1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "block-group.h" 49 #include "fs.h" 50 #include "accessors.h" 51 #include "extent-tree.h" 52 #include "root-tree.h" 53 #include "defrag.h" 54 #include "dir-item.h" 55 #include "uuid-tree.h" 56 #include "ioctl.h" 57 #include "file.h" 58 #include "scrub.h" 59 #include "super.h" 60 61 #ifdef CONFIG_64BIT 62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 63 * structures are incorrect, as the timespec structure from userspace 64 * is 4 bytes too small. We define these alternatives here to teach 65 * the kernel about the 32-bit struct packing. 66 */ 67 struct btrfs_ioctl_timespec_32 { 68 __u64 sec; 69 __u32 nsec; 70 } __attribute__ ((__packed__)); 71 72 struct btrfs_ioctl_received_subvol_args_32 { 73 char uuid[BTRFS_UUID_SIZE]; /* in */ 74 __u64 stransid; /* in */ 75 __u64 rtransid; /* out */ 76 struct btrfs_ioctl_timespec_32 stime; /* in */ 77 struct btrfs_ioctl_timespec_32 rtime; /* out */ 78 __u64 flags; /* in */ 79 __u64 reserved[16]; /* in */ 80 } __attribute__ ((__packed__)); 81 82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 83 struct btrfs_ioctl_received_subvol_args_32) 84 #endif 85 86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 87 struct btrfs_ioctl_send_args_32 { 88 __s64 send_fd; /* in */ 89 __u64 clone_sources_count; /* in */ 90 compat_uptr_t clone_sources; /* in */ 91 __u64 parent_root; /* in */ 92 __u64 flags; /* in */ 93 __u32 version; /* in */ 94 __u8 reserved[28]; /* in */ 95 } __attribute__ ((__packed__)); 96 97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 98 struct btrfs_ioctl_send_args_32) 99 100 struct btrfs_ioctl_encoded_io_args_32 { 101 compat_uptr_t iov; 102 compat_ulong_t iovcnt; 103 __s64 offset; 104 __u64 flags; 105 __u64 len; 106 __u64 unencoded_len; 107 __u64 unencoded_offset; 108 __u32 compression; 109 __u32 encryption; 110 __u8 reserved[64]; 111 }; 112 113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 114 struct btrfs_ioctl_encoded_io_args_32) 115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 116 struct btrfs_ioctl_encoded_io_args_32) 117 #endif 118 119 /* Mask out flags that are inappropriate for the given type of inode. */ 120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 121 unsigned int flags) 122 { 123 if (S_ISDIR(inode->i_mode)) 124 return flags; 125 else if (S_ISREG(inode->i_mode)) 126 return flags & ~FS_DIRSYNC_FL; 127 else 128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 129 } 130 131 /* 132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 133 * ioctl. 134 */ 135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 136 { 137 unsigned int iflags = 0; 138 u32 flags = binode->flags; 139 u32 ro_flags = binode->ro_flags; 140 141 if (flags & BTRFS_INODE_SYNC) 142 iflags |= FS_SYNC_FL; 143 if (flags & BTRFS_INODE_IMMUTABLE) 144 iflags |= FS_IMMUTABLE_FL; 145 if (flags & BTRFS_INODE_APPEND) 146 iflags |= FS_APPEND_FL; 147 if (flags & BTRFS_INODE_NODUMP) 148 iflags |= FS_NODUMP_FL; 149 if (flags & BTRFS_INODE_NOATIME) 150 iflags |= FS_NOATIME_FL; 151 if (flags & BTRFS_INODE_DIRSYNC) 152 iflags |= FS_DIRSYNC_FL; 153 if (flags & BTRFS_INODE_NODATACOW) 154 iflags |= FS_NOCOW_FL; 155 if (ro_flags & BTRFS_INODE_RO_VERITY) 156 iflags |= FS_VERITY_FL; 157 158 if (flags & BTRFS_INODE_NOCOMPRESS) 159 iflags |= FS_NOCOMP_FL; 160 else if (flags & BTRFS_INODE_COMPRESS) 161 iflags |= FS_COMPR_FL; 162 163 return iflags; 164 } 165 166 /* 167 * Update inode->i_flags based on the btrfs internal flags. 168 */ 169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 170 { 171 struct btrfs_inode *binode = BTRFS_I(inode); 172 unsigned int new_fl = 0; 173 174 if (binode->flags & BTRFS_INODE_SYNC) 175 new_fl |= S_SYNC; 176 if (binode->flags & BTRFS_INODE_IMMUTABLE) 177 new_fl |= S_IMMUTABLE; 178 if (binode->flags & BTRFS_INODE_APPEND) 179 new_fl |= S_APPEND; 180 if (binode->flags & BTRFS_INODE_NOATIME) 181 new_fl |= S_NOATIME; 182 if (binode->flags & BTRFS_INODE_DIRSYNC) 183 new_fl |= S_DIRSYNC; 184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 185 new_fl |= S_VERITY; 186 187 set_mask_bits(&inode->i_flags, 188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 189 S_VERITY, new_fl); 190 } 191 192 /* 193 * Check if @flags are a supported and valid set of FS_*_FL flags and that 194 * the old and new flags are not conflicting 195 */ 196 static int check_fsflags(unsigned int old_flags, unsigned int flags) 197 { 198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 199 FS_NOATIME_FL | FS_NODUMP_FL | \ 200 FS_SYNC_FL | FS_DIRSYNC_FL | \ 201 FS_NOCOMP_FL | FS_COMPR_FL | 202 FS_NOCOW_FL)) 203 return -EOPNOTSUPP; 204 205 /* COMPR and NOCOMP on new/old are valid */ 206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 207 return -EINVAL; 208 209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 210 return -EINVAL; 211 212 /* NOCOW and compression options are mutually exclusive */ 213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 214 return -EINVAL; 215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 222 unsigned int flags) 223 { 224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 225 return -EPERM; 226 227 return 0; 228 } 229 230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args) 231 { 232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL) 233 return -ENAMETOOLONG; 234 return 0; 235 } 236 237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2) 238 { 239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL) 240 return -ENAMETOOLONG; 241 return 0; 242 } 243 244 /* 245 * Set flags/xflags from the internal inode flags. The remaining items of 246 * fsxattr are zeroed. 247 */ 248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 249 { 250 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 251 252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 253 return 0; 254 } 255 256 int btrfs_fileattr_set(struct mnt_idmap *idmap, 257 struct dentry *dentry, struct fileattr *fa) 258 { 259 struct inode *inode = d_inode(dentry); 260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 261 struct btrfs_inode *binode = BTRFS_I(inode); 262 struct btrfs_root *root = binode->root; 263 struct btrfs_trans_handle *trans; 264 unsigned int fsflags, old_fsflags; 265 int ret; 266 const char *comp = NULL; 267 u32 binode_flags; 268 269 if (btrfs_root_readonly(root)) 270 return -EROFS; 271 272 if (fileattr_has_fsx(fa)) 273 return -EOPNOTSUPP; 274 275 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 276 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 277 ret = check_fsflags(old_fsflags, fsflags); 278 if (ret) 279 return ret; 280 281 ret = check_fsflags_compatible(fs_info, fsflags); 282 if (ret) 283 return ret; 284 285 binode_flags = binode->flags; 286 if (fsflags & FS_SYNC_FL) 287 binode_flags |= BTRFS_INODE_SYNC; 288 else 289 binode_flags &= ~BTRFS_INODE_SYNC; 290 if (fsflags & FS_IMMUTABLE_FL) 291 binode_flags |= BTRFS_INODE_IMMUTABLE; 292 else 293 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 294 if (fsflags & FS_APPEND_FL) 295 binode_flags |= BTRFS_INODE_APPEND; 296 else 297 binode_flags &= ~BTRFS_INODE_APPEND; 298 if (fsflags & FS_NODUMP_FL) 299 binode_flags |= BTRFS_INODE_NODUMP; 300 else 301 binode_flags &= ~BTRFS_INODE_NODUMP; 302 if (fsflags & FS_NOATIME_FL) 303 binode_flags |= BTRFS_INODE_NOATIME; 304 else 305 binode_flags &= ~BTRFS_INODE_NOATIME; 306 307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 308 if (!fa->flags_valid) { 309 /* 1 item for the inode */ 310 trans = btrfs_start_transaction(root, 1); 311 if (IS_ERR(trans)) 312 return PTR_ERR(trans); 313 goto update_flags; 314 } 315 316 if (fsflags & FS_DIRSYNC_FL) 317 binode_flags |= BTRFS_INODE_DIRSYNC; 318 else 319 binode_flags &= ~BTRFS_INODE_DIRSYNC; 320 if (fsflags & FS_NOCOW_FL) { 321 if (S_ISREG(inode->i_mode)) { 322 /* 323 * It's safe to turn csums off here, no extents exist. 324 * Otherwise we want the flag to reflect the real COW 325 * status of the file and will not set it. 326 */ 327 if (inode->i_size == 0) 328 binode_flags |= BTRFS_INODE_NODATACOW | 329 BTRFS_INODE_NODATASUM; 330 } else { 331 binode_flags |= BTRFS_INODE_NODATACOW; 332 } 333 } else { 334 /* 335 * Revert back under same assumptions as above 336 */ 337 if (S_ISREG(inode->i_mode)) { 338 if (inode->i_size == 0) 339 binode_flags &= ~(BTRFS_INODE_NODATACOW | 340 BTRFS_INODE_NODATASUM); 341 } else { 342 binode_flags &= ~BTRFS_INODE_NODATACOW; 343 } 344 } 345 346 /* 347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 348 * flag may be changed automatically if compression code won't make 349 * things smaller. 350 */ 351 if (fsflags & FS_NOCOMP_FL) { 352 binode_flags &= ~BTRFS_INODE_COMPRESS; 353 binode_flags |= BTRFS_INODE_NOCOMPRESS; 354 } else if (fsflags & FS_COMPR_FL) { 355 356 if (IS_SWAPFILE(inode)) 357 return -ETXTBSY; 358 359 binode_flags |= BTRFS_INODE_COMPRESS; 360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 361 362 comp = btrfs_compress_type2str(fs_info->compress_type); 363 if (!comp || comp[0] == 0) 364 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 365 } else { 366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 367 } 368 369 /* 370 * 1 for inode item 371 * 2 for properties 372 */ 373 trans = btrfs_start_transaction(root, 3); 374 if (IS_ERR(trans)) 375 return PTR_ERR(trans); 376 377 if (comp) { 378 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression", 379 comp, strlen(comp), 0); 380 if (ret) { 381 btrfs_abort_transaction(trans, ret); 382 goto out_end_trans; 383 } 384 } else { 385 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression", 386 NULL, 0, 0); 387 if (ret && ret != -ENODATA) { 388 btrfs_abort_transaction(trans, ret); 389 goto out_end_trans; 390 } 391 } 392 393 update_flags: 394 binode->flags = binode_flags; 395 btrfs_sync_inode_flags_to_i_flags(inode); 396 inode_inc_iversion(inode); 397 inode_set_ctime_current(inode); 398 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 399 400 out_end_trans: 401 btrfs_end_transaction(trans); 402 return ret; 403 } 404 405 /* 406 * Start exclusive operation @type, return true on success 407 */ 408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 409 enum btrfs_exclusive_operation type) 410 { 411 bool ret = false; 412 413 spin_lock(&fs_info->super_lock); 414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 415 fs_info->exclusive_operation = type; 416 ret = true; 417 } 418 spin_unlock(&fs_info->super_lock); 419 420 return ret; 421 } 422 423 /* 424 * Conditionally allow to enter the exclusive operation in case it's compatible 425 * with the running one. This must be paired with btrfs_exclop_start_unlock and 426 * btrfs_exclop_finish. 427 * 428 * Compatibility: 429 * - the same type is already running 430 * - when trying to add a device and balance has been paused 431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 432 * must check the condition first that would allow none -> @type 433 */ 434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 435 enum btrfs_exclusive_operation type) 436 { 437 spin_lock(&fs_info->super_lock); 438 if (fs_info->exclusive_operation == type || 439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 440 type == BTRFS_EXCLOP_DEV_ADD)) 441 return true; 442 443 spin_unlock(&fs_info->super_lock); 444 return false; 445 } 446 447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 448 { 449 spin_unlock(&fs_info->super_lock); 450 } 451 452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 453 { 454 spin_lock(&fs_info->super_lock); 455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 456 spin_unlock(&fs_info->super_lock); 457 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 458 } 459 460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 461 enum btrfs_exclusive_operation op) 462 { 463 switch (op) { 464 case BTRFS_EXCLOP_BALANCE_PAUSED: 465 spin_lock(&fs_info->super_lock); 466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 471 spin_unlock(&fs_info->super_lock); 472 break; 473 case BTRFS_EXCLOP_BALANCE: 474 spin_lock(&fs_info->super_lock); 475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 477 spin_unlock(&fs_info->super_lock); 478 break; 479 default: 480 btrfs_warn(fs_info, 481 "invalid exclop balance operation %d requested", op); 482 } 483 } 484 485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 486 { 487 return put_user(inode->i_generation, arg); 488 } 489 490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 491 void __user *arg) 492 { 493 struct btrfs_device *device; 494 struct fstrim_range range; 495 u64 minlen = ULLONG_MAX; 496 u64 num_devices = 0; 497 int ret; 498 499 if (!capable(CAP_SYS_ADMIN)) 500 return -EPERM; 501 502 /* 503 * btrfs_trim_block_group() depends on space cache, which is not 504 * available in zoned filesystem. So, disallow fitrim on a zoned 505 * filesystem for now. 506 */ 507 if (btrfs_is_zoned(fs_info)) 508 return -EOPNOTSUPP; 509 510 /* 511 * If the fs is mounted with nologreplay, which requires it to be 512 * mounted in RO mode as well, we can not allow discard on free space 513 * inside block groups, because log trees refer to extents that are not 514 * pinned in a block group's free space cache (pinning the extents is 515 * precisely the first phase of replaying a log tree). 516 */ 517 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 518 return -EROFS; 519 520 rcu_read_lock(); 521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 522 dev_list) { 523 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 524 continue; 525 num_devices++; 526 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 527 minlen); 528 } 529 rcu_read_unlock(); 530 531 if (!num_devices) 532 return -EOPNOTSUPP; 533 if (copy_from_user(&range, arg, sizeof(range))) 534 return -EFAULT; 535 536 /* 537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 538 * block group is in the logical address space, which can be any 539 * sectorsize aligned bytenr in the range [0, U64_MAX]. 540 */ 541 if (range.len < fs_info->sectorsize) 542 return -EINVAL; 543 544 range.minlen = max(range.minlen, minlen); 545 ret = btrfs_trim_fs(fs_info, &range); 546 547 if (copy_to_user(arg, &range, sizeof(range))) 548 return -EFAULT; 549 550 return ret; 551 } 552 553 int __pure btrfs_is_empty_uuid(const u8 *uuid) 554 { 555 int i; 556 557 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 558 if (uuid[i]) 559 return 0; 560 } 561 return 1; 562 } 563 564 /* 565 * Calculate the number of transaction items to reserve for creating a subvolume 566 * or snapshot, not including the inode, directory entries, or parent directory. 567 */ 568 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 569 { 570 /* 571 * 1 to add root block 572 * 1 to add root item 573 * 1 to add root ref 574 * 1 to add root backref 575 * 1 to add UUID item 576 * 1 to add qgroup info 577 * 1 to add qgroup limit 578 * 579 * Ideally the last two would only be accounted if qgroups are enabled, 580 * but that can change between now and the time we would insert them. 581 */ 582 unsigned int num_items = 7; 583 584 if (inherit) { 585 /* 2 to add qgroup relations for each inherited qgroup */ 586 num_items += 2 * inherit->num_qgroups; 587 } 588 return num_items; 589 } 590 591 static noinline int create_subvol(struct mnt_idmap *idmap, 592 struct inode *dir, struct dentry *dentry, 593 struct btrfs_qgroup_inherit *inherit) 594 { 595 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 596 struct btrfs_trans_handle *trans; 597 struct btrfs_key key; 598 struct btrfs_root_item *root_item; 599 struct btrfs_inode_item *inode_item; 600 struct extent_buffer *leaf; 601 struct btrfs_root *root = BTRFS_I(dir)->root; 602 struct btrfs_root *new_root; 603 struct btrfs_block_rsv block_rsv; 604 struct timespec64 cur_time = current_time(dir); 605 struct btrfs_new_inode_args new_inode_args = { 606 .dir = dir, 607 .dentry = dentry, 608 .subvol = true, 609 }; 610 unsigned int trans_num_items; 611 int ret; 612 dev_t anon_dev; 613 u64 objectid; 614 u64 qgroup_reserved = 0; 615 616 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 617 if (!root_item) 618 return -ENOMEM; 619 620 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 621 if (ret) 622 goto out_root_item; 623 624 /* 625 * Don't create subvolume whose level is not zero. Or qgroup will be 626 * screwed up since it assumes subvolume qgroup's level to be 0. 