
3485         if (ret) {
3486                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3487                 goto fail_fsdev_sysfs;
3488         }
3489 
3490         ret = btrfs_init_space_info(fs_info);
3491         if (ret) {
3492                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3493                 goto fail_sysfs;
3494         }
3495 
3496         ret = btrfs_read_block_groups(fs_info);
3497         if (ret) {
3498                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3499                 goto fail_sysfs;
3500         }
3501 
3502         btrfs_free_zone_cache(fs_info);
3503 
3504         btrfs_check_active_zone_reservation(fs_info);
3505 
3506         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3507             !btrfs_check_rw_degradable(fs_info, NULL)) {
3508                 btrfs_warn(fs_info,
3509                 "writable mount is not allowed due to too many missing devices");
3510                 ret = -EINVAL;
3511                 goto fail_sysfs;
3512         }
3513 
3514         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3515                                                "btrfs-cleaner");
3516         if (IS_ERR(fs_info->cleaner_kthread)) {
3517                 ret = PTR_ERR(fs_info->cleaner_kthread);
3518                 goto fail_sysfs;
3519         }
3520 
3521         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3522                                                    tree_root,
3523                                                    "btrfs-transaction");
3524         if (IS_ERR(fs_info->transaction_kthread)) {
3525                 ret = PTR_ERR(fs_info->transaction_kthread);
3526                 goto fail_cleaner;
3527         }
3528 
3529         ret = btrfs_read_qgroup_config(fs_info);
3530         if (ret)
3531                 goto fail_trans_kthread;
3532 
3533         if (btrfs_build_ref_tree(fs_info))
3534                 btrfs_err(fs_info, "couldn't build ref tree");
3535 
3536         /* do not make disk changes in broken FS or nologreplay is given */
3537         if (btrfs_super_log_root(disk_super) != 0 &&
3538             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3539                 btrfs_info(fs_info, "start tree-log replay");
3540                 ret = btrfs_replay_log(fs_info, fs_devices);
3541                 if (ret)
3542                         goto fail_qgroup;
3543         }
3544 
3545         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3546         if (IS_ERR(fs_info->fs_root)) {
3547                 ret = PTR_ERR(fs_info->fs_root);
3548                 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3549                 fs_info->fs_root = NULL;
3550                 goto fail_qgroup;
3551         }
3552 
3553         if (sb_rdonly(sb))
3554                 return 0;
3555 
3556         ret = btrfs_start_pre_rw_mount(fs_info);
3557         if (ret) {
3558                 close_ctree(fs_info);
3559                 return ret;
3560         }
3561         btrfs_discard_resume(fs_info);
3562 
3563         if (fs_info->uuid_root &&
3564             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3565              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3566                 btrfs_info(fs_info, "checking UUID tree");
3567                 ret = btrfs_check_uuid_tree(fs_info);
3568                 if (ret) {
3569                         btrfs_warn(fs_info,
3570                                 "failed to check the UUID tree: %d", ret);
3571                         close_ctree(fs_info);
3572                         return ret;
3573                 }
3574         }
3575 
3576         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3577 
3578         /* Kick the cleaner thread so it'll start deleting snapshots. */
3579         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3580                 wake_up_process(fs_info->cleaner_kthread);
3581 
3582         return 0;
3583 
3584 fail_qgroup:
3585         btrfs_free_qgroup_config(fs_info);
3586 fail_trans_kthread:
3587         kthread_stop(fs_info->transaction_kthread);
3588         btrfs_cleanup_transaction(fs_info);
3589         btrfs_free_fs_roots(fs_info);
3590 fail_cleaner:
3591         kthread_stop(fs_info->cleaner_kthread);
3592 
3593         /*
3594          * make sure we're done with the btree inode before we stop our
3595          * kthreads
3596          */
3597         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3598 
3599 fail_sysfs:
3600         btrfs_sysfs_remove_mounted(fs_info);
3601 
3602 fail_fsdev_sysfs:
3603         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3604 
3605 fail_block_groups:
3606         btrfs_put_block_group_cache(fs_info);
3607 
3608 fail_tree_roots:
3609         if (fs_info->data_reloc_root)
3610                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3611         free_root_pointers(fs_info, true);
3612         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3613 
3614 fail_sb_buffer:
3615         btrfs_stop_all_workers(fs_info);
3616         btrfs_free_block_groups(fs_info);
3617 fail_alloc:
3618         btrfs_mapping_tree_free(fs_info);
3619 
3620         iput(fs_info->btree_inode);
3621 fail:
3622         btrfs_close_devices(fs_info->fs_devices);
3623         ASSERT(ret < 0);
3624         return ret;
3625 }
3626 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3627 
3628 static void btrfs_end_super_write(struct bio *bio)
3629 {
3630         struct btrfs_device *device = bio->bi_private;
3631         struct folio_iter fi;
3632 
3633         bio_for_each_folio_all(fi, bio) {
3634                 if (bio->bi_status) {
3635                         btrfs_warn_rl_in_rcu(device->fs_info,
3636                                 "lost super block write due to IO error on %s (%d)",
3637                                 btrfs_dev_name(device),
3638                                 blk_status_to_errno(bio->bi_status));
3639                         btrfs_dev_stat_inc_and_print(device,
3640                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3641                         /* Ensure failure if the primary sb fails. */
3642                         if (bio->bi_opf & REQ_FUA)
3643                                 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3644                                            &device->sb_write_errors);
3645                         else
3646                                 atomic_inc(&device->sb_write_errors);
3647                 }
3648                 folio_unlock(fi.folio);
3649                 folio_put(fi.folio);
3650         }
3651 
3652         bio_put(bio);
3653 }
3654 
3655 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3656                                                    int copy_num, bool drop_cache)
3657 {
3658         struct btrfs_super_block *super;
3659         struct page *page;
3660         u64 bytenr, bytenr_orig;
3661         struct address_space *mapping = bdev->bd_mapping;
3662         int ret;
3663 
3664         bytenr_orig = btrfs_sb_offset(copy_num);
3665         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3666         if (ret == -ENOENT)
3667                 return ERR_PTR(-EINVAL);
3668         else if (ret)
3669                 return ERR_PTR(ret);
3670 
3671         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3672                 return ERR_PTR(-EINVAL);
3673 
3674         if (drop_cache) {
3675                 /* This should only be called with the primary sb. */
3676                 ASSERT(copy_num == 0);
3677 
3678                 /*
3679                  * Drop the page of the primary superblock, so later read will
3680                  * always read from the device.
