~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/file-item.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/bio.h>
  7 #include <linux/slab.h>
  8 #include <linux/pagemap.h>
  9 #include <linux/highmem.h>
 10 #include <linux/sched/mm.h>
 11 #include <crypto/hash.h>
 12 #include "messages.h"
 13 #include "ctree.h"
 14 #include "disk-io.h"
 15 #include "transaction.h"
 16 #include "bio.h"
 17 #include "compression.h"
 18 #include "fs.h"
 19 #include "accessors.h"
 20 #include "file-item.h"
 21 
 22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
 23                                    sizeof(struct btrfs_item) * 2) / \
 24                                   size) - 1))
 25 
 26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
 27                                        PAGE_SIZE))
 28 
 29 /*
 30  * Set inode's size according to filesystem options.
 31  *
 32  * @inode:      inode we want to update the disk_i_size for
 33  * @new_i_size: i_size we want to set to, 0 if we use i_size
 34  *
 35  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
 36  * returns as it is perfectly fine with a file that has holes without hole file
 37  * extent items.
 38  *
 39  * However without NO_HOLES we need to only return the area that is contiguous
 40  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
 41  * to an extent that has a gap in between.
 42  *
 43  * Finally new_i_size should only be set in the case of truncate where we're not
 44  * ready to use i_size_read() as the limiter yet.
 45  */
 46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
 47 {
 48         u64 start, end, i_size;
 49         int ret;
 50 
 51         spin_lock(&inode->lock);
 52         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
 53         if (!inode->file_extent_tree) {
 54                 inode->disk_i_size = i_size;
 55                 goto out_unlock;
 56         }
 57 
 58         ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
 59                                          &end, EXTENT_DIRTY);
 60         if (!ret && start == 0)
 61                 i_size = min(i_size, end + 1);
 62         else
 63                 i_size = 0;
 64         inode->disk_i_size = i_size;
 65 out_unlock:
 66         spin_unlock(&inode->lock);
 67 }
 68 
 69 /*
 70  * Mark range within a file as having a new extent inserted.
 71  *
 72  * @inode: inode being modified
 73  * @start: start file offset of the file extent we've inserted
 74  * @len:   logical length of the file extent item
 75  *
 76  * Call when we are inserting a new file extent where there was none before.
 77  * Does not need to call this in the case where we're replacing an existing file
 78  * extent, however if not sure it's fine to call this multiple times.
 79  *
 80  * The start and len must match the file extent item, so thus must be sectorsize
 81  * aligned.
 82  */
 83 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
 84                                       u64 len)
 85 {
 86         if (!inode->file_extent_tree)
 87                 return 0;
 88 
 89         if (len == 0)
 90                 return 0;
 91 
 92         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
 93 
 94         return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
 95                               EXTENT_DIRTY, NULL);
 96 }
 97 
 98 /*
 99  * Mark an inode range as not having a backing extent.
100  *
101  * @inode: inode being modified
102  * @start: start file offset of the file extent we've inserted
103  * @len:   logical length of the file extent item
104  *
105  * Called when we drop a file extent, for example when we truncate.  Doesn't
106  * need to be called for cases where we're replacing a file extent, like when
107  * we've COWed a file extent.
108  *
109  * The start and len must match the file extent item, so thus must be sectorsize
110  * aligned.
111  */
112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113                                         u64 len)
114 {
115         if (!inode->file_extent_tree)
116                 return 0;
117 
118         if (len == 0)
119                 return 0;
120 
121         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122                len == (u64)-1);
123 
124         return clear_extent_bit(inode->file_extent_tree, start,
125                                 start + len - 1, EXTENT_DIRTY, NULL);
126 }
127 
128 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
129 {
130         ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
131 
132         return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
133 }
134 
135 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
136 {
137         ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
138 
139         return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
140 }
141 
142 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
143 {
144         u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
145                                        fs_info->csum_size);
146 
147         return csum_size_to_bytes(fs_info, max_csum_size);
148 }
149 
150 /*
151  * Calculate the total size needed to allocate for an ordered sum structure
152  * spanning @bytes in the file.
