1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Fusion-io All rights reserved. 4 * Copyright (C) 2012 Intel Corp. All rights reserved. 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/raid/pq.h> 12 #include <linux/hash.h> 13 #include <linux/list_sort.h> 14 #include <linux/raid/xor.h> 15 #include <linux/mm.h> 16 #include "messages.h" 17 #include "ctree.h" 18 #include "disk-io.h" 19 #include "volumes.h" 20 #include "raid56.h" 21 #include "async-thread.h" 22 #include "file-item.h" 23 #include "btrfs_inode.h" 24 25 /* set when additional merges to this rbio are not allowed */ 26 #define RBIO_RMW_LOCKED_BIT 1 27 28 /* 29 * set when this rbio is sitting in the hash, but it is just a cache 30 * of past RMW 31 */ 32 #define RBIO_CACHE_BIT 2 33 34 /* 35 * set when it is safe to trust the stripe_pages for caching 36 */ 37 #define RBIO_CACHE_READY_BIT 3 38 39 #define RBIO_CACHE_SIZE 1024 40 41 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 42 43 static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc) 44 { 45 if (unlikely(!bioc)) { 46 btrfs_crit(fs_info, "bioc=NULL"); 47 return; 48 } 49 btrfs_crit(fs_info, 50 "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u", 51 bioc->logical, bioc->full_stripe_logical, bioc->size, 52 bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes, 53 bioc->replace_stripe_src, bioc->num_stripes); 54 for (int i = 0; i < bioc->num_stripes; i++) { 55 btrfs_crit(fs_info, " nr=%d devid=%llu physical=%llu", 56 i, bioc->stripes[i].dev->devid, 57 bioc->stripes[i].physical); 58 } 59 } 60 61 static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info, 62 const struct btrfs_raid_bio *rbio) 63 { 64 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 65 return; 66 67 dump_bioc(fs_info, rbio->bioc); 68 btrfs_crit(fs_info, 69 "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx", 70 rbio->flags, rbio->nr_sectors, rbio->nr_data, 71 rbio->real_stripes, rbio->stripe_nsectors, 72 rbio->scrubp, rbio->dbitmap); 73 } 74 75 #define ASSERT_RBIO(expr, rbio) \ 76 ({ \ 77 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ 78 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ 79 (rbio)->bioc->fs_info : NULL; \ 80 \ 81 btrfs_dump_rbio(__fs_info, (rbio)); \ 82 } \ 83 ASSERT((expr)); \ 84 }) 85 86 #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr) \ 87 ({ \ 88 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ 89 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ 90 (rbio)->bioc->fs_info : NULL; \ 91 \ 92 btrfs_dump_rbio(__fs_info, (rbio)); \ 93 btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr)); \ 94 } \ 95 ASSERT((expr)); \ 96 }) 97 98 #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr) \ 99 ({ \ 100 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ 101 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ 102 (rbio)->bioc->fs_info : NULL; \ 103 \ 104 btrfs_dump_rbio(__fs_info, (rbio)); \ 105 btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr)); \ 106 } \ 107 ASSERT((expr)); \ 108 }) 109 110 #define ASSERT_RBIO_LOGICAL(expr, rbio, logical) \ 111 ({ \ 112 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ 113 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ 114 (rbio)->bioc->fs_info : NULL; \ 115 \ 116 btrfs_dump_rbio(__fs_info, (rbio)); \ 117 btrfs_crit(__fs_info, "logical=%llu", (logical)); \ 118 } \ 119 ASSERT((expr)); \ 120 }) 121 122 /* Used by the raid56 code to lock stripes for read/modify/write */ 123 struct btrfs_stripe_hash { 124 struct list_head hash_list; 125 spinlock_t lock; 126 }; 127 128 /* Used by the raid56 code to lock stripes for read/modify/write */ 129 struct btrfs_stripe_hash_table { 130 struct list_head stripe_cache; 131 spinlock_t cache_lock; 132 int cache_size; 133 struct btrfs_stripe_hash table[]; 134 }; 135 136 /* 137 * A bvec like structure to present a sector inside a page. 138 * 139 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. 140 */ 141 struct sector_ptr { 142 struct page *page; 143 unsigned int pgoff:24; 144 unsigned int uptodate:8; 145 }; 146 147 static void rmw_rbio_work(struct work_struct *work); 148 static void rmw_rbio_work_locked(struct work_struct *work); 149 static void index_rbio_pages(struct btrfs_raid_bio *rbio); 150 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); 151 152 static int finish_parity_scrub(struct btrfs_raid_bio *rbio); 153 static void scrub_rbio_work_locked(struct work_struct *work); 154 155 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) 156 { 157 bitmap_free(rbio->error_bitmap); 158 kfree(rbio->stripe_pages); 159 kfree(rbio->bio_sectors); 160 kfree(rbio->stripe_sectors); 161 kfree(rbio->finish_pointers); 162 } 163 164 static void free_raid_bio(struct btrfs_raid_bio *rbio) 165 { 166 int i; 167 168 if (!refcount_dec_and_test(&rbio->refs)) 169 return; 170 171 WARN_ON(!list_empty(&rbio->stripe_cache)); 172 WARN_ON(!list_empty(&rbio->hash_list)); 173 WARN_ON(!bio_list_empty(&rbio->bio_list)); 174 175 for (i = 0; i < rbio->nr_pages; i++) { 176 if (rbio->stripe_pages[i]) { 177 __free_page(rbio->stripe_pages[i]); 178 rbio->stripe_pages[i] = NULL; 179 } 180 } 181 182 btrfs_put_bioc(rbio->bioc); 183 free_raid_bio_pointers(rbio); 184 kfree(rbio); 185 } 186 187 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) 188 { 189 INIT_WORK(&rbio->work, work_func); 190 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); 191 } 192 193 /* 194 * the stripe hash table is used for locking, and to collect 195 * bios in hopes of making a full stripe 196 */ 197 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) 198 { 199 struct btrfs_stripe_hash_table *table; 200 struct btrfs_stripe_hash_table *x; 201 struct btrfs_stripe_hash *cur; 202 struct btrfs_stripe_hash *h; 203 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; 204 int i; 205 206 if (info->stripe_hash_table) 207 return 0; 208 209 /* 210 * The table is large, starting with order 4 and can go as high as 211 * order 7 in case lock debugging is turned on. 212 * 213 * Try harder to allocate and fallback to vmalloc to lower the chance 214 * of a failing mount. 215 */ 216 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); 217 if (!table) 218 return -ENOMEM; 219 220 spin_lock_init(&table->cache_lock); 221 INIT_LIST_HEAD(&table->stripe_cache); 222 223 h = table->table; 224 225 for (i = 0; i < num_entries; i++) { 226 cur = h + i; 227 INIT_LIST_HEAD(&cur->hash_list); 228 spin_lock_init(&cur->lock); 229 } 230 231 x = cmpxchg(&info->stripe_hash_table, NULL, table); 232 kvfree(x); 233 return 0; 234 } 235 236 /* 237 * caching an rbio means to copy anything from the 238 * bio_sectors array into the stripe_pages array. We 239 * use the page uptodate bit in the stripe cache array 240 * to indicate if it has valid data 241 * 242 * once the caching is done, we set the cache ready 243 * bit. 244 */ 245 static void cache_rbio_pages(struct btrfs_raid_bio *rbio) 246 { 247 int i; 248 int ret; 249 250 ret = alloc_rbio_pages(rbio); 251 if (ret) 252 return; 253 254 for (i = 0; i < rbio->nr_sectors; i++) { 255 /* Some range not covered by bio (partial write), skip it */ 256 if (!rbio->bio_sectors[i].page) { 257 /* 258 * Even if the sector is not covered by bio, if it is 259 * a data sector it should still be uptodate as it is 260 * read from disk. 261 */ 262 if (i < rbio->nr_data * rbio->stripe_nsectors) 263 ASSERT(rbio->stripe_sectors[i].uptodate); 264 continue; 265 } 266 267 ASSERT(rbio->stripe_sectors[i].page); 268 memcpy_page(rbio->stripe_sectors[i].page, 269 rbio->stripe_sectors[i].pgoff, 270 rbio->bio_sectors[i].page, 271 rbio->bio_sectors[i].pgoff, 272 rbio->bioc->fs_info->sectorsize); 273 rbio->stripe_sectors[i].uptodate = 1; 274 } 275 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 276 } 277 278 /* 279 * we hash on the first logical address of the stripe 280 */ 281 static int rbio_bucket(struct btrfs_raid_bio *rbio) 282 { 283 u64 num = rbio->bioc->full_stripe_logical; 284 285 /* 286 * we shift down quite a bit. We're using byte 287 * addressing, and most of the lower bits are zeros. 288 * This tends to upset hash_64, and it consistently 289 * returns just one or two different values. 290 * 291 * shifting off the lower bits fixes things. 292 */ 293 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); 294 } 295 296 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, 297 unsigned int page_nr) 298 { 299 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 300 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 301 int i; 302 303 ASSERT(page_nr < rbio->nr_pages); 304 305 for (i = sectors_per_page * page_nr; 306 i < sectors_per_page * page_nr + sectors_per_page; 307 i++) { 308 if (!rbio->stripe_sectors[i].uptodate) 309 return false; 310 } 311 return true; 312 } 313 314 /* 315 * Update the stripe_sectors[] array to use correct page and pgoff 316 * 317 * Should be called every time any page pointer in stripes_pages[] got modified. 318 */ 319 static void index_stripe_sectors(struct btrfs_raid_bio *rbio) 320 { 321 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 322 u32 offset; 323 int i; 324 325 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { 326 int page_index = offset >> PAGE_SHIFT; 327 328 ASSERT(page_index < rbio->nr_pages); 329 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; 330 rbio->stripe_sectors[i].pgoff = offset_in_page(offset); 331 } 332 } 333 334 static void steal_rbio_page(struct btrfs_raid_bio *src, 335 struct btrfs_raid_bio *dest, int page_nr) 336 { 337 const u32 sectorsize = src->bioc->fs_info->sectorsize; 338 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 339 int i; 340 341 if (dest->stripe_pages[page_nr]) 342 __free_page(dest->stripe_pages[page_nr]); 343 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; 344 src->stripe_pages[page_nr] = NULL; 345 346 /* Also update the sector->uptodate bits. */ 347 for (i = sectors_per_page * page_nr; 348 i < sectors_per_page * page_nr + sectors_per_page; i++) 349 dest->stripe_sectors[i].uptodate = true; 350 } 351 352 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) 353 { 354 const int sector_nr = (page_nr << PAGE_SHIFT) >> 355 rbio->bioc->fs_info->sectorsize_bits; 356 357 /* 358 * We have ensured PAGE_SIZE is aligned with sectorsize, thus 359 * we won't have a page which is half data half parity. 360 * 361 * Thus if the first sector of the page belongs to data stripes, then 362 * the full page belongs to data stripes. 363 */ 364 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); 365 } 366 367 /* 368 * Stealing an rbio means taking all the uptodate pages from the stripe array 369 * in the source rbio and putting them into the destination rbio. 370 * 371 * This will also update the involved stripe_sectors[] which are referring to 372 * the old pages. 