627 */ 628 if (btrfs_qgroup_level(objectid)) { 629 ret = -ENOSPC; 630 goto out_root_item; 631 } 632 633 ret = get_anon_bdev(&anon_dev); 634 if (ret < 0) 635 goto out_root_item; 636 637 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 638 if (!new_inode_args.inode) { 639 ret = -ENOMEM; 640 goto out_anon_dev; 641 } 642 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 643 if (ret) 644 goto out_inode; 645 trans_num_items += create_subvol_num_items(inherit); 646 647 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 648 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 649 trans_num_items, false); 650 if (ret) 651 goto out_new_inode_args; 652 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 653 654 trans = btrfs_start_transaction(root, 0); 655 if (IS_ERR(trans)) { 656 ret = PTR_ERR(trans); 657 goto out_release_rsv; 658 } 659 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 660 qgroup_reserved = 0; 661 trans->block_rsv = &block_rsv; 662 trans->bytes_reserved = block_rsv.size; 663 664 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit); 665 if (ret) 666 goto out; 667 668 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 669 0, BTRFS_NESTING_NORMAL); 670 if (IS_ERR(leaf)) { 671 ret = PTR_ERR(leaf); 672 goto out; 673 } 674 675 btrfs_mark_buffer_dirty(trans, leaf); 676 677 inode_item = &root_item->inode; 678 btrfs_set_stack_inode_generation(inode_item, 1); 679 btrfs_set_stack_inode_size(inode_item, 3); 680 btrfs_set_stack_inode_nlink(inode_item, 1); 681 btrfs_set_stack_inode_nbytes(inode_item, 682 fs_info->nodesize); 683 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 684 685 btrfs_set_root_flags(root_item, 0); 686 btrfs_set_root_limit(root_item, 0); 687 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 688 689 btrfs_set_root_bytenr(root_item, leaf->start); 690 btrfs_set_root_generation(root_item, trans->transid); 691 btrfs_set_root_level(root_item, 0); 692 btrfs_set_root_refs(root_item, 1); 693 btrfs_set_root_used(root_item, leaf->len); 694 btrfs_set_root_last_snapshot(root_item, 0); 695 696 btrfs_set_root_generation_v2(root_item, 697 btrfs_root_generation(root_item)); 698 generate_random_guid(root_item->uuid); 699 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 700 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 701 root_item->ctime = root_item->otime; 702 btrfs_set_root_ctransid(root_item, trans->transid); 703 btrfs_set_root_otransid(root_item, trans->transid); 704 705 btrfs_tree_unlock(leaf); 706 707 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 708 709 key.objectid = objectid; 710 key.offset = 0; 711 key.type = BTRFS_ROOT_ITEM_KEY; 712 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 713 root_item); 714 if (ret) { 715 int ret2; 716 717 /* 718 * Since we don't abort the transaction in this case, free the 719 * tree block so that we don't leak space and leave the 720 * filesystem in an inconsistent state (an extent item in the 721 * extent tree with a backreference for a root that does not 722 * exists). 723 */ 724 btrfs_tree_lock(leaf); 725 btrfs_clear_buffer_dirty(trans, leaf); 726 btrfs_tree_unlock(leaf); 727 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 728 if (ret2 < 0) 729 btrfs_abort_transaction(trans, ret2); 730 free_extent_buffer(leaf); 731 goto out; 732 } 733 734 free_extent_buffer(leaf); 735 leaf = NULL; 736 737 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 738 if (IS_ERR(new_root)) { 739 ret = PTR_ERR(new_root); 740 btrfs_abort_transaction(trans, ret); 741 goto out; 742 } 743 /* anon_dev is owned by new_root now. */ 744 anon_dev = 0; 745 BTRFS_I(new_inode_args.inode)->root = new_root; 746 /* ... and new_root is owned by new_inode_args.inode now. */ 747 748 ret = btrfs_record_root_in_trans(trans, new_root); 749 if (ret) { 750 btrfs_abort_transaction(trans, ret); 751 goto out; 752 } 753 754 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 755 BTRFS_UUID_KEY_SUBVOL, objectid); 756 if (ret) { 757 btrfs_abort_transaction(trans, ret); 758 goto out; 759 } 760 761 ret = btrfs_create_new_inode(trans, &new_inode_args); 762 if (ret) { 763 btrfs_abort_transaction(trans, ret); 764 goto out; 765 } 766 767 btrfs_record_new_subvolume(trans, BTRFS_I(dir)); 768 769 d_instantiate_new(dentry, new_inode_args.inode); 770 new_inode_args.inode = NULL; 771 772 out: 773 trans->block_rsv = NULL; 774 trans->bytes_reserved = 0; 775 btrfs_end_transaction(trans); 776 out_release_rsv: 777 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 778 if (qgroup_reserved) 779 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 780 out_new_inode_args: 781 btrfs_new_inode_args_destroy(&new_inode_args); 782 out_inode: 783 iput(new_inode_args.inode); 784 out_anon_dev: 785 if (anon_dev) 786 free_anon_bdev(anon_dev); 787 out_root_item: 788 kfree(root_item); 789 return ret; 790 } 791 792 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 793 struct dentry *dentry, bool readonly, 794 struct btrfs_qgroup_inherit *inherit) 795 { 796 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 797 struct inode *inode; 798 struct btrfs_pending_snapshot *pending_snapshot; 799 unsigned int trans_num_items; 800 struct btrfs_trans_handle *trans; 801 struct btrfs_block_rsv *block_rsv; 802 u64 qgroup_reserved = 0; 803 int ret; 804 805 /* We do not support snapshotting right now. */ 806 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 807 btrfs_warn(fs_info, 808 "extent tree v2 doesn't support snapshotting yet"); 809 return -EOPNOTSUPP; 810 } 811 812 if (btrfs_root_refs(&root->root_item) == 0) 813 return -ENOENT; 814 815 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 816 return -EINVAL; 817 818 if (atomic_read(&root->nr_swapfiles)) { 819 btrfs_warn(fs_info, 820 "cannot snapshot subvolume with active swapfile"); 821 return -ETXTBSY; 822 } 823 824 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 825 if (!pending_snapshot) 826 return -ENOMEM; 827 828 ret = get_anon_bdev(&pending_snapshot->anon_dev); 829 if (ret < 0) 830 goto free_pending; 831 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 832 GFP_KERNEL); 833 pending_snapshot->path = btrfs_alloc_path(); 834 if (!pending_snapshot->root_item || !pending_snapshot->path) { 835 ret = -ENOMEM; 836 goto free_pending; 837 } 838 839 block_rsv = &pending_snapshot->block_rsv; 840 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 841 /* 842 * 1 to add dir item 843 * 1 to add dir index 844 * 1 to update parent inode item 845 */ 846 trans_num_items = create_subvol_num_items(inherit) + 3; 847 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 848 trans_num_items, false); 849 if (ret) 850 goto free_pending; 851 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 852 853 pending_snapshot->dentry = dentry; 854 pending_snapshot->root = root; 855 pending_snapshot->readonly = readonly; 856 pending_snapshot->dir = BTRFS_I(dir); 857 pending_snapshot->inherit = inherit; 858 859 trans = btrfs_start_transaction(root, 0); 860 if (IS_ERR(trans)) { 861 ret = PTR_ERR(trans); 862 goto fail; 863 } 864 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 865 if (ret) { 866 btrfs_end_transaction(trans); 867 goto fail; 868 } 869 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 870 qgroup_reserved = 0; 871 872 trans->pending_snapshot = pending_snapshot; 873 874 ret = btrfs_commit_transaction(trans); 875 if (ret) 876 goto fail; 877 878 ret = pending_snapshot->error; 879 if (ret) 880 goto fail; 881 882 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 883 if (ret) 884 goto fail; 885 886 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 887 if (IS_ERR(inode)) { 888 ret = PTR_ERR(inode); 889 goto fail; 890 } 891 892 d_instantiate(dentry, inode); 893 ret = 0; 894 pending_snapshot->anon_dev = 0; 895 fail: 896 /* Prevent double freeing of anon_dev */ 897 if (ret && pending_snapshot->snap) 898 pending_snapshot->snap->anon_dev = 0; 899 btrfs_put_root(pending_snapshot->snap); 900 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 901 if (qgroup_reserved) 902 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 903 free_pending: 904 if (pending_snapshot->anon_dev) 905 free_anon_bdev(pending_snapshot->anon_dev); 906 kfree(pending_snapshot->root_item); 907 btrfs_free_path(pending_snapshot->path); 908 kfree(pending_snapshot); 909 910 return ret; 911 } 912 913 /* copy of may_delete in fs/namei.c() 914 * Check whether we can remove a link victim from directory dir, check 915 * whether the type of victim is right. 916 * 1. We can't do it if dir is read-only (done in permission()) 917 * 2. We should have write and exec permissions on dir 918 * 3. We can't remove anything from append-only dir 919 * 4. We can't do anything with immutable dir (done in permission()) 920 * 5. If the sticky bit on dir is set we should either 921 * a. be owner of dir, or 922 * b. be owner of victim, or 923 * c. have CAP_FOWNER capability 924 * 6. If the victim is append-only or immutable we can't do anything with 925 * links pointing to it. 926 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 927 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 928 * 9. We can't remove a root or mountpoint. 929 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 930 * nfs_async_unlink(). 931 */ 932 933 static int btrfs_may_delete(struct mnt_idmap *idmap, 934 struct inode *dir, struct dentry *victim, int isdir) 935 { 936 int error; 937 938 if (d_really_is_negative(victim)) 939 return -ENOENT; 940 941 /* The @victim is not inside @dir. */ 942 if (d_inode(victim->d_parent) != dir) 943 return -EINVAL; 944 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 945 946 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 947 if (error) 948 return error; 949 if (IS_APPEND(dir)) 950 return -EPERM; 951 if (check_sticky(idmap, dir, d_inode(victim)) || 952 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 953 IS_SWAPFILE(d_inode(victim))) 954 return -EPERM; 955 if (isdir) { 956 if (!d_is_dir(victim)) 957 return -ENOTDIR; 958 if (IS_ROOT(victim)) 959 return -EBUSY; 960 } else if (d_is_dir(victim)) 961 return -EISDIR; 962 if (IS_DEADDIR(dir)) 963 return -ENOENT; 964 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 965 return -EBUSY; 966 return 0; 967 } 968 969 /* copy of may_create in fs/namei.c() */ 970 static inline int btrfs_may_create(struct mnt_idmap *idmap, 971 struct inode *dir, struct dentry *child) 972 { 973 if (d_really_is_positive(child)) 974 return -EEXIST; 975 if (IS_DEADDIR(dir)) 976 return -ENOENT; 977 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 978 return -EOVERFLOW; 979 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 980 } 981 982 /* 983 * Create a new subvolume below @parent. This is largely modeled after 984 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 985 * inside this filesystem so it's quite a bit simpler. 986 */ 987 static noinline int btrfs_mksubvol(const struct path *parent, 988 struct mnt_idmap *idmap, 989 const char *name, int namelen, 990 struct btrfs_root *snap_src, 991 bool readonly, 992 struct btrfs_qgroup_inherit *inherit) 993 { 994 struct inode *dir = d_inode(parent->dentry); 995 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 996 struct dentry *dentry; 997 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 998 int error; 999 1000 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 1001 if (error == -EINTR) 1002 return error; 1003 1004 dentry = lookup_one(idmap, name, parent->dentry, namelen); 1005 error = PTR_ERR(dentry); 1006 if (IS_ERR(dentry)) 1007 goto out_unlock; 1008 1009 error = btrfs_may_create(idmap, dir, dentry); 1010 if (error) 1011 goto out_dput; 1012 1013 /* 1014 * even if this name doesn't exist, we may get hash collisions. 1015 * check for them now when we can safely fail 1016 */ 1017 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 1018 dir->i_ino, &name_str); 1019 if (error) 1020 goto out_dput; 1021 1022 down_read(&fs_info->subvol_sem); 1023 1024 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1025 goto out_up_read; 1026 1027 if (snap_src) 1028 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1029 else 1030 error = create_subvol(idmap, dir, dentry, inherit); 1031 1032 if (!error) 1033 fsnotify_mkdir(dir, dentry); 1034 out_up_read: 1035 up_read(&fs_info->subvol_sem); 1036 out_dput: 1037 dput(dentry); 1038 out_unlock: 1039 btrfs_inode_unlock(BTRFS_I(dir), 0); 1040 return error; 1041 } 1042 1043 static noinline int btrfs_mksnapshot(const struct path *parent, 1044 struct mnt_idmap *idmap, 1045 const char *name, int namelen, 1046 struct btrfs_root *root, 1047 bool readonly, 1048 struct btrfs_qgroup_inherit *inherit) 1049 { 1050 int ret; 1051 bool snapshot_force_cow = false; 1052 1053 /* 1054 * Force new buffered writes to reserve space even when NOCOW is 1055 * possible. This is to avoid later writeback (running dealloc) to 1056 * fallback to COW mode and unexpectedly fail with ENOSPC. 1057 */ 1058 btrfs_drew_read_lock(&root->snapshot_lock); 1059 1060 ret = btrfs_start_delalloc_snapshot(root, false); 1061 if (ret) 1062 goto out; 1063 1064 /* 1065 * All previous writes have started writeback in NOCOW mode, so now 1066 * we force future writes to fallback to COW mode during snapshot 1067 * creation. 1068 */ 1069 atomic_inc(&root->snapshot_force_cow); 1070 snapshot_force_cow = true; 1071 1072 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 1073 1074 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1075 root, readonly, inherit); 1076 out: 1077 if (snapshot_force_cow) 1078 atomic_dec(&root->snapshot_force_cow); 1079 btrfs_drew_read_unlock(&root->snapshot_lock); 1080 return ret; 1081 } 1082 1083 /* 1084 * Try to start exclusive operation @type or cancel it if it's running. 1085 * 1086 * Return: 1087 * 0 - normal mode, newly claimed op started 1088 * >0 - normal mode, something else is running, 1089 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1090 * ECANCELED - cancel mode, successful cancel 1091 * ENOTCONN - cancel mode, operation not running anymore 1092 */ 1093 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1094 enum btrfs_exclusive_operation type, bool cancel) 1095 { 1096 if (!cancel) { 1097 /* Start normal op */ 1098 if (!btrfs_exclop_start(fs_info, type)) 1099 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1100 /* Exclusive operation is now claimed */ 1101 return 0; 1102 } 1103 1104 /* Cancel running op */ 1105 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1106 /* 1107 * This blocks any exclop finish from setting it to NONE, so we 1108 * request cancellation. Either it runs and we will wait for it, 1109 * or it has finished and no waiting will happen. 