~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/ioctl.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/kernel.h>
  7 #include <linux/bio.h>
  8 #include <linux/file.h>
  9 #include <linux/fs.h>
 10 #include <linux/fsnotify.h>
 11 #include <linux/pagemap.h>
 12 #include <linux/highmem.h>
 13 #include <linux/time.h>
 14 #include <linux/string.h>
 15 #include <linux/backing-dev.h>
 16 #include <linux/mount.h>
 17 #include <linux/namei.h>
 18 #include <linux/writeback.h>
 19 #include <linux/compat.h>
 20 #include <linux/security.h>
 21 #include <linux/xattr.h>
 22 #include <linux/mm.h>
 23 #include <linux/slab.h>
 24 #include <linux/blkdev.h>
 25 #include <linux/uuid.h>
 26 #include <linux/btrfs.h>
 27 #include <linux/uaccess.h>
 28 #include <linux/iversion.h>
 29 #include <linux/fileattr.h>
 30 #include <linux/fsverity.h>
 31 #include <linux/sched/xacct.h>
 32 #include "ctree.h"
 33 #include "disk-io.h"
 34 #include "export.h"
 35 #include "transaction.h"
 36 #include "btrfs_inode.h"
 37 #include "volumes.h"
 38 #include "locking.h"
 39 #include "backref.h"
 40 #include "send.h"
 41 #include "dev-replace.h"
 42 #include "props.h"
 43 #include "sysfs.h"
 44 #include "qgroup.h"
 45 #include "tree-log.h"
 46 #include "compression.h"
 47 #include "space-info.h"
 48 #include "block-group.h"
 49 #include "fs.h"
 50 #include "accessors.h"
 51 #include "extent-tree.h"
 52 #include "root-tree.h"
 53 #include "defrag.h"
 54 #include "dir-item.h"
 55 #include "uuid-tree.h"
 56 #include "ioctl.h"
 57 #include "file.h"
 58 #include "scrub.h"
 59 #include "super.h"
 60 
 61 #ifdef CONFIG_64BIT
 62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
 63  * structures are incorrect, as the timespec structure from userspace
 64  * is 4 bytes too small. We define these alternatives here to teach
 65  * the kernel about the 32-bit struct packing.
 66  */
 67 struct btrfs_ioctl_timespec_32 {
 68         __u64 sec;
 69         __u32 nsec;
 70 } __attribute__ ((__packed__));
 71 
 72 struct btrfs_ioctl_received_subvol_args_32 {
 73         char    uuid[BTRFS_UUID_SIZE];  /* in */
 74         __u64   stransid;               /* in */
 75         __u64   rtransid;               /* out */
 76         struct btrfs_ioctl_timespec_32 stime; /* in */
 77         struct btrfs_ioctl_timespec_32 rtime; /* out */
 78         __u64   flags;                  /* in */
 79         __u64   reserved[16];           /* in */
 80 } __attribute__ ((__packed__));
 81 
 82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
 83                                 struct btrfs_ioctl_received_subvol_args_32)
 84 #endif
 85 
 86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
 87 struct btrfs_ioctl_send_args_32 {
 88         __s64 send_fd;                  /* in */
 89         __u64 clone_sources_count;      /* in */
 90         compat_uptr_t clone_sources;    /* in */
 91         __u64 parent_root;              /* in */
 92         __u64 flags;                    /* in */
 93         __u32 version;                  /* in */
 94         __u8  reserved[28];             /* in */
 95 } __attribute__ ((__packed__));
 96 
 97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
 98                                struct btrfs_ioctl_send_args_32)
 99 
100 struct btrfs_ioctl_encoded_io_args_32 {
101         compat_uptr_t iov;
102         compat_ulong_t iovcnt;
103         __s64 offset;
104         __u64 flags;
105         __u64 len;
106         __u64 unencoded_len;
107         __u64 unencoded_offset;
108         __u32 compression;
109         __u32 encryption;
110         __u8 reserved[64];
111 };
112 
113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114                                        struct btrfs_ioctl_encoded_io_args_32)
115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116                                         struct btrfs_ioctl_encoded_io_args_32)
117 #endif
118 
119 /* Mask out flags that are inappropriate for the given type of inode. */
120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
121                 unsigned int flags)
122 {
123         if (S_ISDIR(inode->i_mode))
124                 return flags;
125         else if (S_ISREG(inode->i_mode))
126                 return flags & ~FS_DIRSYNC_FL;
127         else
128                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
129 }
130 
131 /*
132  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
133  * ioctl.
134  */
135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
136 {
137         unsigned int iflags = 0;
138         u32 flags = binode->flags;
139         u32 ro_flags = binode->ro_flags;
140 
141         if (flags & BTRFS_INODE_SYNC)
142                 iflags |= FS_SYNC_FL;
143         if (flags & BTRFS_INODE_IMMUTABLE)
144                 iflags |= FS_IMMUTABLE_FL;
145         if (flags & BTRFS_INODE_APPEND)
146                 iflags |= FS_APPEND_FL;
147         if (flags & BTRFS_INODE_NODUMP)
148                 iflags |= FS_NODUMP_FL;
149         if (flags & BTRFS_INODE_NOATIME)
150                 iflags |= FS_NOATIME_FL;
151         if (flags & BTRFS_INODE_DIRSYNC)
152                 iflags |= FS_DIRSYNC_FL;
153         if (flags & BTRFS_INODE_NODATACOW)
154                 iflags |= FS_NOCOW_FL;
155         if (ro_flags & BTRFS_INODE_RO_VERITY)
156                 iflags |= FS_VERITY_FL;
157 
158         if (flags & BTRFS_INODE_NOCOMPRESS)
159                 iflags |= FS_NOCOMP_FL;
160         else if (flags & BTRFS_INODE_COMPRESS)
161                 iflags |= FS_COMPR_FL;
162 
163         return iflags;
164 }
165 
166 /*
167  * Update inode->i_flags based on the btrfs internal flags.
168  */
169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
170 {
171         struct btrfs_inode *binode = BTRFS_I(inode);
172         unsigned int new_fl = 0;
173 
174         if (binode->flags & BTRFS_INODE_SYNC)
175                 new_fl |= S_SYNC;
176         if (binode->flags & BTRFS_INODE_IMMUTABLE)
177                 new_fl |= S_IMMUTABLE;
178         if (binode->flags & BTRFS_INODE_APPEND)
179                 new_fl |= S_APPEND;
180         if (binode->flags & BTRFS_INODE_NOATIME)
181                 new_fl |= S_NOATIME;
182         if (binode->flags & BTRFS_INODE_DIRSYNC)
183                 new_fl |= S_DIRSYNC;
184         if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
185                 new_fl |= S_VERITY;
186 
187         set_mask_bits(&inode->i_flags,
188                       S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189                       S_VERITY, new_fl);
190 }
191 
192 /*
193  * Check if @flags are a supported and valid set of FS_*_FL flags and that
194  * the old and new flags are not conflicting
195  */
196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199                       FS_NOATIME_FL | FS_NODUMP_FL | \
200                       FS_SYNC_FL | FS_DIRSYNC_FL | \
201                       FS_NOCOMP_FL | FS_COMPR_FL |
202                       FS_NOCOW_FL))
203                 return -EOPNOTSUPP;
204 
205         /* COMPR and NOCOMP on new/old are valid */
206         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207                 return -EINVAL;
208 
209         if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210                 return -EINVAL;
211 
212         /* NOCOW and compression options are mutually exclusive */
213         if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214                 return -EINVAL;
215         if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216                 return -EINVAL;
217 
218         return 0;
219 }
220 
221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
222                                     unsigned int flags)
223 {
224         if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225                 return -EPERM;
226 
227         return 0;
228 }
229 
230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232         if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233                 return -ENAMETOOLONG;
234         return 0;
235 }
236 
237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239         if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240                 return -ENAMETOOLONG;
241         return 0;
242 }
243 
244 /*
245  * Set flags/xflags from the internal inode flags. The remaining items of
246  * fsxattr are zeroed.
247  */
248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249 {
250         struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
251 
252         fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
253         return 0;
254 }
255 
256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257                        struct dentry *dentry, struct fileattr *fa)
258 {
259         struct inode *inode = d_inode(dentry);
260         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261         struct btrfs_inode *binode = BTRFS_I(inode);
262         struct btrfs_root *root = binode->root;
263         struct btrfs_trans_handle *trans;
264         unsigned int fsflags, old_fsflags;
265         int ret;
266         const char *comp = NULL;
267         u32 binode_flags;
268 
269         if (btrfs_root_readonly(root))
270                 return -EROFS;
271 
272         if (fileattr_has_fsx(fa))
273                 return -EOPNOTSUPP;
274 
275         fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
276         old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277         ret = check_fsflags(old_fsflags, fsflags);
278         if (ret)
279                 return ret;
280 
281         ret = check_fsflags_compatible(fs_info, fsflags);
282         if (ret)
283                 return ret;
284 
285         binode_flags = binode->flags;
286         if (fsflags & FS_SYNC_FL)
287                 binode_flags |= BTRFS_INODE_SYNC;
288         else
289                 binode_flags &= ~BTRFS_INODE_SYNC;
290         if (fsflags & FS_IMMUTABLE_FL)
291                 binode_flags |= BTRFS_INODE_IMMUTABLE;
292         else
293                 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294         if (fsflags & FS_APPEND_FL)
295                 binode_flags |= BTRFS_INODE_APPEND;
296         else
297                 binode_flags &= ~BTRFS_INODE_APPEND;
298         if (fsflags & FS_NODUMP_FL)
299                 binode_flags |= BTRFS_INODE_NODUMP;
300         else
301                 binode_flags &= ~BTRFS_INODE_NODUMP;
302         if (fsflags & FS_NOATIME_FL)
303                 binode_flags |= BTRFS_INODE_NOATIME;
304         else
305                 binode_flags &= ~BTRFS_INODE_NOATIME;
306 
307         /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308         if (!fa->flags_valid) {
309                 /* 1 item for the inode */
310                 trans = btrfs_start_transaction(root, 1);
311                 if (IS_ERR(trans))
312                         return PTR_ERR(trans);
313                 goto update_flags;
314         }
315 
316         if (fsflags & FS_DIRSYNC_FL)
317                 binode_flags |= BTRFS_INODE_DIRSYNC;
318         else
319                 binode_flags &= ~BTRFS_INODE_DIRSYNC;
320         if (fsflags & FS_NOCOW_FL) {
321                 if (S_ISREG(inode->i_mode)) {
322                         /*
323                          * It's safe to turn csums off here, no extents exist.
324                          * Otherwise we want the flag to reflect the real COW
325                          * status of the file and will not set it.
326                          */
327                         if (inode->i_size == 0)
328                                 binode_flags |= BTRFS_INODE_NODATACOW |
329                                                 BTRFS_INODE_NODATASUM;
330                 } else {
331                         binode_flags |= BTRFS_INODE_NODATACOW;
332                 }
333         } else {
334                 /*
335                  * Revert back under same assumptions as above
336                  */
337                 if (S_ISREG(inode->i_mode)) {
338                         if (inode->i_size == 0)
339                                 binode_flags &= ~(BTRFS_INODE_NODATACOW |
340                                                   BTRFS_INODE_NODATASUM);
341                 } else {
342                         binode_flags &= ~BTRFS_INODE_NODATACOW;
343                 }
344         }
345 
346         /*
347          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348          * flag may be changed automatically if compression code won't make
349          * things smaller.
350          */
351         if (fsflags & FS_NOCOMP_FL) {
352                 binode_flags &= ~BTRFS_INODE_COMPRESS;
353                 binode_flags |= BTRFS_INODE_NOCOMPRESS;
354         } else if (fsflags & FS_COMPR_FL) {
355 
356                 if (IS_SWAPFILE(inode))
357                         return -ETXTBSY;
358 
359                 binode_flags |= BTRFS_INODE_COMPRESS;
360                 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
361 
362                 comp = btrfs_compress_type2str(fs_info->compress_type);
363                 if (!comp || comp[0] == 0)
364                         comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
365         } else {
366                 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
367         }
368 
369         /*
370          * 1 for inode item
371          * 2 for properties
372          */
373         trans = btrfs_start_transaction(root, 3);
374         if (IS_ERR(trans))
375                 return PTR_ERR(trans);
376 
377         if (comp) {
378                 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
379                                      comp, strlen(comp), 0);
380                 if (ret) {
381                         btrfs_abort_transaction(trans, ret);
382                         goto out_end_trans;
383                 }
384         } else {
385                 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
386                                      NULL, 0, 0);
387                 if (ret && ret != -ENODATA) {
388                         btrfs_abort_transaction(trans, ret);
389                         goto out_end_trans;
390                 }
391         }
392 
393 update_flags:
394         binode->flags = binode_flags;
395         btrfs_sync_inode_flags_to_i_flags(inode);
396         inode_inc_iversion(inode);
397         inode_set_ctime_current(inode);
398         ret = btrfs_update_inode(trans, BTRFS_I(inode));
399 
400  out_end_trans:
401         btrfs_end_transaction(trans);
402         return ret;
403 }
404 
405 /*
406  * Start exclusive operation @type, return true on success
407  */
408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409                         enum btrfs_exclusive_operation type)
410 {
411         bool ret = false;
412 
413         spin_lock(&fs_info->super_lock);
414         if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415                 fs_info->exclusive_operation = type;
416                 ret = true;
417         }
418         spin_unlock(&fs_info->super_lock);
419 
420         return ret;
421 }
422 
423 /*
424  * Conditionally allow to enter the exclusive operation in case it's compatible
425  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
426  * btrfs_exclop_finish.
427  *
428  * Compatibility:
429  * - the same type is already running
430  * - when trying to add a device and balance has been paused
431  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432  *   must check the condition first that would allow none -> @type
433  */
434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435                                  enum btrfs_exclusive_operation type)
436 {
437         spin_lock(&fs_info->super_lock);
438         if (fs_info->exclusive_operation == type ||
439             (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440              type == BTRFS_EXCLOP_DEV_ADD))
441                 return true;
442 
443         spin_unlock(&fs_info->super_lock);
444         return false;
445 }
446 
447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
448 {
449         spin_unlock(&fs_info->super_lock);
450 }
451 
452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
453 {
454         spin_lock(&fs_info->super_lock);
455         WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456         spin_unlock(&fs_info->super_lock);
457         sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
458 }
459 
460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461                           enum btrfs_exclusive_operation op)
462 {
463         switch (op) {
464         case BTRFS_EXCLOP_BALANCE_PAUSED:
465                 spin_lock(&fs_info->super_lock);
466                 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467                        fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468                        fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469                        fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470                 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471                 spin_unlock(&fs_info->super_lock);
472                 break;
473         case BTRFS_EXCLOP_BALANCE:
474                 spin_lock(&fs_info->super_lock);
475                 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476                 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477                 spin_unlock(&fs_info->super_lock);
478                 break;
479         default:
480                 btrfs_warn(fs_info,
481                         "invalid exclop balance operation %d requested", op);
482         }
483 }
484 
485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
486 {
487         return put_user(inode->i_generation, arg);
488 }
489 
490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
491                                         void __user *arg)
492 {
493         struct btrfs_device *device;
494         struct fstrim_range range;
495         u64 minlen = ULLONG_MAX;
496         u64 num_devices = 0;
497         int ret;
498 
499         if (!capable(CAP_SYS_ADMIN))
500                 return -EPERM;
501 
502         /*
503          * btrfs_trim_block_group() depends on space cache, which is not
504          * available in zoned filesystem. So, disallow fitrim on a zoned
505          * filesystem for now.
506          */
507         if (btrfs_is_zoned(fs_info))
508                 return -EOPNOTSUPP;
509 
510         /*
511          * If the fs is mounted with nologreplay, which requires it to be
512          * mounted in RO mode as well, we can not allow discard on free space
513          * inside block groups, because log trees refer to extents that are not
514          * pinned in a block group's free space cache (pinning the extents is
515          * precisely the first phase of replaying a log tree).
516          */
517         if (btrfs_test_opt(fs_info, NOLOGREPLAY))
518                 return -EROFS;
519 
520         rcu_read_lock();
521         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
522                                 dev_list) {
523                 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
524                         continue;
525                 num_devices++;
526                 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
527                                     minlen);
528         }
529         rcu_read_unlock();
530 
531         if (!num_devices)
532                 return -EOPNOTSUPP;
533         if (copy_from_user(&range, arg, sizeof(range)))
534                 return -EFAULT;
535 
536         /*
537          * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
538          * block group is in the logical address space, which can be any
539          * sectorsize aligned bytenr in  the range [0, U64_MAX].
540          */
541         if (range.len < fs_info->sectorsize)
542                 return -EINVAL;
543 
544         range.minlen = max(range.minlen, minlen);
545         ret = btrfs_trim_fs(fs_info, &range);
546 
547         if (copy_to_user(arg, &range, sizeof(range)))
548                 return -EFAULT;
549 
550         return ret;
551 }
552 
553 int __pure btrfs_is_empty_uuid(const u8 *uuid)
554 {
555         int i;
556 
557         for (i = 0; i < BTRFS_UUID_SIZE; i++) {
558                 if (uuid[i])
559                         return 0;
560         }
561         return 1;
562 }
563 
564 /*
565  * Calculate the number of transaction items to reserve for creating a subvolume
566  * or snapshot, not including the inode, directory entries, or parent directory.
567  */
568 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
569 {
570         /*
571          * 1 to add root block
572          * 1 to add root item
573          * 1 to add root ref
574          * 1 to add root backref
575          * 1 to add UUID item
576          * 1 to add qgroup info
577          * 1 to add qgroup limit
578          *
579          * Ideally the last two would only be accounted if qgroups are enabled,
580          * but that can change between now and the time we would insert them.
581          */
582         unsigned int num_items = 7;
583 
584         if (inherit) {
585                 /* 2 to add qgroup relations for each inherited qgroup */
586                 num_items += 2 * inherit->num_qgroups;
587         }
588         return num_items;
589 }
590 
591 static noinline int create_subvol(struct mnt_idmap *idmap,
592                                   struct inode *dir, struct dentry *dentry,
593                                   struct btrfs_qgroup_inherit *inherit)
594 {
595         struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
596         struct btrfs_trans_handle *trans;
597         struct btrfs_key key;
598         struct btrfs_root_item *root_item;
599         struct btrfs_inode_item *inode_item;
600         struct extent_buffer *leaf;
601         struct btrfs_root *root = BTRFS_I(dir)->root;
602         struct btrfs_root *new_root;
603         struct btrfs_block_rsv block_rsv;
604         struct timespec64 cur_time = current_time(dir);
605         struct btrfs_new_inode_args new_inode_args = {
606                 .dir = dir,
607                 .dentry = dentry,
608                 .subvol = true,
609         };
610         unsigned int trans_num_items;
611         int ret;
612         dev_t anon_dev;
613         u64 objectid;
614         u64 qgroup_reserved = 0;
615 
616         root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
617         if (!root_item)
618                 return -ENOMEM;
619 
620         ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
621         if (ret)
622                 goto out_root_item;
623 
624         /*
625          * Don't create subvolume whose level is not zero. Or qgroup will be
626          * screwed up since it assumes subvolume qgroup's level to be 0.