373 */ 374 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) 375 { 376 int i; 377 378 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) 379 return; 380 381 for (i = 0; i < dest->nr_pages; i++) { 382 struct page *p = src->stripe_pages[i]; 383 384 /* 385 * We don't need to steal P/Q pages as they will always be 386 * regenerated for RMW or full write anyway. 387 */ 388 if (!is_data_stripe_page(src, i)) 389 continue; 390 391 /* 392 * If @src already has RBIO_CACHE_READY_BIT, it should have 393 * all data stripe pages present and uptodate. 394 */ 395 ASSERT(p); 396 ASSERT(full_page_sectors_uptodate(src, i)); 397 steal_rbio_page(src, dest, i); 398 } 399 index_stripe_sectors(dest); 400 index_stripe_sectors(src); 401 } 402 403 /* 404 * merging means we take the bio_list from the victim and 405 * splice it into the destination. The victim should 406 * be discarded afterwards. 407 * 408 * must be called with dest->rbio_list_lock held 409 */ 410 static void merge_rbio(struct btrfs_raid_bio *dest, 411 struct btrfs_raid_bio *victim) 412 { 413 bio_list_merge_init(&dest->bio_list, &victim->bio_list); 414 dest->bio_list_bytes += victim->bio_list_bytes; 415 /* Also inherit the bitmaps from @victim. */ 416 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, 417 dest->stripe_nsectors); 418 } 419 420 /* 421 * used to prune items that are in the cache. The caller 422 * must hold the hash table lock. 423 */ 424 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 425 { 426 int bucket = rbio_bucket(rbio); 427 struct btrfs_stripe_hash_table *table; 428 struct btrfs_stripe_hash *h; 429 int freeit = 0; 430 431 /* 432 * check the bit again under the hash table lock. 433 */ 434 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 435 return; 436 437 table = rbio->bioc->fs_info->stripe_hash_table; 438 h = table->table + bucket; 439 440 /* hold the lock for the bucket because we may be 441 * removing it from the hash table 442 */ 443 spin_lock(&h->lock); 444 445 /* 446 * hold the lock for the bio list because we need 447 * to make sure the bio list is empty 448 */ 449 spin_lock(&rbio->bio_list_lock); 450 451 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { 452 list_del_init(&rbio->stripe_cache); 453 table->cache_size -= 1; 454 freeit = 1; 455 456 /* if the bio list isn't empty, this rbio is 457 * still involved in an IO. We take it out 458 * of the cache list, and drop the ref that 459 * was held for the list. 460 * 461 * If the bio_list was empty, we also remove 462 * the rbio from the hash_table, and drop 463 * the corresponding ref 464 */ 465 if (bio_list_empty(&rbio->bio_list)) { 466 if (!list_empty(&rbio->hash_list)) { 467 list_del_init(&rbio->hash_list); 468 refcount_dec(&rbio->refs); 469 BUG_ON(!list_empty(&rbio->plug_list)); 470 } 471 } 472 } 473 474 spin_unlock(&rbio->bio_list_lock); 475 spin_unlock(&h->lock); 476 477 if (freeit) 478 free_raid_bio(rbio); 479 } 480 481 /* 482 * prune a given rbio from the cache 483 */ 484 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) 485 { 486 struct btrfs_stripe_hash_table *table; 487 488 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) 489 return; 490 491 table = rbio->bioc->fs_info->stripe_hash_table; 492 493 spin_lock(&table->cache_lock); 494 __remove_rbio_from_cache(rbio); 495 spin_unlock(&table->cache_lock); 496 } 497 498 /* 499 * remove everything in the cache 500 */ 501 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) 502 { 503 struct btrfs_stripe_hash_table *table; 504 struct btrfs_raid_bio *rbio; 505 506 table = info->stripe_hash_table; 507 508 spin_lock(&table->cache_lock); 509 while (!list_empty(&table->stripe_cache)) { 510 rbio = list_entry(table->stripe_cache.next, 511 struct btrfs_raid_bio, 512 stripe_cache); 513 __remove_rbio_from_cache(rbio); 514 } 515 spin_unlock(&table->cache_lock); 516 } 517 518 /* 519 * remove all cached entries and free the hash table 520 * used by unmount 521 */ 522 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) 523 { 524 if (!info->stripe_hash_table) 525 return; 526 btrfs_clear_rbio_cache(info); 527 kvfree(info->stripe_hash_table); 528 info->stripe_hash_table = NULL; 529 } 530 531 /* 532 * insert an rbio into the stripe cache. It 533 * must have already been prepared by calling 534 * cache_rbio_pages 535 * 536 * If this rbio was already cached, it gets 537 * moved to the front of the lru. 538 * 539 * If the size of the rbio cache is too big, we 540 * prune an item. 541 */ 542 static void cache_rbio(struct btrfs_raid_bio *rbio) 543 { 544 struct btrfs_stripe_hash_table *table; 545 546 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) 547 return; 548 549 table = rbio->bioc->fs_info->stripe_hash_table; 550 551 spin_lock(&table->cache_lock); 552 spin_lock(&rbio->bio_list_lock); 553 554 /* bump our ref if we were not in the list before */ 555 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) 556 refcount_inc(&rbio->refs); 557 558 if (!list_empty(&rbio->stripe_cache)){ 559 list_move(&rbio->stripe_cache, &table->stripe_cache); 560 } else { 561 list_add(&rbio->stripe_cache, &table->stripe_cache); 562 table->cache_size += 1; 563 } 564 565 spin_unlock(&rbio->bio_list_lock); 566 567 if (table->cache_size > RBIO_CACHE_SIZE) { 568 struct btrfs_raid_bio *found; 569 570 found = list_entry(table->stripe_cache.prev, 571 struct btrfs_raid_bio, 572 stripe_cache); 573 574 if (found != rbio) 575 __remove_rbio_from_cache(found); 576 } 577 578 spin_unlock(&table->cache_lock); 579 } 580 581 /* 582 * helper function to run the xor_blocks api. It is only 583 * able to do MAX_XOR_BLOCKS at a time, so we need to 584 * loop through. 585 */ 586 static void run_xor(void **pages, int src_cnt, ssize_t len) 587 { 588 int src_off = 0; 589 int xor_src_cnt = 0; 590 void *dest = pages[src_cnt]; 591 592 while(src_cnt > 0) { 593 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); 594 xor_blocks(xor_src_cnt, len, dest, pages + src_off); 595 596 src_cnt -= xor_src_cnt; 597 src_off += xor_src_cnt; 598 } 599 } 600 601 /* 602 * Returns true if the bio list inside this rbio covers an entire stripe (no 603 * rmw required). 604 */ 605 static int rbio_is_full(struct btrfs_raid_bio *rbio) 606 { 607 unsigned long size = rbio->bio_list_bytes; 608 int ret = 1; 609 610 spin_lock(&rbio->bio_list_lock); 611 if (size != rbio->nr_data * BTRFS_STRIPE_LEN) 612 ret = 0; 613 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); 614 spin_unlock(&rbio->bio_list_lock); 615 616 return ret; 617 } 618 619 /* 620 * returns 1 if it is safe to merge two rbios together. 621 * The merging is safe if the two rbios correspond to 622 * the same stripe and if they are both going in the same 623 * direction (read vs write), and if neither one is 624 * locked for final IO 625 * 626 * The caller is responsible for locking such that 627 * rmw_locked is safe to test 628 */ 629 static int rbio_can_merge(struct btrfs_raid_bio *last, 630 struct btrfs_raid_bio *cur) 631 { 632 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || 633 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) 634 return 0; 635 636 /* 637 * we can't merge with cached rbios, since the 638 * idea is that when we merge the destination 639 * rbio is going to run our IO for us. We can 640 * steal from cached rbios though, other functions 641 * handle that. 642 */ 643 if (test_bit(RBIO_CACHE_BIT, &last->flags) || 644 test_bit(RBIO_CACHE_BIT, &cur->flags)) 645 return 0; 646 647 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical) 648 return 0; 649 650 /* we can't merge with different operations */ 651 if (last->operation != cur->operation) 652 return 0; 653 /* 654 * We've need read the full stripe from the drive. 655 * check and repair the parity and write the new results. 656 * 657 * We're not allowed to add any new bios to the 658 * bio list here, anyone else that wants to 659 * change this stripe needs to do their own rmw. 660 */ 661 if (last->operation == BTRFS_RBIO_PARITY_SCRUB) 662 return 0; 663 664 if (last->operation == BTRFS_RBIO_READ_REBUILD) 665 return 0; 666 667 return 1; 668 } 669 670 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, 671 unsigned int stripe_nr, 672 unsigned int sector_nr) 673 { 674 ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr); 675 ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr); 676 677 return stripe_nr * rbio->stripe_nsectors + sector_nr; 678 } 679 680 /* Return a sector from rbio->stripe_sectors, not from the bio list */ 681 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, 682 unsigned int stripe_nr, 683 unsigned int sector_nr) 684 { 685 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, 686 sector_nr)]; 687 } 688 689 /* Grab a sector inside P stripe */ 690 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, 691 unsigned int sector_nr) 692 { 693 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); 694 } 695 696 /* Grab a sector inside Q stripe, return NULL if not RAID6 */ 697 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, 698 unsigned int sector_nr) 699 { 700 if (rbio->nr_data + 1 == rbio->real_stripes) 701 return NULL; 702 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); 703 } 704 705 /* 706 * The first stripe in the table for a logical address 707 * has the lock. rbios are added in one of three ways: 708 * 709 * 1) Nobody has the stripe locked yet. The rbio is given 710 * the lock and 0 is returned. The caller must start the IO 711 * themselves. 712 * 713 * 2) Someone has the stripe locked, but we're able to merge 714 * with the lock owner. The rbio is freed and the IO will 715 * start automatically along with the existing rbio. 1 is returned. 716 * 717 * 3) Someone has the stripe locked, but we're not able to merge. 718 * The rbio is added to the lock owner's plug list, or merged into 719 * an rbio already on the plug list. When the lock owner unlocks, 720 * the next rbio on the list is run and the IO is started automatically. 721 * 1 is returned 722 * 723 * If we return 0, the caller still owns the rbio and must continue with 724 * IO submission. If we return 1, the caller must assume the rbio has 725 * already been freed. 