1110 */ 1111 atomic_inc(&fs_info->reloc_cancel_req); 1112 btrfs_exclop_start_unlock(fs_info); 1113 1114 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1115 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1116 TASK_INTERRUPTIBLE); 1117 1118 return -ECANCELED; 1119 } 1120 1121 /* Something else is running or none */ 1122 return -ENOTCONN; 1123 } 1124 1125 static noinline int btrfs_ioctl_resize(struct file *file, 1126 void __user *arg) 1127 { 1128 BTRFS_DEV_LOOKUP_ARGS(args); 1129 struct inode *inode = file_inode(file); 1130 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1131 u64 new_size; 1132 u64 old_size; 1133 u64 devid = 1; 1134 struct btrfs_root *root = BTRFS_I(inode)->root; 1135 struct btrfs_ioctl_vol_args *vol_args; 1136 struct btrfs_trans_handle *trans; 1137 struct btrfs_device *device = NULL; 1138 char *sizestr; 1139 char *retptr; 1140 char *devstr = NULL; 1141 int ret = 0; 1142 int mod = 0; 1143 bool cancel; 1144 1145 if (!capable(CAP_SYS_ADMIN)) 1146 return -EPERM; 1147 1148 ret = mnt_want_write_file(file); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * Read the arguments before checking exclusivity to be able to 1154 * distinguish regular resize and cancel 1155 */ 1156 vol_args = memdup_user(arg, sizeof(*vol_args)); 1157 if (IS_ERR(vol_args)) { 1158 ret = PTR_ERR(vol_args); 1159 goto out_drop; 1160 } 1161 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1162 if (ret < 0) 1163 goto out_free; 1164 1165 sizestr = vol_args->name; 1166 cancel = (strcmp("cancel", sizestr) == 0); 1167 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1168 if (ret) 1169 goto out_free; 1170 /* Exclusive operation is now claimed */ 1171 1172 devstr = strchr(sizestr, ':'); 1173 if (devstr) { 1174 sizestr = devstr + 1; 1175 *devstr = '\0'; 1176 devstr = vol_args->name; 1177 ret = kstrtoull(devstr, 10, &devid); 1178 if (ret) 1179 goto out_finish; 1180 if (!devid) { 1181 ret = -EINVAL; 1182 goto out_finish; 1183 } 1184 btrfs_info(fs_info, "resizing devid %llu", devid); 1185 } 1186 1187 args.devid = devid; 1188 device = btrfs_find_device(fs_info->fs_devices, &args); 1189 if (!device) { 1190 btrfs_info(fs_info, "resizer unable to find device %llu", 1191 devid); 1192 ret = -ENODEV; 1193 goto out_finish; 1194 } 1195 1196 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1197 btrfs_info(fs_info, 1198 "resizer unable to apply on readonly device %llu", 1199 devid); 1200 ret = -EPERM; 1201 goto out_finish; 1202 } 1203 1204 if (!strcmp(sizestr, "max")) 1205 new_size = bdev_nr_bytes(device->bdev); 1206 else { 1207 if (sizestr[0] == '-') { 1208 mod = -1; 1209 sizestr++; 1210 } else if (sizestr[0] == '+') { 1211 mod = 1; 1212 sizestr++; 1213 } 1214 new_size = memparse(sizestr, &retptr); 1215 if (*retptr != '\0' || new_size == 0) { 1216 ret = -EINVAL; 1217 goto out_finish; 1218 } 1219 } 1220 1221 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1222 ret = -EPERM; 1223 goto out_finish; 1224 } 1225 1226 old_size = btrfs_device_get_total_bytes(device); 1227 1228 if (mod < 0) { 1229 if (new_size > old_size) { 1230 ret = -EINVAL; 1231 goto out_finish; 1232 } 1233 new_size = old_size - new_size; 1234 } else if (mod > 0) { 1235 if (new_size > ULLONG_MAX - old_size) { 1236 ret = -ERANGE; 1237 goto out_finish; 1238 } 1239 new_size = old_size + new_size; 1240 } 1241 1242 if (new_size < SZ_256M) { 1243 ret = -EINVAL; 1244 goto out_finish; 1245 } 1246 if (new_size > bdev_nr_bytes(device->bdev)) { 1247 ret = -EFBIG; 1248 goto out_finish; 1249 } 1250 1251 new_size = round_down(new_size, fs_info->sectorsize); 1252 1253 if (new_size > old_size) { 1254 trans = btrfs_start_transaction(root, 0); 1255 if (IS_ERR(trans)) { 1256 ret = PTR_ERR(trans); 1257 goto out_finish; 1258 } 1259 ret = btrfs_grow_device(trans, device, new_size); 1260 btrfs_commit_transaction(trans); 1261 } else if (new_size < old_size) { 1262 ret = btrfs_shrink_device(device, new_size); 1263 } /* equal, nothing need to do */ 1264 1265 if (ret == 0 && new_size != old_size) 1266 btrfs_info_in_rcu(fs_info, 1267 "resize device %s (devid %llu) from %llu to %llu", 1268 btrfs_dev_name(device), device->devid, 1269 old_size, new_size); 1270 out_finish: 1271 btrfs_exclop_finish(fs_info); 1272 out_free: 1273 kfree(vol_args); 1274 out_drop: 1275 mnt_drop_write_file(file); 1276 return ret; 1277 } 1278 1279 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1280 struct mnt_idmap *idmap, 1281 const char *name, unsigned long fd, int subvol, 1282 bool readonly, 1283 struct btrfs_qgroup_inherit *inherit) 1284 { 1285 int namelen; 1286 int ret = 0; 1287 1288 if (!S_ISDIR(file_inode(file)->i_mode)) 1289 return -ENOTDIR; 1290 1291 ret = mnt_want_write_file(file); 1292 if (ret) 1293 goto out; 1294 1295 namelen = strlen(name); 1296 if (strchr(name, '/')) { 1297 ret = -EINVAL; 1298 goto out_drop_write; 1299 } 1300 1301 if (name[0] == '.' && 1302 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1303 ret = -EEXIST; 1304 goto out_drop_write; 1305 } 1306 1307 if (subvol) { 1308 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1309 namelen, NULL, readonly, inherit); 1310 } else { 1311 struct fd src = fdget(fd); 1312 struct inode *src_inode; 1313 if (!src.file) { 1314 ret = -EINVAL; 1315 goto out_drop_write; 1316 } 1317 1318 src_inode = file_inode(src.file); 1319 if (src_inode->i_sb != file_inode(file)->i_sb) { 1320 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1321 "Snapshot src from another FS"); 1322 ret = -EXDEV; 1323 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1324 /* 1325 * Subvolume creation is not restricted, but snapshots 1326 * are limited to own subvolumes only 1327 */ 1328 ret = -EPERM; 1329 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1330 /* 1331 * Snapshots must be made with the src_inode referring 1332 * to the subvolume inode, otherwise the permission 1333 * checking above is useless because we may have 1334 * permission on a lower directory but not the subvol 1335 * itself. 1336 */ 1337 ret = -EINVAL; 1338 } else { 1339 ret = btrfs_mksnapshot(&file->f_path, idmap, 1340 name, namelen, 1341 BTRFS_I(src_inode)->root, 1342 readonly, inherit); 1343 } 1344 fdput(src); 1345 } 1346 out_drop_write: 1347 mnt_drop_write_file(file); 1348 out: 1349 return ret; 1350 } 1351 1352 static noinline int btrfs_ioctl_snap_create(struct file *file, 1353 void __user *arg, int subvol) 1354 { 1355 struct btrfs_ioctl_vol_args *vol_args; 1356 int ret; 1357 1358 if (!S_ISDIR(file_inode(file)->i_mode)) 1359 return -ENOTDIR; 1360 1361 vol_args = memdup_user(arg, sizeof(*vol_args)); 1362 if (IS_ERR(vol_args)) 1363 return PTR_ERR(vol_args); 1364 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1365 if (ret < 0) 1366 goto out; 1367 1368 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1369 vol_args->name, vol_args->fd, subvol, 1370 false, NULL); 1371 1372 out: 1373 kfree(vol_args); 1374 return ret; 1375 } 1376 1377 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1378 void __user *arg, int subvol) 1379 { 1380 struct btrfs_ioctl_vol_args_v2 *vol_args; 1381 int ret; 1382 bool readonly = false; 1383 struct btrfs_qgroup_inherit *inherit = NULL; 1384 1385 if (!S_ISDIR(file_inode(file)->i_mode)) 1386 return -ENOTDIR; 1387 1388 vol_args = memdup_user(arg, sizeof(*vol_args)); 1389 if (IS_ERR(vol_args)) 1390 return PTR_ERR(vol_args); 1391 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 1392 if (ret < 0) 1393 goto free_args; 1394 1395 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1396 ret = -EOPNOTSUPP; 1397 goto free_args; 1398 } 1399 1400 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1401 readonly = true; 1402 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1403 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 1404 1405 if (vol_args->size < sizeof(*inherit) || 1406 vol_args->size > PAGE_SIZE) { 1407 ret = -EINVAL; 1408 goto free_args; 1409 } 1410 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1411 if (IS_ERR(inherit)) { 1412 ret = PTR_ERR(inherit); 1413 goto free_args; 1414 } 1415 1416 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size); 1417 if (ret < 0) 1418 goto free_inherit; 1419 } 1420 1421 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1422 vol_args->name, vol_args->fd, subvol, 1423 readonly, inherit); 1424 if (ret) 1425 goto free_inherit; 1426 free_inherit: 1427 kfree(inherit); 1428 free_args: 1429 kfree(vol_args); 1430 return ret; 1431 } 1432 1433 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1434 void __user *arg) 1435 { 1436 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1437 struct btrfs_root *root = BTRFS_I(inode)->root; 1438 int ret = 0; 1439 u64 flags = 0; 1440 1441 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1442 return -EINVAL; 1443 1444 down_read(&fs_info->subvol_sem); 1445 if (btrfs_root_readonly(root)) 1446 flags |= BTRFS_SUBVOL_RDONLY; 1447 up_read(&fs_info->subvol_sem); 1448 1449 if (copy_to_user(arg, &flags, sizeof(flags))) 1450 ret = -EFAULT; 1451 1452 return ret; 1453 } 1454 1455 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1456 void __user *arg) 1457 { 1458 struct inode *inode = file_inode(file); 1459 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1460 struct btrfs_root *root = BTRFS_I(inode)->root; 1461 struct btrfs_trans_handle *trans; 1462 u64 root_flags; 1463 u64 flags; 1464 int ret = 0; 1465 1466 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1467 return -EPERM; 1468 1469 ret = mnt_want_write_file(file); 1470 if (ret) 1471 goto out; 1472 1473 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1474 ret = -EINVAL; 1475 goto out_drop_write; 1476 } 1477 1478 if (copy_from_user(&flags, arg, sizeof(flags))) { 1479 ret = -EFAULT; 1480 goto out_drop_write; 1481 } 1482 1483 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1484 ret = -EOPNOTSUPP; 1485 goto out_drop_write; 1486 } 1487 1488 down_write(&fs_info->subvol_sem); 1489 1490 /* nothing to do */ 1491 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1492 goto out_drop_sem; 1493 1494 root_flags = btrfs_root_flags(&root->root_item); 1495 if (flags & BTRFS_SUBVOL_RDONLY) { 1496 btrfs_set_root_flags(&root->root_item, 1497 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1498 } else { 1499 /* 1500 * Block RO -> RW transition if this subvolume is involved in 1501 * send 1502 */ 1503 spin_lock(&root->root_item_lock); 1504 if (root->send_in_progress == 0) { 1505 btrfs_set_root_flags(&root->root_item, 1506 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1507 spin_unlock(&root->root_item_lock); 1508 } else { 1509 spin_unlock(&root->root_item_lock); 1510 btrfs_warn(fs_info, 1511 "Attempt to set subvolume %llu read-write during send", 1512 btrfs_root_id(root)); 1513 ret = -EPERM; 1514 goto out_drop_sem; 1515 } 1516 } 1517 1518 trans = btrfs_start_transaction(root, 1); 1519 if (IS_ERR(trans)) { 1520 ret = PTR_ERR(trans); 1521 goto out_reset; 1522 } 1523 1524 ret = btrfs_update_root(trans, fs_info->tree_root, 1525 &root->root_key, &root->root_item); 1526 if (ret < 0) { 1527 btrfs_end_transaction(trans); 1528 goto out_reset; 1529 } 1530 1531 ret = btrfs_commit_transaction(trans); 1532 1533 out_reset: 1534 if (ret) 1535 btrfs_set_root_flags(&root->root_item, root_flags); 1536 out_drop_sem: 1537 up_write(&fs_info->subvol_sem); 1538 out_drop_write: 1539 mnt_drop_write_file(file); 1540 out: 1541 return ret; 1542 } 1543 1544 static noinline int key_in_sk(struct btrfs_key *key, 1545 struct btrfs_ioctl_search_key *sk) 1546 { 1547 struct btrfs_key test; 1548 int ret; 1549 1550 test.objectid = sk->min_objectid; 1551 test.type = sk->min_type; 1552 test.offset = sk->min_offset; 1553 1554 ret = btrfs_comp_cpu_keys(key, &test); 1555 if (ret < 0) 1556 return 0; 1557 1558 test.objectid = sk->max_objectid; 1559 test.type = sk->max_type; 1560 test.offset = sk->max_offset; 1561 1562 ret = btrfs_comp_cpu_keys(key, &test); 1563 if (ret > 0) 1564 return 0; 1565 return 1; 1566 } 1567 1568 static noinline int copy_to_sk(struct btrfs_path *path, 1569 struct btrfs_key *key, 1570 struct btrfs_ioctl_search_key *sk, 1571 u64 *buf_size, 1572 char __user *ubuf, 1573 unsigned long *sk_offset, 1574 int *num_found) 1575 { 1576 u64 found_transid; 1577 struct extent_buffer *leaf; 1578 struct btrfs_ioctl_search_header sh; 1579 struct btrfs_key test; 1580 unsigned long item_off; 1581 unsigned long item_len; 1582 int nritems; 1583 int i; 1584 int slot; 1585 int ret = 0; 1586 1587 leaf = path->nodes[0]; 1588 slot = path->slots[0]; 1589 nritems = btrfs_header_nritems(leaf); 1590 1591 if (btrfs_header_generation(leaf) > sk->max_transid) { 1592 i = nritems; 1593 goto advance_key; 1594 } 1595 found_transid = btrfs_header_generation(leaf); 1596 1597 for (i = slot; i < nritems; i++) { 1598 item_off = btrfs_item_ptr_offset(leaf, i); 1599 item_len = btrfs_item_size(leaf, i); 1600 1601 btrfs_item_key_to_cpu(leaf, key, i); 1602 if (!key_in_sk(key, sk)) 1603 continue; 1604 1605 if (sizeof(sh) + item_len > *buf_size) { 1606 if (*num_found) { 1607 ret = 1; 1608 goto out; 1609 } 1610 1611 /* 1612 * return one empty item back for v1, which does not 1613 * handle -EOVERFLOW 1614 */ 1615 1616 *buf_size = sizeof(sh) + item_len; 1617 item_len = 0; 1618 ret = -EOVERFLOW; 1619 } 1620 1621 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1622 ret = 1; 1623 goto out; 1624 } 1625 1626 sh.objectid = key->objectid; 1627 sh.offset = key->offset; 1628 sh.type = key->type; 1629 sh.len = item_len; 1630 sh.transid = found_transid; 1631 1632 /* 1633 * Copy search result header. If we fault then loop again so we 1634 * can fault in the pages and -EFAULT there if there's a 1635 * problem. Otherwise we'll fault and then copy the buffer in 1636 * properly this next time through 1637 */ 1638 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1639 ret = 0; 1640 goto out; 1641 } 1642 1643 *sk_offset += sizeof(sh); 1644 1645 if (item_len) { 1646 char __user *up = ubuf + *sk_offset; 1647 /* 1648 * Copy the item, same behavior as above, but reset the 1649 * * sk_offset so we copy the full thing again. 1650 */ 1651 if (read_extent_buffer_to_user_nofault(leaf, up, 1652 item_off, item_len)) { 1653 ret = 0; 1654 *sk_offset -= sizeof(sh); 1655 goto out; 1656 } 1657 1658 *sk_offset += item_len; 1659 } 1660 (*num_found)++; 1661 1662 if (ret) /* -EOVERFLOW from above */ 1663 goto out; 1664 1665 if (*num_found >= sk->nr_items) { 1666 ret = 1; 1667 goto out; 1668 } 1669 } 1670 advance_key: 1671 ret = 0; 1672 test.objectid = sk->max_objectid; 1673 test.type = sk->max_type; 1674 test.offset = sk->max_offset; 1675 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1676 ret = 1; 1677 else if (key->offset < (u64)-1) 1678 key->offset++; 1679 else if (key->type < (u8)-1) { 1680 key->offset = 0; 1681 key->type++; 1682 } else if (key->objectid < (u64)-1) { 1683 key->offset = 0; 1684 key->type = 0; 1685 key->objectid++; 1686 } else 1687 ret = 1; 1688 out: 1689 /* 1690 * 0: all items from this leaf copied, continue with next 1691 * 1: * more items can be copied, but unused buffer is too small 1692 * * all items were found 1693 * Either way, it will stops the loop which iterates to the next 1694 * leaf 1695 * -EOVERFLOW: item was to large for buffer 1696 * -EFAULT: could not copy extent buffer back to userspace 1697 */ 1698 return ret; 1699 } 1700 1701 static noinline int search_ioctl(struct inode *inode, 1702 struct btrfs_ioctl_search_key *sk, 1703 u64 *buf_size, 1704 char __user *ubuf) 1705 { 1706 struct btrfs_fs_info *info = inode_to_fs_info(inode); 1707 struct btrfs_root *root; 1708 struct btrfs_key key; 1709 struct btrfs_path *path; 1710 int ret; 1711 int num_found = 0; 1712 unsigned long sk_offset = 0; 1713 1714 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1715 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1716 return -EOVERFLOW; 1717 } 1718 1719 path = btrfs_alloc_path(); 1720 if (!path) 1721 return -ENOMEM; 1722 1723 if (sk->tree_id == 0) { 1724 /* search the root of the inode that was passed */ 1725 root = btrfs_grab_root(BTRFS_I(inode)->root); 1726 } else { 1727 root = btrfs_get_fs_root(info, sk->tree_id, true); 1728 if (IS_ERR(root)) { 1729 btrfs_free_path(path); 1730 return PTR_ERR(root); 1731 } 1732 } 1733 1734 key.objectid = sk->min_objectid; 1735 key.type = sk->min_type; 1736 key.offset = sk->min_offset; 1737 1738 while (1) { 1739 ret = -EFAULT; 1740 /* 1741 * Ensure that the whole user buffer is faulted in at sub-page 1742 * granularity, otherwise the loop may live-lock. 1743 */ 1744 if (fault_in_subpage_writeable(ubuf + sk_offset, 1745 *buf_size - sk_offset)) 1746 break; 1747 1748 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1749 if (ret != 0) { 1750 if (ret > 0) 1751 ret = 0; 1752 goto err; 1753 } 1754 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1755 &sk_offset, &num_found); 1756 btrfs_release_path(path); 1757 if (ret) 1758 break; 1759 1760 } 1761 if (ret > 0) 1762 ret = 0; 1763 err: 1764 sk->nr_items = num_found; 1765 btrfs_put_root(root); 1766 btrfs_free_path(path); 1767 return ret; 1768 } 1769 1770 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1771 void __user *argp) 1772 { 1773 struct btrfs_ioctl_search_args __user *uargs = argp; 1774 struct btrfs_ioctl_search_key sk; 1775 int ret; 1776 u64 buf_size; 1777 1778 if (!capable(CAP_SYS_ADMIN)) 1779 return -EPERM; 1780 1781 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1782 return -EFAULT; 1783 1784 buf_size = sizeof(uargs->buf); 1785 1786 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1787 1788 /* 1789 * In the origin implementation an overflow is handled by returning a 1790 * search header with a len of zero, so reset ret. 1791 */ 1792 if (ret == -EOVERFLOW) 1793 ret = 0; 1794 1795 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1796 ret = -EFAULT; 1797 return ret; 1798 } 1799 1800 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1801 void __user *argp) 1802 { 1803 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1804 struct btrfs_ioctl_search_args_v2 args; 1805 int ret; 1806 u64 buf_size; 1807 const u64 buf_limit = SZ_16M; 1808 1809 if (!capable(CAP_SYS_ADMIN)) 1810 return -EPERM; 1811 1812 /* copy search header and buffer size */ 1813 if (copy_from_user(&args, uarg, sizeof(args))) 1814 return -EFAULT; 1815 1816 buf_size = args.buf_size; 1817 1818 /* limit result size to 16MB */ 1819 if (buf_size > buf_limit) 1820 buf_size = buf_limit; 1821 1822 ret = search_ioctl(inode, &args.key, &buf_size, 1823 (char __user *)(&uarg->buf[0])); 1824 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1825 ret = -EFAULT; 1826 else if (ret == -EOVERFLOW && 1827 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1828 ret = -EFAULT; 1829 1830 return ret; 1831 } 1832 1833 /* 1834 * Search INODE_REFs to identify path name of 'dirid' directory 1835 * in a 'tree_id' tree. and sets path name to 'name'. 