153  */
154 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
155 {
156         return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
157 }
158 
159 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
160                              struct btrfs_root *root,
161                              u64 objectid, u64 pos, u64 num_bytes)
162 {
163         int ret = 0;
164         struct btrfs_file_extent_item *item;
165         struct btrfs_key file_key;
166         struct btrfs_path *path;
167         struct extent_buffer *leaf;
168 
169         path = btrfs_alloc_path();
170         if (!path)
171                 return -ENOMEM;
172         file_key.objectid = objectid;
173         file_key.offset = pos;
174         file_key.type = BTRFS_EXTENT_DATA_KEY;
175 
176         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
177                                       sizeof(*item));
178         if (ret < 0)
179                 goto out;
180         leaf = path->nodes[0];
181         item = btrfs_item_ptr(leaf, path->slots[0],
182                               struct btrfs_file_extent_item);
183         btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
184         btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
185         btrfs_set_file_extent_offset(leaf, item, 0);
186         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
187         btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
188         btrfs_set_file_extent_generation(leaf, item, trans->transid);
189         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
190         btrfs_set_file_extent_compression(leaf, item, 0);
191         btrfs_set_file_extent_encryption(leaf, item, 0);
192         btrfs_set_file_extent_other_encoding(leaf, item, 0);
193 
194         btrfs_mark_buffer_dirty(trans, leaf);
195 out:
196         btrfs_free_path(path);
197         return ret;
198 }
199 
200 static struct btrfs_csum_item *
201 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
202                   struct btrfs_root *root,
203                   struct btrfs_path *path,
204                   u64 bytenr, int cow)
205 {
206         struct btrfs_fs_info *fs_info = root->fs_info;
207         int ret;
208         struct btrfs_key file_key;
209         struct btrfs_key found_key;
210         struct btrfs_csum_item *item;
211         struct extent_buffer *leaf;
212         u64 csum_offset = 0;
213         const u32 csum_size = fs_info->csum_size;
214         int csums_in_item;
215 
216         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
217         file_key.offset = bytenr;
218         file_key.type = BTRFS_EXTENT_CSUM_KEY;
219         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
220         if (ret < 0)
221                 goto fail;
222         leaf = path->nodes[0];
223         if (ret > 0) {
224                 ret = 1;
225                 if (path->slots[0] == 0)
226                         goto fail;
227                 path->slots[0]--;
228                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
229                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
230                         goto fail;
231 
232                 csum_offset = (bytenr - found_key.offset) >>
233                                 fs_info->sectorsize_bits;
234                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
235                 csums_in_item /= csum_size;
236 
237                 if (csum_offset == csums_in_item) {
238                         ret = -EFBIG;
239                         goto fail;
240                 } else if (csum_offset > csums_in_item) {
241                         goto fail;
242                 }
243         }
244         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
245         item = (struct btrfs_csum_item *)((unsigned char *)item +
246                                           csum_offset * csum_size);
247         return item;
248 fail:
249         if (ret > 0)
250                 ret = -ENOENT;
251         return ERR_PTR(ret);
252 }
253 
254 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
255                              struct btrfs_root *root,
256                              struct btrfs_path *path, u64 objectid,
257                              u64 offset, int mod)
258 {
259         struct btrfs_key file_key;
260         int ins_len = mod < 0 ? -1 : 0;
261         int cow = mod != 0;
262 
263         file_key.objectid = objectid;
264         file_key.offset = offset;
265         file_key.type = BTRFS_EXTENT_DATA_KEY;
266 
267         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
268 }
269 
270 /*
271  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
272  * store the result to @dst.
273  *
274  * Return >0 for the number of sectors we found.
275  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
276  * for it. Caller may want to try next sector until one range is hit.
277  * Return <0 for fatal error.
278  */
279 static int search_csum_tree(struct btrfs_fs_info *fs_info,
280                             struct btrfs_path *path, u64 disk_bytenr,
281                             u64 len, u8 *dst)
282 {
283         struct btrfs_root *csum_root;
284         struct btrfs_csum_item *item = NULL;
285         struct btrfs_key key;
286         const u32 sectorsize = fs_info->sectorsize;
287         const u32 csum_size = fs_info->csum_size;
288         u32 itemsize;
289         int ret;
290         u64 csum_start;
291         u64 csum_len;
292 
293         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
294                IS_ALIGNED(len, sectorsize));
295 
296         /* Check if the current csum item covers disk_bytenr */
297         if (path->nodes[0]) {
298                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
299                                       struct btrfs_csum_item);
300                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
301                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
302 
303                 csum_start = key.offset;
304                 csum_len = (itemsize / csum_size) * sectorsize;
305 
306                 if (in_range(disk_bytenr, csum_start, csum_len))
307                         goto found;
308         }
309 
310         /* Current item doesn't contain the desired range, search again */
311         btrfs_release_path(path);
312         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
313         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
314         if (IS_ERR(item)) {
315                 ret = PTR_ERR(item);
316                 goto out;
317         }
318         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
319         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
320 
321         csum_start = key.offset;
322         csum_len = (itemsize / csum_size) * sectorsize;
323         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
324 
325 found:
326         ret = (min(csum_start + csum_len, disk_bytenr + len) -
327                    disk_bytenr) >> fs_info->sectorsize_bits;
328         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
329                         ret * csum_size);
330 out:
331         if (ret == -ENOENT || ret == -EFBIG)
332                 ret = 0;
333         return ret;
334 }
335 
336 /*
337  * Lookup the checksum for the read bio in csum tree.
338  *
339  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
340  */
341 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
342 {
343         struct btrfs_inode *inode = bbio->inode;
344         struct btrfs_fs_info *fs_info = inode->root->fs_info;
345         struct bio *bio = &bbio->bio;
346         struct btrfs_path *path;
347         const u32 sectorsize = fs_info->sectorsize;
348         const u32 csum_size = fs_info->csum_size;
349         u32 orig_len = bio->bi_iter.bi_size;
350         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
351         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
352         blk_status_t ret = BLK_STS_OK;
353         u32 bio_offset = 0;
354 
355         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
356             test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state))
357                 return BLK_STS_OK;
358 
359         /*
360          * This function is only called for read bio.
361          *
362          * This means two things:
363          * - All our csums should only be in csum tree
364          *   No ordered extents csums, as ordered extents are only for write
365          *   path.