726 */ 727 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) 728 { 729 struct btrfs_stripe_hash *h; 730 struct btrfs_raid_bio *cur; 731 struct btrfs_raid_bio *pending; 732 struct btrfs_raid_bio *freeit = NULL; 733 struct btrfs_raid_bio *cache_drop = NULL; 734 int ret = 0; 735 736 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); 737 738 spin_lock(&h->lock); 739 list_for_each_entry(cur, &h->hash_list, hash_list) { 740 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical) 741 continue; 742 743 spin_lock(&cur->bio_list_lock); 744 745 /* Can we steal this cached rbio's pages? */ 746 if (bio_list_empty(&cur->bio_list) && 747 list_empty(&cur->plug_list) && 748 test_bit(RBIO_CACHE_BIT, &cur->flags) && 749 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { 750 list_del_init(&cur->hash_list); 751 refcount_dec(&cur->refs); 752 753 steal_rbio(cur, rbio); 754 cache_drop = cur; 755 spin_unlock(&cur->bio_list_lock); 756 757 goto lockit; 758 } 759 760 /* Can we merge into the lock owner? */ 761 if (rbio_can_merge(cur, rbio)) { 762 merge_rbio(cur, rbio); 763 spin_unlock(&cur->bio_list_lock); 764 freeit = rbio; 765 ret = 1; 766 goto out; 767 } 768 769 770 /* 771 * We couldn't merge with the running rbio, see if we can merge 772 * with the pending ones. We don't have to check for rmw_locked 773 * because there is no way they are inside finish_rmw right now 774 */ 775 list_for_each_entry(pending, &cur->plug_list, plug_list) { 776 if (rbio_can_merge(pending, rbio)) { 777 merge_rbio(pending, rbio); 778 spin_unlock(&cur->bio_list_lock); 779 freeit = rbio; 780 ret = 1; 781 goto out; 782 } 783 } 784 785 /* 786 * No merging, put us on the tail of the plug list, our rbio 787 * will be started with the currently running rbio unlocks 788 */ 789 list_add_tail(&rbio->plug_list, &cur->plug_list); 790 spin_unlock(&cur->bio_list_lock); 791 ret = 1; 792 goto out; 793 } 794 lockit: 795 refcount_inc(&rbio->refs); 796 list_add(&rbio->hash_list, &h->hash_list); 797 out: 798 spin_unlock(&h->lock); 799 if (cache_drop) 800 remove_rbio_from_cache(cache_drop); 801 if (freeit) 802 free_raid_bio(freeit); 803 return ret; 804 } 805 806 static void recover_rbio_work_locked(struct work_struct *work); 807 808 /* 809 * called as rmw or parity rebuild is completed. If the plug list has more 810 * rbios waiting for this stripe, the next one on the list will be started 811 */ 812 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) 813 { 814 int bucket; 815 struct btrfs_stripe_hash *h; 816 int keep_cache = 0; 817 818 bucket = rbio_bucket(rbio); 819 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; 820 821 if (list_empty(&rbio->plug_list)) 822 cache_rbio(rbio); 823 824 spin_lock(&h->lock); 825 spin_lock(&rbio->bio_list_lock); 826 827 if (!list_empty(&rbio->hash_list)) { 828 /* 829 * if we're still cached and there is no other IO 830 * to perform, just leave this rbio here for others 831 * to steal from later 832 */ 833 if (list_empty(&rbio->plug_list) && 834 test_bit(RBIO_CACHE_BIT, &rbio->flags)) { 835 keep_cache = 1; 836 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 837 BUG_ON(!bio_list_empty(&rbio->bio_list)); 838 goto done; 839 } 840 841 list_del_init(&rbio->hash_list); 842 refcount_dec(&rbio->refs); 843 844 /* 845 * we use the plug list to hold all the rbios 846 * waiting for the chance to lock this stripe. 847 * hand the lock over to one of them. 848 */ 849 if (!list_empty(&rbio->plug_list)) { 850 struct btrfs_raid_bio *next; 851 struct list_head *head = rbio->plug_list.next; 852 853 next = list_entry(head, struct btrfs_raid_bio, 854 plug_list); 855 856 list_del_init(&rbio->plug_list); 857 858 list_add(&next->hash_list, &h->hash_list); 859 refcount_inc(&next->refs); 860 spin_unlock(&rbio->bio_list_lock); 861 spin_unlock(&h->lock); 862 863 if (next->operation == BTRFS_RBIO_READ_REBUILD) { 864 start_async_work(next, recover_rbio_work_locked); 865 } else if (next->operation == BTRFS_RBIO_WRITE) { 866 steal_rbio(rbio, next); 867 start_async_work(next, rmw_rbio_work_locked); 868 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { 869 steal_rbio(rbio, next); 870 start_async_work(next, scrub_rbio_work_locked); 871 } 872 873 goto done_nolock; 874 } 875 } 876 done: 877 spin_unlock(&rbio->bio_list_lock); 878 spin_unlock(&h->lock); 879 880 done_nolock: 881 if (!keep_cache) 882 remove_rbio_from_cache(rbio); 883 } 884 885 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) 886 { 887 struct bio *next; 888 889 while (cur) { 890 next = cur->bi_next; 891 cur->bi_next = NULL; 892 cur->bi_status = err; 893 bio_endio(cur); 894 cur = next; 895 } 896 } 897 898 /* 899 * this frees the rbio and runs through all the bios in the 900 * bio_list and calls end_io on them 901 */ 902 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) 903 { 904 struct bio *cur = bio_list_get(&rbio->bio_list); 905 struct bio *extra; 906 907 kfree(rbio->csum_buf); 908 bitmap_free(rbio->csum_bitmap); 909 rbio->csum_buf = NULL; 910 rbio->csum_bitmap = NULL; 911 912 /* 913 * Clear the data bitmap, as the rbio may be cached for later usage. 914 * do this before before unlock_stripe() so there will be no new bio 915 * for this bio. 916 */ 917 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); 918 919 /* 920 * At this moment, rbio->bio_list is empty, however since rbio does not 921 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the 922 * hash list, rbio may be merged with others so that rbio->bio_list 923 * becomes non-empty. 924 * Once unlock_stripe() is done, rbio->bio_list will not be updated any 925 * more and we can call bio_endio() on all queued bios. 926 */ 927 unlock_stripe(rbio); 928 extra = bio_list_get(&rbio->bio_list); 929 free_raid_bio(rbio); 930 931 rbio_endio_bio_list(cur, err); 932 if (extra) 933 rbio_endio_bio_list(extra, err); 934 } 935 936 /* 937 * Get a sector pointer specified by its @stripe_nr and @sector_nr. 938 * 939 * @rbio: The raid bio 940 * @stripe_nr: Stripe number, valid range [0, real_stripe) 941 * @sector_nr: Sector number inside the stripe, 942 * valid range [0, stripe_nsectors) 943 * @bio_list_only: Whether to use sectors inside the bio list only. 944 * 945 * The read/modify/write code wants to reuse the original bio page as much 946 * as possible, and only use stripe_sectors as fallback. 947 */ 948 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, 949 int stripe_nr, int sector_nr, 950 bool bio_list_only) 951 { 952 struct sector_ptr *sector; 953 int index; 954 955 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes, 956 rbio, stripe_nr); 957 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, 958 rbio, sector_nr); 959 960 index = stripe_nr * rbio->stripe_nsectors + sector_nr; 961 ASSERT(index >= 0 && index < rbio->nr_sectors); 962 963 spin_lock(&rbio->bio_list_lock); 964 sector = &rbio->bio_sectors[index]; 965 if (sector->page || bio_list_only) { 966 /* Don't return sector without a valid page pointer */ 967 if (!sector->page) 968 sector = NULL; 969 spin_unlock(&rbio->bio_list_lock); 970 return sector; 971 } 972 spin_unlock(&rbio->bio_list_lock); 973 974 return &rbio->stripe_sectors[index]; 975 } 976 977 /* 978 * allocation and initial setup for the btrfs_raid_bio. Not 979 * this does not allocate any pages for rbio->pages. 980 */ 981 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, 982 struct btrfs_io_context *bioc) 983 { 984 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes; 985 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; 986 const unsigned int num_pages = stripe_npages * real_stripes; 987 const unsigned int stripe_nsectors = 988 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 989 const unsigned int num_sectors = stripe_nsectors * real_stripes; 990 struct btrfs_raid_bio *rbio; 991 992 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ 993 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); 994 /* 995 * Our current stripe len should be fixed to 64k thus stripe_nsectors 996 * (at most 16) should be no larger than BITS_PER_LONG. 997 */ 998 ASSERT(stripe_nsectors <= BITS_PER_LONG); 999 1000 /* 1001 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256 1002 * (limited by u8). 1003 */ 1004 ASSERT(real_stripes >= 2); 1005 ASSERT(real_stripes <= U8_MAX); 1006 1007 rbio = kzalloc(sizeof(*rbio), GFP_NOFS); 1008 if (!rbio) 1009 return ERR_PTR(-ENOMEM); 1010 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), 1011 GFP_NOFS); 1012 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 1013 GFP_NOFS); 1014 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), 1015 GFP_NOFS); 1016 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); 1017 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); 1018 1019 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || 1020 !rbio->finish_pointers || !rbio->error_bitmap) { 1021 free_raid_bio_pointers(rbio); 1022 kfree(rbio); 1023 return ERR_PTR(-ENOMEM); 1024 } 1025 1026 bio_list_init(&rbio->bio_list); 1027 init_waitqueue_head(&rbio->io_wait); 1028 INIT_LIST_HEAD(&rbio->plug_list); 1029 spin_lock_init(&rbio->bio_list_lock); 1030 INIT_LIST_HEAD(&rbio->stripe_cache); 1031 INIT_LIST_HEAD(&rbio->hash_list); 1032 btrfs_get_bioc(bioc); 1033 rbio->bioc = bioc; 1034 rbio->nr_pages = num_pages; 1035 rbio->nr_sectors = num_sectors; 1036 rbio->real_stripes = real_stripes; 1037 rbio->stripe_npages = stripe_npages; 1038 rbio->stripe_nsectors = stripe_nsectors; 1039 refcount_set(&rbio->refs, 1); 1040 atomic_set(&rbio->stripes_pending, 0); 1041 1042 ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); 1043 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); 1044 ASSERT(rbio->nr_data > 0); 1045 1046 return rbio; 1047 } 1048 1049 /* allocate pages for all the stripes in the bio, including parity */ 1050 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) 1051 { 1052 int ret; 1053 1054 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false); 1055 if (ret < 0) 1056 return ret; 1057 /* Mapping all sectors */ 1058 index_stripe_sectors(rbio); 1059 return 0; 1060 } 1061 1062 /* only allocate pages for p/q stripes */ 1063 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) 1064 { 1065 const int data_pages = rbio->nr_data * rbio->stripe_npages; 1066 int ret; 1067 1068 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, 1069 rbio->stripe_pages + data_pages, false); 1070 if (ret < 0) 1071 return ret; 1072 1073 index_stripe_sectors(rbio); 1074 return 0; 1075 } 1076 1077 /* 1078 * Return the total number of errors found in the vertical stripe of @sector_nr. 1079 * 1080 * @faila and @failb will also be updated to the first and second stripe 1081 * number of the errors. 1082 */ 1083 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, 1084 int *faila, int *failb) 1085 { 1086 int stripe_nr; 1087 int found_errors = 0; 1088 1089 if (faila || failb) { 1090 /* 1091 * Both @faila and @failb should be valid pointers if any of 1092 * them is specified. 