1836 */ 1837 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1838 u64 tree_id, u64 dirid, char *name) 1839 { 1840 struct btrfs_root *root; 1841 struct btrfs_key key; 1842 char *ptr; 1843 int ret = -1; 1844 int slot; 1845 int len; 1846 int total_len = 0; 1847 struct btrfs_inode_ref *iref; 1848 struct extent_buffer *l; 1849 struct btrfs_path *path; 1850 1851 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1852 name[0]='\0'; 1853 return 0; 1854 } 1855 1856 path = btrfs_alloc_path(); 1857 if (!path) 1858 return -ENOMEM; 1859 1860 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1861 1862 root = btrfs_get_fs_root(info, tree_id, true); 1863 if (IS_ERR(root)) { 1864 ret = PTR_ERR(root); 1865 root = NULL; 1866 goto out; 1867 } 1868 1869 key.objectid = dirid; 1870 key.type = BTRFS_INODE_REF_KEY; 1871 key.offset = (u64)-1; 1872 1873 while (1) { 1874 ret = btrfs_search_backwards(root, &key, path); 1875 if (ret < 0) 1876 goto out; 1877 else if (ret > 0) { 1878 ret = -ENOENT; 1879 goto out; 1880 } 1881 1882 l = path->nodes[0]; 1883 slot = path->slots[0]; 1884 1885 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1886 len = btrfs_inode_ref_name_len(l, iref); 1887 ptr -= len + 1; 1888 total_len += len + 1; 1889 if (ptr < name) { 1890 ret = -ENAMETOOLONG; 1891 goto out; 1892 } 1893 1894 *(ptr + len) = '/'; 1895 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1896 1897 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1898 break; 1899 1900 btrfs_release_path(path); 1901 key.objectid = key.offset; 1902 key.offset = (u64)-1; 1903 dirid = key.objectid; 1904 } 1905 memmove(name, ptr, total_len); 1906 name[total_len] = '\0'; 1907 ret = 0; 1908 out: 1909 btrfs_put_root(root); 1910 btrfs_free_path(path); 1911 return ret; 1912 } 1913 1914 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1915 struct inode *inode, 1916 struct btrfs_ioctl_ino_lookup_user_args *args) 1917 { 1918 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1919 u64 upper_limit = btrfs_ino(BTRFS_I(inode)); 1920 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root); 1921 u64 dirid = args->dirid; 1922 unsigned long item_off; 1923 unsigned long item_len; 1924 struct btrfs_inode_ref *iref; 1925 struct btrfs_root_ref *rref; 1926 struct btrfs_root *root = NULL; 1927 struct btrfs_path *path; 1928 struct btrfs_key key, key2; 1929 struct extent_buffer *leaf; 1930 struct inode *temp_inode; 1931 char *ptr; 1932 int slot; 1933 int len; 1934 int total_len = 0; 1935 int ret; 1936 1937 path = btrfs_alloc_path(); 1938 if (!path) 1939 return -ENOMEM; 1940 1941 /* 1942 * If the bottom subvolume does not exist directly under upper_limit, 1943 * construct the path in from the bottom up. 1944 */ 1945 if (dirid != upper_limit) { 1946 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1947 1948 root = btrfs_get_fs_root(fs_info, treeid, true); 1949 if (IS_ERR(root)) { 1950 ret = PTR_ERR(root); 1951 goto out; 1952 } 1953 1954 key.objectid = dirid; 1955 key.type = BTRFS_INODE_REF_KEY; 1956 key.offset = (u64)-1; 1957 while (1) { 1958 ret = btrfs_search_backwards(root, &key, path); 1959 if (ret < 0) 1960 goto out_put; 1961 else if (ret > 0) { 1962 ret = -ENOENT; 1963 goto out_put; 1964 } 1965 1966 leaf = path->nodes[0]; 1967 slot = path->slots[0]; 1968 1969 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1970 len = btrfs_inode_ref_name_len(leaf, iref); 1971 ptr -= len + 1; 1972 total_len += len + 1; 1973 if (ptr < args->path) { 1974 ret = -ENAMETOOLONG; 1975 goto out_put; 1976 } 1977 1978 *(ptr + len) = '/'; 1979 read_extent_buffer(leaf, ptr, 1980 (unsigned long)(iref + 1), len); 1981 1982 /* Check the read+exec permission of this directory */ 1983 ret = btrfs_previous_item(root, path, dirid, 1984 BTRFS_INODE_ITEM_KEY); 1985 if (ret < 0) { 1986 goto out_put; 1987 } else if (ret > 0) { 1988 ret = -ENOENT; 1989 goto out_put; 1990 } 1991 1992 leaf = path->nodes[0]; 1993 slot = path->slots[0]; 1994 btrfs_item_key_to_cpu(leaf, &key2, slot); 1995 if (key2.objectid != dirid) { 1996 ret = -ENOENT; 1997 goto out_put; 1998 } 1999 2000 /* 2001 * We don't need the path anymore, so release it and 2002 * avoid deadlocks and lockdep warnings in case 2003 * btrfs_iget() needs to lookup the inode from its root 2004 * btree and lock the same leaf. 2005 */ 2006 btrfs_release_path(path); 2007 temp_inode = btrfs_iget(key2.objectid, root); 2008 if (IS_ERR(temp_inode)) { 2009 ret = PTR_ERR(temp_inode); 2010 goto out_put; 2011 } 2012 ret = inode_permission(idmap, temp_inode, 2013 MAY_READ | MAY_EXEC); 2014 iput(temp_inode); 2015 if (ret) { 2016 ret = -EACCES; 2017 goto out_put; 2018 } 2019 2020 if (key.offset == upper_limit) 2021 break; 2022 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2023 ret = -EACCES; 2024 goto out_put; 2025 } 2026 2027 key.objectid = key.offset; 2028 key.offset = (u64)-1; 2029 dirid = key.objectid; 2030 } 2031 2032 memmove(args->path, ptr, total_len); 2033 args->path[total_len] = '\0'; 2034 btrfs_put_root(root); 2035 root = NULL; 2036 btrfs_release_path(path); 2037 } 2038 2039 /* Get the bottom subvolume's name from ROOT_REF */ 2040 key.objectid = treeid; 2041 key.type = BTRFS_ROOT_REF_KEY; 2042 key.offset = args->treeid; 2043 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2044 if (ret < 0) { 2045 goto out; 2046 } else if (ret > 0) { 2047 ret = -ENOENT; 2048 goto out; 2049 } 2050 2051 leaf = path->nodes[0]; 2052 slot = path->slots[0]; 2053 btrfs_item_key_to_cpu(leaf, &key, slot); 2054 2055 item_off = btrfs_item_ptr_offset(leaf, slot); 2056 item_len = btrfs_item_size(leaf, slot); 2057 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2058 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2059 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2060 ret = -EINVAL; 2061 goto out; 2062 } 2063 2064 /* Copy subvolume's name */ 2065 item_off += sizeof(struct btrfs_root_ref); 2066 item_len -= sizeof(struct btrfs_root_ref); 2067 read_extent_buffer(leaf, args->name, item_off, item_len); 2068 args->name[item_len] = 0; 2069 2070 out_put: 2071 btrfs_put_root(root); 2072 out: 2073 btrfs_free_path(path); 2074 return ret; 2075 } 2076 2077 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2078 void __user *argp) 2079 { 2080 struct btrfs_ioctl_ino_lookup_args *args; 2081 int ret = 0; 2082 2083 args = memdup_user(argp, sizeof(*args)); 2084 if (IS_ERR(args)) 2085 return PTR_ERR(args); 2086 2087 /* 2088 * Unprivileged query to obtain the containing subvolume root id. The 2089 * path is reset so it's consistent with btrfs_search_path_in_tree. 2090 */ 2091 if (args->treeid == 0) 2092 args->treeid = btrfs_root_id(root); 2093 2094 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2095 args->name[0] = 0; 2096 goto out; 2097 } 2098 2099 if (!capable(CAP_SYS_ADMIN)) { 2100 ret = -EPERM; 2101 goto out; 2102 } 2103 2104 ret = btrfs_search_path_in_tree(root->fs_info, 2105 args->treeid, args->objectid, 2106 args->name); 2107 2108 out: 2109 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2110 ret = -EFAULT; 2111 2112 kfree(args); 2113 return ret; 2114 } 2115 2116 /* 2117 * Version of ino_lookup ioctl (unprivileged) 2118 * 2119 * The main differences from ino_lookup ioctl are: 2120 * 2121 * 1. Read + Exec permission will be checked using inode_permission() during 2122 * path construction. -EACCES will be returned in case of failure. 2123 * 2. Path construction will be stopped at the inode number which corresponds 2124 * to the fd with which this ioctl is called. If constructed path does not 2125 * exist under fd's inode, -EACCES will be returned. 2126 * 3. The name of bottom subvolume is also searched and filled. 2127 */ 2128 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2129 { 2130 struct btrfs_ioctl_ino_lookup_user_args *args; 2131 struct inode *inode; 2132 int ret; 2133 2134 args = memdup_user(argp, sizeof(*args)); 2135 if (IS_ERR(args)) 2136 return PTR_ERR(args); 2137 2138 inode = file_inode(file); 2139 2140 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2141 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2142 /* 2143 * The subvolume does not exist under fd with which this is 2144 * called 2145 */ 2146 kfree(args); 2147 return -EACCES; 2148 } 2149 2150 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2151 2152 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2153 ret = -EFAULT; 2154 2155 kfree(args); 2156 return ret; 2157 } 2158 2159 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2160 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2161 { 2162 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2163 struct btrfs_fs_info *fs_info; 2164 struct btrfs_root *root; 2165 struct btrfs_path *path; 2166 struct btrfs_key key; 2167 struct btrfs_root_item *root_item; 2168 struct btrfs_root_ref *rref; 2169 struct extent_buffer *leaf; 2170 unsigned long item_off; 2171 unsigned long item_len; 2172 int slot; 2173 int ret = 0; 2174 2175 path = btrfs_alloc_path(); 2176 if (!path) 2177 return -ENOMEM; 2178 2179 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2180 if (!subvol_info) { 2181 btrfs_free_path(path); 2182 return -ENOMEM; 2183 } 2184 2185 fs_info = BTRFS_I(inode)->root->fs_info; 2186 2187 /* Get root_item of inode's subvolume */ 2188 key.objectid = btrfs_root_id(BTRFS_I(inode)->root); 2189 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2190 if (IS_ERR(root)) { 2191 ret = PTR_ERR(root); 2192 goto out_free; 2193 } 2194 root_item = &root->root_item; 2195 2196 subvol_info->treeid = key.objectid; 2197 2198 subvol_info->generation = btrfs_root_generation(root_item); 2199 subvol_info->flags = btrfs_root_flags(root_item); 2200 2201 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2202 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2203 BTRFS_UUID_SIZE); 2204 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2205 BTRFS_UUID_SIZE); 2206 2207 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2208 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2209 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2210 2211 subvol_info->otransid = btrfs_root_otransid(root_item); 2212 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2213 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2214 2215 subvol_info->stransid = btrfs_root_stransid(root_item); 2216 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2217 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2218 2219 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2220 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2221 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2222 2223 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2224 /* Search root tree for ROOT_BACKREF of this subvolume */ 2225 key.type = BTRFS_ROOT_BACKREF_KEY; 2226 key.offset = 0; 2227 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2228 if (ret < 0) { 2229 goto out; 2230 } else if (path->slots[0] >= 2231 btrfs_header_nritems(path->nodes[0])) { 2232 ret = btrfs_next_leaf(fs_info->tree_root, path); 2233 if (ret < 0) { 2234 goto out; 2235 } else if (ret > 0) { 2236 ret = -EUCLEAN; 2237 goto out; 2238 } 2239 } 2240 2241 leaf = path->nodes[0]; 2242 slot = path->slots[0]; 2243 btrfs_item_key_to_cpu(leaf, &key, slot); 2244 if (key.objectid == subvol_info->treeid && 2245 key.type == BTRFS_ROOT_BACKREF_KEY) { 2246 subvol_info->parent_id = key.offset; 2247 2248 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2249 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2250 2251 item_off = btrfs_item_ptr_offset(leaf, slot) 2252 + sizeof(struct btrfs_root_ref); 2253 item_len = btrfs_item_size(leaf, slot) 2254 - sizeof(struct btrfs_root_ref); 2255 read_extent_buffer(leaf, subvol_info->name, 2256 item_off, item_len); 2257 } else { 2258 ret = -ENOENT; 2259 goto out; 2260 } 2261 } 2262 2263 btrfs_free_path(path); 2264 path = NULL; 2265 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2266 ret = -EFAULT; 2267 2268 out: 2269 btrfs_put_root(root); 2270 out_free: 2271 btrfs_free_path(path); 2272 kfree(subvol_info); 2273 return ret; 2274 } 2275 2276 /* 2277 * Return ROOT_REF information of the subvolume containing this inode 2278 * except the subvolume name. 2279 */ 2280 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2281 void __user *argp) 2282 { 2283 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2284 struct btrfs_root_ref *rref; 2285 struct btrfs_path *path; 2286 struct btrfs_key key; 2287 struct extent_buffer *leaf; 2288 u64 objectid; 2289 int slot; 2290 int ret; 2291 u8 found; 2292 2293 path = btrfs_alloc_path(); 2294 if (!path) 2295 return -ENOMEM; 2296 2297 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2298 if (IS_ERR(rootrefs)) { 2299 btrfs_free_path(path); 2300 return PTR_ERR(rootrefs); 2301 } 2302 2303 objectid = btrfs_root_id(root); 2304 key.objectid = objectid; 2305 key.type = BTRFS_ROOT_REF_KEY; 2306 key.offset = rootrefs->min_treeid; 2307 found = 0; 2308 2309 root = root->fs_info->tree_root; 2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2311 if (ret < 0) { 2312 goto out; 2313 } else if (path->slots[0] >= 2314 btrfs_header_nritems(path->nodes[0])) { 2315 ret = btrfs_next_leaf(root, path); 2316 if (ret < 0) { 2317 goto out; 2318 } else if (ret > 0) { 2319 ret = -EUCLEAN; 2320 goto out; 2321 } 2322 } 2323 while (1) { 2324 leaf = path->nodes[0]; 2325 slot = path->slots[0]; 2326 2327 btrfs_item_key_to_cpu(leaf, &key, slot); 2328 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2329 ret = 0; 2330 goto out; 2331 } 2332 2333 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2334 ret = -EOVERFLOW; 2335 goto out; 2336 } 2337 2338 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2339 rootrefs->rootref[found].treeid = key.offset; 2340 rootrefs->rootref[found].dirid = 2341 btrfs_root_ref_dirid(leaf, rref); 2342 found++; 2343 2344 ret = btrfs_next_item(root, path); 2345 if (ret < 0) { 2346 goto out; 2347 } else if (ret > 0) { 2348 ret = -EUCLEAN; 2349 goto out; 2350 } 2351 } 2352 2353 out: 2354 btrfs_free_path(path); 2355 2356 if (!ret || ret == -EOVERFLOW) { 2357 rootrefs->num_items = found; 2358 /* update min_treeid for next search */ 2359 if (found) 2360 rootrefs->min_treeid = 2361 rootrefs->rootref[found - 1].treeid + 1; 2362 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2363 ret = -EFAULT; 2364 } 2365 2366 kfree(rootrefs); 2367 2368 return ret; 2369 } 2370 2371 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2372 void __user *arg, 2373 bool destroy_v2) 2374 { 2375 struct dentry *parent = file->f_path.dentry; 2376 struct dentry *dentry; 2377 struct inode *dir = d_inode(parent); 2378 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 2379 struct inode *inode; 2380 struct btrfs_root *root = BTRFS_I(dir)->root; 2381 struct btrfs_root *dest = NULL; 2382 struct btrfs_ioctl_vol_args *vol_args = NULL; 2383 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2384 struct mnt_idmap *idmap = file_mnt_idmap(file); 2385 char *subvol_name, *subvol_name_ptr = NULL; 2386 int subvol_namelen; 2387 int ret = 0; 2388 bool destroy_parent = false; 2389 2390 /* We don't support snapshots with extent tree v2 yet. */ 2391 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2392 btrfs_err(fs_info, 2393 "extent tree v2 doesn't support snapshot deletion yet"); 2394 return -EOPNOTSUPP; 2395 } 2396 2397 if (destroy_v2) { 2398 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2399 if (IS_ERR(vol_args2)) 2400 return PTR_ERR(vol_args2); 2401 2402 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2403 ret = -EOPNOTSUPP; 2404 goto out; 2405 } 2406 2407 /* 2408 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2409 * name, same as v1 currently does. 2410 */ 2411 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2412 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2); 2413 if (ret < 0) 2414 goto out; 2415 subvol_name = vol_args2->name; 2416 2417 ret = mnt_want_write_file(file); 2418 if (ret) 2419 goto out; 2420 } else { 2421 struct inode *old_dir; 2422 2423 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2424 ret = -EINVAL; 2425 goto out; 2426 } 2427 2428 ret = mnt_want_write_file(file); 2429 if (ret) 2430 goto out; 2431 2432 dentry = btrfs_get_dentry(fs_info->sb, 2433 BTRFS_FIRST_FREE_OBJECTID, 2434 vol_args2->subvolid, 0); 2435 if (IS_ERR(dentry)) { 2436 ret = PTR_ERR(dentry); 2437 goto out_drop_write; 2438 } 2439 2440 /* 2441 * Change the default parent since the subvolume being 2442 * deleted can be outside of the current mount point. 2443 */ 2444 parent = btrfs_get_parent(dentry); 2445 2446 /* 2447 * At this point dentry->d_name can point to '/' if the 2448 * subvolume we want to destroy is outsite of the 2449 * current mount point, so we need to release the 2450 * current dentry and execute the lookup to return a new 2451 * one with ->d_name pointing to the 2452 * <mount point>/subvol_name. 2453 */ 2454 dput(dentry); 2455 if (IS_ERR(parent)) { 2456 ret = PTR_ERR(parent); 2457 goto out_drop_write; 2458 } 2459 old_dir = dir; 2460 dir = d_inode(parent); 2461 2462 /* 2463 * If v2 was used with SPEC_BY_ID, a new parent was 2464 * allocated since the subvolume can be outside of the 2465 * current mount point. Later on we need to release this 2466 * new parent dentry. 