3681                  */
3682                 invalidate_inode_pages2_range(mapping,
3683                                 bytenr >> PAGE_SHIFT,
3684                                 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3685         }
3686 
3687         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3688         if (IS_ERR(page))
3689                 return ERR_CAST(page);
3690 
3691         super = page_address(page);
3692         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3693                 btrfs_release_disk_super(super);
3694                 return ERR_PTR(-ENODATA);
3695         }
3696 
3697         if (btrfs_super_bytenr(super) != bytenr_orig) {
3698                 btrfs_release_disk_super(super);
3699                 return ERR_PTR(-EINVAL);
3700         }
3701 
3702         return super;
3703 }
3704 
3705 
3706 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3707 {
3708         struct btrfs_super_block *super, *latest = NULL;
3709         int i;
3710         u64 transid = 0;
3711 
3712         /* we would like to check all the supers, but that would make
3713          * a btrfs mount succeed after a mkfs from a different FS.
3714          * So, we need to add a special mount option to scan for
3715          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3716          */
3717         for (i = 0; i < 1; i++) {
3718                 super = btrfs_read_dev_one_super(bdev, i, false);
3719                 if (IS_ERR(super))
3720                         continue;
3721 
3722                 if (!latest || btrfs_super_generation(super) > transid) {
3723                         if (latest)
3724                                 btrfs_release_disk_super(super);
3725 
3726                         latest = super;
3727                         transid = btrfs_super_generation(super);
3728                 }
3729         }
3730 
3731         return super;
3732 }
3733 
3734 /*
3735  * Write superblock @sb to the @device. Do not wait for completion, all the
3736  * folios we use for writing are locked.
3737  *
3738  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3739  * the expected device size at commit time. Note that max_mirrors must be
3740  * same for write and wait phases.
3741  *
3742  * Return number of errors when folio is not found or submission fails.
3743  */
3744 static int write_dev_supers(struct btrfs_device *device,
3745                             struct btrfs_super_block *sb, int max_mirrors)
3746 {
3747         struct btrfs_fs_info *fs_info = device->fs_info;
3748         struct address_space *mapping = device->bdev->bd_mapping;
3749         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3750         int i;
3751         int ret;
3752         u64 bytenr, bytenr_orig;
3753 
3754         atomic_set(&device->sb_write_errors, 0);
3755 
3756         if (max_mirrors == 0)
3757                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3758 
3759         shash->tfm = fs_info->csum_shash;
3760 
3761         for (i = 0; i < max_mirrors; i++) {
3762                 struct folio *folio;
3763                 struct bio *bio;
3764                 struct btrfs_super_block *disk_super;
3765                 size_t offset;
3766 
3767                 bytenr_orig = btrfs_sb_offset(i);
3768                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3769                 if (ret == -ENOENT) {
3770                         continue;
3771                 } else if (ret < 0) {
3772                         btrfs_err(device->fs_info,
3773                                 "couldn't get super block location for mirror %d",
3774                                 i);
3775                         atomic_inc(&device->sb_write_errors);
3776                         continue;
3777                 }
3778                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3779                     device->commit_total_bytes)
3780                         break;
3781 
3782                 btrfs_set_super_bytenr(sb, bytenr_orig);
3783 
3784                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3785                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3786                                     sb->csum);
3787 
3788                 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3789                                             FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3790                                             GFP_NOFS);
3791                 if (IS_ERR(folio)) {
3792                         btrfs_err(device->fs_info,
3793                             "couldn't get super block page for bytenr %llu",
3794                             bytenr);
3795                         atomic_inc(&device->sb_write_errors);
3796                         continue;
3797                 }
3798                 ASSERT(folio_order(folio) == 0);
3799 
3800                 offset = offset_in_folio(folio, bytenr);
3801                 disk_super = folio_address(folio) + offset;
3802                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3803 
3804                 /*
3805                  * Directly use bios here instead of relying on the page cache
3806                  * to do I/O, so we don't lose the ability to do integrity
3807                  * checking.
3808                  */
3809                 bio = bio_alloc(device->bdev, 1,
3810                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3811                                 GFP_NOFS);
3812                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3813                 bio->bi_private = device;
3814                 bio->bi_end_io = btrfs_end_super_write;
3815                 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3816 
3817                 /*
3818                  * We FUA only the first super block.  The others we allow to
3819                  * go down lazy and there's a short window where the on-disk
3820                  * copies might still contain the older version.
3821                  */
3822                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3823                         bio->bi_opf |= REQ_FUA;
3824                 submit_bio(bio);
3825 
3826                 if (btrfs_advance_sb_log(device, i))
3827                         atomic_inc(&device->sb_write_errors);
3828         }
3829         return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3830 }
3831 
3832 /*
3833  * Wait for write completion of superblocks done by write_dev_supers,
3834  * @max_mirrors same for write and wait phases.
3835  *
3836  * Return -1 if primary super block write failed or when there were no super block
3837  * copies written. Otherwise 0.
3838  */
3839 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3840 {
3841         int i;
3842         int errors = 0;
3843         bool primary_failed = false;
3844         int ret;
3845         u64 bytenr;
3846 
3847         if (max_mirrors == 0)
3848                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3849 
3850         for (i = 0; i < max_mirrors; i++) {
3851                 struct folio *folio;
3852 
3853                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3854                 if (ret == -ENOENT) {
3855                         break;
3856                 } else if (ret < 0) {
3857                         errors++;
3858                         if (i == 0)
3859                                 primary_failed = true;
3860                         continue;
3861                 }
3862                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3863                     device->commit_total_bytes)
3864                         break;
3865 
3866                 folio = filemap_get_folio(device->bdev->bd_mapping,
3867                                           bytenr >> PAGE_SHIFT);
3868                 /* If the folio has been removed, then we know it completed. */
3869                 if (IS_ERR(folio))
3870                         continue;
3871                 ASSERT(folio_order(folio) == 0);
3872 
3873                 /* Folio will be unlocked once the write completes. */
3874                 folio_wait_locked(folio);
3875                 folio_put(folio);
3876         }
3877 
3878         errors += atomic_read(&device->sb_write_errors);
3879         if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3880                 primary_failed = true;
3881         if (primary_failed) {
3882                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3883                           device->devid);
3884                 return -1;
3885         }
3886 
3887         return errors < i ? 0 : -1;
3888 }
3889 
3890 /*
3891  * endio for the write_dev_flush, this will wake anyone waiting
3892  * for the barrier when it is done
3893  */
3894 static void btrfs_end_empty_barrier(struct bio *bio)
3895 {
3896         bio_uninit(bio);
3897         complete(bio->bi_private);
3898 }
3899 
3900 /*
3901  * Submit a flush request to the device if it supports it. Error handling is
3902  * done in the waiting counterpart.