1093 */ 1094 ASSERT(faila && failb); 1095 *faila = -1; 1096 *failb = -1; 1097 } 1098 1099 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1100 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; 1101 1102 if (test_bit(total_sector_nr, rbio->error_bitmap)) { 1103 found_errors++; 1104 if (faila) { 1105 /* Update faila and failb. */ 1106 if (*faila < 0) 1107 *faila = stripe_nr; 1108 else if (*failb < 0) 1109 *failb = stripe_nr; 1110 } 1111 } 1112 } 1113 return found_errors; 1114 } 1115 1116 /* 1117 * Add a single sector @sector into our list of bios for IO. 1118 * 1119 * Return 0 if everything went well. 1120 * Return <0 for error. 1121 */ 1122 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, 1123 struct bio_list *bio_list, 1124 struct sector_ptr *sector, 1125 unsigned int stripe_nr, 1126 unsigned int sector_nr, 1127 enum req_op op) 1128 { 1129 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1130 struct bio *last = bio_list->tail; 1131 int ret; 1132 struct bio *bio; 1133 struct btrfs_io_stripe *stripe; 1134 u64 disk_start; 1135 1136 /* 1137 * Note: here stripe_nr has taken device replace into consideration, 1138 * thus it can be larger than rbio->real_stripe. 1139 * So here we check against bioc->num_stripes, not rbio->real_stripes. 1140 */ 1141 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes, 1142 rbio, stripe_nr); 1143 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, 1144 rbio, sector_nr); 1145 ASSERT(sector->page); 1146 1147 stripe = &rbio->bioc->stripes[stripe_nr]; 1148 disk_start = stripe->physical + sector_nr * sectorsize; 1149 1150 /* if the device is missing, just fail this stripe */ 1151 if (!stripe->dev->bdev) { 1152 int found_errors; 1153 1154 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, 1155 rbio->error_bitmap); 1156 1157 /* Check if we have reached tolerance early. */ 1158 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 1159 NULL, NULL); 1160 if (found_errors > rbio->bioc->max_errors) 1161 return -EIO; 1162 return 0; 1163 } 1164 1165 /* see if we can add this page onto our existing bio */ 1166 if (last) { 1167 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT; 1168 last_end += last->bi_iter.bi_size; 1169 1170 /* 1171 * we can't merge these if they are from different 1172 * devices or if they are not contiguous 1173 */ 1174 if (last_end == disk_start && !last->bi_status && 1175 last->bi_bdev == stripe->dev->bdev) { 1176 ret = bio_add_page(last, sector->page, sectorsize, 1177 sector->pgoff); 1178 if (ret == sectorsize) 1179 return 0; 1180 } 1181 } 1182 1183 /* put a new bio on the list */ 1184 bio = bio_alloc(stripe->dev->bdev, 1185 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), 1186 op, GFP_NOFS); 1187 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; 1188 bio->bi_private = rbio; 1189 1190 __bio_add_page(bio, sector->page, sectorsize, sector->pgoff); 1191 bio_list_add(bio_list, bio); 1192 return 0; 1193 } 1194 1195 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) 1196 { 1197 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1198 struct bio_vec bvec; 1199 struct bvec_iter iter; 1200 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1201 rbio->bioc->full_stripe_logical; 1202 1203 bio_for_each_segment(bvec, bio, iter) { 1204 u32 bvec_offset; 1205 1206 for (bvec_offset = 0; bvec_offset < bvec.bv_len; 1207 bvec_offset += sectorsize, offset += sectorsize) { 1208 int index = offset / sectorsize; 1209 struct sector_ptr *sector = &rbio->bio_sectors[index]; 1210 1211 sector->page = bvec.bv_page; 1212 sector->pgoff = bvec.bv_offset + bvec_offset; 1213 ASSERT(sector->pgoff < PAGE_SIZE); 1214 } 1215 } 1216 } 1217 1218 /* 1219 * helper function to walk our bio list and populate the bio_pages array with 1220 * the result. This seems expensive, but it is faster than constantly 1221 * searching through the bio list as we setup the IO in finish_rmw or stripe 1222 * reconstruction. 1223 * 1224 * This must be called before you trust the answers from page_in_rbio 1225 */ 1226 static void index_rbio_pages(struct btrfs_raid_bio *rbio) 1227 { 1228 struct bio *bio; 1229 1230 spin_lock(&rbio->bio_list_lock); 1231 bio_list_for_each(bio, &rbio->bio_list) 1232 index_one_bio(rbio, bio); 1233 1234 spin_unlock(&rbio->bio_list_lock); 1235 } 1236 1237 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, 1238 struct raid56_bio_trace_info *trace_info) 1239 { 1240 const struct btrfs_io_context *bioc = rbio->bioc; 1241 int i; 1242 1243 ASSERT(bioc); 1244 1245 /* We rely on bio->bi_bdev to find the stripe number. */ 1246 if (!bio->bi_bdev) 1247 goto not_found; 1248 1249 for (i = 0; i < bioc->num_stripes; i++) { 1250 if (bio->bi_bdev != bioc->stripes[i].dev->bdev) 1251 continue; 1252 trace_info->stripe_nr = i; 1253 trace_info->devid = bioc->stripes[i].dev->devid; 1254 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1255 bioc->stripes[i].physical; 1256 return; 1257 } 1258 1259 not_found: 1260 trace_info->devid = -1; 1261 trace_info->offset = -1; 1262 trace_info->stripe_nr = -1; 1263 } 1264 1265 static inline void bio_list_put(struct bio_list *bio_list) 1266 { 1267 struct bio *bio; 1268 1269 while ((bio = bio_list_pop(bio_list))) 1270 bio_put(bio); 1271 } 1272 1273 static void assert_rbio(struct btrfs_raid_bio *rbio) 1274 { 1275 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG) || 1276 !IS_ENABLED(CONFIG_BTRFS_ASSERT)) 1277 return; 1278 1279 /* 1280 * At least two stripes (2 disks RAID5), and since real_stripes is U8, 1281 * we won't go beyond 256 disks anyway. 1282 */ 1283 ASSERT_RBIO(rbio->real_stripes >= 2, rbio); 1284 ASSERT_RBIO(rbio->nr_data > 0, rbio); 1285 1286 /* 1287 * This is another check to make sure nr data stripes is smaller 1288 * than total stripes. 1289 */ 1290 ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio); 1291 } 1292 1293 /* Generate PQ for one vertical stripe. */ 1294 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) 1295 { 1296 void **pointers = rbio->finish_pointers; 1297 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1298 struct sector_ptr *sector; 1299 int stripe; 1300 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; 1301 1302 /* First collect one sector from each data stripe */ 1303 for (stripe = 0; stripe < rbio->nr_data; stripe++) { 1304 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 1305 pointers[stripe] = kmap_local_page(sector->page) + 1306 sector->pgoff; 1307 } 1308 1309 /* Then add the parity stripe */ 1310 sector = rbio_pstripe_sector(rbio, sectornr); 1311 sector->uptodate = 1; 1312 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; 1313 1314 if (has_qstripe) { 1315 /* 1316 * RAID6, add the qstripe and call the library function 1317 * to fill in our p/q 1318 */ 1319 sector = rbio_qstripe_sector(rbio, sectornr); 1320 sector->uptodate = 1; 1321 pointers[stripe++] = kmap_local_page(sector->page) + 1322 sector->pgoff; 1323 1324 assert_rbio(rbio); 1325 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 1326 pointers); 1327 } else { 1328 /* raid5 */ 1329 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); 1330 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); 1331 } 1332 for (stripe = stripe - 1; stripe >= 0; stripe--) 1333 kunmap_local(pointers[stripe]); 1334 } 1335 1336 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, 1337 struct bio_list *bio_list) 1338 { 1339 /* The total sector number inside the full stripe. */ 1340 int total_sector_nr; 1341 int sectornr; 1342 int stripe; 1343 int ret; 1344 1345 ASSERT(bio_list_size(bio_list) == 0); 1346 1347 /* We should have at least one data sector. */ 1348 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); 1349 1350 /* 1351 * Reset errors, as we may have errors inherited from from degraded 1352 * write. 1353 */ 1354 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 1355 1356 /* 1357 * Start assembly. Make bios for everything from the higher layers (the 1358 * bio_list in our rbio) and our P/Q. Ignore everything else. 1359 */ 1360 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1361 total_sector_nr++) { 1362 struct sector_ptr *sector; 1363 1364 stripe = total_sector_nr / rbio->stripe_nsectors; 1365 sectornr = total_sector_nr % rbio->stripe_nsectors; 1366 1367 /* This vertical stripe has no data, skip it. */ 1368 if (!test_bit(sectornr, &rbio->dbitmap)) 1369 continue; 1370 1371 if (stripe < rbio->nr_data) { 1372 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1373 if (!sector) 1374 continue; 1375 } else { 1376 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1377 } 1378 1379 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, 1380 sectornr, REQ_OP_WRITE); 1381 if (ret) 1382 goto error; 1383 } 1384 1385 if (likely(!rbio->bioc->replace_nr_stripes)) 1386 return 0; 1387 1388 /* 1389 * Make a copy for the replace target device. 1390 * 1391 * Thus the source stripe number (in replace_stripe_src) should be valid. 1392 */ 1393 ASSERT(rbio->bioc->replace_stripe_src >= 0); 1394 1395 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 1396 total_sector_nr++) { 1397 struct sector_ptr *sector; 1398 1399 stripe = total_sector_nr / rbio->stripe_nsectors; 1400 sectornr = total_sector_nr % rbio->stripe_nsectors; 1401 1402 /* 1403 * For RAID56, there is only one device that can be replaced, 1404 * and replace_stripe_src[0] indicates the stripe number we 1405 * need to copy from. 1406 */ 1407 if (stripe != rbio->bioc->replace_stripe_src) { 1408 /* 1409 * We can skip the whole stripe completely, note 1410 * total_sector_nr will be increased by one anyway. 1411 */ 1412 ASSERT(sectornr == 0); 1413 total_sector_nr += rbio->stripe_nsectors - 1; 1414 continue; 1415 } 1416 1417 /* This vertical stripe has no data, skip it. */ 1418 if (!test_bit(sectornr, &rbio->dbitmap)) 1419 continue; 1420 1421 if (stripe < rbio->nr_data) { 1422 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 1423 if (!sector) 1424 continue; 1425 } else { 1426 sector = rbio_stripe_sector(rbio, stripe, sectornr); 1427 } 1428 1429 ret = rbio_add_io_sector(rbio, bio_list, sector, 1430 rbio->real_stripes, 1431 sectornr, REQ_OP_WRITE); 1432 if (ret) 1433 goto error; 1434 } 1435 1436 return 0; 1437 error: 1438 bio_list_put(bio_list); 1439 return -EIO; 1440 } 1441 1442 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) 1443 { 1444 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1445 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - 1446 rbio->bioc->full_stripe_logical; 1447 int total_nr_sector = offset >> fs_info->sectorsize_bits; 1448 1449 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); 1450 1451 bitmap_set(rbio->error_bitmap, total_nr_sector, 1452 bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 1453 1454 /* 1455 * Special handling for raid56_alloc_missing_rbio() used by 1456 * scrub/replace. Unlike call path in raid56_parity_recover(), they 1457 * pass an empty bio here. Thus we have to find out the missing device 1458 * and mark the stripe error instead. 