2467 */ 2468 destroy_parent = true; 2469 2470 /* 2471 * On idmapped mounts, deletion via subvolid is 2472 * restricted to subvolumes that are immediate 2473 * ancestors of the inode referenced by the file 2474 * descriptor in the ioctl. Otherwise the idmapping 2475 * could potentially be abused to delete subvolumes 2476 * anywhere in the filesystem the user wouldn't be able 2477 * to delete without an idmapped mount. 2478 */ 2479 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2480 ret = -EOPNOTSUPP; 2481 goto free_parent; 2482 } 2483 2484 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2485 fs_info, vol_args2->subvolid); 2486 if (IS_ERR(subvol_name_ptr)) { 2487 ret = PTR_ERR(subvol_name_ptr); 2488 goto free_parent; 2489 } 2490 /* subvol_name_ptr is already nul terminated */ 2491 subvol_name = (char *)kbasename(subvol_name_ptr); 2492 } 2493 } else { 2494 vol_args = memdup_user(arg, sizeof(*vol_args)); 2495 if (IS_ERR(vol_args)) 2496 return PTR_ERR(vol_args); 2497 2498 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2499 if (ret < 0) 2500 goto out; 2501 2502 subvol_name = vol_args->name; 2503 2504 ret = mnt_want_write_file(file); 2505 if (ret) 2506 goto out; 2507 } 2508 2509 subvol_namelen = strlen(subvol_name); 2510 2511 if (strchr(subvol_name, '/') || 2512 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2513 ret = -EINVAL; 2514 goto free_subvol_name; 2515 } 2516 2517 if (!S_ISDIR(dir->i_mode)) { 2518 ret = -ENOTDIR; 2519 goto free_subvol_name; 2520 } 2521 2522 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2523 if (ret == -EINTR) 2524 goto free_subvol_name; 2525 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2526 if (IS_ERR(dentry)) { 2527 ret = PTR_ERR(dentry); 2528 goto out_unlock_dir; 2529 } 2530 2531 if (d_really_is_negative(dentry)) { 2532 ret = -ENOENT; 2533 goto out_dput; 2534 } 2535 2536 inode = d_inode(dentry); 2537 dest = BTRFS_I(inode)->root; 2538 if (!capable(CAP_SYS_ADMIN)) { 2539 /* 2540 * Regular user. Only allow this with a special mount 2541 * option, when the user has write+exec access to the 2542 * subvol root, and when rmdir(2) would have been 2543 * allowed. 2544 * 2545 * Note that this is _not_ check that the subvol is 2546 * empty or doesn't contain data that we wouldn't 2547 * otherwise be able to delete. 2548 * 2549 * Users who want to delete empty subvols should try 2550 * rmdir(2). 2551 */ 2552 ret = -EPERM; 2553 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2554 goto out_dput; 2555 2556 /* 2557 * Do not allow deletion if the parent dir is the same 2558 * as the dir to be deleted. That means the ioctl 2559 * must be called on the dentry referencing the root 2560 * of the subvol, not a random directory contained 2561 * within it. 2562 */ 2563 ret = -EINVAL; 2564 if (root == dest) 2565 goto out_dput; 2566 2567 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2568 if (ret) 2569 goto out_dput; 2570 } 2571 2572 /* check if subvolume may be deleted by a user */ 2573 ret = btrfs_may_delete(idmap, dir, dentry, 1); 2574 if (ret) 2575 goto out_dput; 2576 2577 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2578 ret = -EINVAL; 2579 goto out_dput; 2580 } 2581 2582 btrfs_inode_lock(BTRFS_I(inode), 0); 2583 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2584 btrfs_inode_unlock(BTRFS_I(inode), 0); 2585 if (!ret) 2586 d_delete_notify(dir, dentry); 2587 2588 out_dput: 2589 dput(dentry); 2590 out_unlock_dir: 2591 btrfs_inode_unlock(BTRFS_I(dir), 0); 2592 free_subvol_name: 2593 kfree(subvol_name_ptr); 2594 free_parent: 2595 if (destroy_parent) 2596 dput(parent); 2597 out_drop_write: 2598 mnt_drop_write_file(file); 2599 out: 2600 kfree(vol_args2); 2601 kfree(vol_args); 2602 return ret; 2603 } 2604 2605 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2606 { 2607 struct inode *inode = file_inode(file); 2608 struct btrfs_root *root = BTRFS_I(inode)->root; 2609 struct btrfs_ioctl_defrag_range_args range = {0}; 2610 int ret; 2611 2612 ret = mnt_want_write_file(file); 2613 if (ret) 2614 return ret; 2615 2616 if (btrfs_root_readonly(root)) { 2617 ret = -EROFS; 2618 goto out; 2619 } 2620 2621 switch (inode->i_mode & S_IFMT) { 2622 case S_IFDIR: 2623 if (!capable(CAP_SYS_ADMIN)) { 2624 ret = -EPERM; 2625 goto out; 2626 } 2627 ret = btrfs_defrag_root(root); 2628 break; 2629 case S_IFREG: 2630 /* 2631 * Note that this does not check the file descriptor for write 2632 * access. This prevents defragmenting executables that are 2633 * running and allows defrag on files open in read-only mode. 2634 */ 2635 if (!capable(CAP_SYS_ADMIN) && 2636 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2637 ret = -EPERM; 2638 goto out; 2639 } 2640 2641 if (argp) { 2642 if (copy_from_user(&range, argp, sizeof(range))) { 2643 ret = -EFAULT; 2644 goto out; 2645 } 2646 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2647 ret = -EOPNOTSUPP; 2648 goto out; 2649 } 2650 /* compression requires us to start the IO */ 2651 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2652 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2653 range.extent_thresh = (u32)-1; 2654 } 2655 } else { 2656 /* the rest are all set to zero by kzalloc */ 2657 range.len = (u64)-1; 2658 } 2659 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2660 &range, BTRFS_OLDEST_GENERATION, 0); 2661 if (ret > 0) 2662 ret = 0; 2663 break; 2664 default: 2665 ret = -EINVAL; 2666 } 2667 out: 2668 mnt_drop_write_file(file); 2669 return ret; 2670 } 2671 2672 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2673 { 2674 struct btrfs_ioctl_vol_args *vol_args; 2675 bool restore_op = false; 2676 int ret; 2677 2678 if (!capable(CAP_SYS_ADMIN)) 2679 return -EPERM; 2680 2681 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2682 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2683 return -EINVAL; 2684 } 2685 2686 if (fs_info->fs_devices->temp_fsid) { 2687 btrfs_err(fs_info, 2688 "device add not supported on cloned temp-fsid mount"); 2689 return -EINVAL; 2690 } 2691 2692 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2693 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2694 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2695 2696 /* 2697 * We can do the device add because we have a paused balanced, 2698 * change the exclusive op type and remember we should bring 2699 * back the paused balance 2700 */ 2701 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2702 btrfs_exclop_start_unlock(fs_info); 2703 restore_op = true; 2704 } 2705 2706 vol_args = memdup_user(arg, sizeof(*vol_args)); 2707 if (IS_ERR(vol_args)) { 2708 ret = PTR_ERR(vol_args); 2709 goto out; 2710 } 2711 2712 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2713 if (ret < 0) 2714 goto out_free; 2715 2716 ret = btrfs_init_new_device(fs_info, vol_args->name); 2717 2718 if (!ret) 2719 btrfs_info(fs_info, "disk added %s", vol_args->name); 2720 2721 out_free: 2722 kfree(vol_args); 2723 out: 2724 if (restore_op) 2725 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2726 else 2727 btrfs_exclop_finish(fs_info); 2728 return ret; 2729 } 2730 2731 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2732 { 2733 BTRFS_DEV_LOOKUP_ARGS(args); 2734 struct inode *inode = file_inode(file); 2735 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2736 struct btrfs_ioctl_vol_args_v2 *vol_args; 2737 struct file *bdev_file = NULL; 2738 int ret; 2739 bool cancel = false; 2740 2741 if (!capable(CAP_SYS_ADMIN)) 2742 return -EPERM; 2743 2744 vol_args = memdup_user(arg, sizeof(*vol_args)); 2745 if (IS_ERR(vol_args)) 2746 return PTR_ERR(vol_args); 2747 2748 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2749 ret = -EOPNOTSUPP; 2750 goto out; 2751 } 2752 2753 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 2754 if (ret < 0) 2755 goto out; 2756 2757 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2758 args.devid = vol_args->devid; 2759 } else if (!strcmp("cancel", vol_args->name)) { 2760 cancel = true; 2761 } else { 2762 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2763 if (ret) 2764 goto out; 2765 } 2766 2767 ret = mnt_want_write_file(file); 2768 if (ret) 2769 goto out; 2770 2771 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2772 cancel); 2773 if (ret) 2774 goto err_drop; 2775 2776 /* Exclusive operation is now claimed */ 2777 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2778 2779 btrfs_exclop_finish(fs_info); 2780 2781 if (!ret) { 2782 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2783 btrfs_info(fs_info, "device deleted: id %llu", 2784 vol_args->devid); 2785 else 2786 btrfs_info(fs_info, "device deleted: %s", 2787 vol_args->name); 2788 } 2789 err_drop: 2790 mnt_drop_write_file(file); 2791 if (bdev_file) 2792 fput(bdev_file); 2793 out: 2794 btrfs_put_dev_args_from_path(&args); 2795 kfree(vol_args); 2796 return ret; 2797 } 2798 2799 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2800 { 2801 BTRFS_DEV_LOOKUP_ARGS(args); 2802 struct inode *inode = file_inode(file); 2803 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2804 struct btrfs_ioctl_vol_args *vol_args; 2805 struct file *bdev_file = NULL; 2806 int ret; 2807 bool cancel = false; 2808 2809 if (!capable(CAP_SYS_ADMIN)) 2810 return -EPERM; 2811 2812 vol_args = memdup_user(arg, sizeof(*vol_args)); 2813 if (IS_ERR(vol_args)) 2814 return PTR_ERR(vol_args); 2815 2816 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2817 if (ret < 0) 2818 goto out_free; 2819 2820 if (!strcmp("cancel", vol_args->name)) { 2821 cancel = true; 2822 } else { 2823 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2824 if (ret) 2825 goto out; 2826 } 2827 2828 ret = mnt_want_write_file(file); 2829 if (ret) 2830 goto out; 2831 2832 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2833 cancel); 2834 if (ret == 0) { 2835 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2836 if (!ret) 2837 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2838 btrfs_exclop_finish(fs_info); 2839 } 2840 2841 mnt_drop_write_file(file); 2842 if (bdev_file) 2843 fput(bdev_file); 2844 out: 2845 btrfs_put_dev_args_from_path(&args); 2846 out_free: 2847 kfree(vol_args); 2848 return ret; 2849 } 2850 2851 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2852 void __user *arg) 2853 { 2854 struct btrfs_ioctl_fs_info_args *fi_args; 2855 struct btrfs_device *device; 2856 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2857 u64 flags_in; 2858 int ret = 0; 2859 2860 fi_args = memdup_user(arg, sizeof(*fi_args)); 2861 if (IS_ERR(fi_args)) 2862 return PTR_ERR(fi_args); 2863 2864 flags_in = fi_args->flags; 2865 memset(fi_args, 0, sizeof(*fi_args)); 2866 2867 rcu_read_lock(); 2868 fi_args->num_devices = fs_devices->num_devices; 2869 2870 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2871 if (device->devid > fi_args->max_id) 2872 fi_args->max_id = device->devid; 2873 } 2874 rcu_read_unlock(); 2875 2876 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2877 fi_args->nodesize = fs_info->nodesize; 2878 fi_args->sectorsize = fs_info->sectorsize; 2879 fi_args->clone_alignment = fs_info->sectorsize; 2880 2881 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2882 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2883 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2884 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2885 } 2886 2887 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2888 fi_args->generation = btrfs_get_fs_generation(fs_info); 2889 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2890 } 2891 2892 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2893 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2894 sizeof(fi_args->metadata_uuid)); 2895 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2896 } 2897 2898 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2899 ret = -EFAULT; 2900 2901 kfree(fi_args); 2902 return ret; 2903 } 2904 2905 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2906 void __user *arg) 2907 { 2908 BTRFS_DEV_LOOKUP_ARGS(args); 2909 struct btrfs_ioctl_dev_info_args *di_args; 2910 struct btrfs_device *dev; 2911 int ret = 0; 2912 2913 di_args = memdup_user(arg, sizeof(*di_args)); 2914 if (IS_ERR(di_args)) 2915 return PTR_ERR(di_args); 2916 2917 args.devid = di_args->devid; 2918 if (!btrfs_is_empty_uuid(di_args->uuid)) 2919 args.uuid = di_args->uuid; 2920 2921 rcu_read_lock(); 2922 dev = btrfs_find_device(fs_info->fs_devices, &args); 2923 if (!dev) { 2924 ret = -ENODEV; 2925 goto out; 2926 } 2927 2928 di_args->devid = dev->devid; 2929 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2930 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2931 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2932 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2933 if (dev->name) 2934 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2935 else 2936 di_args->path[0] = '\0'; 2937 2938 out: 2939 rcu_read_unlock(); 2940 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2941 ret = -EFAULT; 2942 2943 kfree(di_args); 2944 return ret; 2945 } 2946 2947 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2948 { 2949 struct inode *inode = file_inode(file); 2950 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2951 struct btrfs_root *root = BTRFS_I(inode)->root; 2952 struct btrfs_root *new_root; 2953 struct btrfs_dir_item *di; 2954 struct btrfs_trans_handle *trans; 2955 struct btrfs_path *path = NULL; 2956 struct btrfs_disk_key disk_key; 2957 struct fscrypt_str name = FSTR_INIT("default", 7); 2958 u64 objectid = 0; 2959 u64 dir_id; 2960 int ret; 2961 2962 if (!capable(CAP_SYS_ADMIN)) 2963 return -EPERM; 2964 2965 ret = mnt_want_write_file(file); 2966 if (ret) 2967 return ret; 2968 2969 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2970 ret = -EFAULT; 2971 goto out; 2972 } 2973 2974 if (!objectid) 2975 objectid = BTRFS_FS_TREE_OBJECTID; 2976 2977 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2978 if (IS_ERR(new_root)) { 2979 ret = PTR_ERR(new_root); 2980 goto out; 2981 } 2982 if (!is_fstree(btrfs_root_id(new_root))) { 2983 ret = -ENOENT; 2984 goto out_free; 2985 } 2986 2987 path = btrfs_alloc_path(); 2988 if (!path) { 2989 ret = -ENOMEM; 2990 goto out_free; 2991 } 2992 2993 trans = btrfs_start_transaction(root, 1); 2994 if (IS_ERR(trans)) { 2995 ret = PTR_ERR(trans); 2996 goto out_free; 2997 } 2998 2999 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3000 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3001 dir_id, &name, 1); 3002 if (IS_ERR_OR_NULL(di)) { 3003 btrfs_release_path(path); 3004 btrfs_end_transaction(trans); 3005 btrfs_err(fs_info, 3006 "Umm, you don't have the default diritem, this isn't going to work"); 3007 ret = -ENOENT; 3008 goto out_free; 3009 } 3010 3011 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3012 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3013 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 3014 btrfs_release_path(path); 3015 3016 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3017 btrfs_end_transaction(trans); 3018 out_free: 3019 btrfs_put_root(new_root); 3020 btrfs_free_path(path); 3021 out: 3022 mnt_drop_write_file(file); 3023 return ret; 3024 } 3025 3026 static void get_block_group_info(struct list_head *groups_list, 3027 struct btrfs_ioctl_space_info *space) 3028 { 3029 struct btrfs_block_group *block_group; 3030 3031 space->total_bytes = 0; 3032 space->used_bytes = 0; 3033 space->flags = 0; 3034 list_for_each_entry(block_group, groups_list, list) { 3035 space->flags = block_group->flags; 3036 space->total_bytes += block_group->length; 3037 space->used_bytes += block_group->used; 3038 } 3039 } 3040 3041 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3042 void __user *arg) 3043 { 3044 struct btrfs_ioctl_space_args space_args = { 0 }; 3045 struct btrfs_ioctl_space_info space; 3046 struct btrfs_ioctl_space_info *dest; 3047 struct btrfs_ioctl_space_info *dest_orig; 3048 struct btrfs_ioctl_space_info __user *user_dest; 3049 struct btrfs_space_info *info; 3050 static const u64 types[] = { 3051 BTRFS_BLOCK_GROUP_DATA, 3052 BTRFS_BLOCK_GROUP_SYSTEM, 3053 BTRFS_BLOCK_GROUP_METADATA, 3054 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3055 }; 3056 int num_types = 4; 3057 int alloc_size; 3058 int ret = 0; 3059 u64 slot_count = 0; 3060 int i, c; 3061 3062 if (copy_from_user(&space_args, 