3903  */
3904 static void write_dev_flush(struct btrfs_device *device)
3905 {
3906         struct bio *bio = &device->flush_bio;
3907 
3908         device->last_flush_error = BLK_STS_OK;
3909 
3910         bio_init(bio, device->bdev, NULL, 0,
3911                  REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3912         bio->bi_end_io = btrfs_end_empty_barrier;
3913         init_completion(&device->flush_wait);
3914         bio->bi_private = &device->flush_wait;
3915         submit_bio(bio);
3916         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3917 }
3918 
3919 /*
3920  * If the flush bio has been submitted by write_dev_flush, wait for it.
3921  * Return true for any error, and false otherwise.
3922  */
3923 static bool wait_dev_flush(struct btrfs_device *device)
3924 {
3925         struct bio *bio = &device->flush_bio;
3926 
3927         if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3928                 return false;
3929 
3930         wait_for_completion_io(&device->flush_wait);
3931 
3932         if (bio->bi_status) {
3933                 device->last_flush_error = bio->bi_status;
3934                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3935                 return true;
3936         }
3937 
3938         return false;
3939 }
3940 
3941 /*
3942  * send an empty flush down to each device in parallel,
3943  * then wait for them
3944  */
3945 static int barrier_all_devices(struct btrfs_fs_info *info)
3946 {
3947         struct list_head *head;
3948         struct btrfs_device *dev;
3949         int errors_wait = 0;
3950 
3951         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3952         /* send down all the barriers */
3953         head = &info->fs_devices->devices;
3954         list_for_each_entry(dev, head, dev_list) {
3955                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3956                         continue;
3957                 if (!dev->bdev)
3958                         continue;
3959                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3960                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3961                         continue;
3962 
3963                 write_dev_flush(dev);
3964         }
3965 
3966         /* wait for all the barriers */
3967         list_for_each_entry(dev, head, dev_list) {
3968                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3969                         continue;
3970                 if (!dev->bdev) {
3971                         errors_wait++;
3972                         continue;
3973                 }
3974                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3975                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3976                         continue;
3977 
3978                 if (wait_dev_flush(dev))
3979                         errors_wait++;
3980         }
3981 
3982         /*
3983          * Checks last_flush_error of disks in order to determine the device
3984          * state.
3985          */
3986         if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3987                 return -EIO;
3988 
3989         return 0;
3990 }
3991 
3992 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3993 {
3994         int raid_type;
3995         int min_tolerated = INT_MAX;
3996 
3997         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3998             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3999                 min_tolerated = min_t(int, min_tolerated,
4000                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
4001                                     tolerated_failures);
4002 
4003         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4004                 if (raid_type == BTRFS_RAID_SINGLE)
4005                         continue;
4006                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4007                         continue;
4008                 min_tolerated = min_t(int, min_tolerated,
4009                                     btrfs_raid_array[raid_type].
4010                                     tolerated_failures);
4011         }
4012 
4013         if (min_tolerated == INT_MAX) {
4014                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4015                 min_tolerated = 0;
4016         }
4017 
4018         return min_tolerated;
4019 }
4020 
4021 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4022 {
4023         struct list_head *head;
4024         struct btrfs_device *dev;
4025         struct btrfs_super_block *sb;
4026         struct btrfs_dev_item *dev_item;
4027         int ret;
4028         int do_barriers;
4029         int max_errors;
4030         int total_errors = 0;
4031         u64 flags;
4032 
4033         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4034 
4035         /*
4036          * max_mirrors == 0 indicates we're from commit_transaction,
4037          * not from fsync where the tree roots in fs_info have not
4038          * been consistent on disk.