1459 */ 1460 if (bio->bi_iter.bi_size == 0) { 1461 bool found_missing = false; 1462 int stripe_nr; 1463 1464 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1465 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { 1466 found_missing = true; 1467 bitmap_set(rbio->error_bitmap, 1468 stripe_nr * rbio->stripe_nsectors, 1469 rbio->stripe_nsectors); 1470 } 1471 } 1472 ASSERT(found_missing); 1473 } 1474 } 1475 1476 /* 1477 * For subpage case, we can no longer set page Up-to-date directly for 1478 * stripe_pages[], thus we need to locate the sector. 1479 */ 1480 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, 1481 struct page *page, 1482 unsigned int pgoff) 1483 { 1484 int i; 1485 1486 for (i = 0; i < rbio->nr_sectors; i++) { 1487 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 1488 1489 if (sector->page == page && sector->pgoff == pgoff) 1490 return sector; 1491 } 1492 return NULL; 1493 } 1494 1495 /* 1496 * this sets each page in the bio uptodate. It should only be used on private 1497 * rbio pages, nothing that comes in from the higher layers 1498 */ 1499 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) 1500 { 1501 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 1502 struct bio_vec *bvec; 1503 struct bvec_iter_all iter_all; 1504 1505 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1506 1507 bio_for_each_segment_all(bvec, bio, iter_all) { 1508 struct sector_ptr *sector; 1509 int pgoff; 1510 1511 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; 1512 pgoff += sectorsize) { 1513 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); 1514 ASSERT(sector); 1515 if (sector) 1516 sector->uptodate = 1; 1517 } 1518 } 1519 } 1520 1521 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) 1522 { 1523 struct bio_vec *bv = bio_first_bvec_all(bio); 1524 int i; 1525 1526 for (i = 0; i < rbio->nr_sectors; i++) { 1527 struct sector_ptr *sector; 1528 1529 sector = &rbio->stripe_sectors[i]; 1530 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1531 break; 1532 sector = &rbio->bio_sectors[i]; 1533 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) 1534 break; 1535 } 1536 ASSERT(i < rbio->nr_sectors); 1537 return i; 1538 } 1539 1540 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) 1541 { 1542 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1543 u32 bio_size = 0; 1544 struct bio_vec *bvec; 1545 int i; 1546 1547 bio_for_each_bvec_all(bvec, bio, i) 1548 bio_size += bvec->bv_len; 1549 1550 /* 1551 * Since we can have multiple bios touching the error_bitmap, we cannot 1552 * call bitmap_set() without protection. 1553 * 1554 * Instead use set_bit() for each bit, as set_bit() itself is atomic. 1555 */ 1556 for (i = total_sector_nr; i < total_sector_nr + 1557 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) 1558 set_bit(i, rbio->error_bitmap); 1559 } 1560 1561 /* Verify the data sectors at read time. */ 1562 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, 1563 struct bio *bio) 1564 { 1565 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1566 int total_sector_nr = get_bio_sector_nr(rbio, bio); 1567 struct bio_vec *bvec; 1568 struct bvec_iter_all iter_all; 1569 1570 /* No data csum for the whole stripe, no need to verify. */ 1571 if (!rbio->csum_bitmap || !rbio->csum_buf) 1572 return; 1573 1574 /* P/Q stripes, they have no data csum to verify against. */ 1575 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) 1576 return; 1577 1578 bio_for_each_segment_all(bvec, bio, iter_all) { 1579 int bv_offset; 1580 1581 for (bv_offset = bvec->bv_offset; 1582 bv_offset < bvec->bv_offset + bvec->bv_len; 1583 bv_offset += fs_info->sectorsize, total_sector_nr++) { 1584 u8 csum_buf[BTRFS_CSUM_SIZE]; 1585 u8 *expected_csum = rbio->csum_buf + 1586 total_sector_nr * fs_info->csum_size; 1587 int ret; 1588 1589 /* No csum for this sector, skip to the next sector. */ 1590 if (!test_bit(total_sector_nr, rbio->csum_bitmap)) 1591 continue; 1592 1593 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page, 1594 bv_offset, csum_buf, expected_csum); 1595 if (ret < 0) 1596 set_bit(total_sector_nr, rbio->error_bitmap); 1597 } 1598 } 1599 } 1600 1601 static void raid_wait_read_end_io(struct bio *bio) 1602 { 1603 struct btrfs_raid_bio *rbio = bio->bi_private; 1604 1605 if (bio->bi_status) { 1606 rbio_update_error_bitmap(rbio, bio); 1607 } else { 1608 set_bio_pages_uptodate(rbio, bio); 1609 verify_bio_data_sectors(rbio, bio); 1610 } 1611 1612 bio_put(bio); 1613 if (atomic_dec_and_test(&rbio->stripes_pending)) 1614 wake_up(&rbio->io_wait); 1615 } 1616 1617 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, 1618 struct bio_list *bio_list) 1619 { 1620 struct bio *bio; 1621 1622 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 1623 while ((bio = bio_list_pop(bio_list))) { 1624 bio->bi_end_io = raid_wait_read_end_io; 1625 1626 if (trace_raid56_read_enabled()) { 1627 struct raid56_bio_trace_info trace_info = { 0 }; 1628 1629 bio_get_trace_info(rbio, bio, &trace_info); 1630 trace_raid56_read(rbio, bio, &trace_info); 1631 } 1632 submit_bio(bio); 1633 } 1634 1635 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 1636 } 1637 1638 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) 1639 { 1640 const int data_pages = rbio->nr_data * rbio->stripe_npages; 1641 int ret; 1642 1643 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false); 1644 if (ret < 0) 1645 return ret; 1646 1647 index_stripe_sectors(rbio); 1648 return 0; 1649 } 1650 1651 /* 1652 * We use plugging call backs to collect full stripes. 1653 * Any time we get a partial stripe write while plugged 1654 * we collect it into a list. When the unplug comes down, 1655 * we sort the list by logical block number and merge 1656 * everything we can into the same rbios 1657 */ 1658 struct btrfs_plug_cb { 1659 struct blk_plug_cb cb; 1660 struct btrfs_fs_info *info; 1661 struct list_head rbio_list; 1662 }; 1663 1664 /* 1665 * rbios on the plug list are sorted for easier merging. 1666 */ 1667 static int plug_cmp(void *priv, const struct list_head *a, 1668 const struct list_head *b) 1669 { 1670 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, 1671 plug_list); 1672 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, 1673 plug_list); 1674 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; 1675 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; 1676 1677 if (a_sector < b_sector) 1678 return -1; 1679 if (a_sector > b_sector) 1680 return 1; 1681 return 0; 1682 } 1683 1684 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) 1685 { 1686 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); 1687 struct btrfs_raid_bio *cur; 1688 struct btrfs_raid_bio *last = NULL; 1689 1690 list_sort(NULL, &plug->rbio_list, plug_cmp); 1691 1692 while (!list_empty(&plug->rbio_list)) { 1693 cur = list_entry(plug->rbio_list.next, 1694 struct btrfs_raid_bio, plug_list); 1695 list_del_init(&cur->plug_list); 1696 1697 if (rbio_is_full(cur)) { 1698 /* We have a full stripe, queue it down. */ 1699 start_async_work(cur, rmw_rbio_work); 1700 continue; 1701 } 1702 if (last) { 1703 if (rbio_can_merge(last, cur)) { 1704 merge_rbio(last, cur); 1705 free_raid_bio(cur); 1706 continue; 1707 } 1708 start_async_work(last, rmw_rbio_work); 1709 } 1710 last = cur; 1711 } 1712 if (last) 1713 start_async_work(last, rmw_rbio_work); 1714 kfree(plug); 1715 } 1716 1717 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ 1718 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) 1719 { 1720 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1721 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; 1722 const u64 full_stripe_start = rbio->bioc->full_stripe_logical; 1723 const u32 orig_len = orig_bio->bi_iter.bi_size; 1724 const u32 sectorsize = fs_info->sectorsize; 1725 u64 cur_logical; 1726 1727 ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start && 1728 orig_logical + orig_len <= full_stripe_start + 1729 rbio->nr_data * BTRFS_STRIPE_LEN, 1730 rbio, orig_logical); 1731 1732 bio_list_add(&rbio->bio_list, orig_bio); 1733 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; 1734 1735 /* Update the dbitmap. */ 1736 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; 1737 cur_logical += sectorsize) { 1738 int bit = ((u32)(cur_logical - full_stripe_start) >> 1739 fs_info->sectorsize_bits) % rbio->stripe_nsectors; 1740 1741 set_bit(bit, &rbio->dbitmap); 1742 } 1743 } 1744 1745 /* 1746 * our main entry point for writes from the rest of the FS. 1747 */ 1748 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) 1749 { 1750 struct btrfs_fs_info *fs_info = bioc->fs_info; 1751 struct btrfs_raid_bio *rbio; 1752 struct btrfs_plug_cb *plug = NULL; 1753 struct blk_plug_cb *cb; 1754 1755 rbio = alloc_rbio(fs_info, bioc); 1756 if (IS_ERR(rbio)) { 1757 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 1758 bio_endio(bio); 1759 return; 1760 } 1761 rbio->operation = BTRFS_RBIO_WRITE; 1762 rbio_add_bio(rbio, bio); 1763 1764 /* 1765 * Don't plug on full rbios, just get them out the door 1766 * as quickly as we can 1767 */ 1768 if (!rbio_is_full(rbio)) { 1769 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); 1770 if (cb) { 1771 plug = container_of(cb, struct btrfs_plug_cb, cb); 1772 if (!plug->info) { 1773 plug->info = fs_info; 1774 INIT_LIST_HEAD(&plug->rbio_list); 1775 } 1776 list_add_tail(&rbio->plug_list, &plug->rbio_list); 1777 return; 1778 } 1779 } 1780 1781 /* 1782 * Either we don't have any existing plug, or we're doing a full stripe, 1783 * queue the rmw work now. 1784 */ 1785 start_async_work(rbio, rmw_rbio_work); 1786 } 1787 1788 static int verify_one_sector(struct btrfs_raid_bio *rbio, 1789 int stripe_nr, int sector_nr) 1790 { 1791 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1792 struct sector_ptr *sector; 1793 u8 csum_buf[BTRFS_CSUM_SIZE]; 1794 u8 *csum_expected; 1795 int ret; 1796 1797 if (!rbio->csum_bitmap || !rbio->csum_buf) 1798 return 0; 1799 1800 /* No way to verify P/Q as they are not covered by data csum. */ 1801 if (stripe_nr >= rbio->nr_data) 1802 return 0; 1803 /* 1804 * If we're rebuilding a read, we have to use pages from the 1805 * bio list if possible. 1806 */ 1807 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1808 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1809 } else { 1810 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1811 } 1812 1813 ASSERT(sector->page); 1814 1815 csum_expected = rbio->csum_buf + 1816 (stripe_nr * rbio->stripe_nsectors + sector_nr) * 1817 fs_info->csum_size; 1818 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff, 1819 csum_buf, csum_expected); 1820 return ret; 1821 } 1822 1823 /* 1824 * Recover a vertical stripe specified by @sector_nr. 1825 * @*pointers are the pre-allocated pointers by the caller, so we don't 1826 * need to allocate/free the pointers again and again. 