366          * - No need to bother any other info from bvec
367          *   Since we're looking up csums, the only important info is the
368          *   disk_bytenr and the length, which can be extracted from bi_iter
369          *   directly.
370          */
371         ASSERT(bio_op(bio) == REQ_OP_READ);
372         path = btrfs_alloc_path();
373         if (!path)
374                 return BLK_STS_RESOURCE;
375 
376         if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
377                 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
378                 if (!bbio->csum) {
379                         btrfs_free_path(path);
380                         return BLK_STS_RESOURCE;
381                 }
382         } else {
383                 bbio->csum = bbio->csum_inline;
384         }
385 
386         /*
387          * If requested number of sectors is larger than one leaf can contain,
388          * kick the readahead for csum tree.
389          */
390         if (nblocks > fs_info->csums_per_leaf)
391                 path->reada = READA_FORWARD;
392 
393         /*
394          * the free space stuff is only read when it hasn't been
395          * updated in the current transaction.  So, we can safely
396          * read from the commit root and sidestep a nasty deadlock
397          * between reading the free space cache and updating the csum tree.
398          */
399         if (btrfs_is_free_space_inode(inode)) {
400                 path->search_commit_root = 1;
401                 path->skip_locking = 1;
402         }
403 
404         while (bio_offset < orig_len) {
405                 int count;
406                 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
407                 u8 *csum_dst = bbio->csum +
408                         (bio_offset >> fs_info->sectorsize_bits) * csum_size;
409 
410                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
411                                          orig_len - bio_offset, csum_dst);
412                 if (count < 0) {
413                         ret = errno_to_blk_status(count);
414                         if (bbio->csum != bbio->csum_inline)
415                                 kfree(bbio->csum);
416                         bbio->csum = NULL;
417                         break;
418                 }
419 
420                 /*
421                  * We didn't find a csum for this range.  We need to make sure
422                  * we complain loudly about this, because we are not NODATASUM.
423                  *
424                  * However for the DATA_RELOC inode we could potentially be
425                  * relocating data extents for a NODATASUM inode, so the inode
426                  * itself won't be marked with NODATASUM, but the extent we're
427                  * copying is in fact NODATASUM.  If we don't find a csum we
428                  * assume this is the case.
429                  */
430                 if (count == 0) {
431                         memset(csum_dst, 0, csum_size);
432                         count = 1;
433 
434                         if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
435                                 u64 file_offset = bbio->file_offset + bio_offset;
436 
437                                 set_extent_bit(&inode->io_tree, file_offset,
438                                                file_offset + sectorsize - 1,
439                                                EXTENT_NODATASUM, NULL);
440                         } else {
441                                 btrfs_warn_rl(fs_info,
442                         "csum hole found for disk bytenr range [%llu, %llu)",
443                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
444                         }
445                 }
446                 bio_offset += count * sectorsize;
447         }
448 
449         btrfs_free_path(path);
450         return ret;
451 }
452 
453 /*
454  * Search for checksums for a given logical range.
455  *
456  * @root:               The root where to look for checksums.
457  * @start:              Logical address of target checksum range.
458  * @end:                End offset (inclusive) of the target checksum range.
459  * @list:               List for adding each checksum that was found.
460  *                      Can be NULL in case the caller only wants to check if
461  *                      there any checksums for the range.
462  * @nowait:             Indicate if the search must be non-blocking or not.
463  *
464  * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
465  * found.
466  */
467 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
468                             struct list_head *list, bool nowait)
469 {
470         struct btrfs_fs_info *fs_info = root->fs_info;
471         struct btrfs_key key;
472         struct btrfs_path *path;
473         struct extent_buffer *leaf;
474         struct btrfs_ordered_sum *sums;
475         struct btrfs_csum_item *item;
476         int ret;
477         bool found_csums = false;
478 
479         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
480                IS_ALIGNED(end + 1, fs_info->sectorsize));
481 
482         path = btrfs_alloc_path();
483         if (!path)
484                 return -ENOMEM;
485 
486         path->nowait = nowait;
487 
488         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
489         key.offset = start;
490         key.type = BTRFS_EXTENT_CSUM_KEY;
491 
492         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
493         if (ret < 0)
494                 goto out;
495         if (ret > 0 && path->slots[0] > 0) {
496                 leaf = path->nodes[0];
497                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
498 
499                 /*
500                  * There are two cases we can hit here for the previous csum
501                  * item:
502                  *
503                  *              |<- search range ->|
504                  *      |<- csum item ->|
505                  *
506                  * Or
507                  *                              |<- search range ->|
508                  *      |<- csum item ->|
509                  *
510                  * Check if the previous csum item covers the leading part of
511                  * the search range.  If so we have to start from previous csum
512                  * item.