4039          */
4040         if (max_mirrors == 0)
4041                 backup_super_roots(fs_info);
4042 
4043         sb = fs_info->super_for_commit;
4044         dev_item = &sb->dev_item;
4045 
4046         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4047         head = &fs_info->fs_devices->devices;
4048         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4049 
4050         if (do_barriers) {
4051                 ret = barrier_all_devices(fs_info);
4052                 if (ret) {
4053                         mutex_unlock(
4054                                 &fs_info->fs_devices->device_list_mutex);
4055                         btrfs_handle_fs_error(fs_info, ret,
4056                                               "errors while submitting device barriers.");
4057                         return ret;
4058                 }
4059         }
4060 
4061         list_for_each_entry(dev, head, dev_list) {
4062                 if (!dev->bdev) {
4063                         total_errors++;
4064                         continue;
4065                 }
4066                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4067                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4068                         continue;
4069 
4070                 btrfs_set_stack_device_generation(dev_item, 0);
4071                 btrfs_set_stack_device_type(dev_item, dev->type);
4072                 btrfs_set_stack_device_id(dev_item, dev->devid);
4073                 btrfs_set_stack_device_total_bytes(dev_item,
4074                                                    dev->commit_total_bytes);
4075                 btrfs_set_stack_device_bytes_used(dev_item,
4076                                                   dev->commit_bytes_used);
4077                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4078                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4079                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4080                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4081                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4082                        BTRFS_FSID_SIZE);
4083 
4084                 flags = btrfs_super_flags(sb);
4085                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4086 
4087                 ret = btrfs_validate_write_super(fs_info, sb);
4088                 if (ret < 0) {
4089                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4091                                 "unexpected superblock corruption detected");
4092                         return -EUCLEAN;
4093                 }
4094 
4095                 ret = write_dev_supers(dev, sb, max_mirrors);
4096                 if (ret)
4097                         total_errors++;
4098         }
4099         if (total_errors > max_errors) {
4100                 btrfs_err(fs_info, "%d errors while writing supers",
4101                           total_errors);
4102                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4103 
4104                 /* FUA is masked off if unsupported and can't be the reason */
4105                 btrfs_handle_fs_error(fs_info, -EIO,
4106                                       "%d errors while writing supers",
4107                                       total_errors);
4108                 return -EIO;
4109         }
4110 
4111         total_errors = 0;
4112         list_for_each_entry(dev, head, dev_list) {
4113                 if (!dev->bdev)
4114                         continue;
4115                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4116                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4117                         continue;
4118 
4119                 ret = wait_dev_supers(dev, max_mirrors);
4120                 if (ret)
4121                         total_errors++;
4122         }
4123         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4124         if (total_errors > max_errors) {
4125                 btrfs_handle_fs_error(fs_info, -EIO,
4126                                       "%d errors while writing supers",
4127                                       total_errors);
4128                 return -EIO;
4129         }
4130         return 0;
4131 }
4132 
4133 /* Drop a fs root from the radix tree and free it. */
4134 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4135                                   struct btrfs_root *root)
4136 {
4137         bool drop_ref = false;
4138 
4139         spin_lock(&fs_info->fs_roots_radix_lock);
4140         radix_tree_delete(&fs_info->fs_roots_radix,
4141                           (unsigned long)btrfs_root_id(root));
4142         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4143                 drop_ref = true;
4144         spin_unlock(&fs_info->fs_roots_radix_lock);
4145 
4146         if (BTRFS_FS_ERROR(fs_info)) {
4147                 ASSERT(root->log_root == NULL);
4148                 if (root->reloc_root) {
4149                         btrfs_put_root(root->reloc_root);
4150                         root->reloc_root = NULL;
4151                 }
4152         }
4153 
4154         if (drop_ref)
4155                 btrfs_put_root(root);
4156 }
4157 
4158 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4159 {
4160         mutex_lock(&fs_info->cleaner_mutex);
4161         btrfs_run_delayed_iputs(fs_info);
4162         mutex_unlock(&fs_info->cleaner_mutex);
4163         wake_up_process(fs_info->cleaner_kthread);
4164 
4165         /* wait until ongoing cleanup work done */
4166         down_write(&fs_info->cleanup_work_sem);
4167         up_write(&fs_info->cleanup_work_sem);
4168 
4169         return btrfs_commit_current_transaction(fs_info->tree_root);
4170 }
4171 
4172 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4173 {
4174         struct btrfs_transaction *trans;
4175         struct btrfs_transaction *tmp;
4176         bool found = false;
4177 
4178         /*
4179          * This function is only called at the very end of close_ctree(),
4180          * thus no other running transaction, no need to take trans_lock.
4181          */
4182         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4183         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4184                 struct extent_state *cached = NULL;
4185                 u64 dirty_bytes = 0;
4186                 u64 cur = 0;
4187                 u64 found_start;
4188                 u64 found_end;
4189 
4190                 found = true;
4191                 while (find_first_extent_bit(&trans->dirty_pages, cur,
4192                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4193                         dirty_bytes += found_end + 1 - found_start;
4194                         cur = found_end + 1;
4195                 }
4196                 btrfs_warn(fs_info,
4197         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4198                            trans->transid, dirty_bytes);
4199                 btrfs_cleanup_one_transaction(trans, fs_info);
4200 
4201                 if (trans == fs_info->running_transaction)
4202                         fs_info->running_transaction = NULL;
4203                 list_del_init(&trans->list);
4204 
4205                 btrfs_put_transaction(trans);
4206                 trace_btrfs_transaction_commit(fs_info);
4207         }
4208         ASSERT(!found);
4209 }
4210 
4211 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4212 {
4213         int ret;
4214 
4215         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4216 
4217         /*
4218          * If we had UNFINISHED_DROPS we could still be processing them, so
4219          * clear that bit and wake up relocation so it can stop.
4220          * We must do this before stopping the block group reclaim task, because
4221          * at btrfs_relocate_block_group() we wait for this bit, and after the
4222          * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4223          * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4224          * return 1.
4225          */
4226         btrfs_wake_unfinished_drop(fs_info);
4227 
4228         /*
4229          * We may have the reclaim task running and relocating a data block group,
4230          * in which case it may create delayed iputs. So stop it before we park
4231          * the cleaner kthread otherwise we can get new delayed iputs after
4232          * parking the cleaner, and that can make the async reclaim task to hang
4233          * if it's waiting for delayed iputs to complete, since the cleaner is
4234          * parked and can not run delayed iputs - this will make us hang when
4235          * trying to stop the async reclaim task.
4236          */
4237         cancel_work_sync(&fs_info->reclaim_bgs_work);
4238         /*
4239          * We don't want the cleaner to start new transactions, add more delayed
4240          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4241          * because that frees the task_struct, and the transaction kthread might
4242          * still try to wake up the cleaner.
4243          */
4244         kthread_park(fs_info->cleaner_kthread);
4245 
4246         /* wait for the qgroup rescan worker to stop */
4247         btrfs_qgroup_wait_for_completion(fs_info, false);
4248 
4249         /* wait for the uuid_scan task to finish */
4250         down(&fs_info->uuid_tree_rescan_sem);
4251         /* avoid complains from lockdep et al., set sem back to initial state */
4252         up(&fs_info->uuid_tree_rescan_sem);
4253 
4254         /* pause restriper - we want to resume on mount */
4255         btrfs_pause_balance(fs_info);
4256 
4257         btrfs_dev_replace_suspend_for_unmount(fs_info);
4258 
4259         btrfs_scrub_cancel(fs_info);
4260 
4261         /* wait for any defraggers to finish */
4262         wait_event(fs_info->transaction_wait,
4263                    (atomic_read(&fs_info->defrag_running) == 0));
4264 
4265         /* clear out the rbtree of defraggable inodes */
4266         btrfs_cleanup_defrag_inodes(fs_info);
4267 
4268         /*
4269          * Wait for any fixup workers to complete.