627          */
628         if (btrfs_qgroup_level(objectid)) {
629                 ret = -ENOSPC;
630                 goto out_root_item;
631         }
632 
633         ret = get_anon_bdev(&anon_dev);
634         if (ret < 0)
635                 goto out_root_item;
636 
637         new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
638         if (!new_inode_args.inode) {
639                 ret = -ENOMEM;
640                 goto out_anon_dev;
641         }
642         ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
643         if (ret)
644                 goto out_inode;
645         trans_num_items += create_subvol_num_items(inherit);
646 
647         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
648         ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
649                                                trans_num_items, false);
650         if (ret)
651                 goto out_new_inode_args;
652         qgroup_reserved = block_rsv.qgroup_rsv_reserved;
653 
654         trans = btrfs_start_transaction(root, 0);
655         if (IS_ERR(trans)) {
656                 ret = PTR_ERR(trans);
657                 goto out_release_rsv;
658         }
659         btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
660         qgroup_reserved = 0;
661         trans->block_rsv = &block_rsv;
662         trans->bytes_reserved = block_rsv.size;
663 
664         ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
665         if (ret)
666                 goto out;
667 
668         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
669                                       0, BTRFS_NESTING_NORMAL);
670         if (IS_ERR(leaf)) {
671                 ret = PTR_ERR(leaf);
672                 goto out;
673         }
674 
675         btrfs_mark_buffer_dirty(trans, leaf);
676 
677         inode_item = &root_item->inode;
678         btrfs_set_stack_inode_generation(inode_item, 1);
679         btrfs_set_stack_inode_size(inode_item, 3);
680         btrfs_set_stack_inode_nlink(inode_item, 1);
681         btrfs_set_stack_inode_nbytes(inode_item,
682                                      fs_info->nodesize);
683         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
684 
685         btrfs_set_root_flags(root_item, 0);
686         btrfs_set_root_limit(root_item, 0);
687         btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
688 
689         btrfs_set_root_bytenr(root_item, leaf->start);
690         btrfs_set_root_generation(root_item, trans->transid);
691         btrfs_set_root_level(root_item, 0);
692         btrfs_set_root_refs(root_item, 1);
693         btrfs_set_root_used(root_item, leaf->len);
694         btrfs_set_root_last_snapshot(root_item, 0);
695 
696         btrfs_set_root_generation_v2(root_item,
697                         btrfs_root_generation(root_item));
698         generate_random_guid(root_item->uuid);
699         btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
700         btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
701         root_item->ctime = root_item->otime;
702         btrfs_set_root_ctransid(root_item, trans->transid);
703         btrfs_set_root_otransid(root_item, trans->transid);
704 
705         btrfs_tree_unlock(leaf);
706 
707         btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
708 
709         key.objectid = objectid;
710         key.offset = 0;
711         key.type = BTRFS_ROOT_ITEM_KEY;
712         ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
713                                 root_item);
714         if (ret) {
715                 int ret2;
716 
717                 /*
718                  * Since we don't abort the transaction in this case, free the
719                  * tree block so that we don't leak space and leave the
720                  * filesystem in an inconsistent state (an extent item in the
721                  * extent tree with a backreference for a root that does not
722                  * exists).
723                  */
724                 btrfs_tree_lock(leaf);
725                 btrfs_clear_buffer_dirty(trans, leaf);
726                 btrfs_tree_unlock(leaf);
727                 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
728                 if (ret2 < 0)
729                         btrfs_abort_transaction(trans, ret2);
730                 free_extent_buffer(leaf);
731                 goto out;
732         }
733 
734         free_extent_buffer(leaf);
735         leaf = NULL;
736 
737         new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
738         if (IS_ERR(new_root)) {
739                 ret = PTR_ERR(new_root);
740                 btrfs_abort_transaction(trans, ret);
741                 goto out;
742         }
743         /* anon_dev is owned by new_root now. */
744         anon_dev = 0;
745         BTRFS_I(new_inode_args.inode)->root = new_root;
746         /* ... and new_root is owned by new_inode_args.inode now. */
747 
748         ret = btrfs_record_root_in_trans(trans, new_root);
749         if (ret) {
750                 btrfs_abort_transaction(trans, ret);
751                 goto out;
752         }
753 
754         ret = btrfs_uuid_tree_add(trans, root_item->uuid,
755                                   BTRFS_UUID_KEY_SUBVOL, objectid);
756         if (ret) {
757                 btrfs_abort_transaction(trans, ret);
758                 goto out;
759         }
760 
761         ret = btrfs_create_new_inode(trans, &new_inode_args);
762         if (ret) {
763                 btrfs_abort_transaction(trans, ret);
764                 goto out;
765         }
766 
767         btrfs_record_new_subvolume(trans, BTRFS_I(dir));
768 
769         d_instantiate_new(dentry, new_inode_args.inode);
770         new_inode_args.inode = NULL;
771 
772 out:
773         trans->block_rsv = NULL;
774         trans->bytes_reserved = 0;
775         btrfs_end_transaction(trans);
776 out_release_rsv:
777         btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
778         if (qgroup_reserved)
779                 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
780 out_new_inode_args:
781         btrfs_new_inode_args_destroy(&new_inode_args);
782 out_inode:
783         iput(new_inode_args.inode);
784 out_anon_dev:
785         if (anon_dev)
786                 free_anon_bdev(anon_dev);
787 out_root_item:
788         kfree(root_item);
789         return ret;
790 }
791 
792 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
793                            struct dentry *dentry, bool readonly,
794                            struct btrfs_qgroup_inherit *inherit)
795 {
796         struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
797         struct inode *inode;
798         struct btrfs_pending_snapshot *pending_snapshot;
799         unsigned int trans_num_items;
800         struct btrfs_trans_handle *trans;
801         struct btrfs_block_rsv *block_rsv;
802         u64 qgroup_reserved = 0;
803         int ret;
804 
805         /* We do not support snapshotting right now. */
806         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
807                 btrfs_warn(fs_info,
808                            "extent tree v2 doesn't support snapshotting yet");
809                 return -EOPNOTSUPP;
810         }
811 
812         if (btrfs_root_refs(&root->root_item) == 0)
813                 return -ENOENT;
814 
815         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
816                 return -EINVAL;
817 
818         if (atomic_read(&root->nr_swapfiles)) {
819                 btrfs_warn(fs_info,
820                            "cannot snapshot subvolume with active swapfile");
821                 return -ETXTBSY;
822         }
823 
824         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
825         if (!pending_snapshot)
826                 return -ENOMEM;
827 
828         ret = get_anon_bdev(&pending_snapshot->anon_dev);
829         if (ret < 0)
830                 goto free_pending;
831         pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
832                         GFP_KERNEL);
833         pending_snapshot->path = btrfs_alloc_path();
834         if (!pending_snapshot->root_item || !pending_snapshot->path) {
835                 ret = -ENOMEM;
836                 goto free_pending;
837         }
838 
839         block_rsv = &pending_snapshot->block_rsv;
840         btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
841         /*
842          * 1 to add dir item
843          * 1 to add dir index
844          * 1 to update parent inode item
845          */
846         trans_num_items = create_subvol_num_items(inherit) + 3;
847         ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
848                                                trans_num_items, false);
849         if (ret)
850                 goto free_pending;
851         qgroup_reserved = block_rsv->qgroup_rsv_reserved;
852 
853         pending_snapshot->dentry = dentry;
854         pending_snapshot->root = root;
855         pending_snapshot->readonly = readonly;
856         pending_snapshot->dir = BTRFS_I(dir);
857         pending_snapshot->inherit = inherit;
858 
859         trans = btrfs_start_transaction(root, 0);
860         if (IS_ERR(trans)) {
861                 ret = PTR_ERR(trans);
862                 goto fail;
863         }
864         ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
865         if (ret) {
866                 btrfs_end_transaction(trans);
867                 goto fail;
868         }
869         btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
870         qgroup_reserved = 0;
871 
872         trans->pending_snapshot = pending_snapshot;
873 
874         ret = btrfs_commit_transaction(trans);
875         if (ret)
876                 goto fail;
877 
878         ret = pending_snapshot->error;
879         if (ret)
880                 goto fail;
881 
882         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
883         if (ret)
884                 goto fail;
885 
886         inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
887         if (IS_ERR(inode)) {
888                 ret = PTR_ERR(inode);
889                 goto fail;
890         }
891 
892         d_instantiate(dentry, inode);
893         ret = 0;
894         pending_snapshot->anon_dev = 0;
895 fail:
896         /* Prevent double freeing of anon_dev */
897         if (ret && pending_snapshot->snap)
898                 pending_snapshot->snap->anon_dev = 0;
899         btrfs_put_root(pending_snapshot->snap);
900         btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
901         if (qgroup_reserved)
902                 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
903 free_pending:
904         if (pending_snapshot->anon_dev)
905                 free_anon_bdev(pending_snapshot->anon_dev);
906         kfree(pending_snapshot->root_item);
907         btrfs_free_path(pending_snapshot->path);
908         kfree(pending_snapshot);
909 
910         return ret;
911 }
912 
913 /*  copy of may_delete in fs/namei.c()
914  *      Check whether we can remove a link victim from directory dir, check
915  *  whether the type of victim is right.
916  *  1. We can't do it if dir is read-only (done in permission())
917  *  2. We should have write and exec permissions on dir
918  *  3. We can't remove anything from append-only dir
919  *  4. We can't do anything with immutable dir (done in permission())
920  *  5. If the sticky bit on dir is set we should either
921  *      a. be owner of dir, or
922  *      b. be owner of victim, or
923  *      c. have CAP_FOWNER capability
924  *  6. If the victim is append-only or immutable we can't do anything with
925  *     links pointing to it.
926  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
927  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
928  *  9. We can't remove a root or mountpoint.
929  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
930  *     nfs_async_unlink().
931  */
932 
933 static int btrfs_may_delete(struct mnt_idmap *idmap,
934                             struct inode *dir, struct dentry *victim, int isdir)
935 {
936         int error;
937 
938         if (d_really_is_negative(victim))
939                 return -ENOENT;
940 
941         /* The @victim is not inside @dir. */
942         if (d_inode(victim->d_parent) != dir)
943                 return -EINVAL;
944         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
945 
946         error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
947         if (error)
948                 return error;
949         if (IS_APPEND(dir))
950                 return -EPERM;
951         if (check_sticky(idmap, dir, d_inode(victim)) ||
952             IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
953             IS_SWAPFILE(d_inode(victim)))
954                 return -EPERM;
955         if (isdir) {
956                 if (!d_is_dir(victim))
957                         return -ENOTDIR;
958                 if (IS_ROOT(victim))
959                         return -EBUSY;
960         } else if (d_is_dir(victim))
961                 return -EISDIR;
962         if (IS_DEADDIR(dir))
963                 return -ENOENT;
964         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
965                 return -EBUSY;
966         return 0;
967 }
968 
969 /* copy of may_create in fs/namei.c() */
970 static inline int btrfs_may_create(struct mnt_idmap *idmap,
971                                    struct inode *dir, struct dentry *child)
972 {
973         if (d_really_is_positive(child))
974                 return -EEXIST;
975         if (IS_DEADDIR(dir))
976                 return -ENOENT;
977         if (!fsuidgid_has_mapping(dir->i_sb, idmap))
978                 return -EOVERFLOW;
979         return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
980 }
981 
982 /*
983  * Create a new subvolume below @parent.  This is largely modeled after
984  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
985  * inside this filesystem so it's quite a bit simpler.
986  */
987 static noinline int btrfs_mksubvol(const struct path *parent,
988                                    struct mnt_idmap *idmap,
989                                    const char *name, int namelen,
990                                    struct btrfs_root *snap_src,
991                                    bool readonly,
992                                    struct btrfs_qgroup_inherit *inherit)
993 {
994         struct inode *dir = d_inode(parent->dentry);
995         struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
996         struct dentry *dentry;
997         struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
998         int error;
999 
1000         error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1001         if (error == -EINTR)
1002                 return error;
1003 
1004         dentry = lookup_one(idmap, name, parent->dentry, namelen);
1005         error = PTR_ERR(dentry);
1006         if (IS_ERR(dentry))
1007                 goto out_unlock;
1008 
1009         error = btrfs_may_create(idmap, dir, dentry);
1010         if (error)
1011                 goto out_dput;
1012 
1013         /*
1014          * even if this name doesn't exist, we may get hash collisions.
1015          * check for them now when we can safely fail
1016          */
1017         error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1018                                                dir->i_ino, &name_str);
1019         if (error)
1020                 goto out_dput;
1021 
1022         down_read(&fs_info->subvol_sem);
1023 
1024         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1025                 goto out_up_read;
1026 
1027         if (snap_src)
1028                 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1029         else
1030                 error = create_subvol(idmap, dir, dentry, inherit);
1031 
1032         if (!error)
1033                 fsnotify_mkdir(dir, dentry);
1034 out_up_read:
1035         up_read(&fs_info->subvol_sem);
1036 out_dput:
1037         dput(dentry);
1038 out_unlock:
1039         btrfs_inode_unlock(BTRFS_I(dir), 0);
1040         return error;
1041 }
1042 
1043 static noinline int btrfs_mksnapshot(const struct path *parent,
1044                                    struct mnt_idmap *idmap,
1045                                    const char *name, int namelen,
1046                                    struct btrfs_root *root,
1047                                    bool readonly,
1048                                    struct btrfs_qgroup_inherit *inherit)
1049 {
1050         int ret;
1051         bool snapshot_force_cow = false;
1052 
1053         /*
1054          * Force new buffered writes to reserve space even when NOCOW is
1055          * possible. This is to avoid later writeback (running dealloc) to
1056          * fallback to COW mode and unexpectedly fail with ENOSPC.
1057          */
1058         btrfs_drew_read_lock(&root->snapshot_lock);
1059 
1060         ret = btrfs_start_delalloc_snapshot(root, false);
1061         if (ret)
1062                 goto out;
1063 
1064         /*
1065          * All previous writes have started writeback in NOCOW mode, so now
1066          * we force future writes to fallback to COW mode during snapshot
1067          * creation.
1068          */
1069         atomic_inc(&root->snapshot_force_cow);
1070         snapshot_force_cow = true;
1071 
1072         btrfs_wait_ordered_extents(root, U64_MAX, NULL);
1073 
1074         ret = btrfs_mksubvol(parent, idmap, name, namelen,
1075                              root, readonly, inherit);
1076 out:
1077         if (snapshot_force_cow)
1078                 atomic_dec(&root->snapshot_force_cow);
1079         btrfs_drew_read_unlock(&root->snapshot_lock);
1080         return ret;
1081 }
1082 
1083 /*
1084  * Try to start exclusive operation @type or cancel it if it's running.
1085  *
1086  * Return:
1087  *   0        - normal mode, newly claimed op started
1088  *  >0        - normal mode, something else is running,
1089  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1090  * ECANCELED  - cancel mode, successful cancel
1091  * ENOTCONN   - cancel mode, operation not running anymore
1092  */
1093 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1094                         enum btrfs_exclusive_operation type, bool cancel)
1095 {
1096         if (!cancel) {
1097                 /* Start normal op */
1098                 if (!btrfs_exclop_start(fs_info, type))
1099                         return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1100                 /* Exclusive operation is now claimed */
1101                 return 0;
1102         }
1103 
1104         /* Cancel running op */
1105         if (btrfs_exclop_start_try_lock(fs_info, type)) {
1106                 /*
1107                  * This blocks any exclop finish from setting it to NONE, so we
1108                  * request cancellation. Either it runs and we will wait for it,
1109                  * or it has finished and no waiting will happen.