513                  */
514                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
515                     key.type == BTRFS_EXTENT_CSUM_KEY) {
516                         if (bytes_to_csum_size(fs_info, start - key.offset) <
517                             btrfs_item_size(leaf, path->slots[0] - 1))
518                                 path->slots[0]--;
519                 }
520         }
521 
522         while (start <= end) {
523                 u64 csum_end;
524 
525                 leaf = path->nodes[0];
526                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
527                         ret = btrfs_next_leaf(root, path);
528                         if (ret < 0)
529                                 goto out;
530                         if (ret > 0)
531                                 break;
532                         leaf = path->nodes[0];
533                 }
534 
535                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
536                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
537                     key.type != BTRFS_EXTENT_CSUM_KEY ||
538                     key.offset > end)
539                         break;
540 
541                 if (key.offset > start)
542                         start = key.offset;
543 
544                 csum_end = key.offset + csum_size_to_bytes(fs_info,
545                                         btrfs_item_size(leaf, path->slots[0]));
546                 if (csum_end <= start) {
547                         path->slots[0]++;
548                         continue;
549                 }
550 
551                 found_csums = true;
552                 if (!list)
553                         goto out;
554 
555                 csum_end = min(csum_end, end + 1);
556                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
557                                       struct btrfs_csum_item);
558                 while (start < csum_end) {
559                         unsigned long offset;
560                         size_t size;
561 
562                         size = min_t(size_t, csum_end - start,
563                                      max_ordered_sum_bytes(fs_info));
564                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
565                                        GFP_NOFS);
566                         if (!sums) {
567                                 ret = -ENOMEM;
568                                 goto out;
569                         }
570 
571                         sums->logical = start;
572                         sums->len = size;
573 
574                         offset = bytes_to_csum_size(fs_info, start - key.offset);
575 
576                         read_extent_buffer(path->nodes[0],
577                                            sums->sums,
578                                            ((unsigned long)item) + offset,
579                                            bytes_to_csum_size(fs_info, size));
580 
581                         start += size;
582                         list_add_tail(&sums->list, list);
583                 }
584                 path->slots[0]++;
585         }
586 out:
587         btrfs_free_path(path);
588         if (ret < 0) {
589                 if (list) {
590                         struct btrfs_ordered_sum *tmp_sums;
591 
592                         list_for_each_entry_safe(sums, tmp_sums, list, list)
593                                 kfree(sums);
594                 }
595 
596                 return ret;
597         }
598 
599         return found_csums ? 1 : 0;
600 }
601 
602 /*
603  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
604  * we return the result.
605  *
606  * This version will set the corresponding bits in @csum_bitmap to represent
607  * that there is a csum found.
608  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
609  * in is large enough to contain all csums.
610  */
611 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
612                               u64 start, u64 end, u8 *csum_buf,
613                               unsigned long *csum_bitmap)
614 {
615         struct btrfs_fs_info *fs_info = root->fs_info;
616         struct btrfs_key key;
617         struct extent_buffer *leaf;
618         struct btrfs_csum_item *item;
619         const u64 orig_start = start;
620         bool free_path = false;
621         int ret;
622 
623         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
624                IS_ALIGNED(end + 1, fs_info->sectorsize));
625 
626         if (!path) {
627                 path = btrfs_alloc_path();
628                 if (!path)
629                         return -ENOMEM;
630                 free_path = true;
631         }
632 
633         /* Check if we can reuse the previous path. */
634         if (path->nodes[0]) {
635                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
636 
637                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
638                     key.type == BTRFS_EXTENT_CSUM_KEY &&
639                     key.offset <= start)
640                         goto search_forward;
641                 btrfs_release_path(path);
642         }
643 
644         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
645         key.type = BTRFS_EXTENT_CSUM_KEY;
646         key.offset = start;
647 
648         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
649         if (ret < 0)
650                 goto fail;
651         if (ret > 0 && path->slots[0] > 0) {
652                 leaf = path->nodes[0];
653                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
654 
655                 /*
656                  * There are two cases we can hit here for the previous csum
657                  * item:
658                  *
659                  *              |<- search range ->|
660                  *      |<- csum item ->|
661                  *
662                  * Or
663                  *                              |<- search range ->|
664                  *      |<- csum item ->|
665                  *
666                  * Check if the previous csum item covers the leading part of
667                  * the search range.  If so we have to start from previous csum
668                  * item.
669                  */
670                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
671                     key.type == BTRFS_EXTENT_CSUM_KEY) {
672                         if (bytes_to_csum_size(fs_info, start - key.offset) <
673                             btrfs_item_size(leaf, path->slots[0] - 1))
674                                 path->slots[0]--;
675                 }
676         }
677 
678 search_forward:
679         while (start <= end) {
680                 u64 csum_end;
681 
682                 leaf = path->nodes[0];
683                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
684                         ret = btrfs_next_leaf(root, path);
685                         if (ret < 0)
686                                 goto fail;
687                         if (ret > 0)
688                                 break;
689                         leaf = path->nodes[0];
690                 }
691 
692                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
693                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
694                     key.type != BTRFS_EXTENT_CSUM_KEY ||
695                     key.offset > end)
696                         break;
697 
698                 if (key.offset > start)
699                         start = key.offset;
700 
701                 csum_end = key.offset + csum_size_to_bytes(fs_info,
702                                         btrfs_item_size(leaf, path->slots[0]));
703                 if (csum_end <= start) {
704                         path->slots[0]++;
705                         continue;
706                 }
707 
708                 csum_end = min(csum_end, end + 1);
709                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
710                                       struct btrfs_csum_item);
711                 while (start < csum_end) {
712                         unsigned long offset;
713                         size_t size;
714                         u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
715                                                 start - orig_start);
716 
717                         size = min_t(size_t, csum_end - start, end + 1 - start);
718 
719                         offset = bytes_to_csum_size(fs_info, start - key.offset);
720 
721                         read_extent_buffer(path->nodes[0], csum_dest,
722                                            ((unsigned long)item) + offset,
723                                            bytes_to_csum_size(fs_info, size));
724 
725                         bitmap_set(csum_bitmap,
726                                 (start - orig_start) >> fs_info->sectorsize_bits,
727                                 size >> fs_info->sectorsize_bits);
728 
729                         start += size;
730                 }
731                 path->slots[0]++;
732         }
733         ret = 0;
734 fail:
735         if (free_path)
736                 btrfs_free_path(path);
737         return ret;
738 }
739 
740 /*
741  * Calculate checksums of the data contained inside a bio.