4270          * If we don't wait for them here and they are still running by the time
4271          * we call kthread_stop() against the cleaner kthread further below, we
4272          * get an use-after-free on the cleaner because the fixup worker adds an
4273          * inode to the list of delayed iputs and then attempts to wakeup the
4274          * cleaner kthread, which was already stopped and destroyed. We parked
4275          * already the cleaner, but below we run all pending delayed iputs.
4276          */
4277         btrfs_flush_workqueue(fs_info->fixup_workers);
4278 
4279         /*
4280          * After we parked the cleaner kthread, ordered extents may have
4281          * completed and created new delayed iputs. If one of the async reclaim
4282          * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4283          * can hang forever trying to stop it, because if a delayed iput is
4284          * added after it ran btrfs_run_delayed_iputs() and before it called
4285          * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4286          * no one else to run iputs.
4287          *
4288          * So wait for all ongoing ordered extents to complete and then run
4289          * delayed iputs. This works because once we reach this point no one
4290          * can either create new ordered extents nor create delayed iputs
4291          * through some other means.
4292          *
4293          * Also note that btrfs_wait_ordered_roots() is not safe here, because
4294          * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4295          * but the delayed iput for the respective inode is made only when doing
4296          * the final btrfs_put_ordered_extent() (which must happen at
4297          * btrfs_finish_ordered_io() when we are unmounting).
4298          */
4299         btrfs_flush_workqueue(fs_info->endio_write_workers);
4300         /* Ordered extents for free space inodes. */
4301         btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4302         btrfs_run_delayed_iputs(fs_info);
4303 
4304         cancel_work_sync(&fs_info->async_reclaim_work);
4305         cancel_work_sync(&fs_info->async_data_reclaim_work);
4306         cancel_work_sync(&fs_info->preempt_reclaim_work);
4307 
4308         /* Cancel or finish ongoing discard work */
4309         btrfs_discard_cleanup(fs_info);
4310 
4311         if (!sb_rdonly(fs_info->sb)) {
4312                 /*
4313                  * The cleaner kthread is stopped, so do one final pass over
4314                  * unused block groups.
4315                  */
4316                 btrfs_delete_unused_bgs(fs_info);
4317 
4318                 /*
4319                  * There might be existing delayed inode workers still running
4320                  * and holding an empty delayed inode item. We must wait for
4321                  * them to complete first because they can create a transaction.
4322                  * This happens when someone calls btrfs_balance_delayed_items()
4323                  * and then a transaction commit runs the same delayed nodes
4324                  * before any delayed worker has done something with the nodes.
4325                  * We must wait for any worker here and not at transaction
4326                  * commit time since that could cause a deadlock.
4327                  * This is a very rare case.
4328                  */
4329                 btrfs_flush_workqueue(fs_info->delayed_workers);
4330 
4331                 ret = btrfs_commit_super(fs_info);
4332                 if (ret)
4333                         btrfs_err(fs_info, "commit super ret %d", ret);
4334         }
4335 
4336         if (BTRFS_FS_ERROR(fs_info))
4337                 btrfs_error_commit_super(fs_info);
4338 
4339         kthread_stop(fs_info->transaction_kthread);
4340         kthread_stop(fs_info->cleaner_kthread);
4341 
4342         ASSERT(list_empty(&fs_info->delayed_iputs));
4343         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4344 
4345         if (btrfs_check_quota_leak(fs_info)) {
4346                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4347                 btrfs_err(fs_info, "qgroup reserved space leaked");
4348         }
4349 
4350         btrfs_free_qgroup_config(fs_info);
4351         ASSERT(list_empty(&fs_info->delalloc_roots));
4352 
4353         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4354                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4355                        percpu_counter_sum(&fs_info->delalloc_bytes));
4356         }
4357 
4358         if (percpu_counter_sum(&fs_info->ordered_bytes))
4359                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4360                            percpu_counter_sum(&fs_info->ordered_bytes));
4361 
4362         btrfs_sysfs_remove_mounted(fs_info);
4363         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4364 
4365         btrfs_put_block_group_cache(fs_info);
4366 
4367         /*
4368          * we must make sure there is not any read request to
4369          * submit after we stopping all workers.
4370          */
4371         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4372         btrfs_stop_all_workers(fs_info);
4373 
4374         /* We shouldn't have any transaction open at this point */
4375         warn_about_uncommitted_trans(fs_info);
4376 
4377         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4378         free_root_pointers(fs_info, true);
4379         btrfs_free_fs_roots(fs_info);
4380 
4381         /*
4382          * We must free the block groups after dropping the fs_roots as we could
4383          * have had an IO error and have left over tree log blocks that aren't
4384          * cleaned up until the fs roots are freed.  This makes the block group
4385          * accounting appear to be wrong because there's pending reserved bytes,
4386          * so make sure we do the block group cleanup afterwards.
4387          */
4388         btrfs_free_block_groups(fs_info);
4389 
4390         iput(fs_info->btree_inode);
4391 
4392         btrfs_mapping_tree_free(fs_info);
4393         btrfs_close_devices(fs_info->fs_devices);
4394 }
4395 
4396 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4397                              struct extent_buffer *buf)
4398 {
4399         struct btrfs_fs_info *fs_info = buf->fs_info;
4400         u64 transid = btrfs_header_generation(buf);
4401 
4402 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4403         /*
4404          * This is a fast path so only do this check if we have sanity tests
4405          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4406          * outside of the sanity tests.