3063 (struct btrfs_ioctl_space_args __user *)arg, 3064 sizeof(space_args))) 3065 return -EFAULT; 3066 3067 for (i = 0; i < num_types; i++) { 3068 struct btrfs_space_info *tmp; 3069 3070 info = NULL; 3071 list_for_each_entry(tmp, &fs_info->space_info, list) { 3072 if (tmp->flags == types[i]) { 3073 info = tmp; 3074 break; 3075 } 3076 } 3077 3078 if (!info) 3079 continue; 3080 3081 down_read(&info->groups_sem); 3082 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3083 if (!list_empty(&info->block_groups[c])) 3084 slot_count++; 3085 } 3086 up_read(&info->groups_sem); 3087 } 3088 3089 /* 3090 * Global block reserve, exported as a space_info 3091 */ 3092 slot_count++; 3093 3094 /* space_slots == 0 means they are asking for a count */ 3095 if (space_args.space_slots == 0) { 3096 space_args.total_spaces = slot_count; 3097 goto out; 3098 } 3099 3100 slot_count = min_t(u64, space_args.space_slots, slot_count); 3101 3102 alloc_size = sizeof(*dest) * slot_count; 3103 3104 /* we generally have at most 6 or so space infos, one for each raid 3105 * level. So, a whole page should be more than enough for everyone 3106 */ 3107 if (alloc_size > PAGE_SIZE) 3108 return -ENOMEM; 3109 3110 space_args.total_spaces = 0; 3111 dest = kmalloc(alloc_size, GFP_KERNEL); 3112 if (!dest) 3113 return -ENOMEM; 3114 dest_orig = dest; 3115 3116 /* now we have a buffer to copy into */ 3117 for (i = 0; i < num_types; i++) { 3118 struct btrfs_space_info *tmp; 3119 3120 if (!slot_count) 3121 break; 3122 3123 info = NULL; 3124 list_for_each_entry(tmp, &fs_info->space_info, list) { 3125 if (tmp->flags == types[i]) { 3126 info = tmp; 3127 break; 3128 } 3129 } 3130 3131 if (!info) 3132 continue; 3133 down_read(&info->groups_sem); 3134 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3135 if (!list_empty(&info->block_groups[c])) { 3136 get_block_group_info(&info->block_groups[c], 3137 &space); 3138 memcpy(dest, &space, sizeof(space)); 3139 dest++; 3140 space_args.total_spaces++; 3141 slot_count--; 3142 } 3143 if (!slot_count) 3144 break; 3145 } 3146 up_read(&info->groups_sem); 3147 } 3148 3149 /* 3150 * Add global block reserve 3151 */ 3152 if (slot_count) { 3153 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3154 3155 spin_lock(&block_rsv->lock); 3156 space.total_bytes = block_rsv->size; 3157 space.used_bytes = block_rsv->size - block_rsv->reserved; 3158 spin_unlock(&block_rsv->lock); 3159 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3160 memcpy(dest, &space, sizeof(space)); 3161 space_args.total_spaces++; 3162 } 3163 3164 user_dest = (struct btrfs_ioctl_space_info __user *) 3165 (arg + sizeof(struct btrfs_ioctl_space_args)); 3166 3167 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3168 ret = -EFAULT; 3169 3170 kfree(dest_orig); 3171 out: 3172 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3173 ret = -EFAULT; 3174 3175 return ret; 3176 } 3177 3178 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3179 void __user *argp) 3180 { 3181 struct btrfs_trans_handle *trans; 3182 u64 transid; 3183 3184 /* 3185 * Start orphan cleanup here for the given root in case it hasn't been 3186 * started already by other means. Errors are handled in the other 3187 * functions during transaction commit. 3188 */ 3189 btrfs_orphan_cleanup(root); 3190 3191 trans = btrfs_attach_transaction_barrier(root); 3192 if (IS_ERR(trans)) { 3193 if (PTR_ERR(trans) != -ENOENT) 3194 return PTR_ERR(trans); 3195 3196 /* No running transaction, don't bother */ 3197 transid = btrfs_get_last_trans_committed(root->fs_info); 3198 goto out; 3199 } 3200 transid = trans->transid; 3201 btrfs_commit_transaction_async(trans); 3202 out: 3203 if (argp) 3204 if (copy_to_user(argp, &transid, sizeof(transid))) 3205 return -EFAULT; 3206 return 0; 3207 } 3208 3209 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3210 void __user *argp) 3211 { 3212 /* By default wait for the current transaction. */ 3213 u64 transid = 0; 3214 3215 if (argp) 3216 if (copy_from_user(&transid, argp, sizeof(transid))) 3217 return -EFAULT; 3218 3219 return btrfs_wait_for_commit(fs_info, transid); 3220 } 3221 3222 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3223 { 3224 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 3225 struct btrfs_ioctl_scrub_args *sa; 3226 int ret; 3227 3228 if (!capable(CAP_SYS_ADMIN)) 3229 return -EPERM; 3230 3231 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3232 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3233 return -EINVAL; 3234 } 3235 3236 sa = memdup_user(arg, sizeof(*sa)); 3237 if (IS_ERR(sa)) 3238 return PTR_ERR(sa); 3239 3240 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3241 ret = -EOPNOTSUPP; 3242 goto out; 3243 } 3244 3245 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3246 ret = mnt_want_write_file(file); 3247 if (ret) 3248 goto out; 3249 } 3250 3251 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3252 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3253 0); 3254 3255 /* 3256 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3257 * error. This is important as it allows user space to know how much 3258 * progress scrub has done. For example, if scrub is canceled we get 3259 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3260 * space. Later user space can inspect the progress from the structure 3261 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3262 * previously (btrfs-progs does this). 3263 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3264 * then return -EFAULT to signal the structure was not copied or it may 3265 * be corrupt and unreliable due to a partial copy. 3266 */ 3267 if (copy_to_user(arg, sa, sizeof(*sa))) 3268 ret = -EFAULT; 3269 3270 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3271 mnt_drop_write_file(file); 3272 out: 3273 kfree(sa); 3274 return ret; 3275 } 3276 3277 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3278 { 3279 if (!capable(CAP_SYS_ADMIN)) 3280 return -EPERM; 3281 3282 return btrfs_scrub_cancel(fs_info); 3283 } 3284 3285 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3286 void __user *arg) 3287 { 3288 struct btrfs_ioctl_scrub_args *sa; 3289 int ret; 3290 3291 if (!capable(CAP_SYS_ADMIN)) 3292 return -EPERM; 3293 3294 sa = memdup_user(arg, sizeof(*sa)); 3295 if (IS_ERR(sa)) 3296 return PTR_ERR(sa); 3297 3298 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3299 3300 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3301 ret = -EFAULT; 3302 3303 kfree(sa); 3304 return ret; 3305 } 3306 3307 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3308 void __user *arg) 3309 { 3310 struct btrfs_ioctl_get_dev_stats *sa; 3311 int ret; 3312 3313 sa = memdup_user(arg, sizeof(*sa)); 3314 if (IS_ERR(sa)) 3315 return PTR_ERR(sa); 3316 3317 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3318 kfree(sa); 3319 return -EPERM; 3320 } 3321 3322 ret = btrfs_get_dev_stats(fs_info, sa); 3323 3324 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3325 ret = -EFAULT; 3326 3327 kfree(sa); 3328 return ret; 3329 } 3330 3331 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3332 void __user *arg) 3333 { 3334 struct btrfs_ioctl_dev_replace_args *p; 3335 int ret; 3336 3337 if (!capable(CAP_SYS_ADMIN)) 3338 return -EPERM; 3339 3340 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3341 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3342 return -EINVAL; 3343 } 3344 3345 p = memdup_user(arg, sizeof(*p)); 3346 if (IS_ERR(p)) 3347 return PTR_ERR(p); 3348 3349 switch (p->cmd) { 3350 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3351 if (sb_rdonly(fs_info->sb)) { 3352 ret = -EROFS; 3353 goto out; 3354 } 3355 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3356 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3357 } else { 3358 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3359 btrfs_exclop_finish(fs_info); 3360 } 3361 break; 3362 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3363 btrfs_dev_replace_status(fs_info, p); 3364 ret = 0; 3365 break; 3366 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3367 p->result = btrfs_dev_replace_cancel(fs_info); 3368 ret = 0; 3369 break; 3370 default: 3371 ret = -EINVAL; 3372 break; 3373 } 3374 3375 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3376 ret = -EFAULT; 3377 out: 3378 kfree(p); 3379 return ret; 3380 } 3381 3382 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3383 { 3384 int ret = 0; 3385 int i; 3386 u64 rel_ptr; 3387 int size; 3388 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3389 struct inode_fs_paths *ipath = NULL; 3390 struct btrfs_path *path; 3391 3392 if (!capable(CAP_DAC_READ_SEARCH)) 3393 return -EPERM; 3394 3395 path = btrfs_alloc_path(); 3396 if (!path) { 3397 ret = -ENOMEM; 3398 goto out; 3399 } 3400 3401 ipa = memdup_user(arg, sizeof(*ipa)); 3402 if (IS_ERR(ipa)) { 3403 ret = PTR_ERR(ipa); 3404 ipa = NULL; 3405 goto out; 3406 } 3407 3408 size = min_t(u32, ipa->size, 4096); 3409 ipath = init_ipath(size, root, path); 3410 if (IS_ERR(ipath)) { 3411 ret = PTR_ERR(ipath); 3412 ipath = NULL; 3413 goto out; 3414 } 3415 3416 ret = paths_from_inode(ipa->inum, ipath); 3417 if (ret < 0) 3418 goto out; 3419 3420 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3421 rel_ptr = ipath->fspath->val[i] - 3422 (u64)(unsigned long)ipath->fspath->val; 3423 ipath->fspath->val[i] = rel_ptr; 3424 } 3425 3426 btrfs_free_path(path); 3427 path = NULL; 3428 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3429 ipath->fspath, size); 3430 if (ret) { 3431 ret = -EFAULT; 3432 goto out; 3433 } 3434 3435 out: 3436 btrfs_free_path(path); 3437 free_ipath(ipath); 3438 kfree(ipa); 3439 3440 return ret; 3441 } 3442 3443 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3444 void __user *arg, int version) 3445 { 3446 int ret = 0; 3447 int size; 3448 struct btrfs_ioctl_logical_ino_args *loi; 3449 struct btrfs_data_container *inodes = NULL; 3450 struct btrfs_path *path = NULL; 3451 bool ignore_offset; 3452 3453 if (!capable(CAP_SYS_ADMIN)) 3454 return -EPERM; 3455 3456 loi = memdup_user(arg, sizeof(*loi)); 3457 if (IS_ERR(loi)) 3458 return PTR_ERR(loi); 3459 3460 if (version == 1) { 3461 ignore_offset = false; 3462 size = min_t(u32, loi->size, SZ_64K); 3463 } else { 3464 /* All reserved bits must be 0 for now */ 3465 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3466 ret = -EINVAL; 3467 goto out_loi; 3468 } 3469 /* Only accept flags we have defined so far */ 3470 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3471 ret = -EINVAL; 3472 goto out_loi; 3473 } 3474 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3475 size = min_t(u32, loi->size, SZ_16M); 3476 } 3477 3478 inodes = init_data_container(size); 3479 if (IS_ERR(inodes)) { 3480 ret = PTR_ERR(inodes); 3481 goto out_loi; 3482 } 3483 3484 path = btrfs_alloc_path(); 3485 if (!path) { 3486 ret = -ENOMEM; 3487 goto out; 3488 } 3489 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3490 inodes, ignore_offset); 3491 btrfs_free_path(path); 3492 if (ret == -EINVAL) 3493 ret = -ENOENT; 3494 if (ret < 0) 3495 goto out; 3496 3497 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3498 size); 3499 if (ret) 3500 ret = -EFAULT; 3501 3502 out: 3503 kvfree(inodes); 3504 out_loi: 3505 kfree(loi); 3506 3507 return ret; 3508 } 3509 3510 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3511 struct btrfs_ioctl_balance_args *bargs) 3512 { 3513 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3514 3515 bargs->flags = bctl->flags; 3516 3517 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3518 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3519 if (atomic_read(&fs_info->balance_pause_req)) 3520 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3521 if (atomic_read(&fs_info->balance_cancel_req)) 3522 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3523 3524 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3525 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3526 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3527 3528 spin_lock(&fs_info->balance_lock); 3529 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3530 spin_unlock(&fs_info->balance_lock); 3531 } 3532 3533 /* 3534 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3535 * required. 3536 * 3537 * @fs_info: the filesystem 3538 * @excl_acquired: ptr to boolean value which is set to false in case balance 3539 * is being resumed 3540 * 3541 * Return 0 on success in which case both fs_info::balance is acquired as well 3542 * as exclusive ops are blocked. In case of failure return an error code. 3543 */ 3544 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3545 { 3546 int ret; 3547 3548 /* 3549 * Exclusive operation is locked. Three possibilities: 3550 * (1) some other op is running 3551 * (2) balance is running 3552 * (3) balance is paused -- special case (think resume) 3553 */ 3554 while (1) { 3555 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3556 *excl_acquired = true; 3557 mutex_lock(&fs_info->balance_mutex); 3558 return 0; 3559 } 3560 3561 mutex_lock(&fs_info->balance_mutex); 3562 if (fs_info->balance_ctl) { 3563 /* This is either (2) or (3) */ 3564 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3565 /* This is (2) */ 3566 ret = -EINPROGRESS; 3567 goto out_failure; 3568 3569 } else { 3570 mutex_unlock(&fs_info->balance_mutex); 3571 /* 3572 * Lock released to allow other waiters to 3573 * continue, we'll reexamine the status again. 3574 */ 3575 mutex_lock(&fs_info->balance_mutex); 3576 3577 if (fs_info->balance_ctl && 3578 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3579 /* This is (3) */ 3580 *excl_acquired = false; 3581 return 0; 3582 } 3583 } 3584 } else { 3585 /* This is (1) */ 3586 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3587 goto out_failure; 3588 } 3589 3590 mutex_unlock(&fs_info->balance_mutex); 3591 } 3592 3593 out_failure: 3594 mutex_unlock(&fs_info->balance_mutex); 3595 *excl_acquired = false; 3596 return ret; 3597 } 3598 3599 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3600 { 3601 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3602 struct btrfs_fs_info *fs_info = root->fs_info; 3603 struct btrfs_ioctl_balance_args *bargs; 3604 struct btrfs_balance_control *bctl; 3605 bool need_unlock = true; 3606 int ret; 3607 3608 if (!capable(CAP_SYS_ADMIN)) 3609 return -EPERM; 3610 3611 ret = mnt_want_write_file(file); 3612 if (ret) 3613 return ret; 3614 3615 bargs = memdup_user(arg, sizeof(*bargs)); 3616 if (IS_ERR(bargs)) { 3617 ret = PTR_ERR(bargs); 3618 bargs = NULL; 3619 goto out; 3620 } 3621 3622 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3623 if (ret) 3624 goto out; 3625 3626 lockdep_assert_held(&fs_info->balance_mutex); 3627 3628 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3629 if (!fs_info->balance_ctl) { 3630 ret = -ENOTCONN; 3631 goto out_unlock; 3632 } 3633 3634 bctl = fs_info->balance_ctl; 3635 spin_lock(&fs_info->balance_lock); 3636 bctl->flags |= BTRFS_BALANCE_RESUME; 3637 spin_unlock(&fs_info->balance_lock); 3638 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3639 3640 goto do_balance; 3641 } 3642 3643 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3644 ret = -EINVAL; 3645 goto out_unlock; 3646 } 3647 3648 if (fs_info->balance_ctl) { 3649 ret = -EINPROGRESS; 3650 goto out_unlock; 3651 } 3652 3653 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3654 if (!bctl) { 3655 ret = -ENOMEM; 3656 goto out_unlock; 3657 } 3658 3659 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3660 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3661 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3662 3663 bctl->flags = bargs->flags; 3664 do_balance: 3665 /* 3666 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3667 * bctl is freed in reset_balance_state, or, if restriper was paused 3668 * all the way until unmount, in free_fs_info. The flag should be 3669 * cleared after reset_balance_state. 