742  */
743 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
744 {
745         struct btrfs_ordered_extent *ordered = bbio->ordered;
746         struct btrfs_inode *inode = bbio->inode;
747         struct btrfs_fs_info *fs_info = inode->root->fs_info;
748         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
749         struct bio *bio = &bbio->bio;
750         struct btrfs_ordered_sum *sums;
751         char *data;
752         struct bvec_iter iter;
753         struct bio_vec bvec;
754         int index;
755         unsigned int blockcount;
756         int i;
757         unsigned nofs_flag;
758 
759         nofs_flag = memalloc_nofs_save();
760         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
761                        GFP_KERNEL);
762         memalloc_nofs_restore(nofs_flag);
763 
764         if (!sums)
765                 return BLK_STS_RESOURCE;
766 
767         sums->len = bio->bi_iter.bi_size;
768         INIT_LIST_HEAD(&sums->list);
769 
770         sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
771         index = 0;
772 
773         shash->tfm = fs_info->csum_shash;
774 
775         bio_for_each_segment(bvec, bio, iter) {
776                 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
777                                                  bvec.bv_len + fs_info->sectorsize
778                                                  - 1);
779 
780                 for (i = 0; i < blockcount; i++) {
781                         data = bvec_kmap_local(&bvec);
782                         crypto_shash_digest(shash,
783                                             data + (i * fs_info->sectorsize),
784                                             fs_info->sectorsize,
785                                             sums->sums + index);
786                         kunmap_local(data);
787                         index += fs_info->csum_size;
788                 }
789 
790         }
791 
792         bbio->sums = sums;
793         btrfs_add_ordered_sum(ordered, sums);
794         return 0;
795 }
796 
797 /*
798  * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
799  * record the updated logical address on Zone Append completion.
800  * Allocate just the structure with an empty sums array here for that case.
801  */
802 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
803 {
804         bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
805         if (!bbio->sums)
806                 return BLK_STS_RESOURCE;
807         bbio->sums->len = bbio->bio.bi_iter.bi_size;
808         bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
809         btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
810         return 0;
811 }
812 
813 /*
814  * Remove one checksum overlapping a range.
815  *
816  * This expects the key to describe the csum pointed to by the path, and it
817  * expects the csum to overlap the range [bytenr, len]
818  *
819  * The csum should not be entirely contained in the range and the range should
820  * not be entirely contained in the csum.
821  *
822  * This calls btrfs_truncate_item with the correct args based on the overlap,
823  * and fixes up the key as required.
824  */
825 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
826                                        struct btrfs_path *path,
827                                        struct btrfs_key *key,
828                                        u64 bytenr, u64 len)
829 {
830         struct btrfs_fs_info *fs_info = trans->fs_info;
831         struct extent_buffer *leaf;
832         const u32 csum_size = fs_info->csum_size;
833         u64 csum_end;
834         u64 end_byte = bytenr + len;
835         u32 blocksize_bits = fs_info->sectorsize_bits;
836 
837         leaf = path->nodes[0];
838         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
839         csum_end <<= blocksize_bits;
840         csum_end += key->offset;
841 
842         if (key->offset < bytenr && csum_end <= end_byte) {
843                 /*
844                  *         [ bytenr - len ]
845                  *         [   ]
846                  *   [csum     ]
847                  *   A simple truncate off the end of the item
848                  */
849                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
850                 new_size *= csum_size;
851                 btrfs_truncate_item(trans, path, new_size, 1);
852         } else if (key->offset >= bytenr && csum_end > end_byte &&
853                    end_byte > key->offset) {
854                 /*
855                  *         [ bytenr - len ]
856                  *                 [ ]
857                  *                 [csum     ]
858                  * we need to truncate from the beginning of the csum
859                  */
860                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
861                 new_size *= csum_size;
862 
863                 btrfs_truncate_item(trans, path, new_size, 0);
864 
865                 key->offset = end_byte;
866                 btrfs_set_item_key_safe(trans, path, key);
867         } else {
868                 BUG();
869         }
870 }
871 
872 /*
873  * Delete the csum items from the csum tree for a given range of bytes.