4407          */
4408         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4409                 return;
4410 #endif
4411         /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4412         ASSERT(trans->transid == fs_info->generation);
4413         btrfs_assert_tree_write_locked(buf);
4414         if (unlikely(transid != fs_info->generation)) {
4415                 btrfs_abort_transaction(trans, -EUCLEAN);
4416                 btrfs_crit(fs_info,
4417 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4418                            buf->start, transid, fs_info->generation);
4419         }
4420         set_extent_buffer_dirty(buf);
4421 }
4422 
4423 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4424                                         int flush_delayed)
4425 {
4426         /*
4427          * looks as though older kernels can get into trouble with
4428          * this code, they end up stuck in balance_dirty_pages forever
4429          */
4430         int ret;
4431 
4432         if (current->flags & PF_MEMALLOC)
4433                 return;
4434 
4435         if (flush_delayed)
4436                 btrfs_balance_delayed_items(fs_info);
4437 
4438         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4439                                      BTRFS_DIRTY_METADATA_THRESH,
4440                                      fs_info->dirty_metadata_batch);
4441         if (ret > 0) {
4442                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4443         }
4444 }
4445 
4446 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4447 {
4448         __btrfs_btree_balance_dirty(fs_info, 1);
4449 }
4450 
4451 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4452 {
4453         __btrfs_btree_balance_dirty(fs_info, 0);
4454 }
4455 
4456 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4457 {
4458         /* cleanup FS via transaction */
4459         btrfs_cleanup_transaction(fs_info);
4460 
4461         mutex_lock(&fs_info->cleaner_mutex);
4462         btrfs_run_delayed_iputs(fs_info);
4463         mutex_unlock(&fs_info->cleaner_mutex);
4464 
4465         down_write(&fs_info->cleanup_work_sem);
4466         up_write(&fs_info->cleanup_work_sem);
4467 }
4468 
4469 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4470 {
4471         struct btrfs_root *gang[8];
4472         u64 root_objectid = 0;
4473         int ret;
4474 
4475         spin_lock(&fs_info->fs_roots_radix_lock);
4476         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4477                                              (void **)gang, root_objectid,
4478                                              ARRAY_SIZE(gang))) != 0) {
4479                 int i;
4480 
4481                 for (i = 0; i < ret; i++)
4482                         gang[i] = btrfs_grab_root(gang[i]);
4483                 spin_unlock(&fs_info->fs_roots_radix_lock);
4484 
4485                 for (i = 0; i < ret; i++) {
4486                         if (!gang[i])
4487                                 continue;
4488                         root_objectid = btrfs_root_id(gang[i]);
4489                         btrfs_free_log(NULL, gang[i]);
4490                         btrfs_put_root(gang[i]);
4491                 }
4492                 root_objectid++;
4493                 spin_lock(&fs_info->fs_roots_radix_lock);
4494         }
4495         spin_unlock(&fs_info->fs_roots_radix_lock);
4496         btrfs_free_log_root_tree(NULL, fs_info);
4497 }
4498 
4499 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4500 {
4501         struct btrfs_ordered_extent *ordered;
4502 
4503         spin_lock(&root->ordered_extent_lock);
4504         /*
4505          * This will just short circuit the ordered completion stuff which will
4506          * make sure the ordered extent gets properly cleaned up.
4507          */
4508         list_for_each_entry(ordered, &root->ordered_extents,
4509                             root_extent_list)
4510                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4511         spin_unlock(&root->ordered_extent_lock);
4512 }
4513 
4514 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4515 {
4516         struct btrfs_root *root;
4517         LIST_HEAD(splice);
4518 
4519         spin_lock(&fs_info->ordered_root_lock);
4520         list_splice_init(&fs_info->ordered_roots, &splice);
4521         while (!list_empty(&splice)) {
4522                 root = list_first_entry(&splice, struct btrfs_root,
4523                                         ordered_root);
4524                 list_move_tail(&root->ordered_root,
4525                                &fs_info->ordered_roots);
4526 
4527                 spin_unlock(&fs_info->ordered_root_lock);
4528                 btrfs_destroy_ordered_extents(root);
4529 
4530                 cond_resched();
4531                 spin_lock(&fs_info->ordered_root_lock);
4532         }
4533         spin_unlock(&fs_info->ordered_root_lock);
4534 
4535         /*
4536          * We need this here because if we've been flipped read-only we won't
4537          * get sync() from the umount, so we need to make sure any ordered
4538          * extents that haven't had their dirty pages IO start writeout yet
4539          * actually get run and error out properly.
4540          */
4541         btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4542 }
4543 
4544 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4545                                        struct btrfs_fs_info *fs_info)
4546 {
4547         struct rb_node *node;
4548         struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
4549         struct btrfs_delayed_ref_node *ref;
4550 
4551         spin_lock(&delayed_refs->lock);
4552         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4553                 struct btrfs_delayed_ref_head *head;
4554                 struct rb_node *n;
4555                 bool pin_bytes = false;
4556 
4557                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4558                                 href_node);
4559                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4560                         continue;
4561 
4562                 spin_lock(&head->lock);
4563                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4564                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4565                                        ref_node);
4566                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4567                         RB_CLEAR_NODE(&ref->ref_node);
4568                         if (!list_empty(&ref->add_list))
4569                                 list_del(&ref->add_list);
4570                         atomic_dec(&delayed_refs->num_entries);
4571                         btrfs_put_delayed_ref(ref);
4572                         btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4573                 }
4574                 if (head->must_insert_reserved)
4575                         pin_bytes = true;
4576                 btrfs_free_delayed_extent_op(head->extent_op);
4577                 btrfs_delete_ref_head(delayed_refs, head);
4578                 spin_unlock(&head->lock);
4579                 spin_unlock(&delayed_refs->lock);
4580                 mutex_unlock(&head->mutex);
4581 
4582                 if (pin_bytes) {
4583                         struct btrfs_block_group *cache;
4584 
4585                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4586                         BUG_ON(!cache);
4587 
4588                         spin_lock(&cache->space_info->lock);
4589                         spin_lock(&cache->lock);
4590                         cache->pinned += head->num_bytes;
4591                         btrfs_space_info_update_bytes_pinned(fs_info,
4592                                 cache->space_info, head->num_bytes);
4593                         cache->reserved -= head->num_bytes;
4594                         cache->space_info->bytes_reserved -= head->num_bytes;
4595                         spin_unlock(&cache->lock);
4596                         spin_unlock(&cache->space_info->lock);
4597 
4598                         btrfs_put_block_group(cache);
4599 
4600                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4601                                 head->bytenr + head->num_bytes - 1);
4602                 }
4603                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4604                 btrfs_put_delayed_ref_head(head);
4605                 cond_resched();
4606                 spin_lock(&delayed_refs->lock);
4607         }
4608         btrfs_qgroup_destroy_extent_records(trans);
4609 
4610         spin_unlock(&delayed_refs->lock);
4611 }
4612 
4613 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4614 {
4615         struct btrfs_inode *btrfs_inode;
4616         LIST_HEAD(splice);
4617 
4618         spin_lock(&root->delalloc_lock);
4619         list_splice_init(&root->delalloc_inodes, &splice);
4620 
4621         while (!list_empty(&splice)) {
4622                 struct inode *inode = NULL;
4623                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4624                                                delalloc_inodes);
4625                 btrfs_del_delalloc_inode(btrfs_inode);
4626                 spin_unlock(&root->delalloc_lock);
4627 
4628                 /*
4629                  * Make sure we get a live inode and that it'll not disappear
4630                  * meanwhile.