3670 */ 3671 need_unlock = false; 3672 3673 ret = btrfs_balance(fs_info, bctl, bargs); 3674 bctl = NULL; 3675 3676 if (ret == 0 || ret == -ECANCELED) { 3677 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3678 ret = -EFAULT; 3679 } 3680 3681 kfree(bctl); 3682 out_unlock: 3683 mutex_unlock(&fs_info->balance_mutex); 3684 if (need_unlock) 3685 btrfs_exclop_finish(fs_info); 3686 out: 3687 mnt_drop_write_file(file); 3688 kfree(bargs); 3689 return ret; 3690 } 3691 3692 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3693 { 3694 if (!capable(CAP_SYS_ADMIN)) 3695 return -EPERM; 3696 3697 switch (cmd) { 3698 case BTRFS_BALANCE_CTL_PAUSE: 3699 return btrfs_pause_balance(fs_info); 3700 case BTRFS_BALANCE_CTL_CANCEL: 3701 return btrfs_cancel_balance(fs_info); 3702 } 3703 3704 return -EINVAL; 3705 } 3706 3707 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3708 void __user *arg) 3709 { 3710 struct btrfs_ioctl_balance_args *bargs; 3711 int ret = 0; 3712 3713 if (!capable(CAP_SYS_ADMIN)) 3714 return -EPERM; 3715 3716 mutex_lock(&fs_info->balance_mutex); 3717 if (!fs_info->balance_ctl) { 3718 ret = -ENOTCONN; 3719 goto out; 3720 } 3721 3722 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3723 if (!bargs) { 3724 ret = -ENOMEM; 3725 goto out; 3726 } 3727 3728 btrfs_update_ioctl_balance_args(fs_info, bargs); 3729 3730 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3731 ret = -EFAULT; 3732 3733 kfree(bargs); 3734 out: 3735 mutex_unlock(&fs_info->balance_mutex); 3736 return ret; 3737 } 3738 3739 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3740 { 3741 struct inode *inode = file_inode(file); 3742 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3743 struct btrfs_ioctl_quota_ctl_args *sa; 3744 int ret; 3745 3746 if (!capable(CAP_SYS_ADMIN)) 3747 return -EPERM; 3748 3749 ret = mnt_want_write_file(file); 3750 if (ret) 3751 return ret; 3752 3753 sa = memdup_user(arg, sizeof(*sa)); 3754 if (IS_ERR(sa)) { 3755 ret = PTR_ERR(sa); 3756 goto drop_write; 3757 } 3758 3759 switch (sa->cmd) { 3760 case BTRFS_QUOTA_CTL_ENABLE: 3761 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3762 down_write(&fs_info->subvol_sem); 3763 ret = btrfs_quota_enable(fs_info, sa); 3764 up_write(&fs_info->subvol_sem); 3765 break; 3766 case BTRFS_QUOTA_CTL_DISABLE: 3767 /* 3768 * Lock the cleaner mutex to prevent races with concurrent 3769 * relocation, because relocation may be building backrefs for 3770 * blocks of the quota root while we are deleting the root. This 3771 * is like dropping fs roots of deleted snapshots/subvolumes, we 3772 * need the same protection. 3773 * 3774 * This also prevents races between concurrent tasks trying to 3775 * disable quotas, because we will unlock and relock 3776 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes. 3777 * 3778 * We take this here because we have the dependency of 3779 * 3780 * inode_lock -> subvol_sem 3781 * 3782 * because of rename. With relocation we can prealloc extents, 3783 * so that makes the dependency chain 3784 * 3785 * cleaner_mutex -> inode_lock -> subvol_sem 3786 * 3787 * so we must take the cleaner_mutex here before we take the 3788 * subvol_sem. The deadlock can't actually happen, but this 3789 * quiets lockdep. 3790 */ 3791 mutex_lock(&fs_info->cleaner_mutex); 3792 down_write(&fs_info->subvol_sem); 3793 ret = btrfs_quota_disable(fs_info); 3794 up_write(&fs_info->subvol_sem); 3795 mutex_unlock(&fs_info->cleaner_mutex); 3796 break; 3797 default: 3798 ret = -EINVAL; 3799 break; 3800 } 3801 3802 kfree(sa); 3803 drop_write: 3804 mnt_drop_write_file(file); 3805 return ret; 3806 } 3807 3808 /* 3809 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be 3810 * done before any operations. 3811 */ 3812 static bool qgroup_enabled(struct btrfs_fs_info *fs_info) 3813 { 3814 bool ret = true; 3815 3816 mutex_lock(&fs_info->qgroup_ioctl_lock); 3817 if (!fs_info->quota_root) 3818 ret = false; 3819 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3820 3821 return ret; 3822 } 3823 3824 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3825 { 3826 struct inode *inode = file_inode(file); 3827 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3828 struct btrfs_root *root = BTRFS_I(inode)->root; 3829 struct btrfs_ioctl_qgroup_assign_args *sa; 3830 struct btrfs_qgroup_list *prealloc = NULL; 3831 struct btrfs_trans_handle *trans; 3832 int ret; 3833 int err; 3834 3835 if (!capable(CAP_SYS_ADMIN)) 3836 return -EPERM; 3837 3838 if (!qgroup_enabled(root->fs_info)) 3839 return -ENOTCONN; 3840 3841 ret = mnt_want_write_file(file); 3842 if (ret) 3843 return ret; 3844 3845 sa = memdup_user(arg, sizeof(*sa)); 3846 if (IS_ERR(sa)) { 3847 ret = PTR_ERR(sa); 3848 goto drop_write; 3849 } 3850 3851 if (sa->assign) { 3852 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL); 3853 if (!prealloc) { 3854 ret = -ENOMEM; 3855 goto drop_write; 3856 } 3857 } 3858 3859 trans = btrfs_join_transaction(root); 3860 if (IS_ERR(trans)) { 3861 ret = PTR_ERR(trans); 3862 goto out; 3863 } 3864 3865 /* 3866 * Prealloc ownership is moved to the relation handler, there it's used 3867 * or freed on error. 3868 */ 3869 if (sa->assign) { 3870 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc); 3871 prealloc = NULL; 3872 } else { 3873 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3874 } 3875 3876 /* update qgroup status and info */ 3877 mutex_lock(&fs_info->qgroup_ioctl_lock); 3878 err = btrfs_run_qgroups(trans); 3879 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3880 if (err < 0) 3881 btrfs_warn(fs_info, 3882 "qgroup status update failed after %s relation, marked as inconsistent", 3883 sa->assign ? "adding" : "deleting"); 3884 err = btrfs_end_transaction(trans); 3885 if (err && !ret) 3886 ret = err; 3887 3888 out: 3889 kfree(prealloc); 3890 kfree(sa); 3891 drop_write: 3892 mnt_drop_write_file(file); 3893 return ret; 3894 } 3895 3896 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3897 { 3898 struct inode *inode = file_inode(file); 3899 struct btrfs_root *root = BTRFS_I(inode)->root; 3900 struct btrfs_ioctl_qgroup_create_args *sa; 3901 struct btrfs_trans_handle *trans; 3902 int ret; 3903 int err; 3904 3905 if (!capable(CAP_SYS_ADMIN)) 3906 return -EPERM; 3907 3908 if (!qgroup_enabled(root->fs_info)) 3909 return -ENOTCONN; 3910 3911 ret = mnt_want_write_file(file); 3912 if (ret) 3913 return ret; 3914 3915 sa = memdup_user(arg, sizeof(*sa)); 3916 if (IS_ERR(sa)) { 3917 ret = PTR_ERR(sa); 3918 goto drop_write; 3919 } 3920 3921 if (!sa->qgroupid) { 3922 ret = -EINVAL; 3923 goto out; 3924 } 3925 3926 if (sa->create && is_fstree(sa->qgroupid)) { 3927 ret = -EINVAL; 3928 goto out; 3929 } 3930 3931 trans = btrfs_join_transaction(root); 3932 if (IS_ERR(trans)) { 3933 ret = PTR_ERR(trans); 3934 goto out; 3935 } 3936 3937 if (sa->create) { 3938 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3939 } else { 3940 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3941 } 3942 3943 err = btrfs_end_transaction(trans); 3944 if (err && !ret) 3945 ret = err; 3946 3947 out: 3948 kfree(sa); 3949 drop_write: 3950 mnt_drop_write_file(file); 3951 return ret; 3952 } 3953 3954 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3955 { 3956 struct inode *inode = file_inode(file); 3957 struct btrfs_root *root = BTRFS_I(inode)->root; 3958 struct btrfs_ioctl_qgroup_limit_args *sa; 3959 struct btrfs_trans_handle *trans; 3960 int ret; 3961 int err; 3962 u64 qgroupid; 3963 3964 if (!capable(CAP_SYS_ADMIN)) 3965 return -EPERM; 3966 3967 if (!qgroup_enabled(root->fs_info)) 3968 return -ENOTCONN; 3969 3970 ret = mnt_want_write_file(file); 3971 if (ret) 3972 return ret; 3973 3974 sa = memdup_user(arg, sizeof(*sa)); 3975 if (IS_ERR(sa)) { 3976 ret = PTR_ERR(sa); 3977 goto drop_write; 3978 } 3979 3980 trans = btrfs_join_transaction(root); 3981 if (IS_ERR(trans)) { 3982 ret = PTR_ERR(trans); 3983 goto out; 3984 } 3985 3986 qgroupid = sa->qgroupid; 3987 if (!qgroupid) { 3988 /* take the current subvol as qgroup */ 3989 qgroupid = btrfs_root_id(root); 3990 } 3991 3992 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3993 3994 err = btrfs_end_transaction(trans); 3995 if (err && !ret) 3996 ret = err; 3997 3998 out: 3999 kfree(sa); 4000 drop_write: 4001 mnt_drop_write_file(file); 4002 return ret; 4003 } 4004 4005 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4006 { 4007 struct inode *inode = file_inode(file); 4008 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4009 struct btrfs_ioctl_quota_rescan_args *qsa; 4010 int ret; 4011 4012 if (!capable(CAP_SYS_ADMIN)) 4013 return -EPERM; 4014 4015 if (!qgroup_enabled(fs_info)) 4016 return -ENOTCONN; 4017 4018 ret = mnt_want_write_file(file); 4019 if (ret) 4020 return ret; 4021 4022 qsa = memdup_user(arg, sizeof(*qsa)); 4023 if (IS_ERR(qsa)) { 4024 ret = PTR_ERR(qsa); 4025 goto drop_write; 4026 } 4027 4028 if (qsa->flags) { 4029 ret = -EINVAL; 4030 goto out; 4031 } 4032 4033 ret = btrfs_qgroup_rescan(fs_info); 4034 4035 out: 4036 kfree(qsa); 4037 drop_write: 4038 mnt_drop_write_file(file); 4039 return ret; 4040 } 4041 4042 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4043 void __user *arg) 4044 { 4045 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4046 4047 if (!capable(CAP_SYS_ADMIN)) 4048 return -EPERM; 4049 4050 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4051 qsa.flags = 1; 4052 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4053 } 4054 4055 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4056 return -EFAULT; 4057 4058 return 0; 4059 } 4060 4061 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4062 void __user *arg) 4063 { 4064 if (!capable(CAP_SYS_ADMIN)) 4065 return -EPERM; 4066 4067 return btrfs_qgroup_wait_for_completion(fs_info, true); 4068 } 4069 4070 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4071 struct mnt_idmap *idmap, 4072 struct btrfs_ioctl_received_subvol_args *sa) 4073 { 4074 struct inode *inode = file_inode(file); 4075 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4076 struct btrfs_root *root = BTRFS_I(inode)->root; 4077 struct btrfs_root_item *root_item = &root->root_item; 4078 struct btrfs_trans_handle *trans; 4079 struct timespec64 ct = current_time(inode); 4080 int ret = 0; 4081 int received_uuid_changed; 4082 4083 if (!inode_owner_or_capable(idmap, inode)) 4084 return -EPERM; 4085 4086 ret = mnt_want_write_file(file); 4087 if (ret < 0) 4088 return ret; 4089 4090 down_write(&fs_info->subvol_sem); 4091 4092 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4093 ret = -EINVAL; 4094 goto out; 4095 } 4096 4097 if (btrfs_root_readonly(root)) { 4098 ret = -EROFS; 4099 goto out; 4100 } 4101 4102 /* 4103 * 1 - root item 4104 * 2 - uuid items (received uuid + subvol uuid) 4105 */ 4106 trans = btrfs_start_transaction(root, 3); 4107 if (IS_ERR(trans)) { 4108 ret = PTR_ERR(trans); 4109 trans = NULL; 4110 goto out; 4111 } 4112 4113 sa->rtransid = trans->transid; 4114 sa->rtime.sec = ct.tv_sec; 4115 sa->rtime.nsec = ct.tv_nsec; 4116 4117 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4118 BTRFS_UUID_SIZE); 4119 if (received_uuid_changed && 4120 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4121 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4122 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4123 btrfs_root_id(root)); 4124 if (ret && ret != -ENOENT) { 4125 btrfs_abort_transaction(trans, ret); 4126 btrfs_end_transaction(trans); 4127 goto out; 4128 } 4129 } 4130 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4131 btrfs_set_root_stransid(root_item, sa->stransid); 4132 btrfs_set_root_rtransid(root_item, sa->rtransid); 4133 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4134 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4135 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4136 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4137 4138 ret = btrfs_update_root(trans, fs_info->tree_root, 4139 &root->root_key, &root->root_item); 4140 if (ret < 0) { 4141 btrfs_end_transaction(trans); 4142 goto out; 4143 } 4144 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4145 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4146 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4147 btrfs_root_id(root)); 4148 if (ret < 0 && ret != -EEXIST) { 4149 btrfs_abort_transaction(trans, ret); 4150 btrfs_end_transaction(trans); 4151 goto out; 4152 } 4153 } 4154 ret = btrfs_commit_transaction(trans); 4155 out: 4156 up_write(&fs_info->subvol_sem); 4157 mnt_drop_write_file(file); 4158 return ret; 4159 } 4160 4161 #ifdef CONFIG_64BIT 4162 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4163 void __user *arg) 4164 { 4165 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4166 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4167 int ret = 0; 4168 4169 args32 = memdup_user(arg, sizeof(*args32)); 4170 if (IS_ERR(args32)) 4171 return PTR_ERR(args32); 4172 4173 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4174 if (!args64) { 4175 ret = -ENOMEM; 4176 goto out; 4177 } 4178 4179 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4180 args64->stransid = args32->stransid; 4181 args64->rtransid = args32->rtransid; 4182 args64->stime.sec = args32->stime.sec; 4183 args64->stime.nsec = args32->stime.nsec; 4184 args64->rtime.sec = args32->rtime.sec; 4185 args64->rtime.nsec = args32->rtime.nsec; 4186 args64->flags = args32->flags; 4187 4188 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4189 if (ret) 4190 goto out; 4191 4192 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4193 args32->stransid = args64->stransid; 4194 args32->rtransid = args64->rtransid; 4195 args32->stime.sec = args64->stime.sec; 4196 args32->stime.nsec = args64->stime.nsec; 4197 args32->rtime.sec = args64->rtime.sec; 4198 args32->rtime.nsec = args64->rtime.nsec; 4199 args32->flags = args64->flags; 4200 4201 ret = copy_to_user(arg, args32, sizeof(*args32)); 4202 if (ret) 4203 ret = -EFAULT; 4204 4205 out: 4206 kfree(args32); 4207 kfree(args64); 4208 return ret; 4209 } 4210 #endif 4211 4212 static long btrfs_ioctl_set_received_subvol(struct file *file, 4213 void __user *arg) 4214 { 4215 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4216 int ret = 0; 4217 4218 sa = memdup_user(arg, sizeof(*sa)); 4219 if (IS_ERR(sa)) 4220 return PTR_ERR(sa); 4221 4222 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4223 4224 if (ret) 4225 goto out; 4226 4227 ret = copy_to_user(arg, sa, sizeof(*sa)); 4228 if (ret) 4229 ret = -EFAULT; 4230 4231 out: 4232 kfree(sa); 4233 return ret; 4234 } 4235 4236 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4237 void __user *arg) 4238 { 4239 size_t len; 4240 int ret; 4241 char label[BTRFS_LABEL_SIZE]; 4242 4243 spin_lock(&fs_info->super_lock); 4244 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4245 spin_unlock(&fs_info->super_lock); 4246 4247 len = strnlen(label, BTRFS_LABEL_SIZE); 4248 4249 if (len == BTRFS_LABEL_SIZE) { 4250 btrfs_warn(fs_info, 4251 "label is too long, return the first %zu bytes", 4252 --len); 4253 } 4254 4255 ret = copy_to_user(arg, label, len); 4256 4257 return ret ? -EFAULT : 0; 4258 } 4259 4260 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4261 { 4262 struct inode *inode = file_inode(file); 4263 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4264 struct btrfs_root *root = BTRFS_I(inode)->root; 4265 struct btrfs_super_block *super_block = fs_info->super_copy; 4266 struct btrfs_trans_handle *trans; 4267 char label[BTRFS_LABEL_SIZE]; 4268 int ret; 4269 4270 if (!capable(CAP_SYS_ADMIN)) 4271 return -EPERM; 4272 4273 if (copy_from_user(label, arg, sizeof(label))) 4274 return -EFAULT; 4275 4276 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4277 btrfs_err(fs_info, 4278 "unable to set label with more than %d bytes", 4279 BTRFS_LABEL_SIZE - 1); 4280 return -EINVAL; 4281 } 4282 4283 ret = mnt_want_write_file(file); 4284 if (ret) 4285 return ret; 4286 4287 trans = btrfs_start_transaction(root, 0); 4288 if (IS_ERR(trans)) { 4289 ret = PTR_ERR(trans); 4290 goto out_unlock; 4291 } 4292 4293 spin_lock(&fs_info->super_lock); 4294 strcpy(super_block->label, label); 4295 spin_unlock(&fs_info->super_lock); 4296 ret = btrfs_commit_transaction(trans); 4297 4298 out_unlock: 4299 mnt_drop_write_file(file); 4300 return ret; 4301 } 4302 4303 #define INIT_FEATURE_FLAGS(suffix) \ 4304 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4305 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4306 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4307 4308 int btrfs_ioctl_get_supported_features(void __user *arg) 4309 { 4310 static const struct btrfs_ioctl_feature_flags features[3] = { 4311 INIT_FEATURE_FLAGS(SUPP), 4312 INIT_FEATURE_FLAGS(SAFE_SET), 4313 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4314 }; 4315 4316 if (copy_to_user(arg, &features, sizeof(features))) 4317 return -EFAULT; 4318 4319 return 0; 4320 } 4321 4322 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4323 void __user *arg) 4324 { 4325 struct btrfs_super_block *super_block = fs_info->super_copy; 4326 struct btrfs_ioctl_feature_flags features; 4327 4328 features.compat_flags = btrfs_super_compat_flags(super_block); 4329 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4330 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4331 4332 if (copy_to_user(arg, &features, sizeof(features))) 4333 return -EFAULT; 4334 4335 return 0; 4336 } 4337 4338 