1110                  */
1111                 atomic_inc(&fs_info->reloc_cancel_req);
1112                 btrfs_exclop_start_unlock(fs_info);
1113 
1114                 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1115                         wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1116                                     TASK_INTERRUPTIBLE);
1117 
1118                 return -ECANCELED;
1119         }
1120 
1121         /* Something else is running or none */
1122         return -ENOTCONN;
1123 }
1124 
1125 static noinline int btrfs_ioctl_resize(struct file *file,
1126                                         void __user *arg)
1127 {
1128         BTRFS_DEV_LOOKUP_ARGS(args);
1129         struct inode *inode = file_inode(file);
1130         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1131         u64 new_size;
1132         u64 old_size;
1133         u64 devid = 1;
1134         struct btrfs_root *root = BTRFS_I(inode)->root;
1135         struct btrfs_ioctl_vol_args *vol_args;
1136         struct btrfs_trans_handle *trans;
1137         struct btrfs_device *device = NULL;
1138         char *sizestr;
1139         char *retptr;
1140         char *devstr = NULL;
1141         int ret = 0;
1142         int mod = 0;
1143         bool cancel;
1144 
1145         if (!capable(CAP_SYS_ADMIN))
1146                 return -EPERM;
1147 
1148         ret = mnt_want_write_file(file);
1149         if (ret)
1150                 return ret;
1151 
1152         /*
1153          * Read the arguments before checking exclusivity to be able to
1154          * distinguish regular resize and cancel
1155          */
1156         vol_args = memdup_user(arg, sizeof(*vol_args));
1157         if (IS_ERR(vol_args)) {
1158                 ret = PTR_ERR(vol_args);
1159                 goto out_drop;
1160         }
1161         ret = btrfs_check_ioctl_vol_args_path(vol_args);
1162         if (ret < 0)
1163                 goto out_free;
1164 
1165         sizestr = vol_args->name;
1166         cancel = (strcmp("cancel", sizestr) == 0);
1167         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1168         if (ret)
1169                 goto out_free;
1170         /* Exclusive operation is now claimed */
1171 
1172         devstr = strchr(sizestr, ':');
1173         if (devstr) {
1174                 sizestr = devstr + 1;
1175                 *devstr = '\0';
1176                 devstr = vol_args->name;
1177                 ret = kstrtoull(devstr, 10, &devid);
1178                 if (ret)
1179                         goto out_finish;
1180                 if (!devid) {
1181                         ret = -EINVAL;
1182                         goto out_finish;
1183                 }
1184                 btrfs_info(fs_info, "resizing devid %llu", devid);
1185         }
1186 
1187         args.devid = devid;
1188         device = btrfs_find_device(fs_info->fs_devices, &args);
1189         if (!device) {
1190                 btrfs_info(fs_info, "resizer unable to find device %llu",
1191                            devid);
1192                 ret = -ENODEV;
1193                 goto out_finish;
1194         }
1195 
1196         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1197                 btrfs_info(fs_info,
1198                            "resizer unable to apply on readonly device %llu",
1199                        devid);
1200                 ret = -EPERM;
1201                 goto out_finish;
1202         }
1203 
1204         if (!strcmp(sizestr, "max"))
1205                 new_size = bdev_nr_bytes(device->bdev);
1206         else {
1207                 if (sizestr[0] == '-') {
1208                         mod = -1;
1209                         sizestr++;
1210                 } else if (sizestr[0] == '+') {
1211                         mod = 1;
1212                         sizestr++;
1213                 }
1214                 new_size = memparse(sizestr, &retptr);
1215                 if (*retptr != '\0' || new_size == 0) {
1216                         ret = -EINVAL;
1217                         goto out_finish;
1218                 }
1219         }
1220 
1221         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1222                 ret = -EPERM;
1223                 goto out_finish;
1224         }
1225 
1226         old_size = btrfs_device_get_total_bytes(device);
1227 
1228         if (mod < 0) {
1229                 if (new_size > old_size) {
1230                         ret = -EINVAL;
1231                         goto out_finish;
1232                 }
1233                 new_size = old_size - new_size;
1234         } else if (mod > 0) {
1235                 if (new_size > ULLONG_MAX - old_size) {
1236                         ret = -ERANGE;
1237                         goto out_finish;
1238                 }
1239                 new_size = old_size + new_size;
1240         }
1241 
1242         if (new_size < SZ_256M) {
1243                 ret = -EINVAL;
1244                 goto out_finish;
1245         }
1246         if (new_size > bdev_nr_bytes(device->bdev)) {
1247                 ret = -EFBIG;
1248                 goto out_finish;
1249         }
1250 
1251         new_size = round_down(new_size, fs_info->sectorsize);
1252 
1253         if (new_size > old_size) {
1254                 trans = btrfs_start_transaction(root, 0);
1255                 if (IS_ERR(trans)) {
1256                         ret = PTR_ERR(trans);
1257                         goto out_finish;
1258                 }
1259                 ret = btrfs_grow_device(trans, device, new_size);
1260                 btrfs_commit_transaction(trans);
1261         } else if (new_size < old_size) {
1262                 ret = btrfs_shrink_device(device, new_size);
1263         } /* equal, nothing need to do */
1264 
1265         if (ret == 0 && new_size != old_size)
1266                 btrfs_info_in_rcu(fs_info,
1267                         "resize device %s (devid %llu) from %llu to %llu",
1268                         btrfs_dev_name(device), device->devid,
1269                         old_size, new_size);
1270 out_finish:
1271         btrfs_exclop_finish(fs_info);
1272 out_free:
1273         kfree(vol_args);
1274 out_drop:
1275         mnt_drop_write_file(file);
1276         return ret;
1277 }
1278 
1279 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1280                                 struct mnt_idmap *idmap,
1281                                 const char *name, unsigned long fd, int subvol,
1282                                 bool readonly,
1283                                 struct btrfs_qgroup_inherit *inherit)
1284 {
1285         int namelen;
1286         int ret = 0;
1287 
1288         if (!S_ISDIR(file_inode(file)->i_mode))
1289                 return -ENOTDIR;
1290 
1291         ret = mnt_want_write_file(file);
1292         if (ret)
1293                 goto out;
1294 
1295         namelen = strlen(name);
1296         if (strchr(name, '/')) {
1297                 ret = -EINVAL;
1298                 goto out_drop_write;
1299         }
1300 
1301         if (name[0] == '.' &&
1302            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1303                 ret = -EEXIST;
1304                 goto out_drop_write;
1305         }
1306 
1307         if (subvol) {
1308                 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1309                                      namelen, NULL, readonly, inherit);
1310         } else {
1311                 struct fd src = fdget(fd);
1312                 struct inode *src_inode;
1313                 if (!src.file) {
1314                         ret = -EINVAL;
1315                         goto out_drop_write;
1316                 }
1317 
1318                 src_inode = file_inode(src.file);
1319                 if (src_inode->i_sb != file_inode(file)->i_sb) {
1320                         btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1321                                    "Snapshot src from another FS");
1322                         ret = -EXDEV;
1323                 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1324                         /*
1325                          * Subvolume creation is not restricted, but snapshots
1326                          * are limited to own subvolumes only
1327                          */
1328                         ret = -EPERM;
1329                 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1330                         /*
1331                          * Snapshots must be made with the src_inode referring
1332                          * to the subvolume inode, otherwise the permission
1333                          * checking above is useless because we may have
1334                          * permission on a lower directory but not the subvol
1335                          * itself.
1336                          */
1337                         ret = -EINVAL;
1338                 } else {
1339                         ret = btrfs_mksnapshot(&file->f_path, idmap,
1340                                                name, namelen,
1341                                                BTRFS_I(src_inode)->root,
1342                                                readonly, inherit);
1343                 }
1344                 fdput(src);
1345         }
1346 out_drop_write:
1347         mnt_drop_write_file(file);
1348 out:
1349         return ret;
1350 }
1351 
1352 static noinline int btrfs_ioctl_snap_create(struct file *file,
1353                                             void __user *arg, int subvol)
1354 {
1355         struct btrfs_ioctl_vol_args *vol_args;
1356         int ret;
1357 
1358         if (!S_ISDIR(file_inode(file)->i_mode))
1359                 return -ENOTDIR;
1360 
1361         vol_args = memdup_user(arg, sizeof(*vol_args));
1362         if (IS_ERR(vol_args))
1363                 return PTR_ERR(vol_args);
1364         ret = btrfs_check_ioctl_vol_args_path(vol_args);
1365         if (ret < 0)
1366                 goto out;
1367 
1368         ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1369                                         vol_args->name, vol_args->fd, subvol,
1370                                         false, NULL);
1371 
1372 out:
1373         kfree(vol_args);
1374         return ret;
1375 }
1376 
1377 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1378                                                void __user *arg, int subvol)
1379 {
1380         struct btrfs_ioctl_vol_args_v2 *vol_args;
1381         int ret;
1382         bool readonly = false;
1383         struct btrfs_qgroup_inherit *inherit = NULL;
1384 
1385         if (!S_ISDIR(file_inode(file)->i_mode))
1386                 return -ENOTDIR;
1387 
1388         vol_args = memdup_user(arg, sizeof(*vol_args));
1389         if (IS_ERR(vol_args))
1390                 return PTR_ERR(vol_args);
1391         ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1392         if (ret < 0)
1393                 goto free_args;
1394 
1395         if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1396                 ret = -EOPNOTSUPP;
1397                 goto free_args;
1398         }
1399 
1400         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1401                 readonly = true;
1402         if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1403                 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1404 
1405                 if (vol_args->size < sizeof(*inherit) ||
1406                     vol_args->size > PAGE_SIZE) {
1407                         ret = -EINVAL;
1408                         goto free_args;
1409                 }
1410                 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1411                 if (IS_ERR(inherit)) {
1412                         ret = PTR_ERR(inherit);
1413                         goto free_args;
1414                 }
1415 
1416                 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1417                 if (ret < 0)
1418                         goto free_inherit;
1419         }
1420 
1421         ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1422                                         vol_args->name, vol_args->fd, subvol,
1423                                         readonly, inherit);
1424         if (ret)
1425                 goto free_inherit;
1426 free_inherit:
1427         kfree(inherit);
1428 free_args:
1429         kfree(vol_args);
1430         return ret;
1431 }
1432 
1433 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1434                                                 void __user *arg)
1435 {
1436         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1437         struct btrfs_root *root = BTRFS_I(inode)->root;
1438         int ret = 0;
1439         u64 flags = 0;
1440 
1441         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1442                 return -EINVAL;
1443 
1444         down_read(&fs_info->subvol_sem);
1445         if (btrfs_root_readonly(root))
1446                 flags |= BTRFS_SUBVOL_RDONLY;
1447         up_read(&fs_info->subvol_sem);
1448 
1449         if (copy_to_user(arg, &flags, sizeof(flags)))
1450                 ret = -EFAULT;
1451 
1452         return ret;
1453 }
1454 
1455 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1456                                               void __user *arg)
1457 {
1458         struct inode *inode = file_inode(file);
1459         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1460         struct btrfs_root *root = BTRFS_I(inode)->root;
1461         struct btrfs_trans_handle *trans;
1462         u64 root_flags;
1463         u64 flags;
1464         int ret = 0;
1465 
1466         if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1467                 return -EPERM;
1468 
1469         ret = mnt_want_write_file(file);
1470         if (ret)
1471                 goto out;
1472 
1473         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1474                 ret = -EINVAL;
1475                 goto out_drop_write;
1476         }
1477 
1478         if (copy_from_user(&flags, arg, sizeof(flags))) {
1479                 ret = -EFAULT;
1480                 goto out_drop_write;
1481         }
1482 
1483         if (flags & ~BTRFS_SUBVOL_RDONLY) {
1484                 ret = -EOPNOTSUPP;
1485                 goto out_drop_write;
1486         }
1487 
1488         down_write(&fs_info->subvol_sem);
1489 
1490         /* nothing to do */
1491         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1492                 goto out_drop_sem;
1493 
1494         root_flags = btrfs_root_flags(&root->root_item);
1495         if (flags & BTRFS_SUBVOL_RDONLY) {
1496                 btrfs_set_root_flags(&root->root_item,
1497                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1498         } else {
1499                 /*
1500                  * Block RO -> RW transition if this subvolume is involved in
1501                  * send
1502                  */
1503                 spin_lock(&root->root_item_lock);
1504                 if (root->send_in_progress == 0) {
1505                         btrfs_set_root_flags(&root->root_item,
1506                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1507                         spin_unlock(&root->root_item_lock);
1508                 } else {
1509                         spin_unlock(&root->root_item_lock);
1510                         btrfs_warn(fs_info,
1511                                    "Attempt to set subvolume %llu read-write during send",
1512                                    btrfs_root_id(root));
1513                         ret = -EPERM;
1514                         goto out_drop_sem;
1515                 }
1516         }
1517 
1518         trans = btrfs_start_transaction(root, 1);
1519         if (IS_ERR(trans)) {
1520                 ret = PTR_ERR(trans);
1521                 goto out_reset;
1522         }
1523 
1524         ret = btrfs_update_root(trans, fs_info->tree_root,
1525                                 &root->root_key, &root->root_item);
1526         if (ret < 0) {
1527                 btrfs_end_transaction(trans);
1528                 goto out_reset;
1529         }
1530 
1531         ret = btrfs_commit_transaction(trans);
1532 
1533 out_reset:
1534         if (ret)
1535                 btrfs_set_root_flags(&root->root_item, root_flags);
1536 out_drop_sem:
1537         up_write(&fs_info->subvol_sem);
1538 out_drop_write:
1539         mnt_drop_write_file(file);
1540 out:
1541         return ret;
1542 }
1543 
1544 static noinline int key_in_sk(struct btrfs_key *key,
1545                               struct btrfs_ioctl_search_key *sk)
1546 {
1547         struct btrfs_key test;
1548         int ret;
1549 
1550         test.objectid = sk->min_objectid;
1551         test.type = sk->min_type;
1552         test.offset = sk->min_offset;
1553 
1554         ret = btrfs_comp_cpu_keys(key, &test);
1555         if (ret < 0)
1556                 return 0;
1557 
1558         test.objectid = sk->max_objectid;
1559         test.type = sk->max_type;
1560         test.offset = sk->max_offset;
1561 
1562         ret = btrfs_comp_cpu_keys(key, &test);
1563         if (ret > 0)
1564                 return 0;
1565         return 1;
1566 }
1567 
1568 static noinline int copy_to_sk(struct btrfs_path *path,
1569                                struct btrfs_key *key,
1570                                struct btrfs_ioctl_search_key *sk,
1571                                u64 *buf_size,
1572                                char __user *ubuf,
1573                                unsigned long *sk_offset,
1574                                int *num_found)
1575 {
1576         u64 found_transid;
1577         struct extent_buffer *leaf;
1578         struct btrfs_ioctl_search_header sh;
1579         struct btrfs_key test;
1580         unsigned long item_off;
1581         unsigned long item_len;
1582         int nritems;
1583         int i;
1584         int slot;
1585         int ret = 0;
1586 
1587         leaf = path->nodes[0];
1588         slot = path->slots[0];
1589         nritems = btrfs_header_nritems(leaf);
1590 
1591         if (btrfs_header_generation(leaf) > sk->max_transid) {
1592                 i = nritems;
1593                 goto advance_key;
1594         }
1595         found_transid = btrfs_header_generation(leaf);
1596 
1597         for (i = slot; i < nritems; i++) {
1598                 item_off = btrfs_item_ptr_offset(leaf, i);
1599                 item_len = btrfs_item_size(leaf, i);
1600 
1601                 btrfs_item_key_to_cpu(leaf, key, i);
1602                 if (!key_in_sk(key, sk))
1603                         continue;
1604 
1605                 if (sizeof(sh) + item_len > *buf_size) {
1606                         if (*num_found) {
1607                                 ret = 1;
1608                                 goto out;
1609                         }
1610 
1611                         /*
1612                          * return one empty item back for v1, which does not
1613                          * handle -EOVERFLOW
1614                          */
1615 
1616                         *buf_size = sizeof(sh) + item_len;
1617                         item_len = 0;
1618                         ret = -EOVERFLOW;
1619                 }
1620 
1621                 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1622                         ret = 1;
1623                         goto out;
1624                 }
1625 
1626                 sh.objectid = key->objectid;
1627                 sh.offset = key->offset;
1628                 sh.type = key->type;
1629                 sh.len = item_len;
1630                 sh.transid = found_transid;
1631 
1632                 /*
1633                  * Copy search result header. If we fault then loop again so we
1634                  * can fault in the pages and -EFAULT there if there's a
1635                  * problem. Otherwise we'll fault and then copy the buffer in
1636                  * properly this next time through
1637                  */
1638                 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1639                         ret = 0;
1640                         goto out;
1641                 }
1642 
1643                 *sk_offset += sizeof(sh);
1644 
1645                 if (item_len) {
1646                         char __user *up = ubuf + *sk_offset;
1647                         /*
1648                          * Copy the item, same behavior as above, but reset the
1649                          * * sk_offset so we copy the full thing again.
1650                          */
1651                         if (read_extent_buffer_to_user_nofault(leaf, up,
1652                                                 item_off, item_len)) {
1653                                 ret = 0;
1654                                 *sk_offset -= sizeof(sh);
1655                                 goto out;
1656                         }
1657 
1658                         *sk_offset += item_len;
1659                 }
1660                 (*num_found)++;
1661 
1662                 if (ret) /* -EOVERFLOW from above */
1663                         goto out;
1664 
1665                 if (*num_found >= sk->nr_items) {
1666                         ret = 1;
1667                         goto out;
1668                 }
1669         }
1670 advance_key:
1671         ret = 0;
1672         test.objectid = sk->max_objectid;
1673         test.type = sk->max_type;
1674         test.offset = sk->max_offset;
1675         if (btrfs_comp_cpu_keys(key, &test) >= 0)
1676                 ret = 1;
1677         else if (key->offset < (u64)-1)
1678                 key->offset++;
1679         else if (key->type < (u8)-1) {
1680                 key->offset = 0;
1681                 key->type++;
1682         } else if (key->objectid < (u64)-1) {
1683                 key->offset = 0;
1684                 key->type = 0;
1685                 key->objectid++;
1686         } else
1687                 ret = 1;
1688 out:
1689         /*
1690          *  0: all items from this leaf copied, continue with next
1691          *  1: * more items can be copied, but unused buffer is too small
1692          *     * all items were found
1693          *     Either way, it will stops the loop which iterates to the next
1694          *     leaf
1695          *  -EOVERFLOW: item was to large for buffer
1696          *  -EFAULT: could not copy extent buffer back to userspace
1697          */
1698         return ret;
1699 }
1700 
1701 static noinline int search_ioctl(struct inode *inode,
1702                                  struct btrfs_ioctl_search_key *sk,
1703                                  u64 *buf_size,
1704                                  char __user *ubuf)
1705 {
1706         struct btrfs_fs_info *info = inode_to_fs_info(inode);
1707         struct btrfs_root *root;
1708         struct btrfs_key key;
1709         struct btrfs_path *path;
1710         int ret;
1711         int num_found = 0;
1712         unsigned long sk_offset = 0;
1713 
1714         if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1715                 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1716                 return -EOVERFLOW;
1717         }
1718 
1719         path = btrfs_alloc_path();
1720         if (!path)
1721                 return -ENOMEM;
1722 
1723         if (sk->tree_id == 0) {
1724                 /* search the root of the inode that was passed */
1725                 root = btrfs_grab_root(BTRFS_I(inode)->root);
1726         } else {
1727                 root = btrfs_get_fs_root(info, sk->tree_id, true);
1728                 if (IS_ERR(root)) {
1729                         btrfs_free_path(path);
1730                         return PTR_ERR(root);
1731                 }
1732         }
1733 
1734         key.objectid = sk->min_objectid;
1735         key.type = sk->min_type;
1736         key.offset = sk->min_offset;
1737 
1738         while (1) {
1739                 ret = -EFAULT;
1740                 /*
1741                  * Ensure that the whole user buffer is faulted in at sub-page
1742                  * granularity, otherwise the loop may live-lock.
1743                  */
1744                 if (fault_in_subpage_writeable(ubuf + sk_offset,
1745                                                *buf_size - sk_offset))
1746                         break;
1747 
1748                 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1749                 if (ret != 0) {
1750                         if (ret > 0)
1751                                 ret = 0;
1752                         goto err;
1753                 }
1754                 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1755                                  &sk_offset, &num_found);
1756                 btrfs_release_path(path);
1757                 if (ret)
1758                         break;
1759 
1760         }
1761         if (ret > 0)
1762                 ret = 0;
1763 err:
1764         sk->nr_items = num_found;
1765         btrfs_put_root(root);
1766         btrfs_free_path(path);
1767         return ret;
1768 }
1769 
1770 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1771                                             void __user *argp)
1772 {
1773         struct btrfs_ioctl_search_args __user *uargs = argp;
1774         struct btrfs_ioctl_search_key sk;
1775         int ret;
1776         u64 buf_size;
1777 
1778         if (!capable(CAP_SYS_ADMIN))
1779                 return -EPERM;
1780 
1781         if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1782                 return -EFAULT;
1783 
1784         buf_size = sizeof(uargs->buf);
1785 
1786         ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1787 
1788         /*
1789          * In the origin implementation an overflow is handled by returning a
1790          * search header with a len of zero, so reset ret.
1791          */
1792         if (ret == -EOVERFLOW)
1793                 ret = 0;
1794 
1795         if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1796                 ret = -EFAULT;
1797         return ret;
1798 }
1799 
1800 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1801                                                void __user *argp)
1802 {
1803         struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1804         struct btrfs_ioctl_search_args_v2 args;
1805         int ret;
1806         u64 buf_size;
1807         const u64 buf_limit = SZ_16M;
1808 
1809         if (!capable(CAP_SYS_ADMIN))
1810                 return -EPERM;
1811 
1812         /* copy search header and buffer size */
1813         if (copy_from_user(&args, uarg, sizeof(args)))
1814                 return -EFAULT;
1815 
1816         buf_size = args.buf_size;
1817 
1818         /* limit result size to 16MB */
1819         if (buf_size > buf_limit)
1820                 buf_size = buf_limit;
1821 
1822         ret = search_ioctl(inode, &args.key, &buf_size,
1823                            (char __user *)(&uarg->buf[0]));
1824         if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1825                 ret = -EFAULT;
1826         else if (ret == -EOVERFLOW &&
1827                 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1828                 ret = -EFAULT;
1829 
1830         return ret;
1831 }
1832 
1833 /*
1834  * Search INODE_REFs to identify path name of 'dirid' directory
1835  * in a 'tree_id' tree. and sets path name to 'name'.