4631                  */
4632                 inode = igrab(&btrfs_inode->vfs_inode);
4633                 if (inode) {
4634                         unsigned int nofs_flag;
4635 
4636                         nofs_flag = memalloc_nofs_save();
4637                         invalidate_inode_pages2(inode->i_mapping);
4638                         memalloc_nofs_restore(nofs_flag);
4639                         iput(inode);
4640                 }
4641                 spin_lock(&root->delalloc_lock);
4642         }
4643         spin_unlock(&root->delalloc_lock);
4644 }
4645 
4646 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4647 {
4648         struct btrfs_root *root;
4649         LIST_HEAD(splice);
4650 
4651         spin_lock(&fs_info->delalloc_root_lock);
4652         list_splice_init(&fs_info->delalloc_roots, &splice);
4653         while (!list_empty(&splice)) {
4654                 root = list_first_entry(&splice, struct btrfs_root,
4655                                          delalloc_root);
4656                 root = btrfs_grab_root(root);
4657                 BUG_ON(!root);
4658                 spin_unlock(&fs_info->delalloc_root_lock);
4659 
4660                 btrfs_destroy_delalloc_inodes(root);
4661                 btrfs_put_root(root);
4662 
4663                 spin_lock(&fs_info->delalloc_root_lock);
4664         }
4665         spin_unlock(&fs_info->delalloc_root_lock);
4666 }
4667 
4668 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4669                                          struct extent_io_tree *dirty_pages,
4670                                          int mark)
4671 {
4672         struct extent_buffer *eb;
4673         u64 start = 0;
4674         u64 end;
4675 
4676         while (find_first_extent_bit(dirty_pages, start, &start, &end,
4677                                      mark, NULL)) {
4678                 clear_extent_bits(dirty_pages, start, end, mark);
4679                 while (start <= end) {
4680                         eb = find_extent_buffer(fs_info, start);
4681                         start += fs_info->nodesize;
4682                         if (!eb)
4683                                 continue;
4684 
4685                         btrfs_tree_lock(eb);
4686                         wait_on_extent_buffer_writeback(eb);
4687                         btrfs_clear_buffer_dirty(NULL, eb);
4688                         btrfs_tree_unlock(eb);
4689 
4690                         free_extent_buffer_stale(eb);
4691                 }
4692         }
4693 }
4694 
4695 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4696                                         struct extent_io_tree *unpin)
4697 {
4698         u64 start;
4699         u64 end;
4700 
4701         while (1) {
4702                 struct extent_state *cached_state = NULL;
4703 
4704                 /*
4705                  * The btrfs_finish_extent_commit() may get the same range as
4706                  * ours between find_first_extent_bit and clear_extent_dirty.
4707                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4708                  * the same extent range.
4709                  */
4710                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4711                 if (!find_first_extent_bit(unpin, 0, &start, &end,
4712                                            EXTENT_DIRTY, &cached_state)) {
4713                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4714                         break;
4715                 }
4716 
4717                 clear_extent_dirty(unpin, start, end, &cached_state);
4718                 free_extent_state(cached_state);
4719                 btrfs_error_unpin_extent_range(fs_info, start, end);
4720                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4721                 cond_resched();
4722         }
4723 }
4724 
4725 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4726 {
4727         struct inode *inode;
4728 
4729         inode = cache->io_ctl.inode;
4730         if (inode) {
4731                 unsigned int nofs_flag;
4732 
4733                 nofs_flag = memalloc_nofs_save();
4734                 invalidate_inode_pages2(inode->i_mapping);
4735                 memalloc_nofs_restore(nofs_flag);
4736 
4737                 BTRFS_I(inode)->generation = 0;
4738                 cache->io_ctl.inode = NULL;
4739                 iput(inode);
4740         }
4741         ASSERT(cache->io_ctl.pages == NULL);
4742         btrfs_put_block_group(cache);
4743 }
4744 
4745 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4746                              struct btrfs_fs_info *fs_info)
4747 {
4748         struct btrfs_block_group *cache;
4749 
4750         spin_lock(&cur_trans->dirty_bgs_lock);
4751         while (!list_empty(&cur_trans->dirty_bgs)) {
4752                 cache = list_first_entry(&cur_trans->dirty_bgs,
4753                                          struct btrfs_block_group,
4754                                          dirty_list);
4755 
4756                 if (!list_empty(&cache->io_list)) {
4757                         spin_unlock(&cur_trans->dirty_bgs_lock);
4758                         list_del_init(&cache->io_list);
4759                         btrfs_cleanup_bg_io(cache);
4760                         spin_lock(&cur_trans->dirty_bgs_lock);
4761                 }
4762 
4763                 list_del_init(&cache->dirty_list);
4764                 spin_lock(&cache->lock);
4765                 cache->disk_cache_state = BTRFS_DC_ERROR;
4766                 spin_unlock(&cache->lock);
4767 
4768                 spin_unlock(&cur_trans->dirty_bgs_lock);
4769                 btrfs_put_block_group(cache);
4770                 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4771                 spin_lock(&cur_trans->dirty_bgs_lock);
4772         }
4773         spin_unlock(&cur_trans->dirty_bgs_lock);
4774 
4775         /*
4776          * Refer to the definition of io_bgs member for details why it's safe
4777          * to use it without any locking
4778          */
4779         while (!list_empty(&cur_trans->io_bgs)) {
4780                 cache = list_first_entry(&cur_trans->io_bgs,
4781                                          struct btrfs_block_group,
4782                                          io_list);
4783 
4784                 list_del_init(&cache->io_list);
4785                 spin_lock(&cache->lock);
4786                 cache->disk_cache_state = BTRFS_DC_ERROR;
4787                 spin_unlock(&cache->lock);
4788                 btrfs_cleanup_bg_io(cache);
4789         }
4790 }
4791 
4792 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4793 {
4794         struct btrfs_root *gang[8];
4795         int i;
4796         int ret;
4797 
4798         spin_lock(&fs_info->fs_roots_radix_lock);
4799         while (1) {