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4339 enum btrfs_feature_set set, 4340 u64 change_mask, u64 flags, u64 supported_flags, 4341 u64 safe_set, u64 safe_clear) 4342 { 4343 const char *type = btrfs_feature_set_name(set); 4344 char *names; 4345 u64 disallowed, unsupported; 4346 u64 set_mask = flags & change_mask; 4347 u64 clear_mask = ~flags & change_mask; 4348 4349 unsupported = set_mask & ~supported_flags; 4350 if (unsupported) { 4351 names = btrfs_printable_features(set, unsupported); 4352 if (names) { 4353 btrfs_warn(fs_info, 4354 "this kernel does not support the %s feature bit%s", 4355 names, strchr(names, ',') ? "s" : ""); 4356 kfree(names); 4357 } else 4358 btrfs_warn(fs_info, 4359 "this kernel does not support %s bits 0x%llx", 4360 type, unsupported); 4361 return -EOPNOTSUPP; 4362 } 4363 4364 disallowed = set_mask & ~safe_set; 4365 if (disallowed) { 4366 names = btrfs_printable_features(set, disallowed); 4367 if (names) { 4368 btrfs_warn(fs_info, 4369 "can't set the %s feature bit%s while mounted", 4370 names, strchr(names, ',') ? "s" : ""); 4371 kfree(names); 4372 } else 4373 btrfs_warn(fs_info, 4374 "can't set %s bits 0x%llx while mounted", 4375 type, disallowed); 4376 return -EPERM; 4377 } 4378 4379 disallowed = clear_mask & ~safe_clear; 4380 if (disallowed) { 4381 names = btrfs_printable_features(set, disallowed); 4382 if (names) { 4383 btrfs_warn(fs_info, 4384 "can't clear the %s feature bit%s while mounted", 4385 names, strchr(names, ',') ? "s" : ""); 4386 kfree(names); 4387 } else 4388 btrfs_warn(fs_info, 4389 "can't clear %s bits 0x%llx while mounted", 4390 type, disallowed); 4391 return -EPERM; 4392 } 4393 4394 return 0; 4395 } 4396 4397 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4398 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4399 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4400 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4401 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4402 4403 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4404 { 4405 struct inode *inode = file_inode(file); 4406 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4407 struct btrfs_root *root = BTRFS_I(inode)->root; 4408 struct btrfs_super_block *super_block = fs_info->super_copy; 4409 struct btrfs_ioctl_feature_flags flags[2]; 4410 struct btrfs_trans_handle *trans; 4411 u64 newflags; 4412 int ret; 4413 4414 if (!capable(CAP_SYS_ADMIN)) 4415 return -EPERM; 4416 4417 if (copy_from_user(flags, arg, sizeof(flags))) 4418 return -EFAULT; 4419 4420 /* Nothing to do */ 4421 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4422 !flags[0].incompat_flags) 4423 return 0; 4424 4425 ret = check_feature(fs_info, flags[0].compat_flags, 4426 flags[1].compat_flags, COMPAT); 4427 if (ret) 4428 return ret; 4429 4430 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4431 flags[1].compat_ro_flags, COMPAT_RO); 4432 if (ret) 4433 return ret; 4434 4435 ret = check_feature(fs_info, flags[0].incompat_flags, 4436 flags[1].incompat_flags, INCOMPAT); 4437 if (ret) 4438 return ret; 4439 4440 ret = mnt_want_write_file(file); 4441 if (ret) 4442 return ret; 4443 4444 trans = btrfs_start_transaction(root, 0); 4445 if (IS_ERR(trans)) { 4446 ret = PTR_ERR(trans); 4447 goto out_drop_write; 4448 } 4449 4450 spin_lock(&fs_info->super_lock); 4451 newflags = btrfs_super_compat_flags(super_block); 4452 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4453 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4454 btrfs_set_super_compat_flags(super_block, newflags); 4455 4456 newflags = btrfs_super_compat_ro_flags(super_block); 4457 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4458 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4459 btrfs_set_super_compat_ro_flags(super_block, newflags); 4460 4461 newflags = btrfs_super_incompat_flags(super_block); 4462 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4463 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4464 btrfs_set_super_incompat_flags(super_block, newflags); 4465 spin_unlock(&fs_info->super_lock); 4466 4467 ret = btrfs_commit_transaction(trans); 4468 out_drop_write: 4469 mnt_drop_write_file(file); 4470 4471 return ret; 4472 } 4473 4474 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat) 4475 { 4476 struct btrfs_ioctl_send_args *arg; 4477 int ret; 4478 4479 if (compat) { 4480 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4481 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4482 4483 ret = copy_from_user(&args32, argp, sizeof(args32)); 4484 if (ret) 4485 return -EFAULT; 4486 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4487 if (!arg) 4488 return -ENOMEM; 4489 arg->send_fd = args32.send_fd; 4490 arg->clone_sources_count = args32.clone_sources_count; 4491 arg->clone_sources = compat_ptr(args32.clone_sources); 4492 arg->parent_root = args32.parent_root; 4493 arg->flags = args32.flags; 4494 arg->version = args32.version; 4495 memcpy(arg->reserved, args32.reserved, 4496 sizeof(args32.reserved)); 4497 #else 4498 return -ENOTTY; 4499 #endif 4500 } else { 4501 arg = memdup_user(argp, sizeof(*arg)); 4502 if (IS_ERR(arg)) 4503 return PTR_ERR(arg); 4504 } 4505 ret = btrfs_ioctl_send(inode, arg); 4506 kfree(arg); 4507 return ret; 4508 } 4509 4510 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4511 bool compat) 4512 { 4513 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4514 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4515 flags); 4516 size_t copy_end; 4517 struct iovec iovstack[UIO_FASTIOV]; 4518 struct iovec *iov = iovstack; 4519 struct iov_iter iter; 4520 loff_t pos; 4521 struct kiocb kiocb; 4522 ssize_t ret; 4523 4524 if (!capable(CAP_SYS_ADMIN)) { 4525 ret = -EPERM; 4526 goto out_acct; 4527 } 4528 4529 if (compat) { 4530 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4531 struct btrfs_ioctl_encoded_io_args_32 args32; 4532 4533 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4534 flags); 4535 if (copy_from_user(&args32, argp, copy_end)) { 4536 ret = -EFAULT; 4537 goto out_acct; 4538 } 4539 args.iov = compat_ptr(args32.iov); 4540 args.iovcnt = args32.iovcnt; 4541 args.offset = args32.offset; 4542 args.flags = args32.flags; 4543 #else 4544 return -ENOTTY; 4545 #endif 4546 } else { 4547 copy_end = copy_end_kernel; 4548 if (copy_from_user(&args, argp, copy_end)) { 4549 ret = -EFAULT; 4550 goto out_acct; 4551 } 4552 } 4553 if (args.flags != 0) { 4554 ret = -EINVAL; 4555 goto out_acct; 4556 } 4557 4558 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4559 &iov, &iter); 4560 if (ret < 0) 4561 goto out_acct; 4562 4563 if (iov_iter_count(&iter) == 0) { 4564 ret = 0; 4565 goto out_iov; 4566 } 4567 pos = args.offset; 4568 ret = rw_verify_area(READ, file, &pos, args.len); 4569 if (ret < 0) 4570 goto out_iov; 4571 4572 init_sync_kiocb(&kiocb, file); 4573 kiocb.ki_pos = pos; 4574 4575 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4576 if (ret >= 0) { 4577 fsnotify_access(file); 4578 if (copy_to_user(argp + copy_end, 4579 (char *)&args + copy_end_kernel, 4580 sizeof(args) - copy_end_kernel)) 4581 ret = -EFAULT; 4582 } 4583 4584 out_iov: 4585 kfree(iov); 4586 out_acct: 4587 if (ret > 0) 4588 add_rchar(current, ret); 4589 inc_syscr(current); 4590 return ret; 4591 } 4592 4593 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4594 { 4595 struct btrfs_ioctl_encoded_io_args args; 4596 struct iovec iovstack[UIO_FASTIOV]; 4597 struct iovec *iov = iovstack; 4598 struct iov_iter iter; 4599 loff_t pos; 4600 struct kiocb kiocb; 4601 ssize_t ret; 4602 4603 if (!capable(CAP_SYS_ADMIN)) { 4604 ret = -EPERM; 4605 goto out_acct; 4606 } 4607 4608 if (!(file->f_mode & FMODE_WRITE)) { 4609 ret = -EBADF; 4610 goto out_acct; 4611 } 4612 4613 if (compat) { 4614 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4615 struct btrfs_ioctl_encoded_io_args_32 args32; 4616 4617 if (copy_from_user(&args32, argp, sizeof(args32))) { 4618 ret = -EFAULT; 4619 goto out_acct; 4620 } 4621 args.iov = compat_ptr(args32.iov); 4622 args.iovcnt = args32.iovcnt; 4623 args.offset = args32.offset; 4624 args.flags = args32.flags; 4625 args.len = args32.len; 4626 args.unencoded_len = args32.unencoded_len; 4627 args.unencoded_offset = args32.unencoded_offset; 4628 args.compression = args32.compression; 4629 args.encryption = args32.encryption; 4630 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4631 #else 4632 return -ENOTTY; 4633 #endif 4634 } else { 4635 if (copy_from_user(&args, argp, sizeof(args))) { 4636 ret = -EFAULT; 4637 goto out_acct; 4638 } 4639 } 4640 4641 ret = -EINVAL; 4642 if (args.flags != 0) 4643 goto out_acct; 4644 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4645 goto out_acct; 4646 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4647 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4648 goto out_acct; 4649 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4650 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4651 goto out_acct; 4652 if (args.unencoded_offset > args.unencoded_len) 4653 goto out_acct; 4654 if (args.len > args.unencoded_len - args.unencoded_offset) 4655 goto out_acct; 4656 4657 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4658 &iov, &iter); 4659 if (ret < 0) 4660 goto out_acct; 4661 4662 if (iov_iter_count(&iter) == 0) { 4663 ret = 0; 4664 goto out_iov; 4665 } 4666 pos = args.offset; 4667 ret = rw_verify_area(WRITE, file, &pos, args.len); 4668 if (ret < 0) 4669 goto out_iov; 4670 4671 init_sync_kiocb(&kiocb, file); 4672 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE); 4673 if (ret) 4674 goto out_iov; 4675 kiocb.ki_pos = pos; 4676 4677 file_start_write(file); 4678 4679 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4680 if (ret > 0) 4681 fsnotify_modify(file); 4682 4683 file_end_write(file); 4684 out_iov: 4685 kfree(iov); 4686 out_acct: 4687 if (ret > 0) 4688 add_wchar(current, ret); 4689 inc_syscw(current); 4690 return ret; 4691 } 4692 4693 long btrfs_ioctl(struct file *file, unsigned int 4694 cmd, unsigned long arg) 4695 { 4696 struct inode *inode = file_inode(file); 4697 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4698 struct btrfs_root *root = BTRFS_I(inode)->root; 4699 void __user *argp = (void __user *)arg; 4700 4701 switch (cmd) { 4702 case FS_IOC_GETVERSION: 4703 return btrfs_ioctl_getversion(inode, argp); 4704 case FS_IOC_GETFSLABEL: 4705 return btrfs_ioctl_get_fslabel(fs_info, argp); 4706 case FS_IOC_SETFSLABEL: 4707 return btrfs_ioctl_set_fslabel(file, argp); 4708 case FITRIM: 4709 return btrfs_ioctl_fitrim(fs_info, argp); 4710 case BTRFS_IOC_SNAP_CREATE: 4711 return btrfs_ioctl_snap_create(file, argp, 0); 4712 case BTRFS_IOC_SNAP_CREATE_V2: 4713 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4714 case BTRFS_IOC_SUBVOL_CREATE: 4715 return btrfs_ioctl_snap_create(file, argp, 1); 4716 case BTRFS_IOC_SUBVOL_CREATE_V2: 4717 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4718 case BTRFS_IOC_SNAP_DESTROY: 4719 return btrfs_ioctl_snap_destroy(file, argp, false); 4720 case BTRFS_IOC_SNAP_DESTROY_V2: 4721 return btrfs_ioctl_snap_destroy(file, argp, true); 4722 case BTRFS_IOC_SUBVOL_GETFLAGS: 4723 return btrfs_ioctl_subvol_getflags(inode, argp); 4724 case BTRFS_IOC_SUBVOL_SETFLAGS: 4725 return btrfs_ioctl_subvol_setflags(file, argp); 4726 case BTRFS_IOC_DEFAULT_SUBVOL: 4727 return btrfs_ioctl_default_subvol(file, argp); 4728 case BTRFS_IOC_DEFRAG: 4729 return btrfs_ioctl_defrag(file, NULL); 4730 case BTRFS_IOC_DEFRAG_RANGE: 4731 return btrfs_ioctl_defrag(file, argp); 4732 case BTRFS_IOC_RESIZE: 4733 return btrfs_ioctl_resize(file, argp); 4734 case BTRFS_IOC_ADD_DEV: 4735 return btrfs_ioctl_add_dev(fs_info, argp); 4736 case BTRFS_IOC_RM_DEV: 4737 return btrfs_ioctl_rm_dev(file, argp); 4738 case BTRFS_IOC_RM_DEV_V2: 4739 return btrfs_ioctl_rm_dev_v2(file, argp); 4740 case BTRFS_IOC_FS_INFO: 4741 return btrfs_ioctl_fs_info(fs_info, argp); 4742 case BTRFS_IOC_DEV_INFO: 4743 return btrfs_ioctl_dev_info(fs_info, argp); 4744 case BTRFS_IOC_TREE_SEARCH: 4745 return btrfs_ioctl_tree_search(inode, argp); 4746 case BTRFS_IOC_TREE_SEARCH_V2: 4747 return btrfs_ioctl_tree_search_v2(inode, argp); 4748 case BTRFS_IOC_INO_LOOKUP: 4749 return btrfs_ioctl_ino_lookup(root, argp); 4750 case BTRFS_IOC_INO_PATHS: 4751 return btrfs_ioctl_ino_to_path(root, argp); 4752 case BTRFS_IOC_LOGICAL_INO: 4753 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4754 case BTRFS_IOC_LOGICAL_INO_V2: 4755 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4756 case BTRFS_IOC_SPACE_INFO: 4757 return btrfs_ioctl_space_info(fs_info, argp); 4758 case BTRFS_IOC_SYNC: { 4759 int ret; 4760 4761 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4762 if (ret) 4763 return ret; 4764 ret = btrfs_sync_fs(inode->i_sb, 1); 4765 /* 4766 * The transaction thread may want to do more work, 4767 * namely it pokes the cleaner kthread that will start 4768 * processing uncleaned subvols. 4769 */ 4770 wake_up_process(fs_info->transaction_kthread); 4771 return ret; 4772 } 4773 case BTRFS_IOC_START_SYNC: 4774 return btrfs_ioctl_start_sync(root, argp); 4775 case BTRFS_IOC_WAIT_SYNC: 4776 return btrfs_ioctl_wait_sync(fs_info, argp); 4777 case BTRFS_IOC_SCRUB: 4778 return btrfs_ioctl_scrub(file, argp); 4779 case BTRFS_IOC_SCRUB_CANCEL: 4780 return btrfs_ioctl_scrub_cancel(fs_info); 4781 case BTRFS_IOC_SCRUB_PROGRESS: 4782 return btrfs_ioctl_scrub_progress(fs_info, argp); 4783 case BTRFS_IOC_BALANCE_V2: 4784 return btrfs_ioctl_balance(file, argp); 4785 case BTRFS_IOC_BALANCE_CTL: 4786 return btrfs_ioctl_balance_ctl(fs_info, arg); 4787 case BTRFS_IOC_BALANCE_PROGRESS: 4788 return btrfs_ioctl_balance_progress(fs_info, argp); 4789 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4790 return btrfs_ioctl_set_received_subvol(file, argp); 4791 #ifdef CONFIG_64BIT 4792 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4793 return btrfs_ioctl_set_received_subvol_32(file, argp); 4794 #endif 4795 case BTRFS_IOC_SEND: 4796 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false); 4797 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4798 case BTRFS_IOC_SEND_32: 4799 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true); 4800 #endif 4801 case BTRFS_IOC_GET_DEV_STATS: 4802 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4803 case BTRFS_IOC_QUOTA_CTL: 4804 return btrfs_ioctl_quota_ctl(file, argp); 4805 case BTRFS_IOC_QGROUP_ASSIGN: 4806 return btrfs_ioctl_qgroup_assign(file, argp); 4807 case BTRFS_IOC_QGROUP_CREATE: 4808 return btrfs_ioctl_qgroup_create(file, argp); 4809 case BTRFS_IOC_QGROUP_LIMIT: 4810 return btrfs_ioctl_qgroup_limit(file, argp); 4811 case BTRFS_IOC_QUOTA_RESCAN: 4812 return btrfs_ioctl_quota_rescan(file, argp); 4813 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4814 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4815 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4816 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4817 case BTRFS_IOC_DEV_REPLACE: 4818 return btrfs_ioctl_dev_replace(fs_info, argp); 4819 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4820 return btrfs_ioctl_get_supported_features(argp); 4821 case BTRFS_IOC_GET_FEATURES: 4822 return btrfs_ioctl_get_features(fs_info, argp); 4823 case BTRFS_IOC_SET_FEATURES: 4824 return btrfs_ioctl_set_features(file, argp); 4825 case BTRFS_IOC_GET_SUBVOL_INFO: 4826 return btrfs_ioctl_get_subvol_info(inode, argp); 4827 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4828 return btrfs_ioctl_get_subvol_rootref(root, argp); 4829 case BTRFS_IOC_INO_LOOKUP_USER: 4830 return btrfs_ioctl_ino_lookup_user(file, argp); 4831 case FS_IOC_ENABLE_VERITY: 4832 return fsverity_ioctl_enable(file, (const void __user *)argp); 4833 case FS_IOC_MEASURE_VERITY: 4834 return fsverity_ioctl_measure(file, argp); 4835 case BTRFS_IOC_ENCODED_READ: 4836 return btrfs_ioctl_encoded_read(file, argp, false); 4837 case BTRFS_IOC_ENCODED_WRITE: 4838 return btrfs_ioctl_encoded_write(file, argp, false); 4839 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4840 case BTRFS_IOC_ENCODED_READ_32: 4841 return btrfs_ioctl_encoded_read(file, argp, true); 4842 case BTRFS_IOC_ENCODED_WRITE_32: 4843 return btrfs_ioctl_encoded_write(file, argp, true); 4844 #endif 4845 } 4846 4847 return -ENOTTY; 4848 } 4849 4850 #ifdef CONFIG_COMPAT 4851 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4852 { 4853 /* 4854 * These all access 32-bit values anyway so no further 4855 * handling is necessary. 4856 */ 4857 switch (cmd) { 4858 case FS_IOC32_GETVERSION: 4859 cmd = FS_IOC_GETVERSION; 4860 break; 4861 } 4862 4863 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4864 } 4865 #endif 4866
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.