1836  */
1837 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1838                                 u64 tree_id, u64 dirid, char *name)
1839 {
1840         struct btrfs_root *root;
1841         struct btrfs_key key;
1842         char *ptr;
1843         int ret = -1;
1844         int slot;
1845         int len;
1846         int total_len = 0;
1847         struct btrfs_inode_ref *iref;
1848         struct extent_buffer *l;
1849         struct btrfs_path *path;
1850 
1851         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1852                 name[0]='\0';
1853                 return 0;
1854         }
1855 
1856         path = btrfs_alloc_path();
1857         if (!path)
1858                 return -ENOMEM;
1859 
1860         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1861 
1862         root = btrfs_get_fs_root(info, tree_id, true);
1863         if (IS_ERR(root)) {
1864                 ret = PTR_ERR(root);
1865                 root = NULL;
1866                 goto out;
1867         }
1868 
1869         key.objectid = dirid;
1870         key.type = BTRFS_INODE_REF_KEY;
1871         key.offset = (u64)-1;
1872 
1873         while (1) {
1874                 ret = btrfs_search_backwards(root, &key, path);
1875                 if (ret < 0)
1876                         goto out;
1877                 else if (ret > 0) {
1878                         ret = -ENOENT;
1879                         goto out;
1880                 }
1881 
1882                 l = path->nodes[0];
1883                 slot = path->slots[0];
1884 
1885                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1886                 len = btrfs_inode_ref_name_len(l, iref);
1887                 ptr -= len + 1;
1888                 total_len += len + 1;
1889                 if (ptr < name) {
1890                         ret = -ENAMETOOLONG;
1891                         goto out;
1892                 }
1893 
1894                 *(ptr + len) = '/';
1895                 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1896 
1897                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1898                         break;
1899 
1900                 btrfs_release_path(path);
1901                 key.objectid = key.offset;
1902                 key.offset = (u64)-1;
1903                 dirid = key.objectid;
1904         }
1905         memmove(name, ptr, total_len);
1906         name[total_len] = '\0';
1907         ret = 0;
1908 out:
1909         btrfs_put_root(root);
1910         btrfs_free_path(path);
1911         return ret;
1912 }
1913 
1914 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1915                                 struct inode *inode,
1916                                 struct btrfs_ioctl_ino_lookup_user_args *args)
1917 {
1918         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1919         u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1920         u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1921         u64 dirid = args->dirid;
1922         unsigned long item_off;
1923         unsigned long item_len;
1924         struct btrfs_inode_ref *iref;
1925         struct btrfs_root_ref *rref;
1926         struct btrfs_root *root = NULL;
1927         struct btrfs_path *path;
1928         struct btrfs_key key, key2;
1929         struct extent_buffer *leaf;
1930         struct inode *temp_inode;
1931         char *ptr;
1932         int slot;
1933         int len;
1934         int total_len = 0;
1935         int ret;
1936 
1937         path = btrfs_alloc_path();
1938         if (!path)
1939                 return -ENOMEM;
1940 
1941         /*
1942          * If the bottom subvolume does not exist directly under upper_limit,
1943          * construct the path in from the bottom up.
1944          */
1945         if (dirid != upper_limit) {
1946                 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1947 
1948                 root = btrfs_get_fs_root(fs_info, treeid, true);
1949                 if (IS_ERR(root)) {
1950                         ret = PTR_ERR(root);
1951                         goto out;
1952                 }
1953 
1954                 key.objectid = dirid;
1955                 key.type = BTRFS_INODE_REF_KEY;
1956                 key.offset = (u64)-1;
1957                 while (1) {
1958                         ret = btrfs_search_backwards(root, &key, path);
1959                         if (ret < 0)
1960                                 goto out_put;
1961                         else if (ret > 0) {
1962                                 ret = -ENOENT;
1963                                 goto out_put;
1964                         }
1965 
1966                         leaf = path->nodes[0];
1967                         slot = path->slots[0];
1968 
1969                         iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1970                         len = btrfs_inode_ref_name_len(leaf, iref);
1971                         ptr -= len + 1;
1972                         total_len += len + 1;
1973                         if (ptr < args->path) {
1974                                 ret = -ENAMETOOLONG;
1975                                 goto out_put;
1976                         }
1977 
1978                         *(ptr + len) = '/';
1979                         read_extent_buffer(leaf, ptr,
1980                                         (unsigned long)(iref + 1), len);
1981 
1982                         /* Check the read+exec permission of this directory */
1983                         ret = btrfs_previous_item(root, path, dirid,
1984                                                   BTRFS_INODE_ITEM_KEY);
1985                         if (ret < 0) {
1986                                 goto out_put;
1987                         } else if (ret > 0) {
1988                                 ret = -ENOENT;
1989                                 goto out_put;
1990                         }
1991 
1992                         leaf = path->nodes[0];
1993                         slot = path->slots[0];
1994                         btrfs_item_key_to_cpu(leaf, &key2, slot);
1995                         if (key2.objectid != dirid) {
1996                                 ret = -ENOENT;
1997                                 goto out_put;
1998                         }
1999 
2000                         /*
2001                          * We don't need the path anymore, so release it and
2002                          * avoid deadlocks and lockdep warnings in case
2003                          * btrfs_iget() needs to lookup the inode from its root
2004                          * btree and lock the same leaf.
2005                          */
2006                         btrfs_release_path(path);
2007                         temp_inode = btrfs_iget(key2.objectid, root);
2008                         if (IS_ERR(temp_inode)) {
2009                                 ret = PTR_ERR(temp_inode);
2010                                 goto out_put;
2011                         }
2012                         ret = inode_permission(idmap, temp_inode,
2013                                                MAY_READ | MAY_EXEC);
2014                         iput(temp_inode);
2015                         if (ret) {
2016                                 ret = -EACCES;
2017                                 goto out_put;
2018                         }
2019 
2020                         if (key.offset == upper_limit)
2021                                 break;
2022                         if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2023                                 ret = -EACCES;
2024                                 goto out_put;
2025                         }
2026 
2027                         key.objectid = key.offset;
2028                         key.offset = (u64)-1;
2029                         dirid = key.objectid;
2030                 }
2031 
2032                 memmove(args->path, ptr, total_len);
2033                 args->path[total_len] = '\0';
2034                 btrfs_put_root(root);
2035                 root = NULL;
2036                 btrfs_release_path(path);
2037         }
2038 
2039         /* Get the bottom subvolume's name from ROOT_REF */
2040         key.objectid = treeid;
2041         key.type = BTRFS_ROOT_REF_KEY;
2042         key.offset = args->treeid;
2043         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2044         if (ret < 0) {
2045                 goto out;
2046         } else if (ret > 0) {
2047                 ret = -ENOENT;
2048                 goto out;
2049         }
2050 
2051         leaf = path->nodes[0];
2052         slot = path->slots[0];
2053         btrfs_item_key_to_cpu(leaf, &key, slot);
2054 
2055         item_off = btrfs_item_ptr_offset(leaf, slot);
2056         item_len = btrfs_item_size(leaf, slot);
2057         /* Check if dirid in ROOT_REF corresponds to passed dirid */
2058         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2059         if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2060                 ret = -EINVAL;
2061                 goto out;
2062         }
2063 
2064         /* Copy subvolume's name */
2065         item_off += sizeof(struct btrfs_root_ref);
2066         item_len -= sizeof(struct btrfs_root_ref);
2067         read_extent_buffer(leaf, args->name, item_off, item_len);
2068         args->name[item_len] = 0;
2069 
2070 out_put:
2071         btrfs_put_root(root);
2072 out:
2073         btrfs_free_path(path);
2074         return ret;
2075 }
2076 
2077 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2078                                            void __user *argp)
2079 {
2080         struct btrfs_ioctl_ino_lookup_args *args;
2081         int ret = 0;
2082 
2083         args = memdup_user(argp, sizeof(*args));
2084         if (IS_ERR(args))
2085                 return PTR_ERR(args);
2086 
2087         /*
2088          * Unprivileged query to obtain the containing subvolume root id. The
2089          * path is reset so it's consistent with btrfs_search_path_in_tree.
2090          */
2091         if (args->treeid == 0)
2092                 args->treeid = btrfs_root_id(root);
2093 
2094         if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2095                 args->name[0] = 0;
2096                 goto out;
2097         }
2098 
2099         if (!capable(CAP_SYS_ADMIN)) {
2100                 ret = -EPERM;
2101                 goto out;
2102         }
2103 
2104         ret = btrfs_search_path_in_tree(root->fs_info,
2105                                         args->treeid, args->objectid,
2106                                         args->name);
2107 
2108 out:
2109         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2110                 ret = -EFAULT;
2111 
2112         kfree(args);
2113         return ret;
2114 }
2115 
2116 /*
2117  * Version of ino_lookup ioctl (unprivileged)
2118  *
2119  * The main differences from ino_lookup ioctl are:
2120  *
2121  *   1. Read + Exec permission will be checked using inode_permission() during
2122  *      path construction. -EACCES will be returned in case of failure.
2123  *   2. Path construction will be stopped at the inode number which corresponds
2124  *      to the fd with which this ioctl is called. If constructed path does not
2125  *      exist under fd's inode, -EACCES will be returned.
2126  *   3. The name of bottom subvolume is also searched and filled.
2127  */
2128 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2129 {
2130         struct btrfs_ioctl_ino_lookup_user_args *args;
2131         struct inode *inode;
2132         int ret;
2133 
2134         args = memdup_user(argp, sizeof(*args));
2135         if (IS_ERR(args))
2136                 return PTR_ERR(args);
2137 
2138         inode = file_inode(file);
2139 
2140         if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2141             btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2142                 /*
2143                  * The subvolume does not exist under fd with which this is
2144                  * called
2145                  */
2146                 kfree(args);
2147                 return -EACCES;
2148         }
2149 
2150         ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2151 
2152         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2153                 ret = -EFAULT;
2154 
2155         kfree(args);
2156         return ret;
2157 }
2158 
2159 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2160 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2161 {
2162         struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2163         struct btrfs_fs_info *fs_info;
2164         struct btrfs_root *root;
2165         struct btrfs_path *path;
2166         struct btrfs_key key;
2167         struct btrfs_root_item *root_item;
2168         struct btrfs_root_ref *rref;
2169         struct extent_buffer *leaf;
2170         unsigned long item_off;
2171         unsigned long item_len;
2172         int slot;
2173         int ret = 0;
2174 
2175         path = btrfs_alloc_path();
2176         if (!path)
2177                 return -ENOMEM;
2178 
2179         subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2180         if (!subvol_info) {
2181                 btrfs_free_path(path);
2182                 return -ENOMEM;
2183         }
2184 
2185         fs_info = BTRFS_I(inode)->root->fs_info;
2186 
2187         /* Get root_item of inode's subvolume */
2188         key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2189         root = btrfs_get_fs_root(fs_info, key.objectid, true);
2190         if (IS_ERR(root)) {
2191                 ret = PTR_ERR(root);
2192                 goto out_free;
2193         }
2194         root_item = &root->root_item;
2195 
2196         subvol_info->treeid = key.objectid;
2197 
2198         subvol_info->generation = btrfs_root_generation(root_item);
2199         subvol_info->flags = btrfs_root_flags(root_item);
2200 
2201         memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2202         memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2203                                                     BTRFS_UUID_SIZE);
2204         memcpy(subvol_info->received_uuid, root_item->received_uuid,
2205                                                     BTRFS_UUID_SIZE);
2206 
2207         subvol_info->ctransid = btrfs_root_ctransid(root_item);
2208         subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2209         subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2210 
2211         subvol_info->otransid = btrfs_root_otransid(root_item);
2212         subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2213         subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2214 
2215         subvol_info->stransid = btrfs_root_stransid(root_item);
2216         subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2217         subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2218 
2219         subvol_info->rtransid = btrfs_root_rtransid(root_item);
2220         subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2221         subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2222 
2223         if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2224                 /* Search root tree for ROOT_BACKREF of this subvolume */
2225                 key.type = BTRFS_ROOT_BACKREF_KEY;
2226                 key.offset = 0;
2227                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2228                 if (ret < 0) {
2229                         goto out;
2230                 } else if (path->slots[0] >=
2231                            btrfs_header_nritems(path->nodes[0])) {
2232                         ret = btrfs_next_leaf(fs_info->tree_root, path);
2233                         if (ret < 0) {
2234                                 goto out;
2235                         } else if (ret > 0) {
2236                                 ret = -EUCLEAN;
2237                                 goto out;
2238                         }
2239                 }
2240 
2241                 leaf = path->nodes[0];
2242                 slot = path->slots[0];
2243                 btrfs_item_key_to_cpu(leaf, &key, slot);
2244                 if (key.objectid == subvol_info->treeid &&
2245                     key.type == BTRFS_ROOT_BACKREF_KEY) {
2246                         subvol_info->parent_id = key.offset;
2247 
2248                         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2249                         subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2250 
2251                         item_off = btrfs_item_ptr_offset(leaf, slot)
2252                                         + sizeof(struct btrfs_root_ref);
2253                         item_len = btrfs_item_size(leaf, slot)
2254                                         - sizeof(struct btrfs_root_ref);
2255                         read_extent_buffer(leaf, subvol_info->name,
2256                                            item_off, item_len);
2257                 } else {
2258                         ret = -ENOENT;
2259                         goto out;
2260                 }
2261         }
2262 
2263         btrfs_free_path(path);
2264         path = NULL;
2265         if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2266                 ret = -EFAULT;
2267 
2268 out:
2269         btrfs_put_root(root);
2270 out_free:
2271         btrfs_free_path(path);
2272         kfree(subvol_info);
2273         return ret;
2274 }
2275 
2276 /*
2277  * Return ROOT_REF information of the subvolume containing this inode
2278  * except the subvolume name.
2279  */
2280 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2281                                           void __user *argp)
2282 {
2283         struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2284         struct btrfs_root_ref *rref;
2285         struct btrfs_path *path;
2286         struct btrfs_key key;
2287         struct extent_buffer *leaf;
2288         u64 objectid;
2289         int slot;
2290         int ret;
2291         u8 found;
2292 
2293         path = btrfs_alloc_path();
2294         if (!path)
2295                 return -ENOMEM;
2296 
2297         rootrefs = memdup_user(argp, sizeof(*rootrefs));
2298         if (IS_ERR(rootrefs)) {
2299                 btrfs_free_path(path);
2300                 return PTR_ERR(rootrefs);
2301         }
2302 
2303         objectid = btrfs_root_id(root);
2304         key.objectid = objectid;
2305         key.type = BTRFS_ROOT_REF_KEY;
2306         key.offset = rootrefs->min_treeid;
2307         found = 0;
2308 
2309         root = root->fs_info->tree_root;
2310         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2311         if (ret < 0) {
2312                 goto out;
2313         } else if (path->slots[0] >=
2314                    btrfs_header_nritems(path->nodes[0])) {
2315                 ret = btrfs_next_leaf(root, path);
2316                 if (ret < 0) {
2317                         goto out;
2318                 } else if (ret > 0) {
2319                         ret = -EUCLEAN;
2320                         goto out;
2321                 }
2322         }
2323         while (1) {
2324                 leaf = path->nodes[0];
2325                 slot = path->slots[0];
2326 
2327                 btrfs_item_key_to_cpu(leaf, &key, slot);
2328                 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2329                         ret = 0;
2330                         goto out;
2331                 }
2332 
2333                 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2334                         ret = -EOVERFLOW;
2335                         goto out;
2336                 }
2337 
2338                 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2339                 rootrefs->rootref[found].treeid = key.offset;
2340                 rootrefs->rootref[found].dirid =
2341                                   btrfs_root_ref_dirid(leaf, rref);
2342                 found++;
2343 
2344                 ret = btrfs_next_item(root, path);
2345                 if (ret < 0) {
2346                         goto out;
2347                 } else if (ret > 0) {
2348                         ret = -EUCLEAN;
2349                         goto out;
2350                 }
2351         }
2352 
2353 out:
2354         btrfs_free_path(path);
2355 
2356         if (!ret || ret == -EOVERFLOW) {
2357                 rootrefs->num_items = found;
2358                 /* update min_treeid for next search */
2359                 if (found)
2360                         rootrefs->min_treeid =
2361                                 rootrefs->rootref[found - 1].treeid + 1;
2362                 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2363                         ret = -EFAULT;
2364         }
2365 
2366         kfree(rootrefs);
2367 
2368         return ret;
2369 }
2370 
2371 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2372                                              void __user *arg,
2373                                              bool destroy_v2)
2374 {
2375         struct dentry *parent = file->f_path.dentry;
2376         struct dentry *dentry;
2377         struct inode *dir = d_inode(parent);
2378         struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2379         struct inode *inode;
2380         struct btrfs_root *root = BTRFS_I(dir)->root;
2381         struct btrfs_root *dest = NULL;
2382         struct btrfs_ioctl_vol_args *vol_args = NULL;
2383         struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2384         struct mnt_idmap *idmap = file_mnt_idmap(file);
2385         char *subvol_name, *subvol_name_ptr = NULL;
2386         int subvol_namelen;
2387         int ret = 0;
2388         bool destroy_parent = false;
2389 
2390         /* We don't support snapshots with extent tree v2 yet. */
2391         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2392                 btrfs_err(fs_info,
2393                           "extent tree v2 doesn't support snapshot deletion yet");
2394                 return -EOPNOTSUPP;
2395         }
2396 
2397         if (destroy_v2) {
2398                 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2399                 if (IS_ERR(vol_args2))
2400                         return PTR_ERR(vol_args2);
2401 
2402                 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2403                         ret = -EOPNOTSUPP;
2404                         goto out;
2405                 }
2406 
2407                 /*
2408                  * If SPEC_BY_ID is not set, we are looking for the subvolume by
2409                  * name, same as v1 currently does.
2410                  */
2411                 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2412                         ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2413                         if (ret < 0)
2414                                 goto out;
2415                         subvol_name = vol_args2->name;
2416 
2417                         ret = mnt_want_write_file(file);
2418                         if (ret)
2419                                 goto out;
2420                 } else {
2421                         struct inode *old_dir;
2422 
2423                         if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2424                                 ret = -EINVAL;
2425                                 goto out;
2426                         }
2427 
2428                         ret = mnt_want_write_file(file);
2429                         if (ret)
2430                                 goto out;
2431 
2432                         dentry = btrfs_get_dentry(fs_info->sb,
2433                                         BTRFS_FIRST_FREE_OBJECTID,
2434                                         vol_args2->subvolid, 0);
2435                         if (IS_ERR(dentry)) {
2436                                 ret = PTR_ERR(dentry);
2437                                 goto out_drop_write;
2438                         }
2439 
2440                         /*
2441                          * Change the default parent since the subvolume being
2442                          * deleted can be outside of the current mount point.