4800                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4801                                                  (void **)gang, 0,
4802                                                  ARRAY_SIZE(gang),
4803                                                  BTRFS_ROOT_TRANS_TAG);
4804                 if (ret == 0)
4805                         break;
4806                 for (i = 0; i < ret; i++) {
4807                         struct btrfs_root *root = gang[i];
4808 
4809                         btrfs_qgroup_free_meta_all_pertrans(root);
4810                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
4811                                         (unsigned long)btrfs_root_id(root),
4812                                         BTRFS_ROOT_TRANS_TAG);
4813                 }
4814         }
4815         spin_unlock(&fs_info->fs_roots_radix_lock);
4816 }
4817 
4818 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4819                                    struct btrfs_fs_info *fs_info)
4820 {
4821         struct btrfs_device *dev, *tmp;
4822 
4823         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4824         ASSERT(list_empty(&cur_trans->dirty_bgs));
4825         ASSERT(list_empty(&cur_trans->io_bgs));
4826 
4827         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4828                                  post_commit_list) {
4829                 list_del_init(&dev->post_commit_list);
4830         }
4831 
4832         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4833 
4834         cur_trans->state = TRANS_STATE_COMMIT_START;
4835         wake_up(&fs_info->transaction_blocked_wait);
4836 
4837         cur_trans->state = TRANS_STATE_UNBLOCKED;
4838         wake_up(&fs_info->transaction_wait);
4839 
4840         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4841                                      EXTENT_DIRTY);
4842         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4843 
4844         cur_trans->state =TRANS_STATE_COMPLETED;
4845         wake_up(&cur_trans->commit_wait);
4846 }
4847 
4848 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4849 {
4850         struct btrfs_transaction *t;
4851 
4852         mutex_lock(&fs_info->transaction_kthread_mutex);
4853 
4854         spin_lock(&fs_info->trans_lock);
4855         while (!list_empty(&fs_info->trans_list)) {
4856                 t = list_first_entry(&fs_info->trans_list,
4857                                      struct btrfs_transaction, list);
4858                 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4859                         refcount_inc(&t->use_count);
4860                         spin_unlock(&fs_info->trans_lock);
4861                         btrfs_wait_for_commit(fs_info, t->transid);
4862                         btrfs_put_transaction(t);
4863                         spin_lock(&fs_info->trans_lock);
4864                         continue;
4865                 }
4866                 if (t == fs_info->running_transaction) {
4867                         t->state = TRANS_STATE_COMMIT_DOING;
4868                         spin_unlock(&fs_info->trans_lock);
4869                         /*
4870                          * We wait for 0 num_writers since we don't hold a trans
4871                          * handle open currently for this transaction.
4872                          */
4873                         wait_event(t->writer_wait,
4874                                    atomic_read(&t->num_writers) == 0);
4875                 } else {
4876                         spin_unlock(&fs_info->trans_lock);
4877                 }
4878                 btrfs_cleanup_one_transaction(t, fs_info);
4879 
4880                 spin_lock(&fs_info->trans_lock);
4881                 if (t == fs_info->running_transaction)
4882                         fs_info->running_transaction = NULL;
4883                 list_del_init(&t->list);
4884                 spin_unlock(&fs_info->trans_lock);
4885 
4886                 btrfs_put_transaction(t);
4887                 trace_btrfs_transaction_commit(fs_info);
4888                 spin_lock(&fs_info->trans_lock);
4889         }
4890         spin_unlock(&fs_info->trans_lock);
4891         btrfs_destroy_all_ordered_extents(fs_info);
4892         btrfs_destroy_delayed_inodes(fs_info);
4893         btrfs_assert_delayed_root_empty(fs_info);
4894         btrfs_destroy_all_delalloc_inodes(fs_info);
4895         btrfs_drop_all_logs(fs_info);
4896         btrfs_free_all_qgroup_pertrans(fs_info);
4897         mutex_unlock(&fs_info->transaction_kthread_mutex);
4898 
4899         return 0;
4900 }
4901 
4902 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4903 {
4904         struct btrfs_path *path;
4905         int ret;
4906         struct extent_buffer *l;
4907         struct btrfs_key search_key;
4908         struct btrfs_key found_key;
4909         int slot;
4910 
4911         path = btrfs_alloc_path();
4912         if (!path)
4913                 return -ENOMEM;
4914 
4915         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4916         search_key.type = -1;
4917         search_key.offset = (u64)-1;
4918         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4919         if (ret < 0)
4920                 goto error;
4921         if (ret == 0) {
4922                 /*
4923                  * Key with offset -1 found, there would have to exist a root
4924                  * with such id, but this is out of valid range.
4925                  */
4926                 ret = -EUCLEAN;
4927                 goto error;
4928         }
4929         if (path->slots[0] > 0) {
4930                 slot = path->slots[0] - 1;
4931                 l = path->nodes[0];
4932                 btrfs_item_key_to_cpu(l, &found_key, slot);
4933                 root->free_objectid = max_t(u64, found_key.objectid + 1,
4934                                             BTRFS_FIRST_FREE_OBJECTID);
4935         } else {
4936                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4937         }
4938         ret = 0;
4939 error:
4940         btrfs_free_path(path);
4941         return ret;
4942 }
4943 
4944 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4945 {
4946         int ret;
4947         mutex_lock(&root->objectid_mutex);
4948 
4949         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4950                 btrfs_warn(root->fs_info,
4951                            "the objectid of root %llu reaches its highest value",
4952                            btrfs_root_id(root));
4953                 ret = -ENOSPC;
4954                 goto out;
4955         }
4956 
4957         *objectid = root->free_objectid++;
4958         ret = 0;
4959 out:
4960         mutex_unlock(&root->objectid_mutex);
4961         return ret;
4962 }
4963 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php