1827 */ 1828 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, 1829 void **pointers, void **unmap_array) 1830 { 1831 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 1832 struct sector_ptr *sector; 1833 const u32 sectorsize = fs_info->sectorsize; 1834 int found_errors; 1835 int faila; 1836 int failb; 1837 int stripe_nr; 1838 int ret = 0; 1839 1840 /* 1841 * Now we just use bitmap to mark the horizontal stripes in 1842 * which we have data when doing parity scrub. 1843 */ 1844 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && 1845 !test_bit(sector_nr, &rbio->dbitmap)) 1846 return 0; 1847 1848 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, 1849 &failb); 1850 /* 1851 * No errors in the vertical stripe, skip it. Can happen for recovery 1852 * which only part of a stripe failed csum check. 1853 */ 1854 if (!found_errors) 1855 return 0; 1856 1857 if (found_errors > rbio->bioc->max_errors) 1858 return -EIO; 1859 1860 /* 1861 * Setup our array of pointers with sectors from each stripe 1862 * 1863 * NOTE: store a duplicate array of pointers to preserve the 1864 * pointer order. 1865 */ 1866 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { 1867 /* 1868 * If we're rebuilding a read, we have to use pages from the 1869 * bio list if possible. 1870 */ 1871 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 1872 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); 1873 } else { 1874 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); 1875 } 1876 ASSERT(sector->page); 1877 pointers[stripe_nr] = kmap_local_page(sector->page) + 1878 sector->pgoff; 1879 unmap_array[stripe_nr] = pointers[stripe_nr]; 1880 } 1881 1882 /* All raid6 handling here */ 1883 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { 1884 /* Single failure, rebuild from parity raid5 style */ 1885 if (failb < 0) { 1886 if (faila == rbio->nr_data) 1887 /* 1888 * Just the P stripe has failed, without 1889 * a bad data or Q stripe. 1890 * We have nothing to do, just skip the 1891 * recovery for this stripe. 1892 */ 1893 goto cleanup; 1894 /* 1895 * a single failure in raid6 is rebuilt 1896 * in the pstripe code below 1897 */ 1898 goto pstripe; 1899 } 1900 1901 /* 1902 * If the q stripe is failed, do a pstripe reconstruction from 1903 * the xors. 1904 * If both the q stripe and the P stripe are failed, we're 1905 * here due to a crc mismatch and we can't give them the 1906 * data they want. 1907 */ 1908 if (failb == rbio->real_stripes - 1) { 1909 if (faila == rbio->real_stripes - 2) 1910 /* 1911 * Only P and Q are corrupted. 1912 * We only care about data stripes recovery, 1913 * can skip this vertical stripe. 1914 */ 1915 goto cleanup; 1916 /* 1917 * Otherwise we have one bad data stripe and 1918 * a good P stripe. raid5! 1919 */ 1920 goto pstripe; 1921 } 1922 1923 if (failb == rbio->real_stripes - 2) { 1924 raid6_datap_recov(rbio->real_stripes, sectorsize, 1925 faila, pointers); 1926 } else { 1927 raid6_2data_recov(rbio->real_stripes, sectorsize, 1928 faila, failb, pointers); 1929 } 1930 } else { 1931 void *p; 1932 1933 /* Rebuild from P stripe here (raid5 or raid6). */ 1934 ASSERT(failb == -1); 1935 pstripe: 1936 /* Copy parity block into failed block to start with */ 1937 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); 1938 1939 /* Rearrange the pointer array */ 1940 p = pointers[faila]; 1941 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; 1942 stripe_nr++) 1943 pointers[stripe_nr] = pointers[stripe_nr + 1]; 1944 pointers[rbio->nr_data - 1] = p; 1945 1946 /* Xor in the rest */ 1947 run_xor(pointers, rbio->nr_data - 1, sectorsize); 1948 1949 } 1950 1951 /* 1952 * No matter if this is a RMW or recovery, we should have all 1953 * failed sectors repaired in the vertical stripe, thus they are now 1954 * uptodate. 1955 * Especially if we determine to cache the rbio, we need to 1956 * have at least all data sectors uptodate. 1957 * 1958 * If possible, also check if the repaired sector matches its data 1959 * checksum. 1960 */ 1961 if (faila >= 0) { 1962 ret = verify_one_sector(rbio, faila, sector_nr); 1963 if (ret < 0) 1964 goto cleanup; 1965 1966 sector = rbio_stripe_sector(rbio, faila, sector_nr); 1967 sector->uptodate = 1; 1968 } 1969 if (failb >= 0) { 1970 ret = verify_one_sector(rbio, failb, sector_nr); 1971 if (ret < 0) 1972 goto cleanup; 1973 1974 sector = rbio_stripe_sector(rbio, failb, sector_nr); 1975 sector->uptodate = 1; 1976 } 1977 1978 cleanup: 1979 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) 1980 kunmap_local(unmap_array[stripe_nr]); 1981 return ret; 1982 } 1983 1984 static int recover_sectors(struct btrfs_raid_bio *rbio) 1985 { 1986 void **pointers = NULL; 1987 void **unmap_array = NULL; 1988 int sectornr; 1989 int ret = 0; 1990 1991 /* 1992 * @pointers array stores the pointer for each sector. 1993 * 1994 * @unmap_array stores copy of pointers that does not get reordered 1995 * during reconstruction so that kunmap_local works. 1996 */ 1997 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1998 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 1999 if (!pointers || !unmap_array) { 2000 ret = -ENOMEM; 2001 goto out; 2002 } 2003 2004 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { 2005 spin_lock(&rbio->bio_list_lock); 2006 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 2007 spin_unlock(&rbio->bio_list_lock); 2008 } 2009 2010 index_rbio_pages(rbio); 2011 2012 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 2013 ret = recover_vertical(rbio, sectornr, pointers, unmap_array); 2014 if (ret < 0) 2015 break; 2016 } 2017 2018 out: 2019 kfree(pointers); 2020 kfree(unmap_array); 2021 return ret; 2022 } 2023 2024 static void recover_rbio(struct btrfs_raid_bio *rbio) 2025 { 2026 struct bio_list bio_list = BIO_EMPTY_LIST; 2027 int total_sector_nr; 2028 int ret = 0; 2029 2030 /* 2031 * Either we're doing recover for a read failure or degraded write, 2032 * caller should have set error bitmap correctly. 2033 */ 2034 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); 2035 2036 /* For recovery, we need to read all sectors including P/Q. */ 2037 ret = alloc_rbio_pages(rbio); 2038 if (ret < 0) 2039 goto out; 2040 2041 index_rbio_pages(rbio); 2042 2043 /* 2044 * Read everything that hasn't failed. However this time we will 2045 * not trust any cached sector. 2046 * As we may read out some stale data but higher layer is not reading 2047 * that stale part. 2048 * 2049 * So here we always re-read everything in recovery path. 2050 */ 2051 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2052 total_sector_nr++) { 2053 int stripe = total_sector_nr / rbio->stripe_nsectors; 2054 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2055 struct sector_ptr *sector; 2056 2057 /* 2058 * Skip the range which has error. It can be a range which is 2059 * marked error (for csum mismatch), or it can be a missing 2060 * device. 2061 */ 2062 if (!rbio->bioc->stripes[stripe].dev->bdev || 2063 test_bit(total_sector_nr, rbio->error_bitmap)) { 2064 /* 2065 * Also set the error bit for missing device, which 2066 * may not yet have its error bit set. 2067 */ 2068 set_bit(total_sector_nr, rbio->error_bitmap); 2069 continue; 2070 } 2071 2072 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2073 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 2074 sectornr, REQ_OP_READ); 2075 if (ret < 0) { 2076 bio_list_put(&bio_list); 2077 goto out; 2078 } 2079 } 2080 2081 submit_read_wait_bio_list(rbio, &bio_list); 2082 ret = recover_sectors(rbio); 2083 out: 2084 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2085 } 2086 2087 static void recover_rbio_work(struct work_struct *work) 2088 { 2089 struct btrfs_raid_bio *rbio; 2090 2091 rbio = container_of(work, struct btrfs_raid_bio, work); 2092 if (!lock_stripe_add(rbio)) 2093 recover_rbio(rbio); 2094 } 2095 2096 static void recover_rbio_work_locked(struct work_struct *work) 2097 { 2098 recover_rbio(container_of(work, struct btrfs_raid_bio, work)); 2099 } 2100 2101 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) 2102 { 2103 bool found = false; 2104 int sector_nr; 2105 2106 /* 2107 * This is for RAID6 extra recovery tries, thus mirror number should 2108 * be large than 2. 2109 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using 2110 * RAID5 methods. 2111 */ 2112 ASSERT(mirror_num > 2); 2113 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2114 int found_errors; 2115 int faila; 2116 int failb; 2117 2118 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2119 &faila, &failb); 2120 /* This vertical stripe doesn't have errors. */ 2121 if (!found_errors) 2122 continue; 2123 2124 /* 2125 * If we found errors, there should be only one error marked 2126 * by previous set_rbio_range_error(). 2127 */ 2128 ASSERT(found_errors == 1); 2129 found = true; 2130 2131 /* Now select another stripe to mark as error. */ 2132 failb = rbio->real_stripes - (mirror_num - 1); 2133 if (failb <= faila) 2134 failb--; 2135 2136 /* Set the extra bit in error bitmap. */ 2137 if (failb >= 0) 2138 set_bit(failb * rbio->stripe_nsectors + sector_nr, 2139 rbio->error_bitmap); 2140 } 2141 2142 /* We should found at least one vertical stripe with error.*/ 2143 ASSERT(found); 2144 } 2145 2146 /* 2147 * the main entry point for reads from the higher layers. This 2148 * is really only called when the normal read path had a failure, 2149 * so we assume the bio they send down corresponds to a failed part 2150 * of the drive. 2151 */ 2152 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, 2153 int mirror_num) 2154 { 2155 struct btrfs_fs_info *fs_info = bioc->fs_info; 2156 struct btrfs_raid_bio *rbio; 2157 2158 rbio = alloc_rbio(fs_info, bioc); 2159 if (IS_ERR(rbio)) { 2160 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); 2161 bio_endio(bio); 2162 return; 2163 } 2164 2165 rbio->operation = BTRFS_RBIO_READ_REBUILD; 2166 rbio_add_bio(rbio, bio); 2167 2168 set_rbio_range_error(rbio, bio); 2169 2170 /* 2171 * Loop retry: 2172 * for 'mirror == 2', reconstruct from all other stripes. 2173 * for 'mirror_num > 2', select a stripe to fail on every retry. 2174 */ 2175 if (mirror_num > 2) 2176 set_rbio_raid6_extra_error(rbio, mirror_num); 2177 2178 start_async_work(rbio, recover_rbio_work); 2179 } 2180 2181 static void fill_data_csums(struct btrfs_raid_bio *rbio) 2182 { 2183 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; 2184 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, 2185 rbio->bioc->full_stripe_logical); 2186 const u64 start = rbio->bioc->full_stripe_logical; 2187 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << 2188 fs_info->sectorsize_bits; 2189 int ret; 2190 2191 /* The rbio should not have its csum buffer initialized. */ 2192 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); 2193 2194 /* 2195 * Skip the csum search if: 2196 * 2197 * - The rbio doesn't belong to data block groups 2198 * Then we are doing IO for tree blocks, no need to search csums. 