2443                          */
2444                         parent = btrfs_get_parent(dentry);
2445 
2446                         /*
2447                          * At this point dentry->d_name can point to '/' if the
2448                          * subvolume we want to destroy is outsite of the
2449                          * current mount point, so we need to release the
2450                          * current dentry and execute the lookup to return a new
2451                          * one with ->d_name pointing to the
2452                          * <mount point>/subvol_name.
2453                          */
2454                         dput(dentry);
2455                         if (IS_ERR(parent)) {
2456                                 ret = PTR_ERR(parent);
2457                                 goto out_drop_write;
2458                         }
2459                         old_dir = dir;
2460                         dir = d_inode(parent);
2461 
2462                         /*
2463                          * If v2 was used with SPEC_BY_ID, a new parent was
2464                          * allocated since the subvolume can be outside of the
2465                          * current mount point. Later on we need to release this
2466                          * new parent dentry.
2467                          */
2468                         destroy_parent = true;
2469 
2470                         /*
2471                          * On idmapped mounts, deletion via subvolid is
2472                          * restricted to subvolumes that are immediate
2473                          * ancestors of the inode referenced by the file
2474                          * descriptor in the ioctl. Otherwise the idmapping
2475                          * could potentially be abused to delete subvolumes
2476                          * anywhere in the filesystem the user wouldn't be able
2477                          * to delete without an idmapped mount.
2478                          */
2479                         if (old_dir != dir && idmap != &nop_mnt_idmap) {
2480                                 ret = -EOPNOTSUPP;
2481                                 goto free_parent;
2482                         }
2483 
2484                         subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2485                                                 fs_info, vol_args2->subvolid);
2486                         if (IS_ERR(subvol_name_ptr)) {
2487                                 ret = PTR_ERR(subvol_name_ptr);
2488                                 goto free_parent;
2489                         }
2490                         /* subvol_name_ptr is already nul terminated */
2491                         subvol_name = (char *)kbasename(subvol_name_ptr);
2492                 }
2493         } else {
2494                 vol_args = memdup_user(arg, sizeof(*vol_args));
2495                 if (IS_ERR(vol_args))
2496                         return PTR_ERR(vol_args);
2497 
2498                 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2499                 if (ret < 0)
2500                         goto out;
2501 
2502                 subvol_name = vol_args->name;
2503 
2504                 ret = mnt_want_write_file(file);
2505                 if (ret)
2506                         goto out;
2507         }
2508 
2509         subvol_namelen = strlen(subvol_name);
2510 
2511         if (strchr(subvol_name, '/') ||
2512             strncmp(subvol_name, "..", subvol_namelen) == 0) {
2513                 ret = -EINVAL;
2514                 goto free_subvol_name;
2515         }
2516 
2517         if (!S_ISDIR(dir->i_mode)) {
2518                 ret = -ENOTDIR;
2519                 goto free_subvol_name;
2520         }
2521 
2522         ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2523         if (ret == -EINTR)
2524                 goto free_subvol_name;
2525         dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2526         if (IS_ERR(dentry)) {
2527                 ret = PTR_ERR(dentry);
2528                 goto out_unlock_dir;
2529         }
2530 
2531         if (d_really_is_negative(dentry)) {
2532                 ret = -ENOENT;
2533                 goto out_dput;
2534         }
2535 
2536         inode = d_inode(dentry);
2537         dest = BTRFS_I(inode)->root;
2538         if (!capable(CAP_SYS_ADMIN)) {
2539                 /*
2540                  * Regular user.  Only allow this with a special mount
2541                  * option, when the user has write+exec access to the
2542                  * subvol root, and when rmdir(2) would have been
2543                  * allowed.
2544                  *
2545                  * Note that this is _not_ check that the subvol is
2546                  * empty or doesn't contain data that we wouldn't
2547                  * otherwise be able to delete.
2548                  *
2549                  * Users who want to delete empty subvols should try
2550                  * rmdir(2).
2551                  */
2552                 ret = -EPERM;
2553                 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2554                         goto out_dput;
2555 
2556                 /*
2557                  * Do not allow deletion if the parent dir is the same
2558                  * as the dir to be deleted.  That means the ioctl
2559                  * must be called on the dentry referencing the root
2560                  * of the subvol, not a random directory contained
2561                  * within it.
2562                  */
2563                 ret = -EINVAL;
2564                 if (root == dest)
2565                         goto out_dput;
2566 
2567                 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2568                 if (ret)
2569                         goto out_dput;
2570         }
2571 
2572         /* check if subvolume may be deleted by a user */
2573         ret = btrfs_may_delete(idmap, dir, dentry, 1);
2574         if (ret)
2575                 goto out_dput;
2576 
2577         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2578                 ret = -EINVAL;
2579                 goto out_dput;
2580         }
2581 
2582         btrfs_inode_lock(BTRFS_I(inode), 0);
2583         ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2584         btrfs_inode_unlock(BTRFS_I(inode), 0);
2585         if (!ret)
2586                 d_delete_notify(dir, dentry);
2587 
2588 out_dput:
2589         dput(dentry);
2590 out_unlock_dir:
2591         btrfs_inode_unlock(BTRFS_I(dir), 0);
2592 free_subvol_name:
2593         kfree(subvol_name_ptr);
2594 free_parent:
2595         if (destroy_parent)
2596                 dput(parent);
2597 out_drop_write:
2598         mnt_drop_write_file(file);
2599 out:
2600         kfree(vol_args2);
2601         kfree(vol_args);
2602         return ret;
2603 }
2604 
2605 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2606 {
2607         struct inode *inode = file_inode(file);
2608         struct btrfs_root *root = BTRFS_I(inode)->root;
2609         struct btrfs_ioctl_defrag_range_args range = {0};
2610         int ret;
2611 
2612         ret = mnt_want_write_file(file);
2613         if (ret)
2614                 return ret;
2615 
2616         if (btrfs_root_readonly(root)) {
2617                 ret = -EROFS;
2618                 goto out;
2619         }
2620 
2621         switch (inode->i_mode & S_IFMT) {
2622         case S_IFDIR:
2623                 if (!capable(CAP_SYS_ADMIN)) {
2624                         ret = -EPERM;
2625                         goto out;
2626                 }
2627                 ret = btrfs_defrag_root(root);
2628                 break;
2629         case S_IFREG:
2630                 /*
2631                  * Note that this does not check the file descriptor for write
2632                  * access. This prevents defragmenting executables that are
2633                  * running and allows defrag on files open in read-only mode.
2634                  */
2635                 if (!capable(CAP_SYS_ADMIN) &&
2636                     inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2637                         ret = -EPERM;
2638                         goto out;
2639                 }
2640 
2641                 if (argp) {
2642                         if (copy_from_user(&range, argp, sizeof(range))) {
2643                                 ret = -EFAULT;
2644                                 goto out;
2645                         }
2646                         if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2647                                 ret = -EOPNOTSUPP;
2648                                 goto out;
2649                         }
2650                         /* compression requires us to start the IO */
2651                         if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2652                                 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2653                                 range.extent_thresh = (u32)-1;
2654                         }
2655                 } else {
2656                         /* the rest are all set to zero by kzalloc */
2657                         range.len = (u64)-1;
2658                 }
2659                 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2660                                         &range, BTRFS_OLDEST_GENERATION, 0);
2661                 if (ret > 0)
2662                         ret = 0;
2663                 break;
2664         default:
2665                 ret = -EINVAL;
2666         }
2667 out:
2668         mnt_drop_write_file(file);
2669         return ret;
2670 }
2671 
2672 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2673 {
2674         struct btrfs_ioctl_vol_args *vol_args;
2675         bool restore_op = false;
2676         int ret;
2677 
2678         if (!capable(CAP_SYS_ADMIN))
2679                 return -EPERM;
2680 
2681         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2682                 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2683                 return -EINVAL;
2684         }
2685 
2686         if (fs_info->fs_devices->temp_fsid) {
2687                 btrfs_err(fs_info,
2688                           "device add not supported on cloned temp-fsid mount");
2689                 return -EINVAL;
2690         }
2691 
2692         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2693                 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2694                         return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2695 
2696                 /*
2697                  * We can do the device add because we have a paused balanced,
2698                  * change the exclusive op type and remember we should bring
2699                  * back the paused balance
2700                  */
2701                 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2702                 btrfs_exclop_start_unlock(fs_info);
2703                 restore_op = true;
2704         }
2705 
2706         vol_args = memdup_user(arg, sizeof(*vol_args));
2707         if (IS_ERR(vol_args)) {
2708                 ret = PTR_ERR(vol_args);
2709                 goto out;
2710         }
2711 
2712         ret = btrfs_check_ioctl_vol_args_path(vol_args);
2713         if (ret < 0)
2714                 goto out_free;
2715 
2716         ret = btrfs_init_new_device(fs_info, vol_args->name);
2717 
2718         if (!ret)
2719                 btrfs_info(fs_info, "disk added %s", vol_args->name);
2720 
2721 out_free:
2722         kfree(vol_args);
2723 out:
2724         if (restore_op)
2725                 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2726         else
2727                 btrfs_exclop_finish(fs_info);
2728         return ret;
2729 }
2730 
2731 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2732 {
2733         BTRFS_DEV_LOOKUP_ARGS(args);
2734         struct inode *inode = file_inode(file);
2735         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2736         struct btrfs_ioctl_vol_args_v2 *vol_args;
2737         struct file *bdev_file = NULL;
2738         int ret;
2739         bool cancel = false;
2740 
2741         if (!capable(CAP_SYS_ADMIN))
2742                 return -EPERM;
2743 
2744         vol_args = memdup_user(arg, sizeof(*vol_args));
2745         if (IS_ERR(vol_args))
2746                 return PTR_ERR(vol_args);
2747 
2748         if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2749                 ret = -EOPNOTSUPP;
2750                 goto out;
2751         }
2752 
2753         ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2754         if (ret < 0)
2755                 goto out;
2756 
2757         if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2758                 args.devid = vol_args->devid;
2759         } else if (!strcmp("cancel", vol_args->name)) {
2760                 cancel = true;
2761         } else {
2762                 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2763                 if (ret)
2764                         goto out;
2765         }
2766 
2767         ret = mnt_want_write_file(file);
2768         if (ret)
2769                 goto out;
2770 
2771         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2772                                            cancel);
2773         if (ret)
2774                 goto err_drop;
2775 
2776         /* Exclusive operation is now claimed */
2777         ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2778 
2779         btrfs_exclop_finish(fs_info);
2780 
2781         if (!ret) {
2782                 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2783                         btrfs_info(fs_info, "device deleted: id %llu",
2784                                         vol_args->devid);
2785                 else
2786                         btrfs_info(fs_info, "device deleted: %s",
2787                                         vol_args->name);
2788         }
2789 err_drop:
2790         mnt_drop_write_file(file);
2791         if (bdev_file)
2792                 fput(bdev_file);
2793 out:
2794         btrfs_put_dev_args_from_path(&args);
2795         kfree(vol_args);
2796         return ret;
2797 }
2798 
2799 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2800 {
2801         BTRFS_DEV_LOOKUP_ARGS(args);
2802         struct inode *inode = file_inode(file);
2803         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2804         struct btrfs_ioctl_vol_args *vol_args;
2805         struct file *bdev_file = NULL;
2806         int ret;
2807         bool cancel = false;
2808 
2809         if (!capable(CAP_SYS_ADMIN))
2810                 return -EPERM;
2811 
2812         vol_args = memdup_user(arg, sizeof(*vol_args));
2813         if (IS_ERR(vol_args))
2814                 return PTR_ERR(vol_args);
2815 
2816         ret = btrfs_check_ioctl_vol_args_path(vol_args);
2817         if (ret < 0)
2818                 goto out_free;
2819 
2820         if (!strcmp("cancel", vol_args->name)) {
2821                 cancel = true;
2822         } else {
2823                 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2824                 if (ret)
2825                         goto out;
2826         }
2827 
2828         ret = mnt_want_write_file(file);
2829         if (ret)
2830                 goto out;
2831 
2832         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2833                                            cancel);
2834         if (ret == 0) {
2835                 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2836                 if (!ret)
2837                         btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2838                 btrfs_exclop_finish(fs_info);
2839         }
2840 
2841         mnt_drop_write_file(file);
2842         if (bdev_file)
2843                 fput(bdev_file);
2844 out:
2845         btrfs_put_dev_args_from_path(&args);
2846 out_free:
2847         kfree(vol_args);
2848         return ret;
2849 }
2850 
2851 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2852                                 void __user *arg)
2853 {
2854         struct btrfs_ioctl_fs_info_args *fi_args;
2855         struct btrfs_device *device;
2856         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2857         u64 flags_in;
2858         int ret = 0;
2859 
2860         fi_args = memdup_user(arg, sizeof(*fi_args));
2861         if (IS_ERR(fi_args))
2862                 return PTR_ERR(fi_args);
2863 
2864         flags_in = fi_args->flags;
2865         memset(fi_args, 0, sizeof(*fi_args));
2866 
2867         rcu_read_lock();
2868         fi_args->num_devices = fs_devices->num_devices;
2869 
2870         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2871                 if (device->devid > fi_args->max_id)
2872                         fi_args->max_id = device->devid;
2873         }
2874         rcu_read_unlock();
2875 
2876         memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2877         fi_args->nodesize = fs_info->nodesize;
2878         fi_args->sectorsize = fs_info->sectorsize;
2879         fi_args->clone_alignment = fs_info->sectorsize;
2880 
2881         if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2882                 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2883                 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2884                 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2885         }
2886 
2887         if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2888                 fi_args->generation = btrfs_get_fs_generation(fs_info);
2889                 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2890         }
2891 
2892         if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2893                 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2894                        sizeof(fi_args->metadata_uuid));
2895                 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2896         }
2897 
2898         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2899                 ret = -EFAULT;
2900 
2901         kfree(fi_args);
2902         return ret;
2903 }
2904 
2905 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2906                                  void __user *arg)
2907 {
2908         BTRFS_DEV_LOOKUP_ARGS(args);
2909         struct btrfs_ioctl_dev_info_args *di_args;
2910         struct btrfs_device *dev;
2911         int ret = 0;
2912 
2913         di_args = memdup_user(arg, sizeof(*di_args));
2914         if (IS_ERR(di_args))
2915                 return PTR_ERR(di_args);
2916 
2917         args.devid = di_args->devid;
2918         if (!btrfs_is_empty_uuid(di_args->uuid))
2919                 args.uuid = di_args->uuid;
2920 
2921         rcu_read_lock();
2922         dev = btrfs_find_device(fs_info->fs_devices, &args);
2923         if (!dev) {
2924                 ret = -ENODEV;
2925                 goto out;
2926         }
2927 
2928         di_args->devid = dev->devid;
2929         di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2930         di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2931         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2932         memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2933         if (dev->name)
2934                 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2935         else
2936                 di_args->path[0] = '\0';
2937 
2938 out:
2939         rcu_read_unlock();
2940         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2941                 ret = -EFAULT;
2942 
2943         kfree(di_args);
2944         return ret;
2945 }
2946 
2947 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2948 {
2949         struct inode *inode = file_inode(file);
2950         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2951         struct btrfs_root *root = BTRFS_I(inode)->root;
2952         struct btrfs_root *new_root;
2953         struct btrfs_dir_item *di;
2954         struct btrfs_trans_handle *trans;
2955         struct btrfs_path *path = NULL;
2956         struct btrfs_disk_key disk_key;
2957         struct fscrypt_str name = FSTR_INIT("default", 7);
2958         u64 objectid = 0;
2959         u64 dir_id;
2960         int ret;
2961 
2962         if (!capable(CAP_SYS_ADMIN))
2963                 return -EPERM;
2964 
2965         ret = mnt_want_write_file(file);
2966         if (ret)
2967                 return ret;
2968 
2969         if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2970                 ret = -EFAULT;
2971                 goto out;
2972         }
2973 
2974         if (!objectid)
2975                 objectid = BTRFS_FS_TREE_OBJECTID;
2976 
2977         new_root = btrfs_get_fs_root(fs_info, objectid, true);
2978         if (IS_ERR(new_root)) {
2979                 ret = PTR_ERR(new_root);
2980                 goto out;
2981         }
2982         if (!is_fstree(btrfs_root_id(new_root))) {
2983                 ret = -ENOENT;
2984                 goto out_free;
2985         }
2986 
2987         path = btrfs_alloc_path();
2988         if (!path) {
2989                 ret = -ENOMEM;
2990                 goto out_free;
2991         }
2992 
2993         trans = btrfs_start_transaction(root, 1);
2994         if (IS_ERR(trans)) {
2995                 ret = PTR_ERR(trans);
2996                 goto out_free;
2997         }
2998 
2999         dir_id = btrfs_super_root_dir(fs_info->super_copy);
3000         di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3001                                    dir_id, &name, 1);
3002         if (IS_ERR_OR_NULL(di)) {
3003                 btrfs_release_path(path);
3004                 btrfs_end_transaction(trans);
3005                 btrfs_err(fs_info,
3006                           "Umm, you don't have the default diritem, this isn't going to work");
3007                 ret = -ENOENT;
3008                 goto out_free;
3009         }
3010 
3011         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3012         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3013         btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3014         btrfs_release_path(path);
3015 
3016         btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3017         btrfs_end_transaction(trans);
3018 out_free:
3019         btrfs_put_root(new_root);
3020         btrfs_free_path(path);
3021 out:
3022         mnt_drop_write_file(file);
3023         return ret;
3024 }
3025 
3026 static void get_block_group_info(struct list_head *groups_list,
3027                                  struct btrfs_ioctl_space_info *space)
3028 {
3029         struct btrfs_block_group *block_group;
3030 
3031         space->total_bytes = 0;
3032         space->used_bytes = 0;
3033         space->flags = 0;
3034         list_for_each_entry(block_group, groups_list, list) {
3035                 space->flags = block_group->flags;
3036                 space->total_bytes += block_group->length;
3037                 space->used_bytes += block_group->used;
3038         }
3039 }
3040 
3041 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3042                                    void __user *arg)
3043 {
3044         struct btrfs_ioctl_space_args space_args = { 0 };
3045         struct btrfs_ioctl_space_info space;
3046         struct btrfs_ioctl_space_info *dest;
3047         struct btrfs_ioctl_space_info *dest_orig;
3048         struct btrfs_ioctl_space_info __user *user_dest;
3049         struct btrfs_space_info *info;
3050         static const u64 types[] = {
3051                 BTRFS_BLOCK_GROUP_DATA,
3052                 BTRFS_BLOCK_GROUP_SYSTEM,
3053                 BTRFS_BLOCK_GROUP_METADATA,
3054                 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3055         };
3056         int num_types = 4;
3057         int alloc_size;
3058         int ret = 0;
3059         u64 slot_count = 0;
3060         int i, c;
3061 
3062         if (copy_from_user(&space_args,
3063                            (struct btrfs_ioctl_space_args __user *)arg,
3064                            sizeof(space_args)))
3065                 return -EFAULT;
3066 
3067         for (i = 0; i < num_types; i++) {
3068                 struct btrfs_space_info *tmp;
3069 
3070                 info = NULL;
3071                 list_for_each_entry(tmp, &fs_info->space_info, list) {
3072                         if (tmp->flags == types[i]) {
3073                                 info = tmp;
3074                                 break;
3075                         }
3076                 }
3077 
3078                 if (!info)
3079                         continue;
3080 
3081                 down_read(&info->groups_sem);
3082                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3083                         if (!list_empty(&info->block_groups[c]))
3084                                 slot_count++;
3085                 }
3086                 up_read(&info->groups_sem);
3087         }
3088 
3089         /*
3090          * Global block reserve, exported as a space_info
3091          */
3092         slot_count++;
3093 
3094         /* space_slots == 0 means they are asking for a count */
3095         if (space_args.space_slots == 0) {
3096                 space_args.total_spaces = slot_count;
3097                 goto out;
3098         }
3099 
3100         slot_count = min_t(u64, space_args.space_slots, slot_count);
3101 
3102         alloc_size = sizeof(*dest) * slot_count;
3103 
3104         /* we generally have at most 6 or so space infos, one for each raid
3105          * level.  So, a whole page should be more than enough for everyone
3106          */
3107         if (alloc_size > PAGE_SIZE)
3108                 return -ENOMEM;
3109 
3110         space_args.total_spaces = 0;
3111         dest = kmalloc(alloc_size, GFP_KERNEL);
3112         if (!dest)
3113                 return -ENOMEM;
3114         dest_orig = dest;
3115 
3116         /* now we have a buffer to copy into */
3117         for (i = 0; i < num_types; i++) {
3118                 struct btrfs_space_info *tmp;
3119 
3120                 if (!slot_count)
3121                         break;
3122 
3123                 info = NULL;
3124                 list_for_each_entry(tmp, &fs_info->space_info, list) {
3125                         if (tmp->flags == types[i]) {
3126                                 info = tmp;
3127                                 break;
3128                         }
3129                 }
3130 
3131                 if (!info)
3132                         continue;
3133                 down_read(&info->groups_sem);
3134                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3135                         if (!list_empty(&info->block_groups[c])) {
3136                                 get_block_group_info(&info->block_groups[c],
3137                                                      &space);
3138                                 memcpy(dest, &space, sizeof(space));
3139                                 dest++;
3140                                 space_args.total_spaces++;
3141                                 slot_count--;
3142                         }
3143                         if (!slot_count)
3144                                 break;
3145                 }
3146                 up_read(&info->groups_sem);
3147         }
3148 
3149         /*
3150          * Add global block reserve
3151          */
3152         if (slot_count) {
3153                 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3154 
3155                 spin_lock(&block_rsv->lock);
3156                 space.total_bytes = block_rsv->size;
3157                 space.used_bytes = block_rsv->size - block_rsv->reserved;
3158                 spin_unlock(&block_rsv->lock);
3159                 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3160                 memcpy(dest, &space, sizeof(space));
3161                 space_args.total_spaces++;
3162         }
3163 
3164         user_dest = (struct btrfs_ioctl_space_info __user *)
3165                 (arg + sizeof(struct btrfs_ioctl_space_args));
3166 
3167         if (copy_to_user(user_dest, dest_orig, alloc_size))
3168                 ret = -EFAULT;
3169 
3170         kfree(dest_orig);
3171 out:
3172         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3173                 ret = -EFAULT;
3174 
3175         return ret;
3176 }
3177 
3178 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3179                                             void __user *argp)
3180 {
3181         struct btrfs_trans_handle *trans;
3182         u64 transid;
3183 
3184         /*
3185          * Start orphan cleanup here for the given root in case it hasn't been
3186          * started already by other means. Errors are handled in the other
3187          * functions during transaction commit.