874  */
875 int btrfs_del_csums(struct btrfs_trans_handle *trans,
876                     struct btrfs_root *root, u64 bytenr, u64 len)
877 {
878         struct btrfs_fs_info *fs_info = trans->fs_info;
879         struct btrfs_path *path;
880         struct btrfs_key key;
881         u64 end_byte = bytenr + len;
882         u64 csum_end;
883         struct extent_buffer *leaf;
884         int ret = 0;
885         const u32 csum_size = fs_info->csum_size;
886         u32 blocksize_bits = fs_info->sectorsize_bits;
887 
888         ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
889                btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
890 
891         path = btrfs_alloc_path();
892         if (!path)
893                 return -ENOMEM;
894 
895         while (1) {
896                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
897                 key.offset = end_byte - 1;
898                 key.type = BTRFS_EXTENT_CSUM_KEY;
899 
900                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
901                 if (ret > 0) {
902                         ret = 0;
903                         if (path->slots[0] == 0)
904                                 break;
905                         path->slots[0]--;
906                 } else if (ret < 0) {
907                         break;
908                 }
909 
910                 leaf = path->nodes[0];
911                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
912 
913                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
914                     key.type != BTRFS_EXTENT_CSUM_KEY) {
915                         break;
916                 }
917 
918                 if (key.offset >= end_byte)
919                         break;
920 
921                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
922                 csum_end <<= blocksize_bits;
923                 csum_end += key.offset;
924 
925                 /* this csum ends before we start, we're done */
926                 if (csum_end <= bytenr)
927                         break;
928 
929                 /* delete the entire item, it is inside our range */
930                 if (key.offset >= bytenr && csum_end <= end_byte) {
931                         int del_nr = 1;
932 
933                         /*
934                          * Check how many csum items preceding this one in this
935                          * leaf correspond to our range and then delete them all
936                          * at once.
937                          */
938                         if (key.offset > bytenr && path->slots[0] > 0) {
939                                 int slot = path->slots[0] - 1;
940 
941                                 while (slot >= 0) {
942                                         struct btrfs_key pk;
943 
944                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
945                                         if (pk.offset < bytenr ||
946                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
947                                             pk.objectid !=
948                                             BTRFS_EXTENT_CSUM_OBJECTID)
949                                                 break;
950                                         path->slots[0] = slot;
951                                         del_nr++;
952                                         key.offset = pk.offset;
953                                         slot--;
954                                 }
955                         }
956                         ret = btrfs_del_items(trans, root, path,
957                                               path->slots[0], del_nr);
958                         if (ret)
959                                 break;
960                         if (key.offset == bytenr)
961                                 break;
962                 } else if (key.offset < bytenr && csum_end > end_byte) {
963                         unsigned long offset;
964                         unsigned long shift_len;
965                         unsigned long item_offset;
966                         /*
967                          *        [ bytenr - len ]
968                          *     [csum                ]
969                          *
970                          * Our bytes are in the middle of the csum,
971                          * we need to split this item and insert a new one.
972                          *
973                          * But we can't drop the path because the
974                          * csum could change, get removed, extended etc.
975                          *
976                          * The trick here is the max size of a csum item leaves
977                          * enough room in the tree block for a single
978                          * item header.  So, we split the item in place,
979                          * adding a new header pointing to the existing
980                          * bytes.  Then we loop around again and we have
981                          * a nicely formed csum item that we can neatly
982                          * truncate.
983                          */
984                         offset = (bytenr - key.offset) >> blocksize_bits;
985                         offset *= csum_size;
986 
987                         shift_len = (len >> blocksize_bits) * csum_size;
988 
989                         item_offset = btrfs_item_ptr_offset(leaf,
990                                                             path->slots[0]);
991 
992                         memzero_extent_buffer(leaf, item_offset + offset,
993                                              shift_len);
994                         key.offset = bytenr;
995 
996                         /*
997                          * btrfs_split_item returns -EAGAIN when the
998                          * item changed size or key
999                          */
1000                         ret = btrfs_split_item(trans, root, path, &key, offset);
1001                         if (ret && ret != -EAGAIN) {
1002                                 btrfs_abort_transaction(trans, ret);
1003                                 break;
1004                         }
1005                         ret = 0;
1006 
1007                         key.offset = end_byte - 1;
1008                 } else {
1009                         truncate_one_csum(trans, path, &key, bytenr, len);
1010                         if (key.offset < bytenr)
1011                                 break;
1012                 }
1013                 btrfs_release_path(path);
1014         }
1015         btrfs_free_path(path);
1016         return ret;
1017 }
1018 
1019 static int find_next_csum_offset(struct btrfs_root *root,
1020                                  struct btrfs_path *path,
1021                                  u64 *next_offset)
1022 {
1023         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1024         struct btrfs_key found_key;
1025         int slot = path->slots[0] + 1;
1026         int ret;
1027 
1028         if (nritems == 0 || slot >= nritems) {