2199 * 2200 * - The rbio belongs to mixed block groups 2201 * This is to avoid deadlock, as we're already holding the full 2202 * stripe lock, if we trigger a metadata read, and it needs to do 2203 * raid56 recovery, we will deadlock. 2204 */ 2205 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || 2206 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) 2207 return; 2208 2209 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * 2210 fs_info->csum_size, GFP_NOFS); 2211 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, 2212 GFP_NOFS); 2213 if (!rbio->csum_buf || !rbio->csum_bitmap) { 2214 ret = -ENOMEM; 2215 goto error; 2216 } 2217 2218 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1, 2219 rbio->csum_buf, rbio->csum_bitmap); 2220 if (ret < 0) 2221 goto error; 2222 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) 2223 goto no_csum; 2224 return; 2225 2226 error: 2227 /* 2228 * We failed to allocate memory or grab the csum, but it's not fatal, 2229 * we can still continue. But better to warn users that RMW is no 2230 * longer safe for this particular sub-stripe write. 2231 */ 2232 btrfs_warn_rl(fs_info, 2233 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", 2234 rbio->bioc->full_stripe_logical, ret); 2235 no_csum: 2236 kfree(rbio->csum_buf); 2237 bitmap_free(rbio->csum_bitmap); 2238 rbio->csum_buf = NULL; 2239 rbio->csum_bitmap = NULL; 2240 } 2241 2242 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) 2243 { 2244 struct bio_list bio_list = BIO_EMPTY_LIST; 2245 int total_sector_nr; 2246 int ret = 0; 2247 2248 /* 2249 * Fill the data csums we need for data verification. We need to fill 2250 * the csum_bitmap/csum_buf first, as our endio function will try to 2251 * verify the data sectors. 2252 */ 2253 fill_data_csums(rbio); 2254 2255 /* 2256 * Build a list of bios to read all sectors (including data and P/Q). 2257 * 2258 * This behavior is to compensate the later csum verification and recovery. 2259 */ 2260 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2261 total_sector_nr++) { 2262 struct sector_ptr *sector; 2263 int stripe = total_sector_nr / rbio->stripe_nsectors; 2264 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2265 2266 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2267 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2268 stripe, sectornr, REQ_OP_READ); 2269 if (ret) { 2270 bio_list_put(&bio_list); 2271 return ret; 2272 } 2273 } 2274 2275 /* 2276 * We may or may not have any corrupted sectors (including missing dev 2277 * and csum mismatch), just let recover_sectors() to handle them all. 2278 */ 2279 submit_read_wait_bio_list(rbio, &bio_list); 2280 return recover_sectors(rbio); 2281 } 2282 2283 static void raid_wait_write_end_io(struct bio *bio) 2284 { 2285 struct btrfs_raid_bio *rbio = bio->bi_private; 2286 blk_status_t err = bio->bi_status; 2287 2288 if (err) 2289 rbio_update_error_bitmap(rbio, bio); 2290 bio_put(bio); 2291 if (atomic_dec_and_test(&rbio->stripes_pending)) 2292 wake_up(&rbio->io_wait); 2293 } 2294 2295 static void submit_write_bios(struct btrfs_raid_bio *rbio, 2296 struct bio_list *bio_list) 2297 { 2298 struct bio *bio; 2299 2300 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); 2301 while ((bio = bio_list_pop(bio_list))) { 2302 bio->bi_end_io = raid_wait_write_end_io; 2303 2304 if (trace_raid56_write_enabled()) { 2305 struct raid56_bio_trace_info trace_info = { 0 }; 2306 2307 bio_get_trace_info(rbio, bio, &trace_info); 2308 trace_raid56_write(rbio, bio, &trace_info); 2309 } 2310 submit_bio(bio); 2311 } 2312 } 2313 2314 /* 2315 * To determine if we need to read any sector from the disk. 2316 * Should only be utilized in RMW path, to skip cached rbio. 2317 */ 2318 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) 2319 { 2320 int i; 2321 2322 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { 2323 struct sector_ptr *sector = &rbio->stripe_sectors[i]; 2324 2325 /* 2326 * We have a sector which doesn't have page nor uptodate, 2327 * thus this rbio can not be cached one, as cached one must 2328 * have all its data sectors present and uptodate. 2329 */ 2330 if (!sector->page || !sector->uptodate) 2331 return true; 2332 } 2333 return false; 2334 } 2335 2336 static void rmw_rbio(struct btrfs_raid_bio *rbio) 2337 { 2338 struct bio_list bio_list; 2339 int sectornr; 2340 int ret = 0; 2341 2342 /* 2343 * Allocate the pages for parity first, as P/Q pages will always be 2344 * needed for both full-stripe and sub-stripe writes. 2345 */ 2346 ret = alloc_rbio_parity_pages(rbio); 2347 if (ret < 0) 2348 goto out; 2349 2350 /* 2351 * Either full stripe write, or we have every data sector already 2352 * cached, can go to write path immediately. 2353 */ 2354 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { 2355 /* 2356 * Now we're doing sub-stripe write, also need all data stripes 2357 * to do the full RMW. 2358 */ 2359 ret = alloc_rbio_data_pages(rbio); 2360 if (ret < 0) 2361 goto out; 2362 2363 index_rbio_pages(rbio); 2364 2365 ret = rmw_read_wait_recover(rbio); 2366 if (ret < 0) 2367 goto out; 2368 } 2369 2370 /* 2371 * At this stage we're not allowed to add any new bios to the 2372 * bio list any more, anyone else that wants to change this stripe 2373 * needs to do their own rmw. 2374 */ 2375 spin_lock(&rbio->bio_list_lock); 2376 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); 2377 spin_unlock(&rbio->bio_list_lock); 2378 2379 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2380 2381 index_rbio_pages(rbio); 2382 2383 /* 2384 * We don't cache full rbios because we're assuming 2385 * the higher layers are unlikely to use this area of 2386 * the disk again soon. If they do use it again, 2387 * hopefully they will send another full bio. 2388 */ 2389 if (!rbio_is_full(rbio)) 2390 cache_rbio_pages(rbio); 2391 else 2392 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2393 2394 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) 2395 generate_pq_vertical(rbio, sectornr); 2396 2397 bio_list_init(&bio_list); 2398 ret = rmw_assemble_write_bios(rbio, &bio_list); 2399 if (ret < 0) 2400 goto out; 2401 2402 /* We should have at least one bio assembled. */ 2403 ASSERT(bio_list_size(&bio_list)); 2404 submit_write_bios(rbio, &bio_list); 2405 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2406 2407 /* We may have more errors than our tolerance during the read. */ 2408 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { 2409 int found_errors; 2410 2411 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); 2412 if (found_errors > rbio->bioc->max_errors) { 2413 ret = -EIO; 2414 break; 2415 } 2416 } 2417 out: 2418 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2419 } 2420 2421 static void rmw_rbio_work(struct work_struct *work) 2422 { 2423 struct btrfs_raid_bio *rbio; 2424 2425 rbio = container_of(work, struct btrfs_raid_bio, work); 2426 if (lock_stripe_add(rbio) == 0) 2427 rmw_rbio(rbio); 2428 } 2429 2430 static void rmw_rbio_work_locked(struct work_struct *work) 2431 { 2432 rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); 2433 } 2434 2435 /* 2436 * The following code is used to scrub/replace the parity stripe 2437 * 2438 * Caller must have already increased bio_counter for getting @bioc. 2439 * 2440 * Note: We need make sure all the pages that add into the scrub/replace 2441 * raid bio are correct and not be changed during the scrub/replace. That 2442 * is those pages just hold metadata or file data with checksum. 2443 */ 2444 2445 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, 2446 struct btrfs_io_context *bioc, 2447 struct btrfs_device *scrub_dev, 2448 unsigned long *dbitmap, int stripe_nsectors) 2449 { 2450 struct btrfs_fs_info *fs_info = bioc->fs_info; 2451 struct btrfs_raid_bio *rbio; 2452 int i; 2453 2454 rbio = alloc_rbio(fs_info, bioc); 2455 if (IS_ERR(rbio)) 2456 return NULL; 2457 bio_list_add(&rbio->bio_list, bio); 2458 /* 2459 * This is a special bio which is used to hold the completion handler 2460 * and make the scrub rbio is similar to the other types 2461 */ 2462 ASSERT(!bio->bi_iter.bi_size); 2463 rbio->operation = BTRFS_RBIO_PARITY_SCRUB; 2464 2465 /* 2466 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted 2467 * to the end position, so this search can start from the first parity 2468 * stripe. 2469 */ 2470 for (i = rbio->nr_data; i < rbio->real_stripes; i++) { 2471 if (bioc->stripes[i].dev == scrub_dev) { 2472 rbio->scrubp = i; 2473 break; 2474 } 2475 } 2476 ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i); 2477 2478 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); 2479 return rbio; 2480 } 2481 2482 /* 2483 * We just scrub the parity that we have correct data on the same horizontal, 2484 * so we needn't allocate all pages for all the stripes. 2485 */ 2486 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) 2487 { 2488 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2489 int total_sector_nr; 2490 2491 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2492 total_sector_nr++) { 2493 struct page *page; 2494 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2495 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; 2496 2497 if (!test_bit(sectornr, &rbio->dbitmap)) 2498 continue; 2499 if (rbio->stripe_pages[index]) 2500 continue; 2501 page = alloc_page(GFP_NOFS); 2502 if (!page) 2503 return -ENOMEM; 2504 rbio->stripe_pages[index] = page; 2505 } 2506 index_stripe_sectors(rbio); 2507 return 0; 2508 } 2509 2510 static int finish_parity_scrub(struct btrfs_raid_bio *rbio) 2511 { 2512 struct btrfs_io_context *bioc = rbio->bioc; 2513 const u32 sectorsize = bioc->fs_info->sectorsize; 2514 void **pointers = rbio->finish_pointers; 2515 unsigned long *pbitmap = &rbio->finish_pbitmap; 2516 int nr_data = rbio->nr_data; 2517 int stripe; 2518 int sectornr; 2519 bool has_qstripe; 2520 struct sector_ptr p_sector = { 0 }; 2521 struct sector_ptr q_sector = { 0 }; 2522 struct bio_list bio_list; 2523 int is_replace = 0; 2524 int ret; 2525 2526 bio_list_init(&bio_list); 2527 2528 if (rbio->real_stripes - rbio->nr_data == 1) 2529 has_qstripe = false; 2530 else if (rbio->real_stripes - rbio->nr_data == 2) 2531 has_qstripe = true; 2532 else 2533 BUG(); 2534 2535 /* 2536 * Replace is running and our P/Q stripe is being replaced, then we 2537 * need to duplicate the final write to replace target. 