3188          */
3189         btrfs_orphan_cleanup(root);
3190 
3191         trans = btrfs_attach_transaction_barrier(root);
3192         if (IS_ERR(trans)) {
3193                 if (PTR_ERR(trans) != -ENOENT)
3194                         return PTR_ERR(trans);
3195 
3196                 /* No running transaction, don't bother */
3197                 transid = btrfs_get_last_trans_committed(root->fs_info);
3198                 goto out;
3199         }
3200         transid = trans->transid;
3201         btrfs_commit_transaction_async(trans);
3202 out:
3203         if (argp)
3204                 if (copy_to_user(argp, &transid, sizeof(transid)))
3205                         return -EFAULT;
3206         return 0;
3207 }
3208 
3209 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3210                                            void __user *argp)
3211 {
3212         /* By default wait for the current transaction. */
3213         u64 transid = 0;
3214 
3215         if (argp)
3216                 if (copy_from_user(&transid, argp, sizeof(transid)))
3217                         return -EFAULT;
3218 
3219         return btrfs_wait_for_commit(fs_info, transid);
3220 }
3221 
3222 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3223 {
3224         struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3225         struct btrfs_ioctl_scrub_args *sa;
3226         int ret;
3227 
3228         if (!capable(CAP_SYS_ADMIN))
3229                 return -EPERM;
3230 
3231         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3232                 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3233                 return -EINVAL;
3234         }
3235 
3236         sa = memdup_user(arg, sizeof(*sa));
3237         if (IS_ERR(sa))
3238                 return PTR_ERR(sa);
3239 
3240         if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3241                 ret = -EOPNOTSUPP;
3242                 goto out;
3243         }
3244 
3245         if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3246                 ret = mnt_want_write_file(file);
3247                 if (ret)
3248                         goto out;
3249         }
3250 
3251         ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3252                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3253                               0);
3254 
3255         /*
3256          * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3257          * error. This is important as it allows user space to know how much
3258          * progress scrub has done. For example, if scrub is canceled we get
3259          * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3260          * space. Later user space can inspect the progress from the structure
3261          * btrfs_ioctl_scrub_args and resume scrub from where it left off
3262          * previously (btrfs-progs does this).
3263          * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3264          * then return -EFAULT to signal the structure was not copied or it may
3265          * be corrupt and unreliable due to a partial copy.
3266          */
3267         if (copy_to_user(arg, sa, sizeof(*sa)))
3268                 ret = -EFAULT;
3269 
3270         if (!(sa->flags & BTRFS_SCRUB_READONLY))
3271                 mnt_drop_write_file(file);
3272 out:
3273         kfree(sa);
3274         return ret;
3275 }
3276 
3277 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3278 {
3279         if (!capable(CAP_SYS_ADMIN))
3280                 return -EPERM;
3281 
3282         return btrfs_scrub_cancel(fs_info);
3283 }
3284 
3285 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3286                                        void __user *arg)
3287 {
3288         struct btrfs_ioctl_scrub_args *sa;
3289         int ret;
3290 
3291         if (!capable(CAP_SYS_ADMIN))
3292                 return -EPERM;
3293 
3294         sa = memdup_user(arg, sizeof(*sa));
3295         if (IS_ERR(sa))
3296                 return PTR_ERR(sa);
3297 
3298         ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3299 
3300         if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3301                 ret = -EFAULT;
3302 
3303         kfree(sa);
3304         return ret;
3305 }
3306 
3307 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3308                                       void __user *arg)
3309 {
3310         struct btrfs_ioctl_get_dev_stats *sa;
3311         int ret;
3312 
3313         sa = memdup_user(arg, sizeof(*sa));
3314         if (IS_ERR(sa))
3315                 return PTR_ERR(sa);
3316 
3317         if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3318                 kfree(sa);
3319                 return -EPERM;
3320         }
3321 
3322         ret = btrfs_get_dev_stats(fs_info, sa);
3323 
3324         if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3325                 ret = -EFAULT;
3326 
3327         kfree(sa);
3328         return ret;
3329 }
3330 
3331 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3332                                     void __user *arg)
3333 {
3334         struct btrfs_ioctl_dev_replace_args *p;
3335         int ret;
3336 
3337         if (!capable(CAP_SYS_ADMIN))
3338                 return -EPERM;
3339 
3340         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3341                 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3342                 return -EINVAL;
3343         }
3344 
3345         p = memdup_user(arg, sizeof(*p));
3346         if (IS_ERR(p))
3347                 return PTR_ERR(p);
3348 
3349         switch (p->cmd) {
3350         case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3351                 if (sb_rdonly(fs_info->sb)) {
3352                         ret = -EROFS;
3353                         goto out;
3354                 }
3355                 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3356                         ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3357                 } else {
3358                         ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3359                         btrfs_exclop_finish(fs_info);
3360                 }
3361                 break;
3362         case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3363                 btrfs_dev_replace_status(fs_info, p);
3364                 ret = 0;
3365                 break;
3366         case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3367                 p->result = btrfs_dev_replace_cancel(fs_info);
3368                 ret = 0;
3369                 break;
3370         default:
3371                 ret = -EINVAL;
3372                 break;
3373         }
3374 
3375         if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3376                 ret = -EFAULT;
3377 out:
3378         kfree(p);
3379         return ret;
3380 }
3381 
3382 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3383 {
3384         int ret = 0;
3385         int i;
3386         u64 rel_ptr;
3387         int size;
3388         struct btrfs_ioctl_ino_path_args *ipa = NULL;
3389         struct inode_fs_paths *ipath = NULL;
3390         struct btrfs_path *path;
3391 
3392         if (!capable(CAP_DAC_READ_SEARCH))
3393                 return -EPERM;
3394 
3395         path = btrfs_alloc_path();
3396         if (!path) {
3397                 ret = -ENOMEM;
3398                 goto out;
3399         }
3400 
3401         ipa = memdup_user(arg, sizeof(*ipa));
3402         if (IS_ERR(ipa)) {
3403                 ret = PTR_ERR(ipa);
3404                 ipa = NULL;
3405                 goto out;
3406         }
3407 
3408         size = min_t(u32, ipa->size, 4096);
3409         ipath = init_ipath(size, root, path);
3410         if (IS_ERR(ipath)) {
3411                 ret = PTR_ERR(ipath);
3412                 ipath = NULL;
3413                 goto out;
3414         }
3415 
3416         ret = paths_from_inode(ipa->inum, ipath);
3417         if (ret < 0)
3418                 goto out;
3419 
3420         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3421                 rel_ptr = ipath->fspath->val[i] -
3422                           (u64)(unsigned long)ipath->fspath->val;
3423                 ipath->fspath->val[i] = rel_ptr;
3424         }
3425 
3426         btrfs_free_path(path);
3427         path = NULL;
3428         ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3429                            ipath->fspath, size);
3430         if (ret) {
3431                 ret = -EFAULT;
3432                 goto out;
3433         }
3434 
3435 out:
3436         btrfs_free_path(path);
3437         free_ipath(ipath);
3438         kfree(ipa);
3439 
3440         return ret;
3441 }
3442 
3443 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3444                                         void __user *arg, int version)
3445 {
3446         int ret = 0;
3447         int size;
3448         struct btrfs_ioctl_logical_ino_args *loi;
3449         struct btrfs_data_container *inodes = NULL;
3450         struct btrfs_path *path = NULL;
3451         bool ignore_offset;
3452 
3453         if (!capable(CAP_SYS_ADMIN))
3454                 return -EPERM;
3455 
3456         loi = memdup_user(arg, sizeof(*loi));
3457         if (IS_ERR(loi))
3458                 return PTR_ERR(loi);
3459 
3460         if (version == 1) {
3461                 ignore_offset = false;
3462                 size = min_t(u32, loi->size, SZ_64K);
3463         } else {
3464                 /* All reserved bits must be 0 for now */
3465                 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3466                         ret = -EINVAL;
3467                         goto out_loi;
3468                 }
3469                 /* Only accept flags we have defined so far */
3470                 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3471                         ret = -EINVAL;
3472                         goto out_loi;
3473                 }
3474                 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3475                 size = min_t(u32, loi->size, SZ_16M);
3476         }
3477 
3478         inodes = init_data_container(size);
3479         if (IS_ERR(inodes)) {
3480                 ret = PTR_ERR(inodes);
3481                 goto out_loi;
3482         }
3483 
3484         path = btrfs_alloc_path();
3485         if (!path) {
3486                 ret = -ENOMEM;
3487                 goto out;
3488         }
3489         ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3490                                           inodes, ignore_offset);
3491         btrfs_free_path(path);
3492         if (ret == -EINVAL)
3493                 ret = -ENOENT;
3494         if (ret < 0)
3495                 goto out;
3496 
3497         ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3498                            size);
3499         if (ret)
3500                 ret = -EFAULT;
3501 
3502 out:
3503         kvfree(inodes);
3504 out_loi:
3505         kfree(loi);
3506 
3507         return ret;
3508 }
3509 
3510 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3511                                struct btrfs_ioctl_balance_args *bargs)
3512 {
3513         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3514 
3515         bargs->flags = bctl->flags;
3516 
3517         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3518                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3519         if (atomic_read(&fs_info->balance_pause_req))
3520                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3521         if (atomic_read(&fs_info->balance_cancel_req))
3522                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3523 
3524         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3525         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3526         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3527 
3528         spin_lock(&fs_info->balance_lock);
3529         memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3530         spin_unlock(&fs_info->balance_lock);
3531 }
3532 
3533 /*
3534  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3535  * required.
3536  *
3537  * @fs_info:       the filesystem
3538  * @excl_acquired: ptr to boolean value which is set to false in case balance
3539  *                 is being resumed
3540  *
3541  * Return 0 on success in which case both fs_info::balance is acquired as well
3542  * as exclusive ops are blocked. In case of failure return an error code.
3543  */
3544 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3545 {
3546         int ret;
3547 
3548         /*
3549          * Exclusive operation is locked. Three possibilities:
3550          *   (1) some other op is running
3551          *   (2) balance is running
3552          *   (3) balance is paused -- special case (think resume)
3553          */
3554         while (1) {
3555                 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3556                         *excl_acquired = true;
3557                         mutex_lock(&fs_info->balance_mutex);
3558                         return 0;
3559                 }
3560 
3561                 mutex_lock(&fs_info->balance_mutex);
3562                 if (fs_info->balance_ctl) {
3563                         /* This is either (2) or (3) */
3564                         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3565                                 /* This is (2) */
3566                                 ret = -EINPROGRESS;
3567                                 goto out_failure;
3568 
3569                         } else {
3570                                 mutex_unlock(&fs_info->balance_mutex);
3571                                 /*
3572                                  * Lock released to allow other waiters to
3573                                  * continue, we'll reexamine the status again.
3574                                  */
3575                                 mutex_lock(&fs_info->balance_mutex);
3576 
3577                                 if (fs_info->balance_ctl &&
3578                                     !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3579                                         /* This is (3) */
3580                                         *excl_acquired = false;
3581                                         return 0;
3582                                 }
3583                         }
3584                 } else {
3585                         /* This is (1) */
3586                         ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3587                         goto out_failure;
3588                 }
3589 
3590                 mutex_unlock(&fs_info->balance_mutex);
3591         }
3592 
3593 out_failure:
3594         mutex_unlock(&fs_info->balance_mutex);
3595         *excl_acquired = false;
3596         return ret;
3597 }
3598 
3599 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3600 {
3601         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3602         struct btrfs_fs_info *fs_info = root->fs_info;
3603         struct btrfs_ioctl_balance_args *bargs;
3604         struct btrfs_balance_control *bctl;
3605         bool need_unlock = true;
3606         int ret;
3607 
3608         if (!capable(CAP_SYS_ADMIN))
3609                 return -EPERM;
3610 
3611         ret = mnt_want_write_file(file);
3612         if (ret)
3613                 return ret;
3614 
3615         bargs = memdup_user(arg, sizeof(*bargs));
3616         if (IS_ERR(bargs)) {
3617                 ret = PTR_ERR(bargs);
3618                 bargs = NULL;
3619                 goto out;
3620         }
3621 
3622         ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3623         if (ret)
3624                 goto out;
3625 
3626         lockdep_assert_held(&fs_info->balance_mutex);
3627 
3628         if (bargs->flags & BTRFS_BALANCE_RESUME) {
3629                 if (!fs_info->balance_ctl) {
3630                         ret = -ENOTCONN;
3631                         goto out_unlock;
3632                 }
3633 
3634                 bctl = fs_info->balance_ctl;
3635                 spin_lock(&fs_info->balance_lock);
3636                 bctl->flags |= BTRFS_BALANCE_RESUME;
3637                 spin_unlock(&fs_info->balance_lock);
3638                 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3639 
3640                 goto do_balance;
3641         }
3642 
3643         if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3644                 ret = -EINVAL;
3645                 goto out_unlock;
3646         }
3647 
3648         if (fs_info->balance_ctl) {
3649                 ret = -EINPROGRESS;
3650                 goto out_unlock;
3651         }
3652 
3653         bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3654         if (!bctl) {
3655                 ret = -ENOMEM;
3656                 goto out_unlock;
3657         }
3658 
3659         memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3660         memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3661         memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3662 
3663         bctl->flags = bargs->flags;
3664 do_balance:
3665         /*
3666          * Ownership of bctl and exclusive operation goes to btrfs_balance.
3667          * bctl is freed in reset_balance_state, or, if restriper was paused
3668          * all the way until unmount, in free_fs_info.  The flag should be
3669          * cleared after reset_balance_state.
3670          */
3671         need_unlock = false;
3672 
3673         ret = btrfs_balance(fs_info, bctl, bargs);
3674         bctl = NULL;
3675 
3676         if (ret == 0 || ret == -ECANCELED) {
3677                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3678                         ret = -EFAULT;
3679         }
3680 
3681         kfree(bctl);
3682 out_unlock:
3683         mutex_unlock(&fs_info->balance_mutex);
3684         if (need_unlock)
3685                 btrfs_exclop_finish(fs_info);
3686 out:
3687         mnt_drop_write_file(file);
3688         kfree(bargs);
3689         return ret;
3690 }
3691 
3692 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3693 {
3694         if (!capable(CAP_SYS_ADMIN))
3695                 return -EPERM;
3696 
3697         switch (cmd) {
3698         case BTRFS_BALANCE_CTL_PAUSE:
3699                 return btrfs_pause_balance(fs_info);
3700         case BTRFS_BALANCE_CTL_CANCEL:
3701                 return btrfs_cancel_balance(fs_info);
3702         }
3703 
3704         return -EINVAL;
3705 }
3706 
3707 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3708                                          void __user *arg)
3709 {
3710         struct btrfs_ioctl_balance_args *bargs;
3711         int ret = 0;
3712 
3713         if (!capable(CAP_SYS_ADMIN))
3714                 return -EPERM;
3715 
3716         mutex_lock(&fs_info->balance_mutex);
3717         if (!fs_info->balance_ctl) {
3718                 ret = -ENOTCONN;
3719                 goto out;
3720         }
3721 
3722         bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3723         if (!bargs) {
3724                 ret = -ENOMEM;
3725                 goto out;
3726         }
3727 
3728         btrfs_update_ioctl_balance_args(fs_info, bargs);
3729 
3730         if (copy_to_user(arg, bargs, sizeof(*bargs)))
3731                 ret = -EFAULT;
3732 
3733         kfree(bargs);
3734 out:
3735         mutex_unlock(&fs_info->balance_mutex);
3736         return ret;
3737 }
3738 
3739 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3740 {
3741         struct inode *inode = file_inode(file);
3742         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3743         struct btrfs_ioctl_quota_ctl_args *sa;
3744         int ret;
3745 
3746         if (!capable(CAP_SYS_ADMIN))
3747                 return -EPERM;
3748 
3749         ret = mnt_want_write_file(file);
3750         if (ret)
3751                 return ret;
3752 
3753         sa = memdup_user(arg, sizeof(*sa));
3754         if (IS_ERR(sa)) {
3755                 ret = PTR_ERR(sa);
3756                 goto drop_write;
3757         }
3758 
3759         switch (sa->cmd) {
3760         case BTRFS_QUOTA_CTL_ENABLE:
3761         case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3762                 down_write(&fs_info->subvol_sem);
3763                 ret = btrfs_quota_enable(fs_info, sa);
3764                 up_write(&fs_info->subvol_sem);
3765                 break;
3766         case BTRFS_QUOTA_CTL_DISABLE:
3767                 /*
3768                  * Lock the cleaner mutex to prevent races with concurrent
3769                  * relocation, because relocation may be building backrefs for
3770                  * blocks of the quota root while we are deleting the root. This
3771                  * is like dropping fs roots of deleted snapshots/subvolumes, we
3772                  * need the same protection.