1029                 ret = btrfs_next_leaf(root, path);
1030                 if (ret < 0) {
1031                         return ret;
1032                 } else if (ret > 0) {
1033                         *next_offset = (u64)-1;
1034                         return 0;
1035                 }
1036                 slot = path->slots[0];
1037         }
1038 
1039         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1040 
1041         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1042             found_key.type != BTRFS_EXTENT_CSUM_KEY)
1043                 *next_offset = (u64)-1;
1044         else
1045                 *next_offset = found_key.offset;
1046 
1047         return 0;
1048 }
1049 
1050 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1051                            struct btrfs_root *root,
1052                            struct btrfs_ordered_sum *sums)
1053 {
1054         struct btrfs_fs_info *fs_info = root->fs_info;
1055         struct btrfs_key file_key;
1056         struct btrfs_key found_key;
1057         struct btrfs_path *path;
1058         struct btrfs_csum_item *item;
1059         struct btrfs_csum_item *item_end;
1060         struct extent_buffer *leaf = NULL;
1061         u64 next_offset;
1062         u64 total_bytes = 0;
1063         u64 csum_offset;
1064         u64 bytenr;
1065         u32 ins_size;
1066         int index = 0;
1067         int found_next;
1068         int ret;
1069         const u32 csum_size = fs_info->csum_size;
1070 
1071         path = btrfs_alloc_path();
1072         if (!path)
1073                 return -ENOMEM;
1074 again:
1075         next_offset = (u64)-1;
1076         found_next = 0;
1077         bytenr = sums->logical + total_bytes;
1078         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1079         file_key.offset = bytenr;
1080         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1081 
1082         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1083         if (!IS_ERR(item)) {
1084                 ret = 0;
1085                 leaf = path->nodes[0];
1086                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1087                                           struct btrfs_csum_item);
1088                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1089                            btrfs_item_size(leaf, path->slots[0]));
1090                 goto found;
1091         }
1092         ret = PTR_ERR(item);
1093         if (ret != -EFBIG && ret != -ENOENT)
1094                 goto out;
1095 
1096         if (ret == -EFBIG) {
1097                 u32 item_size;
1098                 /* we found one, but it isn't big enough yet */
1099                 leaf = path->nodes[0];
1100                 item_size = btrfs_item_size(leaf, path->slots[0]);
1101                 if ((item_size / csum_size) >=
1102                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1103                         /* already at max size, make a new one */
1104                         goto insert;
1105                 }
1106         } else {
1107                 /* We didn't find a csum item, insert one. */
1108                 ret = find_next_csum_offset(root, path, &next_offset);
1109                 if (ret < 0)
1110                         goto out;
1111                 found_next = 1;
1112                 goto insert;
1113         }
1114 
1115         /*
1116          * At this point, we know the tree has a checksum item that ends at an
1117          * offset matching the start of the checksum range we want to insert.
1118          * We try to extend that item as much as possible and then add as many
1119          * checksums to it as they fit.
1120          *
1121          * First check if the leaf has enough free space for at least one
1122          * checksum. If it has go directly to the item extension code, otherwise
1123          * release the path and do a search for insertion before the extension.
1124          */
1125         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1126                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1127                 csum_offset = (bytenr - found_key.offset) >>
1128                         fs_info->sectorsize_bits;
1129                 goto extend_csum;
1130         }
1131 
1132         btrfs_release_path(path);
1133         path->search_for_extension = 1;
1134         ret = btrfs_search_slot(trans, root, &file_key, path,
1135                                 csum_size, 1);
1136         path->search_for_extension = 0;
1137         if (ret < 0)
1138                 goto out;
1139 
1140         if (ret > 0) {
1141                 if (path->slots[0] == 0)
1142                         goto insert;
1143                 path->slots[0]--;
1144         }
1145 
1146         leaf = path->nodes[0];
1147         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1148         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1149 
1150         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1151             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1152             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1153                 goto insert;
1154         }
1155 
1156 extend_csum:
1157         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1158             csum_size) {
1159                 int extend_nr;
1160                 u64 tmp;
1161                 u32 diff;
1162 
1163                 tmp = sums->len - total_bytes;
1164                 tmp >>= fs_info->sectorsize_bits;
1165                 WARN_ON(tmp < 1);
1166                 extend_nr = max_t(int, 1, tmp);
1167 
1168                 /*
1169                  * A log tree can already have checksum items with a subset of
1170                  * the checksums we are trying to log. This can happen after
1171                  * doing a sequence of partial writes into prealloc extents and
1172                  * fsyncs in between, with a full fsync logging a larger subrange
1173                  * of an extent for which a previous fast fsync logged a smaller
1174                  * subrange. And this happens in particular due to merging file
1175                  * extent items when we complete an ordered extent for a range
1176                  * covered by a prealloc extent - this is done at
1177                  * btrfs_mark_extent_written().
1178                  *
1179                  * So if we try to extend the previous checksum item, which has
1180                  * a range that ends at the start of the range we want to insert,
1181                  * make sure we don't extend beyond the start offset of the next
1182                  * checksum item. If we are at the last item in the leaf, then
1183                  * forget the optimization of extending and add a new checksum
1184                  * item - it is not worth the complexity of releasing the path,
1185                  * getting the first key for the next leaf, repeat the btree
1186                  * search, etc, because log trees are temporary anyway and it
1187                  * would only save a few bytes of leaf space.