2538 */ 2539 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) { 2540 is_replace = 1; 2541 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); 2542 } 2543 2544 /* 2545 * Because the higher layers(scrubber) are unlikely to 2546 * use this area of the disk again soon, so don't cache 2547 * it. 2548 */ 2549 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); 2550 2551 p_sector.page = alloc_page(GFP_NOFS); 2552 if (!p_sector.page) 2553 return -ENOMEM; 2554 p_sector.pgoff = 0; 2555 p_sector.uptodate = 1; 2556 2557 if (has_qstripe) { 2558 /* RAID6, allocate and map temp space for the Q stripe */ 2559 q_sector.page = alloc_page(GFP_NOFS); 2560 if (!q_sector.page) { 2561 __free_page(p_sector.page); 2562 p_sector.page = NULL; 2563 return -ENOMEM; 2564 } 2565 q_sector.pgoff = 0; 2566 q_sector.uptodate = 1; 2567 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); 2568 } 2569 2570 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2571 2572 /* Map the parity stripe just once */ 2573 pointers[nr_data] = kmap_local_page(p_sector.page); 2574 2575 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2576 struct sector_ptr *sector; 2577 void *parity; 2578 2579 /* first collect one page from each data stripe */ 2580 for (stripe = 0; stripe < nr_data; stripe++) { 2581 sector = sector_in_rbio(rbio, stripe, sectornr, 0); 2582 pointers[stripe] = kmap_local_page(sector->page) + 2583 sector->pgoff; 2584 } 2585 2586 if (has_qstripe) { 2587 assert_rbio(rbio); 2588 /* RAID6, call the library function to fill in our P/Q */ 2589 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, 2590 pointers); 2591 } else { 2592 /* raid5 */ 2593 memcpy(pointers[nr_data], pointers[0], sectorsize); 2594 run_xor(pointers + 1, nr_data - 1, sectorsize); 2595 } 2596 2597 /* Check scrubbing parity and repair it */ 2598 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2599 parity = kmap_local_page(sector->page) + sector->pgoff; 2600 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) 2601 memcpy(parity, pointers[rbio->scrubp], sectorsize); 2602 else 2603 /* Parity is right, needn't writeback */ 2604 bitmap_clear(&rbio->dbitmap, sectornr, 1); 2605 kunmap_local(parity); 2606 2607 for (stripe = nr_data - 1; stripe >= 0; stripe--) 2608 kunmap_local(pointers[stripe]); 2609 } 2610 2611 kunmap_local(pointers[nr_data]); 2612 __free_page(p_sector.page); 2613 p_sector.page = NULL; 2614 if (q_sector.page) { 2615 kunmap_local(pointers[rbio->real_stripes - 1]); 2616 __free_page(q_sector.page); 2617 q_sector.page = NULL; 2618 } 2619 2620 /* 2621 * time to start writing. Make bios for everything from the 2622 * higher layers (the bio_list in our rbio) and our p/q. Ignore 2623 * everything else. 2624 */ 2625 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { 2626 struct sector_ptr *sector; 2627 2628 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2629 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, 2630 sectornr, REQ_OP_WRITE); 2631 if (ret) 2632 goto cleanup; 2633 } 2634 2635 if (!is_replace) 2636 goto submit_write; 2637 2638 /* 2639 * Replace is running and our parity stripe needs to be duplicated to 2640 * the target device. Check we have a valid source stripe number. 2641 */ 2642 ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio); 2643 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { 2644 struct sector_ptr *sector; 2645 2646 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); 2647 ret = rbio_add_io_sector(rbio, &bio_list, sector, 2648 rbio->real_stripes, 2649 sectornr, REQ_OP_WRITE); 2650 if (ret) 2651 goto cleanup; 2652 } 2653 2654 submit_write: 2655 submit_write_bios(rbio, &bio_list); 2656 return 0; 2657 2658 cleanup: 2659 bio_list_put(&bio_list); 2660 return ret; 2661 } 2662 2663 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) 2664 { 2665 if (stripe >= 0 && stripe < rbio->nr_data) 2666 return 1; 2667 return 0; 2668 } 2669 2670 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) 2671 { 2672 void **pointers = NULL; 2673 void **unmap_array = NULL; 2674 int sector_nr; 2675 int ret = 0; 2676 2677 /* 2678 * @pointers array stores the pointer for each sector. 2679 * 2680 * @unmap_array stores copy of pointers that does not get reordered 2681 * during reconstruction so that kunmap_local works. 2682 */ 2683 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2684 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); 2685 if (!pointers || !unmap_array) { 2686 ret = -ENOMEM; 2687 goto out; 2688 } 2689 2690 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2691 int dfail = 0, failp = -1; 2692 int faila; 2693 int failb; 2694 int found_errors; 2695 2696 found_errors = get_rbio_veritical_errors(rbio, sector_nr, 2697 &faila, &failb); 2698 if (found_errors > rbio->bioc->max_errors) { 2699 ret = -EIO; 2700 goto out; 2701 } 2702 if (found_errors == 0) 2703 continue; 2704 2705 /* We should have at least one error here. */ 2706 ASSERT(faila >= 0 || failb >= 0); 2707 2708 if (is_data_stripe(rbio, faila)) 2709 dfail++; 2710 else if (is_parity_stripe(faila)) 2711 failp = faila; 2712 2713 if (is_data_stripe(rbio, failb)) 2714 dfail++; 2715 else if (is_parity_stripe(failb)) 2716 failp = failb; 2717 /* 2718 * Because we can not use a scrubbing parity to repair the 2719 * data, so the capability of the repair is declined. (In the 2720 * case of RAID5, we can not repair anything.) 2721 */ 2722 if (dfail > rbio->bioc->max_errors - 1) { 2723 ret = -EIO; 2724 goto out; 2725 } 2726 /* 2727 * If all data is good, only parity is correctly, just repair 2728 * the parity, no need to recover data stripes. 2729 */ 2730 if (dfail == 0) 2731 continue; 2732 2733 /* 2734 * Here means we got one corrupted data stripe and one 2735 * corrupted parity on RAID6, if the corrupted parity is 2736 * scrubbing parity, luckily, use the other one to repair the 2737 * data, or we can not repair the data stripe. 2738 */ 2739 if (failp != rbio->scrubp) { 2740 ret = -EIO; 2741 goto out; 2742 } 2743 2744 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); 2745 if (ret < 0) 2746 goto out; 2747 } 2748 out: 2749 kfree(pointers); 2750 kfree(unmap_array); 2751 return ret; 2752 } 2753 2754 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) 2755 { 2756 struct bio_list bio_list = BIO_EMPTY_LIST; 2757 int total_sector_nr; 2758 int ret = 0; 2759 2760 /* Build a list of bios to read all the missing parts. */ 2761 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; 2762 total_sector_nr++) { 2763 int sectornr = total_sector_nr % rbio->stripe_nsectors; 2764 int stripe = total_sector_nr / rbio->stripe_nsectors; 2765 struct sector_ptr *sector; 2766 2767 /* No data in the vertical stripe, no need to read. */ 2768 if (!test_bit(sectornr, &rbio->dbitmap)) 2769 continue; 2770 2771 /* 2772 * We want to find all the sectors missing from the rbio and 2773 * read them from the disk. If sector_in_rbio() finds a sector 2774 * in the bio list we don't need to read it off the stripe. 2775 */ 2776 sector = sector_in_rbio(rbio, stripe, sectornr, 1); 2777 if (sector) 2778 continue; 2779 2780 sector = rbio_stripe_sector(rbio, stripe, sectornr); 2781 /* 2782 * The bio cache may have handed us an uptodate sector. If so, 2783 * use it. 2784 */ 2785 if (sector->uptodate) 2786 continue; 2787 2788 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, 2789 sectornr, REQ_OP_READ); 2790 if (ret) { 2791 bio_list_put(&bio_list); 2792 return ret; 2793 } 2794 } 2795 2796 submit_read_wait_bio_list(rbio, &bio_list); 2797 return 0; 2798 } 2799 2800 static void scrub_rbio(struct btrfs_raid_bio *rbio) 2801 { 2802 int sector_nr; 2803 int ret; 2804 2805 ret = alloc_rbio_essential_pages(rbio); 2806 if (ret) 2807 goto out; 2808 2809 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); 2810 2811 ret = scrub_assemble_read_bios(rbio); 2812 if (ret < 0) 2813 goto out; 2814 2815 /* We may have some failures, recover the failed sectors first. */ 2816 ret = recover_scrub_rbio(rbio); 2817 if (ret < 0) 2818 goto out; 2819 2820 /* 2821 * We have every sector properly prepared. Can finish the scrub 2822 * and writeback the good content. 2823 */ 2824 ret = finish_parity_scrub(rbio); 2825 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); 2826 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { 2827 int found_errors; 2828 2829 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); 2830 if (found_errors > rbio->bioc->max_errors) { 2831 ret = -EIO; 2832 break; 2833 } 2834 } 2835 out: 2836 rbio_orig_end_io(rbio, errno_to_blk_status(ret)); 2837 } 2838 2839 static void scrub_rbio_work_locked(struct work_struct *work) 2840 { 2841 scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); 2842 } 2843 2844 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) 2845 { 2846 if (!lock_stripe_add(rbio)) 2847 start_async_work(rbio, scrub_rbio_work_locked); 2848 } 2849 2850 /* 2851 * This is for scrub call sites where we already have correct data contents. 2852 * This allows us to avoid reading data stripes again. 2853 * 2854 * Unfortunately here we have to do page copy, other than reusing the pages. 2855 * This is due to the fact rbio has its own page management for its cache. 2856 */ 2857 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio, 2858 struct page **data_pages, u64 data_logical) 2859 { 2860 const u64 offset_in_full_stripe = data_logical - 2861 rbio->bioc->full_stripe_logical; 2862 const int page_index = offset_in_full_stripe >> PAGE_SHIFT; 2863 const u32 sectorsize = rbio->bioc->fs_info->sectorsize; 2864 const u32 sectors_per_page = PAGE_SIZE / sectorsize; 2865 int ret; 2866 2867 /* 2868 * If we hit ENOMEM temporarily, but later at 2869 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do 2870 * the extra read, not a big deal. 2871 * 2872 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time, 2873 * the bio would got proper error number set. 2874 */ 2875 ret = alloc_rbio_data_pages(rbio); 2876 if (ret < 0) 2877 return; 2878 2879 /* data_logical must be at stripe boundary and inside the full stripe. */ 2880 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN)); 2881 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT)); 2882 2883 for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) { 2884 struct page *dst = rbio->stripe_pages[page_nr + page_index]; 2885 struct page *src = data_pages[page_nr]; 2886 2887 memcpy_page(dst, 0, src, 0, PAGE_SIZE); 2888 for (int sector_nr = sectors_per_page * page_index; 2889 sector_nr < sectors_per_page * (page_index + 1); 2890 sector_nr++) 2891 rbio->stripe_sectors[sector_nr].uptodate = true; 2892 } 2893 } 2894
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.