3773                  *
3774                  * This also prevents races between concurrent tasks trying to
3775                  * disable quotas, because we will unlock and relock
3776                  * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3777                  *
3778                  * We take this here because we have the dependency of
3779                  *
3780                  * inode_lock -> subvol_sem
3781                  *
3782                  * because of rename.  With relocation we can prealloc extents,
3783                  * so that makes the dependency chain
3784                  *
3785                  * cleaner_mutex -> inode_lock -> subvol_sem
3786                  *
3787                  * so we must take the cleaner_mutex here before we take the
3788                  * subvol_sem.  The deadlock can't actually happen, but this
3789                  * quiets lockdep.
3790                  */
3791                 mutex_lock(&fs_info->cleaner_mutex);
3792                 down_write(&fs_info->subvol_sem);
3793                 ret = btrfs_quota_disable(fs_info);
3794                 up_write(&fs_info->subvol_sem);
3795                 mutex_unlock(&fs_info->cleaner_mutex);
3796                 break;
3797         default:
3798                 ret = -EINVAL;
3799                 break;
3800         }
3801 
3802         kfree(sa);
3803 drop_write:
3804         mnt_drop_write_file(file);
3805         return ret;
3806 }
3807 
3808 /*
3809  * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3810  * done before any operations.
3811  */
3812 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3813 {
3814         bool ret = true;
3815 
3816         mutex_lock(&fs_info->qgroup_ioctl_lock);
3817         if (!fs_info->quota_root)
3818                 ret = false;
3819         mutex_unlock(&fs_info->qgroup_ioctl_lock);
3820 
3821         return ret;
3822 }
3823 
3824 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3825 {
3826         struct inode *inode = file_inode(file);
3827         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3828         struct btrfs_root *root = BTRFS_I(inode)->root;
3829         struct btrfs_ioctl_qgroup_assign_args *sa;
3830         struct btrfs_qgroup_list *prealloc = NULL;
3831         struct btrfs_trans_handle *trans;
3832         int ret;
3833         int err;
3834 
3835         if (!capable(CAP_SYS_ADMIN))
3836                 return -EPERM;
3837 
3838         if (!qgroup_enabled(root->fs_info))
3839                 return -ENOTCONN;
3840 
3841         ret = mnt_want_write_file(file);
3842         if (ret)
3843                 return ret;
3844 
3845         sa = memdup_user(arg, sizeof(*sa));
3846         if (IS_ERR(sa)) {
3847                 ret = PTR_ERR(sa);
3848                 goto drop_write;
3849         }
3850 
3851         if (sa->assign) {
3852                 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3853                 if (!prealloc) {
3854                         ret = -ENOMEM;
3855                         goto drop_write;
3856                 }
3857         }
3858 
3859         trans = btrfs_join_transaction(root);
3860         if (IS_ERR(trans)) {
3861                 ret = PTR_ERR(trans);
3862                 goto out;
3863         }
3864 
3865         /*
3866          * Prealloc ownership is moved to the relation handler, there it's used
3867          * or freed on error.
3868          */
3869         if (sa->assign) {
3870                 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3871                 prealloc = NULL;
3872         } else {
3873                 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3874         }
3875 
3876         /* update qgroup status and info */
3877         mutex_lock(&fs_info->qgroup_ioctl_lock);
3878         err = btrfs_run_qgroups(trans);
3879         mutex_unlock(&fs_info->qgroup_ioctl_lock);
3880         if (err < 0)
3881                 btrfs_warn(fs_info,
3882                            "qgroup status update failed after %s relation, marked as inconsistent",
3883                            sa->assign ? "adding" : "deleting");
3884         err = btrfs_end_transaction(trans);
3885         if (err && !ret)
3886                 ret = err;
3887 
3888 out:
3889         kfree(prealloc);
3890         kfree(sa);
3891 drop_write:
3892         mnt_drop_write_file(file);
3893         return ret;
3894 }
3895 
3896 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3897 {
3898         struct inode *inode = file_inode(file);
3899         struct btrfs_root *root = BTRFS_I(inode)->root;
3900         struct btrfs_ioctl_qgroup_create_args *sa;
3901         struct btrfs_trans_handle *trans;
3902         int ret;
3903         int err;
3904 
3905         if (!capable(CAP_SYS_ADMIN))
3906                 return -EPERM;
3907 
3908         if (!qgroup_enabled(root->fs_info))
3909                 return -ENOTCONN;
3910 
3911         ret = mnt_want_write_file(file);
3912         if (ret)
3913                 return ret;
3914 
3915         sa = memdup_user(arg, sizeof(*sa));
3916         if (IS_ERR(sa)) {
3917                 ret = PTR_ERR(sa);
3918                 goto drop_write;
3919         }
3920 
3921         if (!sa->qgroupid) {
3922                 ret = -EINVAL;
3923                 goto out;
3924         }
3925 
3926         if (sa->create && is_fstree(sa->qgroupid)) {
3927                 ret = -EINVAL;
3928                 goto out;
3929         }
3930 
3931         trans = btrfs_join_transaction(root);
3932         if (IS_ERR(trans)) {
3933                 ret = PTR_ERR(trans);
3934                 goto out;
3935         }
3936 
3937         if (sa->create) {
3938                 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3939         } else {
3940                 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3941         }
3942 
3943         err = btrfs_end_transaction(trans);
3944         if (err && !ret)
3945                 ret = err;
3946 
3947 out:
3948         kfree(sa);
3949 drop_write:
3950         mnt_drop_write_file(file);
3951         return ret;
3952 }
3953 
3954 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3955 {
3956         struct inode *inode = file_inode(file);
3957         struct btrfs_root *root = BTRFS_I(inode)->root;
3958         struct btrfs_ioctl_qgroup_limit_args *sa;
3959         struct btrfs_trans_handle *trans;
3960         int ret;
3961         int err;
3962         u64 qgroupid;
3963 
3964         if (!capable(CAP_SYS_ADMIN))
3965                 return -EPERM;
3966 
3967         if (!qgroup_enabled(root->fs_info))
3968                 return -ENOTCONN;
3969 
3970         ret = mnt_want_write_file(file);
3971         if (ret)
3972                 return ret;
3973 
3974         sa = memdup_user(arg, sizeof(*sa));
3975         if (IS_ERR(sa)) {
3976                 ret = PTR_ERR(sa);
3977                 goto drop_write;
3978         }
3979 
3980         trans = btrfs_join_transaction(root);
3981         if (IS_ERR(trans)) {
3982                 ret = PTR_ERR(trans);
3983                 goto out;
3984         }
3985 
3986         qgroupid = sa->qgroupid;
3987         if (!qgroupid) {
3988                 /* take the current subvol as qgroup */
3989                 qgroupid = btrfs_root_id(root);
3990         }
3991 
3992         ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3993 
3994         err = btrfs_end_transaction(trans);
3995         if (err && !ret)
3996                 ret = err;
3997 
3998 out:
3999         kfree(sa);
4000 drop_write:
4001         mnt_drop_write_file(file);
4002         return ret;
4003 }
4004 
4005 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4006 {
4007         struct inode *inode = file_inode(file);
4008         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4009         struct btrfs_ioctl_quota_rescan_args *qsa;
4010         int ret;
4011 
4012         if (!capable(CAP_SYS_ADMIN))
4013                 return -EPERM;
4014 
4015         if (!qgroup_enabled(fs_info))
4016                 return -ENOTCONN;
4017 
4018         ret = mnt_want_write_file(file);
4019         if (ret)
4020                 return ret;
4021 
4022         qsa = memdup_user(arg, sizeof(*qsa));
4023         if (IS_ERR(qsa)) {
4024                 ret = PTR_ERR(qsa);
4025                 goto drop_write;
4026         }
4027 
4028         if (qsa->flags) {
4029                 ret = -EINVAL;
4030                 goto out;
4031         }
4032 
4033         ret = btrfs_qgroup_rescan(fs_info);
4034 
4035 out:
4036         kfree(qsa);
4037 drop_write:
4038         mnt_drop_write_file(file);
4039         return ret;
4040 }
4041 
4042 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4043                                                 void __user *arg)
4044 {
4045         struct btrfs_ioctl_quota_rescan_args qsa = {0};
4046 
4047         if (!capable(CAP_SYS_ADMIN))
4048                 return -EPERM;
4049 
4050         if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4051                 qsa.flags = 1;
4052                 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4053         }
4054 
4055         if (copy_to_user(arg, &qsa, sizeof(qsa)))
4056                 return -EFAULT;
4057 
4058         return 0;
4059 }
4060 
4061 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4062                                                 void __user *arg)
4063 {
4064         if (!capable(CAP_SYS_ADMIN))
4065                 return -EPERM;
4066 
4067         return btrfs_qgroup_wait_for_completion(fs_info, true);
4068 }
4069 
4070 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4071                                             struct mnt_idmap *idmap,
4072                                             struct btrfs_ioctl_received_subvol_args *sa)
4073 {
4074         struct inode *inode = file_inode(file);
4075         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4076         struct btrfs_root *root = BTRFS_I(inode)->root;
4077         struct btrfs_root_item *root_item = &root->root_item;
4078         struct btrfs_trans_handle *trans;
4079         struct timespec64 ct = current_time(inode);
4080         int ret = 0;
4081         int received_uuid_changed;
4082 
4083         if (!inode_owner_or_capable(idmap, inode))
4084                 return -EPERM;
4085 
4086         ret = mnt_want_write_file(file);
4087         if (ret < 0)
4088                 return ret;
4089 
4090         down_write(&fs_info->subvol_sem);
4091 
4092         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4093                 ret = -EINVAL;
4094                 goto out;
4095         }
4096 
4097         if (btrfs_root_readonly(root)) {
4098                 ret = -EROFS;
4099                 goto out;
4100         }
4101 
4102         /*
4103          * 1 - root item
4104          * 2 - uuid items (received uuid + subvol uuid)
4105          */
4106         trans = btrfs_start_transaction(root, 3);
4107         if (IS_ERR(trans)) {
4108                 ret = PTR_ERR(trans);
4109                 trans = NULL;
4110                 goto out;
4111         }
4112 
4113         sa->rtransid = trans->transid;
4114         sa->rtime.sec = ct.tv_sec;
4115         sa->rtime.nsec = ct.tv_nsec;
4116 
4117         received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4118                                        BTRFS_UUID_SIZE);
4119         if (received_uuid_changed &&
4120             !btrfs_is_empty_uuid(root_item->received_uuid)) {
4121                 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4122                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4123                                           btrfs_root_id(root));
4124                 if (ret && ret != -ENOENT) {
4125                         btrfs_abort_transaction(trans, ret);
4126                         btrfs_end_transaction(trans);
4127                         goto out;
4128                 }
4129         }
4130         memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4131         btrfs_set_root_stransid(root_item, sa->stransid);
4132         btrfs_set_root_rtransid(root_item, sa->rtransid);
4133         btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4134         btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4135         btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4136         btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4137 
4138         ret = btrfs_update_root(trans, fs_info->tree_root,
4139                                 &root->root_key, &root->root_item);
4140         if (ret < 0) {
4141                 btrfs_end_transaction(trans);
4142                 goto out;
4143         }
4144         if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4145                 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4146                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4147                                           btrfs_root_id(root));
4148                 if (ret < 0 && ret != -EEXIST) {
4149                         btrfs_abort_transaction(trans, ret);
4150                         btrfs_end_transaction(trans);
4151                         goto out;
4152                 }
4153         }
4154         ret = btrfs_commit_transaction(trans);
4155 out:
4156         up_write(&fs_info->subvol_sem);
4157         mnt_drop_write_file(file);
4158         return ret;
4159 }
4160 
4161 #ifdef CONFIG_64BIT
4162 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4163                                                 void __user *arg)
4164 {
4165         struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4166         struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4167         int ret = 0;
4168 
4169         args32 = memdup_user(arg, sizeof(*args32));
4170         if (IS_ERR(args32))
4171                 return PTR_ERR(args32);
4172 
4173         args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4174         if (!args64) {
4175                 ret = -ENOMEM;
4176                 goto out;
4177         }
4178 
4179         memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4180         args64->stransid = args32->stransid;
4181         args64->rtransid = args32->rtransid;
4182         args64->stime.sec = args32->stime.sec;
4183         args64->stime.nsec = args32->stime.nsec;
4184         args64->rtime.sec = args32->rtime.sec;
4185         args64->rtime.nsec = args32->rtime.nsec;
4186         args64->flags = args32->flags;
4187 
4188         ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4189         if (ret)
4190                 goto out;
4191 
4192         memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4193         args32->stransid = args64->stransid;
4194         args32->rtransid = args64->rtransid;
4195         args32->stime.sec = args64->stime.sec;
4196         args32->stime.nsec = args64->stime.nsec;
4197         args32->rtime.sec = args64->rtime.sec;
4198         args32->rtime.nsec = args64->rtime.nsec;
4199         args32->flags = args64->flags;
4200 
4201         ret = copy_to_user(arg, args32, sizeof(*args32));
4202         if (ret)
4203                 ret = -EFAULT;
4204 
4205 out:
4206         kfree(args32);
4207         kfree(args64);
4208         return ret;
4209 }
4210 #endif
4211 
4212 static long btrfs_ioctl_set_received_subvol(struct file *file,
4213                                             void __user *arg)
4214 {
4215         struct btrfs_ioctl_received_subvol_args *sa = NULL;
4216         int ret = 0;
4217 
4218         sa = memdup_user(arg, sizeof(*sa));
4219         if (IS_ERR(sa))
4220                 return PTR_ERR(sa);
4221 
4222         ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4223 
4224         if (ret)
4225                 goto out;
4226 
4227         ret = copy_to_user(arg, sa, sizeof(*sa));
4228         if (ret)
4229                 ret = -EFAULT;
4230 
4231 out:
4232         kfree(sa);
4233         return ret;
4234 }
4235 
4236 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4237                                         void __user *arg)
4238 {
4239         size_t len;
4240         int ret;
4241         char label[BTRFS_LABEL_SIZE];
4242 
4243         spin_lock(&fs_info->super_lock);
4244         memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4245         spin_unlock(&fs_info->super_lock);
4246 
4247         len = strnlen(label, BTRFS_LABEL_SIZE);
4248 
4249         if (len == BTRFS_LABEL_SIZE) {
4250                 btrfs_warn(fs_info,
4251                            "label is too long, return the first %zu bytes",
4252                            --len);
4253         }
4254 
4255         ret = copy_to_user(arg, label, len);
4256 
4257         return ret ? -EFAULT : 0;
4258 }
4259 
4260 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4261 {
4262         struct inode *inode = file_inode(file);
4263         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4264         struct btrfs_root *root = BTRFS_I(inode)->root;
4265         struct btrfs_super_block *super_block = fs_info->super_copy;
4266         struct btrfs_trans_handle *trans;
4267         char label[BTRFS_LABEL_SIZE];
4268         int ret;
4269 
4270         if (!capable(CAP_SYS_ADMIN))
4271                 return -EPERM;
4272 
4273         if (copy_from_user(label, arg, sizeof(label)))
4274                 return -EFAULT;
4275 
4276         if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4277                 btrfs_err(fs_info,
4278                           "unable to set label with more than %d bytes",
4279                           BTRFS_LABEL_SIZE - 1);
4280                 return -EINVAL;
4281         }
4282 
4283         ret = mnt_want_write_file(file);
4284         if (ret)
4285                 return ret;
4286 
4287         trans = btrfs_start_transaction(root, 0);
4288         if (IS_ERR(trans)) {
4289                 ret = PTR_ERR(trans);
4290                 goto out_unlock;
4291         }
4292 
4293         spin_lock(&fs_info->super_lock);
4294         strcpy(super_block->label, label);
4295         spin_unlock(&fs_info->super_lock);
4296         ret = btrfs_commit_transaction(trans);
4297 
4298 out_unlock:
4299         mnt_drop_write_file(file);
4300         return ret;
4301 }
4302 
4303 #define INIT_FEATURE_FLAGS(suffix) \
4304         { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4305           .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4306           .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4307 
4308 int btrfs_ioctl_get_supported_features(void __user *arg)
4309 {
4310         static const struct btrfs_ioctl_feature_flags features[3] = {
4311                 INIT_FEATURE_FLAGS(SUPP),
4312                 INIT_FEATURE_FLAGS(SAFE_SET),
4313                 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4314         };
4315 
4316         if (copy_to_user(arg, &features, sizeof(features)))
4317                 return -EFAULT;
4318 
4319         return 0;
4320 }
4321 
4322 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4323                                         void __user *arg)
4324 {
4325         struct btrfs_super_block *super_block = fs_info->super_copy;
4326         struct btrfs_ioctl_feature_flags features;
4327 
4328         features.compat_flags = btrfs_super_compat_flags(super_block);
4329         features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4330         features.incompat_flags = btrfs_super_incompat_flags(super_block);
4331 
4332         if (copy_to_user(arg, &features, sizeof(features)))
4333                 return -EFAULT;
4334 
4335         return 0;
4336 }
4337 
4338 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4339                               enum btrfs_feature_set set,
4340                               u64 change_mask, u64 flags, u64 supported_flags,
4341                               u64 safe_set, u64 safe_clear)
4342 {
4343         const char *type = btrfs_feature_set_name(set);
4344         char *names;
4345         u64 disallowed, unsupported;
4346         u64 set_mask = flags & change_mask;
4347         u64 clear_mask = ~flags & change_mask;
4348 
4349         unsupported = set_mask & ~supported_flags;
4350         if (unsupported) {
4351                 names = btrfs_printable_features(set, unsupported);
4352                 if (names) {
4353                         btrfs_warn(fs_info,
4354                                    "this kernel does not support the %s feature bit%s",
4355                                    names, strchr(names, ',') ? "s" : "");
4356                         kfree(names);
4357                 } else
4358                         btrfs_warn(fs_info,
4359                                    "this kernel does not support %s bits 0x%llx",
4360                                    type, unsupported);
4361                 return -EOPNOTSUPP;
4362         }
4363 
4364         disallowed = set_mask & ~safe_set;
4365         if (disallowed) {
4366                 names = btrfs_printable_features(set, disallowed);
4367                 if (names) {