1188                  */
1189                 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1190                         if (path->slots[0] + 1 >=
1191                             btrfs_header_nritems(path->nodes[0])) {
1192                                 ret = find_next_csum_offset(root, path, &next_offset);
1193                                 if (ret < 0)
1194                                         goto out;
1195                                 found_next = 1;
1196                                 goto insert;
1197                         }
1198 
1199                         ret = find_next_csum_offset(root, path, &next_offset);
1200                         if (ret < 0)
1201                                 goto out;
1202 
1203                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1204                         if (tmp <= INT_MAX)
1205                                 extend_nr = min_t(int, extend_nr, tmp);
1206                 }
1207 
1208                 diff = (csum_offset + extend_nr) * csum_size;
1209                 diff = min(diff,
1210                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1211 
1212                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1213                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1214                 diff /= csum_size;
1215                 diff *= csum_size;
1216 
1217                 btrfs_extend_item(trans, path, diff);
1218                 ret = 0;
1219                 goto csum;
1220         }
1221 
1222 insert:
1223         btrfs_release_path(path);
1224         csum_offset = 0;
1225         if (found_next) {
1226                 u64 tmp;
1227 
1228                 tmp = sums->len - total_bytes;
1229                 tmp >>= fs_info->sectorsize_bits;
1230                 tmp = min(tmp, (next_offset - file_key.offset) >>
1231                                          fs_info->sectorsize_bits);
1232 
1233                 tmp = max_t(u64, 1, tmp);
1234                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1235                 ins_size = csum_size * tmp;
1236         } else {
1237                 ins_size = csum_size;
1238         }
1239         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1240                                       ins_size);
1241         if (ret < 0)
1242                 goto out;
1243         leaf = path->nodes[0];
1244 csum:
1245         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1246         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1247                                       btrfs_item_size(leaf, path->slots[0]));
1248         item = (struct btrfs_csum_item *)((unsigned char *)item +
1249                                           csum_offset * csum_size);
1250 found:
1251         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1252         ins_size *= csum_size;
1253         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1254                               ins_size);
1255         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1256                             ins_size);
1257 
1258         index += ins_size;
1259         ins_size /= csum_size;
1260         total_bytes += ins_size * fs_info->sectorsize;
1261 
1262         btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1263         if (total_bytes < sums->len) {
1264                 btrfs_release_path(path);
1265                 cond_resched();
1266                 goto again;
1267         }
1268 out:
1269         btrfs_free_path(path);
1270         return ret;
1271 }
1272 
1273 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1274                                      const struct btrfs_path *path,
1275                                      struct btrfs_file_extent_item *fi,
1276                                      struct extent_map *em)
1277 {
1278         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1279         struct btrfs_root *root = inode->root;
1280         struct extent_buffer *leaf = path->nodes[0];
1281         const int slot = path->slots[0];
1282         struct btrfs_key key;
1283         u64 extent_start;
1284         u8 type = btrfs_file_extent_type(leaf, fi);
1285         int compress_type = btrfs_file_extent_compression(leaf, fi);
1286 
1287         btrfs_item_key_to_cpu(leaf, &key, slot);
1288         extent_start = key.offset;
1289         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1290         em->generation = btrfs_file_extent_generation(leaf, fi);
1291         if (type == BTRFS_FILE_EXTENT_REG ||
1292             type == BTRFS_FILE_EXTENT_PREALLOC) {
1293                 const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1294 
1295                 em->start = extent_start;
1296                 em->len = btrfs_file_extent_end(path) - extent_start;
1297                 if (disk_bytenr == 0) {
1298                         em->disk_bytenr = EXTENT_MAP_HOLE;
1299                         em->disk_num_bytes = 0;
1300                         em->offset = 0;
1301                         return;
1302                 }
1303                 em->disk_bytenr = disk_bytenr;
1304                 em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1305                 em->offset = btrfs_file_extent_offset(leaf, fi);
1306                 if (compress_type != BTRFS_COMPRESS_NONE) {
1307                         extent_map_set_compression(em, compress_type);
1308                 } else {
1309                         /*
1310                          * Older kernels can create regular non-hole data
1311                          * extents with ram_bytes smaller than disk_num_bytes.
1312                          * Not a big deal, just always use disk_num_bytes
1313                          * for ram_bytes.
1314                          */
1315                         em->ram_bytes = em->disk_num_bytes;
1316                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1317                                 em->flags |= EXTENT_FLAG_PREALLOC;
1318                 }
1319         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1320                 /* Tree-checker has ensured this. */
1321                 ASSERT(extent_start == 0);
1322 
1323                 em->disk_bytenr = EXTENT_MAP_INLINE;
1324                 em->start = 0;
1325                 em->len = fs_info->sectorsize;
1326                 em->offset = 0;
1327                 extent_map_set_compression(em, compress_type);
1328         } else {
1329                 btrfs_err(fs_info,
1330                           "unknown file extent item type %d, inode %llu, offset %llu, "
1331                           "root %llu", type, btrfs_ino(inode), extent_start,
1332                           btrfs_root_id(root));
1333         }
1334 }
1335 
1336 /*
1337  * Returns the end offset (non inclusive) of the file extent item the given path
1338  * points to. If it points to an inline extent, the returned offset is rounded
1339  * up to the sector size.
1340  */
1341 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1342 {
1343         const struct extent_buffer *leaf = path->nodes[0];
1344         const int slot = path->slots[0];
1345         struct btrfs_file_extent_item *fi;
1346         struct btrfs_key key;
1347         u64 end;
1348 
1349         btrfs_item_key_to_cpu(leaf, &key, slot);
1350         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1351         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1352 
1353         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
1354                 end = leaf->fs_info->sectorsize;
1355         else
1356                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1357 
1358         return end;
1359 }
1360 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php