4368                         btrfs_warn(fs_info,
4369                                    "can't set the %s feature bit%s while mounted",
4370                                    names, strchr(names, ',') ? "s" : "");
4371                         kfree(names);
4372                 } else
4373                         btrfs_warn(fs_info,
4374                                    "can't set %s bits 0x%llx while mounted",
4375                                    type, disallowed);
4376                 return -EPERM;
4377         }
4378 
4379         disallowed = clear_mask & ~safe_clear;
4380         if (disallowed) {
4381                 names = btrfs_printable_features(set, disallowed);
4382                 if (names) {
4383                         btrfs_warn(fs_info,
4384                                    "can't clear the %s feature bit%s while mounted",
4385                                    names, strchr(names, ',') ? "s" : "");
4386                         kfree(names);
4387                 } else
4388                         btrfs_warn(fs_info,
4389                                    "can't clear %s bits 0x%llx while mounted",
4390                                    type, disallowed);
4391                 return -EPERM;
4392         }
4393 
4394         return 0;
4395 }
4396 
4397 #define check_feature(fs_info, change_mask, flags, mask_base)   \
4398 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
4399                    BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
4400                    BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
4401                    BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4402 
4403 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4404 {
4405         struct inode *inode = file_inode(file);
4406         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4407         struct btrfs_root *root = BTRFS_I(inode)->root;
4408         struct btrfs_super_block *super_block = fs_info->super_copy;
4409         struct btrfs_ioctl_feature_flags flags[2];
4410         struct btrfs_trans_handle *trans;
4411         u64 newflags;
4412         int ret;
4413 
4414         if (!capable(CAP_SYS_ADMIN))
4415                 return -EPERM;
4416 
4417         if (copy_from_user(flags, arg, sizeof(flags)))
4418                 return -EFAULT;
4419 
4420         /* Nothing to do */
4421         if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4422             !flags[0].incompat_flags)
4423                 return 0;
4424 
4425         ret = check_feature(fs_info, flags[0].compat_flags,
4426                             flags[1].compat_flags, COMPAT);
4427         if (ret)
4428                 return ret;
4429 
4430         ret = check_feature(fs_info, flags[0].compat_ro_flags,
4431                             flags[1].compat_ro_flags, COMPAT_RO);
4432         if (ret)
4433                 return ret;
4434 
4435         ret = check_feature(fs_info, flags[0].incompat_flags,
4436                             flags[1].incompat_flags, INCOMPAT);
4437         if (ret)
4438                 return ret;
4439 
4440         ret = mnt_want_write_file(file);
4441         if (ret)
4442                 return ret;
4443 
4444         trans = btrfs_start_transaction(root, 0);
4445         if (IS_ERR(trans)) {
4446                 ret = PTR_ERR(trans);
4447                 goto out_drop_write;
4448         }
4449 
4450         spin_lock(&fs_info->super_lock);
4451         newflags = btrfs_super_compat_flags(super_block);
4452         newflags |= flags[0].compat_flags & flags[1].compat_flags;
4453         newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4454         btrfs_set_super_compat_flags(super_block, newflags);
4455 
4456         newflags = btrfs_super_compat_ro_flags(super_block);
4457         newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4458         newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4459         btrfs_set_super_compat_ro_flags(super_block, newflags);
4460 
4461         newflags = btrfs_super_incompat_flags(super_block);
4462         newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4463         newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4464         btrfs_set_super_incompat_flags(super_block, newflags);
4465         spin_unlock(&fs_info->super_lock);
4466 
4467         ret = btrfs_commit_transaction(trans);
4468 out_drop_write:
4469         mnt_drop_write_file(file);
4470 
4471         return ret;
4472 }
4473 
4474 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4475 {
4476         struct btrfs_ioctl_send_args *arg;
4477         int ret;
4478 
4479         if (compat) {
4480 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4481                 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4482 
4483                 ret = copy_from_user(&args32, argp, sizeof(args32));
4484                 if (ret)
4485                         return -EFAULT;
4486                 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4487                 if (!arg)
4488                         return -ENOMEM;
4489                 arg->send_fd = args32.send_fd;
4490                 arg->clone_sources_count = args32.clone_sources_count;
4491                 arg->clone_sources = compat_ptr(args32.clone_sources);
4492                 arg->parent_root = args32.parent_root;
4493                 arg->flags = args32.flags;
4494                 arg->version = args32.version;
4495                 memcpy(arg->reserved, args32.reserved,
4496                        sizeof(args32.reserved));
4497 #else
4498                 return -ENOTTY;
4499 #endif
4500         } else {
4501                 arg = memdup_user(argp, sizeof(*arg));
4502                 if (IS_ERR(arg))
4503                         return PTR_ERR(arg);
4504         }
4505         ret = btrfs_ioctl_send(inode, arg);
4506         kfree(arg);
4507         return ret;
4508 }
4509 
4510 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4511                                     bool compat)
4512 {
4513         struct btrfs_ioctl_encoded_io_args args = { 0 };
4514         size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4515                                              flags);
4516         size_t copy_end;
4517         struct iovec iovstack[UIO_FASTIOV];
4518         struct iovec *iov = iovstack;
4519         struct iov_iter iter;
4520         loff_t pos;
4521         struct kiocb kiocb;
4522         ssize_t ret;
4523 
4524         if (!capable(CAP_SYS_ADMIN)) {
4525                 ret = -EPERM;
4526                 goto out_acct;
4527         }
4528 
4529         if (compat) {
4530 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4531                 struct btrfs_ioctl_encoded_io_args_32 args32;
4532 
4533                 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4534                                        flags);
4535                 if (copy_from_user(&args32, argp, copy_end)) {
4536                         ret = -EFAULT;
4537                         goto out_acct;
4538                 }
4539                 args.iov = compat_ptr(args32.iov);
4540                 args.iovcnt = args32.iovcnt;
4541                 args.offset = args32.offset;
4542                 args.flags = args32.flags;
4543 #else
4544                 return -ENOTTY;
4545 #endif
4546         } else {
4547                 copy_end = copy_end_kernel;
4548                 if (copy_from_user(&args, argp, copy_end)) {
4549                         ret = -EFAULT;
4550                         goto out_acct;
4551                 }
4552         }
4553         if (args.flags != 0) {
4554                 ret = -EINVAL;
4555                 goto out_acct;
4556         }
4557 
4558         ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4559                            &iov, &iter);
4560         if (ret < 0)
4561                 goto out_acct;
4562 
4563         if (iov_iter_count(&iter) == 0) {
4564                 ret = 0;
4565                 goto out_iov;
4566         }
4567         pos = args.offset;
4568         ret = rw_verify_area(READ, file, &pos, args.len);
4569         if (ret < 0)
4570                 goto out_iov;
4571 
4572         init_sync_kiocb(&kiocb, file);
4573         kiocb.ki_pos = pos;
4574 
4575         ret = btrfs_encoded_read(&kiocb, &iter, &args);
4576         if (ret >= 0) {
4577                 fsnotify_access(file);
4578                 if (copy_to_user(argp + copy_end,
4579                                  (char *)&args + copy_end_kernel,
4580                                  sizeof(args) - copy_end_kernel))
4581                         ret = -EFAULT;
4582         }
4583 
4584 out_iov:
4585         kfree(iov);
4586 out_acct:
4587         if (ret > 0)
4588                 add_rchar(current, ret);
4589         inc_syscr(current);
4590         return ret;
4591 }
4592 
4593 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4594 {
4595         struct btrfs_ioctl_encoded_io_args args;
4596         struct iovec iovstack[UIO_FASTIOV];
4597         struct iovec *iov = iovstack;
4598         struct iov_iter iter;
4599         loff_t pos;
4600         struct kiocb kiocb;
4601         ssize_t ret;
4602 
4603         if (!capable(CAP_SYS_ADMIN)) {
4604                 ret = -EPERM;
4605                 goto out_acct;
4606         }
4607 
4608         if (!(file->f_mode & FMODE_WRITE)) {
4609                 ret = -EBADF;
4610                 goto out_acct;
4611         }
4612 
4613         if (compat) {
4614 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4615                 struct btrfs_ioctl_encoded_io_args_32 args32;
4616 
4617                 if (copy_from_user(&args32, argp, sizeof(args32))) {
4618                         ret = -EFAULT;
4619                         goto out_acct;
4620                 }
4621                 args.iov = compat_ptr(args32.iov);
4622                 args.iovcnt = args32.iovcnt;
4623                 args.offset = args32.offset;
4624                 args.flags = args32.flags;
4625                 args.len = args32.len;
4626                 args.unencoded_len = args32.unencoded_len;
4627                 args.unencoded_offset = args32.unencoded_offset;
4628                 args.compression = args32.compression;
4629                 args.encryption = args32.encryption;
4630                 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4631 #else
4632                 return -ENOTTY;
4633 #endif
4634         } else {
4635                 if (copy_from_user(&args, argp, sizeof(args))) {
4636                         ret = -EFAULT;
4637                         goto out_acct;
4638                 }
4639         }
4640 
4641         ret = -EINVAL;
4642         if (args.flags != 0)
4643                 goto out_acct;
4644         if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4645                 goto out_acct;
4646         if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4647             args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4648                 goto out_acct;
4649         if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4650             args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4651                 goto out_acct;
4652         if (args.unencoded_offset > args.unencoded_len)
4653                 goto out_acct;
4654         if (args.len > args.unencoded_len - args.unencoded_offset)
4655                 goto out_acct;
4656 
4657         ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4658                            &iov, &iter);
4659         if (ret < 0)
4660                 goto out_acct;
4661 
4662         if (iov_iter_count(&iter) == 0) {
4663                 ret = 0;
4664                 goto out_iov;
4665         }
4666         pos = args.offset;
4667         ret = rw_verify_area(WRITE, file, &pos, args.len);
4668         if (ret < 0)
4669                 goto out_iov;
4670 
4671         init_sync_kiocb(&kiocb, file);
4672         ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4673         if (ret)
4674                 goto out_iov;
4675         kiocb.ki_pos = pos;
4676 
4677         file_start_write(file);
4678 
4679         ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4680         if (ret > 0)
4681                 fsnotify_modify(file);
4682 
4683         file_end_write(file);
4684 out_iov:
4685         kfree(iov);
4686 out_acct:
4687         if (ret > 0)
4688                 add_wchar(current, ret);
4689         inc_syscw(current);
4690         return ret;
4691 }
4692 
4693 long btrfs_ioctl(struct file *file, unsigned int
4694                 cmd, unsigned long arg)
4695 {
4696         struct inode *inode = file_inode(file);
4697         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4698         struct btrfs_root *root = BTRFS_I(inode)->root;
4699         void __user *argp = (void __user *)arg;
4700 
4701         switch (cmd) {
4702         case FS_IOC_GETVERSION:
4703                 return btrfs_ioctl_getversion(inode, argp);
4704         case FS_IOC_GETFSLABEL:
4705                 return btrfs_ioctl_get_fslabel(fs_info, argp);
4706         case FS_IOC_SETFSLABEL:
4707                 return btrfs_ioctl_set_fslabel(file, argp);
4708         case FITRIM:
4709                 return btrfs_ioctl_fitrim(fs_info, argp);
4710         case BTRFS_IOC_SNAP_CREATE:
4711                 return btrfs_ioctl_snap_create(file, argp, 0);
4712         case BTRFS_IOC_SNAP_CREATE_V2:
4713                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4714         case BTRFS_IOC_SUBVOL_CREATE:
4715                 return btrfs_ioctl_snap_create(file, argp, 1);
4716         case BTRFS_IOC_SUBVOL_CREATE_V2:
4717                 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4718         case BTRFS_IOC_SNAP_DESTROY:
4719                 return btrfs_ioctl_snap_destroy(file, argp, false);
4720         case BTRFS_IOC_SNAP_DESTROY_V2:
4721                 return btrfs_ioctl_snap_destroy(file, argp, true);
4722         case BTRFS_IOC_SUBVOL_GETFLAGS:
4723                 return btrfs_ioctl_subvol_getflags(inode, argp);
4724         case BTRFS_IOC_SUBVOL_SETFLAGS:
4725                 return btrfs_ioctl_subvol_setflags(file, argp);
4726         case BTRFS_IOC_DEFAULT_SUBVOL:
4727                 return btrfs_ioctl_default_subvol(file, argp);
4728         case BTRFS_IOC_DEFRAG:
4729                 return btrfs_ioctl_defrag(file, NULL);
4730         case BTRFS_IOC_DEFRAG_RANGE:
4731                 return btrfs_ioctl_defrag(file, argp);
4732         case BTRFS_IOC_RESIZE:
4733                 return btrfs_ioctl_resize(file, argp);
4734         case BTRFS_IOC_ADD_DEV:
4735                 return btrfs_ioctl_add_dev(fs_info, argp);
4736         case BTRFS_IOC_RM_DEV:
4737                 return btrfs_ioctl_rm_dev(file, argp);
4738         case BTRFS_IOC_RM_DEV_V2:
4739                 return btrfs_ioctl_rm_dev_v2(file, argp);
4740         case BTRFS_IOC_FS_INFO:
4741                 return btrfs_ioctl_fs_info(fs_info, argp);
4742         case BTRFS_IOC_DEV_INFO:
4743                 return btrfs_ioctl_dev_info(fs_info, argp);
4744         case BTRFS_IOC_TREE_SEARCH:
4745                 return btrfs_ioctl_tree_search(inode, argp);
4746         case BTRFS_IOC_TREE_SEARCH_V2:
4747                 return btrfs_ioctl_tree_search_v2(inode, argp);
4748         case BTRFS_IOC_INO_LOOKUP:
4749                 return btrfs_ioctl_ino_lookup(root, argp);
4750         case BTRFS_IOC_INO_PATHS:
4751                 return btrfs_ioctl_ino_to_path(root, argp);
4752         case BTRFS_IOC_LOGICAL_INO:
4753                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4754         case BTRFS_IOC_LOGICAL_INO_V2:
4755                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4756         case BTRFS_IOC_SPACE_INFO:
4757                 return btrfs_ioctl_space_info(fs_info, argp);
4758         case BTRFS_IOC_SYNC: {
4759                 int ret;
4760 
4761                 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4762                 if (ret)
4763                         return ret;
4764                 ret = btrfs_sync_fs(inode->i_sb, 1);
4765                 /*
4766                  * The transaction thread may want to do more work,
4767                  * namely it pokes the cleaner kthread that will start
4768                  * processing uncleaned subvols.
4769                  */
4770                 wake_up_process(fs_info->transaction_kthread);
4771                 return ret;
4772         }
4773         case BTRFS_IOC_START_SYNC:
4774                 return btrfs_ioctl_start_sync(root, argp);
4775         case BTRFS_IOC_WAIT_SYNC:
4776                 return btrfs_ioctl_wait_sync(fs_info, argp);
4777         case BTRFS_IOC_SCRUB:
4778                 return btrfs_ioctl_scrub(file, argp);
4779         case BTRFS_IOC_SCRUB_CANCEL:
4780                 return btrfs_ioctl_scrub_cancel(fs_info);
4781         case BTRFS_IOC_SCRUB_PROGRESS:
4782                 return btrfs_ioctl_scrub_progress(fs_info, argp);
4783         case BTRFS_IOC_BALANCE_V2:
4784                 return btrfs_ioctl_balance(file, argp);
4785         case BTRFS_IOC_BALANCE_CTL:
4786                 return btrfs_ioctl_balance_ctl(fs_info, arg);
4787         case BTRFS_IOC_BALANCE_PROGRESS:
4788                 return btrfs_ioctl_balance_progress(fs_info, argp);
4789         case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4790                 return btrfs_ioctl_set_received_subvol(file, argp);
4791 #ifdef CONFIG_64BIT
4792         case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4793                 return btrfs_ioctl_set_received_subvol_32(file, argp);
4794 #endif
4795         case BTRFS_IOC_SEND:
4796                 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
4797 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4798         case BTRFS_IOC_SEND_32:
4799                 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
4800 #endif
4801         case BTRFS_IOC_GET_DEV_STATS:
4802                 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4803         case BTRFS_IOC_QUOTA_CTL:
4804                 return btrfs_ioctl_quota_ctl(file, argp);
4805         case BTRFS_IOC_QGROUP_ASSIGN:
4806                 return btrfs_ioctl_qgroup_assign(file, argp);
4807         case BTRFS_IOC_QGROUP_CREATE:
4808                 return btrfs_ioctl_qgroup_create(file, argp);
4809         case BTRFS_IOC_QGROUP_LIMIT:
4810                 return btrfs_ioctl_qgroup_limit(file, argp);
4811         case BTRFS_IOC_QUOTA_RESCAN:
4812                 return btrfs_ioctl_quota_rescan(file, argp);
4813         case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4814                 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4815         case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4816                 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4817         case BTRFS_IOC_DEV_REPLACE:
4818                 return btrfs_ioctl_dev_replace(fs_info, argp);
4819         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4820                 return btrfs_ioctl_get_supported_features(argp);
4821         case BTRFS_IOC_GET_FEATURES:
4822                 return btrfs_ioctl_get_features(fs_info, argp);
4823         case BTRFS_IOC_SET_FEATURES:
4824                 return btrfs_ioctl_set_features(file, argp);
4825         case BTRFS_IOC_GET_SUBVOL_INFO:
4826                 return btrfs_ioctl_get_subvol_info(inode, argp);
4827         case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4828                 return btrfs_ioctl_get_subvol_rootref(root, argp);
4829         case BTRFS_IOC_INO_LOOKUP_USER:
4830                 return btrfs_ioctl_ino_lookup_user(file, argp);
4831         case FS_IOC_ENABLE_VERITY:
4832                 return fsverity_ioctl_enable(file, (const void __user *)argp);
4833         case FS_IOC_MEASURE_VERITY:
4834                 return fsverity_ioctl_measure(file, argp);
4835         case BTRFS_IOC_ENCODED_READ:
4836                 return btrfs_ioctl_encoded_read(file, argp, false);
4837         case BTRFS_IOC_ENCODED_WRITE:
4838                 return btrfs_ioctl_encoded_write(file, argp, false);
4839 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4840         case BTRFS_IOC_ENCODED_READ_32:
4841                 return btrfs_ioctl_encoded_read(file, argp, true);
4842         case BTRFS_IOC_ENCODED_WRITE_32:
4843                 return btrfs_ioctl_encoded_write(file, argp, true);
4844 #endif
4845         }
4846 
4847         return -ENOTTY;
4848 }
4849 
4850 #ifdef CONFIG_COMPAT
4851 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4852 {
4853         /*
4854          * These all access 32-bit values anyway so no further
4855          * handling is necessary.
4856          */
4857         switch (cmd) {
4858         case FS_IOC32_GETVERSION:
4859                 cmd = FS_IOC_GETVERSION;
4860                 break;
4861         }
4862 
4863         return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4864 }
4865 #endif
4866 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php